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Abstract: Based on complex genomic signal analysis, it has recently been reported that DNA sequences show
large-scale regularities, at the scale of whole chromosomes. The paper shows that these long range correlations
can also be found in a fractal-like structure of DNA genomic signals, as well asin their 1/f noise. Specifically,
the paper studiesthe fractal dimension of DNA segments along homo sapiens chromosome 22. The results reveal
that the probabilities of occurrence of nucleotides and groups of nucleotides in a DNA sequence depend on the
distribution of nuclectides along the entire sequence and that this correlation is stronger in the extra-genic, non-
coding, regions.
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1. INTRODUCTION

Recently it has been found that seemingly random phemeprinem very different domains -- like commuter
traffic, earthquakes, electric circuits, flood recordd amarket time series -- display some common behavior
resulting from correlations between distant elementgnts. These long range correlations show up in a
fractal-like structure of the data describing such syst&NA sequences share to some extent these features an
belong to the same family of fractal-like objects. Trextal patterns emerge because individual events in an
apparently random system are actually correlated wighiiqars occurrences of other events. The analysis of
genomic signals corresponding to DNA sequences [2-4]éwasled large scales statistical properties of at the
scale of whole chromosomes. Such long range correladi@expressed both in a fractal-like structure of DNA
genomic signals and in 1/f noise [7, 11]. The position ofeuticles — adenine, guanine, cytosine and thymine —
in a DNA sequence depends on the distribution of nucleotdethe entire chromosome. The patterns of
nucleotide occurrence in DNA sequences bear similat@itise 1/f noise, typical for fluctuations, but ubiquitous
in nature and techniques. Fluctuations are the time analagfuésctal shapes, such as snowflakes and
coastlines, which have the property of self-similagter several scales of magnitude: the parts resemble the
system as a whole. Base pairs in DNA do not occur @orapletely random fashion, especially outside the
coding regions, in the so called “junk DNA” area that ddo@t encode directly information about protein
synthesis. Exons — the encoding regions of DNA -- langd@nge correlation and resemble to white noise. This
is so primarily because the exons encode proteins fathwihie functionality is given by the structure — an
essentially qualitative feature that is improperly désetiby quantitative parameters that could be correlated.
Long-range correlations - which extend over distancésinfireds of thousands to tens of millions of base pairs
i.e., up to the scale of whole chromosomes, have a funattrole in the control of crossing-over and species
separation [4], and also could represent a trade-off betvifieiere information storage and protection against
error in the genetic code by adding some redundancy enttagling.

Also very recently, it has been claimed that the prakarfDNA sequences were the least correlated and that
correlations would increase as organisms moved up the ievanyt ladder. These claims are not confirmed by
the genomic signal analysis that reveals long rangelations for all the studied taxa.

The paper presents some preliminary results in the studsacfl structures in DNA sequences haimo
sapiens. Specifically, the fractal dimension of the cumulgbédse of the complex genomic signal corresponding
to segments of thisomo sapiens chromosome 22 has been measured in a sliding window approac

2. FRACTAL DIMENSION OF SIGNALS

The dimension of a fractal-like structure can be megbsusing a multiresolution technique as for instance the
doubling (merging) boxes method described in [5]. Graduallyeasing the size of the box used to explore the
structure of a distribution of points in the backgroungyarthe number of the boxes containing points that
belong to the given set — which provides a quantitativesorezof the extension of the set of points at thengive
resolution — decreases according to a power law, the erpbeing the fractal dimension of the set of points.
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The self-similarity of the structure is revealed by timearity of the plot lod{) vs log (B), whereN is the
number of field boxes anB the size of the box, while the slope gives the (fractithension. The range of
linearity reveals the range of scales for which tiaetél self-similarity property holds. Figure 1 exempdiftae
application of the method for several linear signalbeided in 2D arrays comprising 1024 pixels with value
one (black points) out of the total of 1024 x 1024 pixels ob#ekground array, initially zero (white).
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Fig. 1. Examples of linear signals embedded in a 2D background drs&aedl024 x 1024 pixels.

The corresponding dependencies between the logarithms ofithieer of filled boxesN) and the size of the
boxes B) is given in figures 2 a and 2 b. To the vertical Im&ig 1 a corresponds the diagram in Fig. 2a, while
to the horizontal and oblique lines in Fig 1 b, ¢, degponds the same diagram in Fig. 2 b. In all thesenivesta
the slope of the regression line gives the exactdraanension one.
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Fig. 2. Log-log plot of the dependence between the number of filled boxebahdx size for the linear signals shown in
Fig 1. The vertical line in Fig. 1a generates the ploign Fa, while all other lines give the diagram in Fig. Edr. all the
instances the fractal dimension results one as expected.

A more complex case is shown in Fig. 3. The Cantor sigrsal is obtained by selecting a Cantor subset of
points (of order 7) from the 2187 points of the discreteecof a sinus extended over three periods. The set of
points comprises 2= 128 points (ones), out of the total of 2187 x 2187"=e®pty initial positions of the
background (zeros).
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Fig. 3.(a) Cantor sinus signal obtained by selecting a Canbtmeswf points from the discrete curve of a sinus extended
over three periods. (b) Log-log plot of the dependence betweenthiger of filled boxes and the box size for the signal
shown in Fig. 3 a.
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The log-log plot of the dependence between the numbelieaf fioxes and the box size reveals in this case a
different fractal-like behavior for various ranges oflesaThe set of points can be approximated for each such
range of scales with a different fractal, but does rbibé the self-similarity at all scales typical foattals.
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Fig. 4.(a) Random signal comprising 1024 points embedded in an 10224xbackground array. (b) Log-log
plot of the dependence between the number of filled bamdghe box size for the signal shown in Fig. 4 a.

Figure 4 presents the case of a random signal comprisg¥gpiints distributed one in each horizontal location
and randomly over the vertical locations. The diagrarfign 4 b reveals that the self-similarity holds only for
large enough boxes (with approximately-I@) > 5.5, i.e., with an ared2times the area of an initial pixel). For
smaller boxes, the structures are no longer similattanftactal behavior degenerates in point-like features.

The properties of the investigation method shown byetiests must be taken into account when analyzing the
fractal structure and the fractal dimension of genigjoals.

3. RESULTS FOR GENOMIC SIGNALS

DNA sequences from contig NT_011519Hdmo Sapiens chromosome 22 have been downloaded from the
GeneBank [10] and converted into complex genomic signalsssibed in previous work [2-4]. The cumulated

phase of the genomic signal has been investigated usiiting slindow moving along the sequence. The local

fractal dimension of the signal inside the window hasrbdetermined in an attempt to identify the local

properties of the various regions.
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Fig.4. Fractal dimension along a segment of 1Mbp at the begioficontig NT_011519 [10] of Homo
Sapiens chromosome 22.

The windows have been chosen of the size 1024 bp, and tarcadvf the sliding window has been 512 pixels
along the strand. Figure 4 gives the results for a 1Mbp segahéhe beginning of the contig NT_011519. The
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average fractal dimension for the whole segment &bofit 1.05, slightly over the dimension of a ‘simpleglin
but there are significant fluctuations of the dimensioos various regions of the contig. An attentive asaly
of the results is necessary to correlate the meas@etdl dimension to the annotation of the chromosontk a
the attach biological meaning to the numerical values.

3. CONCLUSIONS

The method for measuring the fractal dimension of aofepoints, the corresponding algorithm and its
MATLAB ® implementation allow the analysis of the structure ofjdascale signals to reveal long range
correlations with obvious biological significance. Moesearch is necessary to clarify the meaning ofr Hutal
dimension and of the range of scale over which the gendgnelss self similar. Other types of genomic
signals, primarily the cumulated sums of the complgrals that generate the genomic complex path will be
investigated.
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