
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION
PROPERTY

NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

Abstract. We show that if d ∈ GH1 then D(≤ d) has the complementation property,

i.e. for all a < d there is some b < d such that a ∧ b = 0 and a ∨ b = d.

§1. Introduction. A major theme in the investigation of the structure of the
Turing degrees, (D,≤T), has been the relationship between the order theoretic
properties of a degree and its complexity of definition in arithmetic as expressed
by the Turing jump operator which embodies a single step in the hierarchy of
quantification. For example, there is a long history of results showing that 0′

has many special order theoretic properties. To cite just a few: every countable
partial order can be embedded below 0′ (Kleene and Post [KP54]); there are
minimal degrees below 0′ (Sacks [Sac61]); 0′ cups to every degree above it (and
so has the cupping property)(Friedberg [Fri57]); every degree below 0′ joins up
to 0′ (and so has the join property)(Robinson [Rob72], Posner and Robinson
[PR81]).

It was often hoped that some such property would distinguish either 0′ or
some class of degrees closely related to it. For degrees below 0′, the notion
of being close to 0′ (or 0 at the other end) was also measured by the jump
operator via the high/low hierarchy: for d ≤T 0′, d ∈ Hn ⇔ d(n) = 0(n+1) and
d ∈ Ln ⇔ d(n) = 0(n). The questions then became at which levels of this
hierarchy do the various properties of 0′ appear. The corresponding results for
the above properties for d ≤T 0′ are as follows: every countable partial order can
be embedded below every d /∈ L2; there are minimal degrees below every d ∈ H1;
every d /∈ L2 cups to every degree above it; every degree below d joins up to d for
d ∈ H1. (Except for the last, these results are all known to be sharp in terms of
the high/low hierarchy. The sharpness of the first follows from the existence of a
minimal degree a ∈ L2−L1: There is a minimal a < 0′ not in L1 by Sasso [Sas74]
and it is in L2 by Jockusch and Posner [JP78]. This minimal degree is easily
seen to be weakly recursive in the sense of Ishmukhametov [Ish99] and then, by
that work, has a strong minimal cover b, i.e. {0,a,b} is an initial segment of
the degrees. This proves the sharpness of the third fact. The existence of such
an initial segment with b also below 0′ follows by Lerman’s methods as outlined

All the authors were partially supported by NSF Grant DMS-0100035.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

in [Ler83, XII.5.8]. The sharpness of the second is by Lerman [Ler86].) The
techniques used to prove all these positive results are tied up with approximation
methods, rates of growth conditions and domination properties. Thus they are
of independent interest for relating degree theoretic properties of functions with
such conditions.

In the setting of the degrees as a whole the analogous measure of the strength of
a degree in terms of its jumps is the generalized high/low hierarchy: d ∈ GHn ⇔
d(n) = (d ∨ 0′)(n) and d ∈ GLn ⇔ d(n) = (d ∨ 0′)(n−1) . (We take GL0 =
{0}.) All of the results mentioned above for d ≤T 0′, for example, are true for
all degrees as long as we use the generalized hierarchy. (Jockusch and Posner
[JP78]; (Cooper [Coo73]) for H1 and Jockusch [Joc77] for GH1; Jockusch and
Posner [JP78]; Posner [Pos77].) Once again approximations, rates of growth and
domination properties play prominent roles in the constructions.

It was often hoped that these investigations would lead to a definition of 0′ in
D or of some of the classes in the appropriate hierarchy in D or D(≤ 0′). In fact,
the jump operator has been defined in D by entirely different methods involving
coding models of arithmetic and other arguments by Shore and Slaman [SS99]
as have all of the high/low classes in D(≤ 0′) with the exception of L1 by Nies,
Shore and Slaman [NSS98]. The dream of a natural definition for any of these
classes based on such order theoretic properties, however, still persists and can
only be realized by investigations such as these. Moreover, the analysis of the
relations between rates of growth and domination principles and the ordering of
degrees remains intriguing on its own.

In this paper we consider the complementation property for degrees d: for
every a < d there is a b < d such that a ∨ b = d and a ∧ b = 0. The primary
result here is that 0′ has the complementation property. This result has a long
history. R. W. Robinson [Rob72, cf. [PR81]] showed that every a ∈ L2 has a
complement in D(≤ 0′); Posner [Pos77], that every a ∈ H1 has one and Epstein
[Eps75], that every r.e. a has one. Finally, Posner [Pos81] showed that every
a /∈ L2 has a complement inD(≤ 0′) and so 0′ has the complementation property.
By a further argument using relativization and an additional division into cases
along with some known results, Posner also showed that every d ∈ GH0, i.e.
d ≥ 0′, also has the complementation property. At the end of that paper, he
posed four questions:

1. Is there a uniform proof of the complementation property for 0′ (i.e. elim-
inate the split into cases and provide a single procedure that generates a
complement for any nonrecursive a < 0′)?

2. Does every nonrecursive a < 0′ have a 1-generic complement?
3. Does every nonrecursive a < 0′ have a complement of minimal degree?
4. Does every d ∈ GH1 have the complementation property?

Slaman and Steel [SS89] answered questions 1 and 2 simultaneously by provid-
ing a uniform proof that every nonrecursive a < 0′ has a 1-generic complement.
Seetapun and Slaman circulated a sketch of a proposed affirmative answer to
the third question around 1992 and that sketch has recently been extended and
made into a proof by Lewis ([Lew03]). There have been several partial and re-
lated results about the fourth question. Epstein [Eps81], for example, showed

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 3

that if a < h are r.e. and h ∈ H1 then a has a complement in D(≤ h). In this
paper we supply a full affirmative answer:

Theorem 1.1. Every degree d ∈ GH1 has the complementation property, i.e.
for every a < d there is a b < d such that a ∨ b = d and a ∧ b = 0.

Like the original proof that 0′ has the complementation property, our proof of
this theorem is nonuniform. Rather than two case (a ∈ L2 and a /∈ L2) we here
have three separate cases, depending on the “distance” between a and d. The
three cases are:

1. a ∈ GL2.
2. a /∈ GL2, but there is some function recursive in d which is not dominated

by any function recursive in a.
3. Every function recursive in d is dominated by some function recursive in a.
Note that as defined these three cases are disjoint. The point is that if a ∈ GL2

then d′ = (d ∨ 0′)′ ≥ (a ∨ 0′)′ = a′′ and so there is a function recursive in d
which dominates every function recursive in a. They are also each nonempty.
For (2) just take d′ ≥ a′′. For (3) choose a ≥ 0′ and d any degree above a which
is hyperimmune free with respect to a such as is given by relativizing either
Miller and Martin [MM68] or the standard construction of a Spector minimal
degree using total recursive binary trees to a. (The point here is that the usual
forcing argument, even if only attempting to force minimality, decides totality
of every φA

e . Thus, if φA
e is total, A lies on a recursive binary tree T every path

through which makes φe total. So, for every n there is a level s of the tree such
that φ

T (σ)
e ↓ for every σ at level s. This guarantees that φA

e is dominated by the
recursive function which, given n, finds such an s and then outputs the maximum
value of φ

T (σ)
e for σ on level s.) We should also note, however, that the proof

we give for case (1) only needs d′ ≥ a′′ and so would cover some pairs in cases
(2) as well. The constructions of a complement for a in D(≤ d) in each of the
three cases are quite distinct. We describe the intuitions and the motivations for
each now and provide the precise constructions and verifications in the following
sections.

Case 1: The existence of a complement for a below d in this case was already
proved in his thesis by Posner [Pos77]. Like the proof that L2 degrees have
complements in D(≤ 0′) in Posner and Robinson [PR81] that proof was indirect
(see [Ler83, IV.15]) and based on a nonuniform proof of the join theorem for
GH1 (see [Ler83, IV.9]). It was also explicitly left open even in [Ler83] if the
degree providing the join could be made GL1. This was answered by Lerman
[Ler85] but again nonuniformly. We supply a uniform proof for this sharper
version of the join theorem for GH1 which we then modify to get this case of
the complementation theorem.

The basic idea of our proof of the join theorem for d ∈ GH1 is, given A <T D ∈
d, to build a 1-generic set B in a construction recursive in D (so that B <T D)
that codes D and to have the choices we make at each stage depend on A, so that
the construction itself (and hence D) can be recovered from A⊕B. It combines
the key idea of Jockusch and Shore’s [JS84] proof of the Posner-Robinson join
theorem for 0′ with Jockusch’s [Joc77] use of the recursion theorem with degrees

4 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

in GH1. This approach is maintained for the proof of the first case of the
complementation theorem, except that to ensure that A ∧ B ≡T 0 we look for
splits instead of strings forcing the jump. Since we are now looking for two
strings rather than one, the coding is a little more complicated. Also, once we
have found a split, we need the convergence of a functional with oracle A to let
us know which string of the split we should take to diagonalize. This presents
the problem that D cannot necessarily know if such a convergence will ever
appear. However, by our case assumption, D can approximate whether a given
functional with oracle A produces a total function (which is the only case we
worry about). Thus, if we keep attacking some requirement, we will eventually
believe the correct outcome and act appropriately.

Case 2: In this case, a is no longer in GL2, hence d cannot approximate
questions regarding totality. However, as was noted by Jockusch and Posner
[JP78] (using Martin’s [Mar66] characterization of the domination properties
of H1), this loss is offset by a’s ability to approximate bounds for searches
conducted by 0′: for every function f ≤T 0′ (even a ∨ 0′) there is a function
g ≤T a, not dominated by f .

We would like to imitate a construction of complements below 0′, and as in
the previous case, we use the fact that d being generalized high enables us to
approximate constructions which are naturally recursive in 0′. However, another
special aspect of 0′ is that it is recursively enumerable . Dominating the modulus
(computation) function for a recursively enumerable (even ∆2) set enables us to
compute the set itself. In other words, there is a function d ≤T 0′ which isn’t
dominated by any function of lesser degree. In the standard constructions, this
property is used to bound searches for facts which are r.e. in a. As this seems
to be an essential element of all such constructions, we simply assume (this is
the second case) that we are given a function d ≤T d which isn’t dominated by
any function recursive in a, and carry out the construction (with the necessary
modifications, of course). Given such a function we can adapt the uniform
construction of complements below 0′ of [SS89] to our second case. If such a
function does not exist, we find ourselves in the third case for which a completely
different approach seems to be required.

Case 3: The key observation which enables us to construct complements in
the third case is the following. Suppose that an A falling under the third case
is given, and we manage to construct some B ≤T D such that A ∧ B ≡T 0 and
such that D ≤T (A⊕ B)′. In this case we must have D ≡T A⊕ B; if not, then
we have

A⊕B <T D ≤T (A⊕B)′,

in other words, D ∈ ∆2(A ⊕ B) but is not ∆1(A ⊕ B), which implies (see
[Ler83, III.5.9]) that the computation function for D (as a set which is ∆2(A⊕B))
is not dominated by any function recursive in A⊕B, so also not by any function
recursive in A. This contradicts the assumption that we are in case (3).

To construct B as required, we simply construct a set B of minimal degree,
satisfying the requirement D ≤T (A⊕B)′. Since we can assume that D �T A′

(by the same argument as above), we cannot have B ≤T A. Since B is minimal,
we get A ∧B ≡T 0.

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 5

Now there is a mysterious aspect of our construction. We construct a set B
without reference to the set A, and then use the assumed domination property
of A to get our result. This implies that any B so constructed is automatically
a complement for every A falling under the third case.

To accomplish this, we need to construct a B which will have properties which
are fairly independent of the construction. We begin with a more controlled
version of the construction of a minimal degree below a d ∈ GH1 and then
modify it to code in D in a way that can be recovered from B and any function
g dominating a search function used in the construction. The case assumption
for A will guarantee that there is such a function recursive in A.

We begin with the standard method of constructing (a Spector) minimal de-
gree by forcing with perfect trees. One constructs a sequence of recursive perfect
trees, each tree succeeded by a splitting subtree or an extension (full) subtree,
forcing either that B ≤T Φ(B) or that Φ(B) is recursive, respectively (of course,
if total). To prove Sacks’ [Sac61] result that there is a minimal degree below 0′,
one introduces a priority argument version of this basic construction and uses
partial recursive trees to get a minimal degree below 0′. The idea is to define
the successor subtree as the splitting subtree, until we find an initial segment of
the set we are building which does not split on our current tree, and then switch
(permanently modulo action by higher priority requirements) to an extension
(full) subtree.

The generalization of this technique to working below an arbitrary GH1 degree
was introduced by Jockusch in [Joc77] where he proved that below every GH1

degree there is a minimal degree. Since, in this case, we do not have the power
of 0′ to find whether a certain string splits on a tree or not, we keep looking
for splits in hope of eventually finding one. The power of GH1, together with
the recursion theorem, allows us, as in the previous cases, to guess, eventually
correctly, whether such a search will be successful. We use this guess to determine
what kind of tree the successor will be. Since we may guess incorrectly for
some time, we may switch back and forth between splitting and extension (full)
subtrees, but only finitely many times, and so we maintain the finite injury
character of the construction.

In such a construction, the limit tree in a given place in the sequence of
final trees is determined not only by the set B we construct and the question
whether it splits or not on the previous tree, but also on the time during the
construction at which we finally made the correct guess - this is because that
stage determines what the stem of the tree will be. The primary difference
between our construction and Jockusch’s is that we eliminate this dependency
by making the stem of the tree independent of the stage and dependent only on
B and on the previous tree. As we shall see, this change allows us to recover the
final list of trees from (B ⊕ g)′, where g is any function dominating the search
in the construction for splits when needed or a notification from our D recursive
approximation to the (D ∨ 0′)′ question as to whether there is a initial segment
of B above which there are no splits. We will finally use the fact that A falls
under the third case to see that such a g can be obtained from A.

6 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

Our solution to the complementation problem for GH1 obviously leaves several
natural open questions. Can the complements be taken to be either always
1-generic or always minimal? Is there a uniform procedure for computing a
complement from D and A = {e}D for 0 <T A <T D ∈ GH1?

Finally, before beginning the specific cases, we provide some general defini-
tions. We fix a set D ∈ d and a set A ∈ a (later we may specify sets with
particular properties). We construct a set B whose degree will be a’s comple-
ment. The requirements we need to satisfy are:

• C: D is coded in B so that D ≤T A⊕B.
• ZΦ: If Φ(A) = Φ(B) is total, then it is recursive.

(Here Φ varies over Turing functionals; we identify a functional, and the re-
quirement associated with it, with its index.) We think of a Turing functional
as a recursive function Φ : 2<ω → 2<ω which is extendable continuously to a
function Φ : 2ω → 2≤ω. If q ∈ 2<ω and n ∈ dom Φ(q) we sometimes write
Φ(q;n) ↓ and write Φ(q;n) = Φ(q)(n).

We fix an implicit recursive bijection ω ↔ ω<ω. We let, for n <ω,

〈(n)0, (n)1, . . . , (n)`(n)−1〉

be the sequence associated with n.

In this paper, tree means a function tree, that is a partial function T : 2<ω →
2<ω which preserves order and nonorder and whose domain is closed under initial
segments.

Suppose that Φ is a functional. A Φ-split is a pair of strings q0, q1 such that
Φ(q0) ⊥ Φ(q1), i.e. for some n, Φ(q0;n) ↓6= Φ(q1;n) ↓. If (q0, q1) is a Φ-split,
then we let nΦ(q0, q1) be the least n witnessing this fact.

A split (q0, q1) extends p if both q0 and q1 extend p. If there is some Φ-split
extending p, we say that p Φ-splits . If p Φ-splits, then we let (q0

Φ(p), q1
Φ(p)) be

the least split extending p, and let nΦ(p) = nΦ(q0
Φ(p), q1

Φ(p)).

We say that a function f : ω → ω dominates the function g : ω → ω (and
write g <∗ f) if for all but finitely many n, g(n) < f(n).

We use ⊂ to denote containment whether proper or not.

§2. Case One. We begin with a uniform proof of the join property (via a
1-generic) for d ∈ GH1 that we then modify to produce a complement when A
falls under Case 1.

Theorem 2.1. If 0 <T A <T D ∈ GH1 then there is a uniform procedure
producing a 1-generic B such that A ∨B ≡T D.

Proof. In addition to the coding the requirement C, we here have just those
for 1-genericity:

• NΦ: Φ(B) ↓ or (∃n)(∀q ⊇ B � n)(Φ(q) ↑).

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 7

(Here we diverge from the usage described above and assume that the Turing
functionals Φ take no input).

Without loss of generality (or uniformity), we may assume that A is the set
of (natural number) codes for the initial segments of a set Ã of the same degree.
The set B will be constructed as an increasing union of strings 〈βs〉. However,
for the sake of the applicability of the recursion theorem, we also present B as a
finer union of initial segments 〈pt〉t<ω. The construction is recursive in D, hence
the complexity of the question

∃t (pt has no extension q such that Φ(q) ↓) ?

is (D ∨ 0′)′ ≡T D′. Thus its answer can be approximated recursively in D. By
the recursion theorem, we assume that we have a function G ≤T D such that the
limit lims G(Φ, s) is the answer to the question. At stage s of the construction
we proceed as follows:

Let p1 = β1 = 〈〉. We are given βs = pt for some t and we work for requirement
NΦ for Φ = (s)0.

At substage k of stage s, we let pt+k = pa
t 0k. We find the least r0 > t + k

such that either G(Φ, r0) = yes or a q extending pt+k with Φ(q) ↓ is found after
r0 many steps (this search halts, for if there is no such q, then pt+k is a witness
to lim G(Φ, r) = yes).

Now if we didn’t find a q as requested, we let l be the least element of A

greater than k (of course A is infinite), and let βs+1 = pt+k+1 = pa
t 0la1aD(s).

Otherwise, we take the least q ⊃ pt+k such that Φ(q) ↓ and such that for some
l, pt

a0la1 ⊂ q (the string we find can always be extended to such a string). If
l ∈ A then we do nothing and move to the next substage. Otherwise, we let
βs+1 = pt+k+1 =qaD(s).

To verify that this construction produces the desired B, we first need to show
that there is no final stage s, in other words, that at every stage we eventually
define βs+1 and move to the next stage. Assume the opposite holds and that s is
the last stage. Thus at every substage k of s, we find the least q extending βa

s 0k

containing at least one additional 1 such that Φ(q) ↓ and this q extends βa
s 0la1

for some l ∈ A. Thus we can recursively enumerate infinitely such l and so an
infinite subset of A. As this would compute A recursively we have the desired
contradiction.

To see that B is 1-generic consider any Φ. Find a stage s late enough such
that the guess for NΦ is correct at stage s and (s)0 = Φ. If G(Φ) = yes then
there is an initial segment of B with no extension q such that Φ(q) ↓. If not,
then we defined βs+1 such that Φ(βs+1) ↓.

Finally to see that D ≤T A⊕B it is clearly enough to show that 〈βs〉 ≤T A⊕B:
Given βs, we find the k such that βa

s 0ka1 ⊂ B. If k ∈ A then |βs+1| = |βs|+k+2.
Otherwise, we can recursively find the least q extending βa

s 0ka1 such that Φ(q) ↓.
In this case |βs+1| = |q|+ 1. a

We now turn to case 1 of the complementation theorem.
2.1. Construction. The situation is as in the proof of the join theorem above

except that we have requirements ZΦ in place of NΦ and so our function G
approximates the answer to the question

8 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

∃t
(
pt does not Φ-split

)
?

Also, A′′ ≤T D′ so we can approximate Tot(A) recursively in D: we have a
function T ≤T D such that for all functionals Φ, lims T (Φ, s) = total if Φ(A)
is total, and lims T (Φ, s) = nottotal otherwise.

Construction of B. Let p1 = β1 = 〈〉. At stage s, we are given βs = pt for
some t and we work for requirement ZΦ for Φ = (s)0.

At substage k of stage s, we let pt+k = pa
t 0k. We find the least r0 > s+k such

that either G(Φ, r0) = yes or a Φ-split extending pt+k is found (the least one)
after r0 many steps (this search halts, for if there is no such split, then pt+k is a
witness to lim G(Φ, r) = yes). In the latter case, we find the least r1 > r0 such
that either T (Φ, r1) = not total or Φ(A;nΦ(pt+k)) ↓ [r1] (again, the search
halts because no convergence witnesses lim T (Φ, r) = not total).

Now if we didn’t find a split, or didn’t find convergence, we let l be the least
element of A greater than k (of course A is infinite), and let βs+1 = pt+k+1 =
pa

t 0la1aD(s).
Otherwise, we know which element of the split q is the one which gives the

wrong answer about Φ(A;nΦ(pt+k)); we may assume it extends some pa
t 0la1

for some l ≥ k. If l ∈ A then we do nothing and move to the next substage.
Otherwise, we let βs+1 = pt+k+1 = q′aD(s), where q′ is the least string ⊆ q and
extending pa

t 0la1 such that Φ(q′) ⊥ Φ(A). 3

2.2. Verifications. We first need to show that there is no final stage s, in
other words, that at every stage we eventually define βs+1 and move to the next
stage. Assume the opposite holds and that s is the last stage. Thus at every
substage k of s, the least Φ-split (q0

k, q1
k) extending βa

s 0k is found, and we know
that at least one of q0

k, q1
k extends βa

s 0l1 for some l ∈ A.
Thus, we can recursively enumerate infinitely many pairs (ik, jk) (where both

coordinates get larger and larger; ik, jk ≥ k) such that at least one of ik, jk is in
A.

Now we can compute A and get a contradiction. Recall that the elements of
A are codes for initial segments of Ã. Let σk be the string coded by ik and τk

the string coded by jk.
Now there are two cases. Suppose that for all σ ⊂ Ã there is some k such that

σ ⊂ σk, τk. Then we can compute Ã by enumerating

{σk ∩ τk : k < ω}.

Otherwise, there is some σ∗ ⊂ Ã and some k∗ such that for all k > k∗, σ∗ is
extended by exactly one of σk, τk, and this one has to be an initial segment of
Ã. In this case we can compute Ã by enumerating

{σk : k > k∗, σ∗ ⊂ σk} ∪ {τk : k > k∗, σ∗ ⊂ τk}.

Lemma 2.2. A ∧B ≡T 0.

Proof. Fix Φ such that Φ(A) is total. Find a stage s late enough such that
the guesses for T (Φ) and G(Φ) are correct at stage s and (s)0 = Φ. If G(Φ) = yes

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 9

then Φ(B), if total, is recursive. If not, then we must have diagonalized at stage
s, so that Φ(A) 6= Φ(B). a

Lemma 2.3. 〈βs〉 ≤T A⊕B.

Proof. Given βs, we find the k such that βa
s 0ka1 ⊂ B. If k ∈ A then

|βs+1| = |βs| + k + 2. Otherwise, from A we can find the q such that βs+1 =
qaD(s). a

Corollary 2.4. D ≤T A⊕B.

§3. Case Two. The construction takes place on a tree T ; B will be a branch
on this tree. In Slaman and Steel’s construction, a requirement ZΦ strives to find
a Φ-split on T , and tries to let B extend that part of the split which gives the
wrong answer about Φ(A). Since about Tot(A) we know naught, the strategy
is to find such a split and then prevent weaker requirements from extending B
beyond this split, until ZΦ makes up its mind (due to a convergence of Φ(A)) or
decides to give up. In the original construction, the requirement gives up at the
next stage it receives attention, at which it is either guaranteed a string which
doesn’t split on T (a negative win), or it is presented with a new split unto which
its fortunes are now entrusted.

It is the domination property of d which is used to show that each requirement
cannot be foiled for ever.

The first difficulty we come across is that in the construction of the tree, we
wish to find out whether a certain node can be extended by some split. Instead
of asking 0′, we construct the tree (ignoring the coding requirement for a while)
recursively in A by looking, at level s, for splits, for g(s) many steps, where
g ≤T A is a function not dominated by some fixed f̃ ≤ 0′ which bounds the
search needed to find all splits which exist. Thus in many levels devoted to some
ZΦ, the requirement falsely believes that no splits exist (and thus that it needs
no action to succeed); but the domination properties of g ensure that, if there are
infinitely many splits, splits will be found infinitely often, giving the requirement
ample breathing space to act.

These changes create two new difficulties. As described earlier, a requirement
ZΦ imposes its will on weaker requirements (which threaten to extend B beyond
a split, while ZΦ is still waiting for convergence of Φ(A)). This restraint is built
into the construction of the tree, and is only imposed (for each split) for a single
stage only, since at the next stage ZΦ looks ahead to find either a new split or
no splits, in which case it is satisfied anyway. In our case, ZΦ does not know
how long it needs to wait, thus restraints need to be made explicit. Fairness is
maintained by observing that at the “true stages” (those stages at which g > f ,
meaning that the answers for the question “is there a split?” are correct) all
unnecessary restraints are dropped.

However, each requirement needs to determine for itself whether to pursue
positive satisfaction (by waiting for the next split) or to give up and let B
extend a node beyond which no splits are found yet, hoping that indeed no splits
will appear later. It turns out that D is sufficiently strong to enable ZΦ to guess

10 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

which course to take (using the recursion theorem, of course). This solves this
second problem.

We now give the details of the construction. For simplicity, we adopt a modular
approach and ignore the coding requirement C for now, and later describe how
to modify the construction to satisfy this requirement.

3.1. Construction of the Tree. We first define the function f which bounds
the search for splits. Let

f0(s) = max{〈q0
Φ(p), q1

Φ(p)〉 : p ∈ 2≤s, Φ ≤ s and p Φ-splits}.

Next, define f by recursion: f(0) = f0(0); f(s+1) = f0(f(s)+1). Finally, let
f̃(s) = f(〈s, s〉). Observe that f̃ is recursive in 0′.

To level k of the tree we attach requirement ZΦ = (k)0. k is called a Φ-level .
We find some g ≤T A, not dominated by f̃ . We use g to define our tree T .

T (〈〉) = 〈〉. If T (σ) is defined and equals p, and |σ| is a Φ-level, then we look
for a Φ-split extending p which appears before stage g(s). If one is found, then
we define T (σai) = qi

Φ(p). Otherwise, we let T (σa0) = pa0 and leave T (σa1)
undefined.

We say that a string p is a node if it is in range T . We let

L(k) = {T (σ) : |σ| = k},

and also write level(p) = k for all p ∈ L(k).

It is easily verified that T is ∆1(A) (so not only is T partial recursive in A
but also dom T is recursive in A). We are also interested in verifying how closely
this tree reflects the truth (about existence of splits).

Lemma 3.1. For all k and p ∈ L(k), |p| < f(k).

Proof. This is true by induction; the inductive step holds because the ele-
ments of the k + 1st level are least splits (or immediate successors) of strings of
level k, and f bounds all such splits. a

Definition. A level k is called Φ-true if it is a Φ-level, and g(k) > f(k).

Thus if k is a Φ-true level then for all p ∈ L(k), if there is no Φ-split on T
extending p then indeed there is no such split at all.

Lemma 3.2. For every Φ there are infinitely many Φ-true levels.

Proof. We know that there are infinitely many n ≥ Φ such that g(n) ≥ f̃(n).
For each such n, if we let k = 〈Φ, n〉, then

g(k) = g(〈Φ, n〉) ≥ g(n) ≥ f(〈n, n〉) ≥ f(〈Φ, n〉) = f(k).

a

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 11

3.2. The Construction. We now describe the construction of a set B <T D
such that A ∧ B ≡T 0. We construct B as the union of an increasing sequence
of initial segments 〈βs〉 which are on T .

At stage s, each requirement ZΦ may impose a restraint r(Φ)[s]. This is a
level k of the tree (beyond the level of βs), and the aim of the restraint is to
prevent weaker requirements from extending βs+1 beyond the kth level of T . If
a stronger requirement ZΨ extends βs+1 beyond the kth level of T then we say
that it injures ZΦ. We let

R(Φ)[s] = min ({r(Ψ)[s] : Ψ < Φ and r(Ψ)[s]↓} ∪ {s}) .

This is the restraint imposed on requirement ZΦ at stage s. Thus at s, ZΦ is
prohibited from defining βs+1 beyond the R(Φ)th level of T .

There are various states in which a requirement ZΦ may find itself at a Φ-stage
s. It may be positively satisfied at s if we have already forced that Φ(B) ⊥ Φ(A),
i.e. for some n we have

Φ(A;n) ↓6= Φ(B;n) ↓ [s].

If ZΦ is positively satisfied at some stage then it is satisfied until the end of time
and doesn’t need to act ever again.

We wish to describe when ZΦ is satisfied negatively . As explained above, this
requirement will feel satisfied if it can make B extend some node p which doesn’t
Φ-split. Now without the power of 0′, this kind of satisfaction may be temporary,
for the requirement may place its bets on some such p only to discover later some
Φ-split extending p.

To make its decision whether to believe some negative satisfaction (or keep
searching for splits), at various stages ZΦ will put some strings on a “testing
list” `Φ (which can be thought of as a partial function defined by ZΦ during the
construction). This will be the list of strings that ZΦ will test, to see if they may
provide negative satisfaction.

We thus say that ZΦ is negatively satisfied at s if no Φ-splits extending the
last element put on `Φ are found in g(s) many steps.

[We note, that if ZΦ is negatively satisfied at a true stage s, then this satis-
faction is correct and permanent; at true stages we find all possible splits above
nodes on levels ≤ s on the tree.]

Now to decide whether it should even attempt to believe that negative sat-
isfaction could come from some node p, ZΦ will try to find an answer to the
question

Is there some node p which is put on `Φ and doesn’t split?
This question can be answered by (D ⊕ 0′)′ ≡T D′. So, by the recursion

theorem and the limit lemma, there is a function G ≤T D, that we can use
during the construction, which approximates the answer (i.e. lims G(Φ, s) = yes
if the answer to the question is yes, and lims G(Φ, s) = no otherwise.)

Let

L(k, p) = {T (σ) : |σ| = k and T(σ) ⊇ p},

12 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

this is the collection of nodes of the kth level of T which extend p. At stage s,
let L(k, s) = L(k, βs).

We say that p = T (σ) splits on T if both T (σa0) and T (σa1) are defined, i.e.
if a relevant split exists and was discovered by step g(|σ|) and put on T .

Construction of B, with oracle D. At stage 0, we let β1 = 〈〉, we set
the lists `Φ to be empty, and let r(Φ) be undefined for all Φ.

If Φ is initialized (at any stage), then r(Φ) is removed.

Stage s: Suppose that s is a Φ-stage.
If ZΦ believes it is satisfied (positively or negatively), then we skip this stage;

r(Φ) is not defined.
Otherwise, ZΦ may attempt to act, starting ambitiously.
Positive action. If ZΦ can legally extend βs to be permanently satisfied, it

does so. Namely, if there is some p on T , extending βs, on a level below R(Φ)[s],
such that for some n we have Φ(p;n) 6= Φ(A;n)[d(s)] then ZΦ lets βs+1 = p.
r(Φ) is removed (as the requirement is satisfied). [d is the function recursive in
D, not dominated by any function recursive in A.]

Negative attempts. Otherwise, we look for some p of level beneath R(Φ)[s]
(but which extends βs) which is not yet on `Φ and which is not yet seen to
Φ-split. If such a p exists, we add the first one to `Φ. We now perform a test to
see if we believe p can be a witness for negative success: we find the least t > s
such that either G(Φ, t) = yes, or some Φ-split extending p is found by stage t.
This search has to halt since if there is no split to be found, then p is a witness
to the limit of G(Φ, t) being yes. If a Φ-split was found then we may try with a
new node p (until we run out). Otherwise, ZΦ sets βs+1 = p, and removes r(Φ).

If we run out of p’s without acting, the requirement does nothing at this stage,
but we calculate

Restraint. If r(Φ) is not defined, then it is set to be level(βs). Otherwise,
if there is some Φ-level k such that r(Φ) < k ≤ R(Φ)[s] and such that every
p ∈ L(k, s) splits on T , then we update r(Φ) to be the maximal such k. If there
is no such k, then r(Φ) is left unaltered.

Whenever ZΦ acts and extends βs, it initializes all weaker requirements. 3

3.3. Verifications. Since this is an oracle construction, we have B ≤T D.
We first check that the construction is fair.

Lemma 3.3. Every requirement is initialized only finitely many times, and
eventually stops acting itself.

Proof. Since initialization occurs only by action of a stronger requirement,
we assume by induction that after ŝ, no requirement stronger than ZΦ acts again
and so ZΦ is never initialized again.

If at any time ZΦ acts positively, then its satisfaction is permanent and it will
never act again. We now consider what happens to ZΦ after stage ŝ.

Infinite negative action is also impossible. For either lim G(Φ, s) = no, in which
case after some stage we will never believe some string is a likely candidate for
negative satisfaction; or lim G(Φ, s) = yes, by virtue of a witness p which was put
on `Φ; when we put p on the list, we performed the test and acted for p (because

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 13

it really doesn’t split); and negative satisfaction is permanent from then on (no
splits are ever discovered, and no new strings are put on the list). a

We digress to prove that the requirements succeed if they act.

Lemma 3.4. If ZΦ ever acts positively, then it is met.

Proof. Because then Φ(A) 6= Φ(B). a

Lemma 3.5. If ZΦ is eventually permanently satisfied negatively by some p
then it is met.

Proof. We have some p ⊂ B such that no Φ-splits extend p. Then Φ(B), if
total, is recursive. a

Now if a requirement is not eventually satisfied as in the last two lemmas, then
there is a last stage at which the requirement acts, necessarily a negative action.
Since this does not lead to permanent satisfaction, at some later stage the last
action taken is discovered to be insufficient (a split is discovered, extending the
last element of `Φ); after that stage, since the requirement never acts again,
it also never believes it is satisfied. In this case we say that Z is eventually
unsatisfied.

We let s∗(Φ) be the least Φ-stage after which neither ZΦ nor any stronger
requirement ever acts again, and after which ZΦ is either permanently satisfied
or eventually unsatisfied.

A requirement may also disturb weaker requirements by imposing restraint,
so to check fairness, we need to verify that this restraint is not too prohibitive.
If a requirement is permanently satisfied (positively or negatively) then it stops
imposing any restraint.

Otherwise we have

Lemma 3.6. Suppose that ZΦ is not eventually satisfied. Then at s∗(Φ), r(Φ)
is defined; thereafter it is never removed and cannot decrease. For all s ≥ s∗(Φ),
level(βs) ≤ r(Φ)[s].

Proof. The first part is because ZΦ is never initialized again, or acts again.
The second follows because weaker requirements respect r(Φ). a

We need to examine what happens to the restraint if a certain requirement is
eventually unsatisfied. For this we use the true levels.

Lemma 3.7. Suppose that ZΦ is eventually unsatisfied, k > s∗(Φ) is a Φ-true
level and that s > k is a Φ-stage such that level(βs) ≤ k ≤ R(Φ)[s]. Then at s,
r(Φ) is increased to at least k.

Proof. If not, then we must have some p ∈ L(k, s) which does not split on
T . But k is a true stage; thus p doesn’t split, and ZΦ would act negatively at
stage s. a

We get

Lemma 3.8. lims R(Φ)[s] = ∞.

Proof. Assume (by induction) that lim R(Φ)[s] = ∞. Suppose, for contra-
diction, that lim r(Φ, s) = r is finite. We can choose some Φ-true level k > r

14 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

and wait for a later Φ-stage s > s∗(Φ) such that R(Φ)[s] > k. level(βs) ≤ r < k;
then we must have r(Φ)[s] ≥ k, contradiction. a

Lemma 3.9. lims |βs| = ∞.

Proof. There are infinitely many Φ such that, for all X, Φ(X) = 〈〉, so there
are no Φ-splits. For all these Φ, ZΦ will act negatively the first time it receives
attention. Therefore, βs is extended infinitely often. a

All that is left is to verify that ZΦ is met, even if it is eventually unsatisfied.

Lemma 3.10. If ZΦ is eventually unsatisfied, then Φ(A) is not total.

Proof. Suppose otherwise, and let h(n) be the stage at which Φ(A;n) ↓;
h ≤T A. We show that h dominates d for a contradiction.

Let s1, s2, ... be the stages, after s∗(Φ), when r(Φ)[s] is increased. Let ri =
r(Φ)[si], and let pi be the element of the rth

i level of T which is an initial segment
of B. Since pi ∈ L(ri, si) (βsi

⊂ B), by the instructions of the construction, we
must have that pi splits on T . We let ni be the splitting point, i.e. ni = nΦ(pi).

We claim that for all i < ω, h(ni) ≥ d(ni+1). At stage si+1, ZΦ did not act
positively. However, the Φ-split of pi was still available for ZΦ to pick for positive
satisfaction; the restraint until si+1 was ri and ri ≤ R(Φ, si) ≤ R(Φ, si+1) (the
latter inequality holds because after si no requirement stronger than ZΦ acts).
This implies that Φ(A;ni) ↑ [d(si+1)], in other words,

d(si+1) < h(ni).

Of course, ni < si so d(ni+1) < d(si+1) < h(ni).
Both h and d are increasing functions, so the last inequality implies that h

dominates d: for every n > n1, there exits i such that ni < n ≤ ni+1. Then

d(n) ≤ d(ni+1) < h(ni) ≤ h(n).

a
3.4. Coding D into B. In this section we show how to modify the construc-

tion to satisfy the coding requirement C; this will ensure that indeed B is a
complement for A below D.

To do this, we specify an infinite, recursive set of levels on f (say all k such
that (k)0 = 0) which will be devoted to C (by the padding lemma this does not
disturb the previous construction). Let 〈ni〉i<ω be an increasing enumeration of
this set. We define a tree TD ⊂ T (as functions) by removing all nodes extending
T (σa(1−D(i))) for σ ∈ 2ni . Namely,

TD = T � {σ : ∀ni < dom σ : σ(ni) = D(i)}.

Lemma 3.11. TD ≤T D and for every X ∈ [TD], D ≤T X ⊕A.

Proof. To find whether i ∈ D, A can find (on T) the unique σ on level ni +1
such that T (σ) ⊂ X. Since X ∈ [TD] we have σ(ni) = D(i). a

Thus all we need to do is repeat the previous construction, using TD instead of
T . This can be done because the construction is recursive in D; the construction
follows through verbatim.

§4. Case Three.

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 15

4.1. A minimal degree below D. We first give our version of the construc-
tion of a minimal degree below D. As in Sacks’s and Jockusch’s constructions,
we will construct a sequence of partial recursive trees 〈Tk〉 and an increasing
sequence of strings βs whose union B is a path on all of the trees. Later we
will show how to modify this construction so that D can be recovered from 〈Tk〉.
Now we just build B such that 〈Tk〉 ≤T (A⊕B)′.

We follow Lerman’s [Ler83] definitions of splitting subtrees. If T is a tree and
Φ is a functional, then a Φ-splitting subtree of T is a subtree S such that for all
p ∈ dom T , T (pa0) and T (pa1), if defined, are a Φ-split. The canonical splitting
subtree above a node T (p) (denoted S = Sp(T,Φ, p)) is defined by induction,
letting the stem be T (p); given S(q) on T , S(qa0), S(qa1) is defined to be the
least Φ-split on T extending S(q), and undefined if none is found.

We say that X ∈ [T] Φ-splits on T if for all σ ⊂ X, there is a Φ-split on T
extending σ.

The requirement to be satisfied is
MΦ: If BΦ-splits on every tree Tk then it lies on a Φ-splitting tree.
Associating requirements with numbers as usual, the strategy to satisfy k =

MΦ is to let Tk+1 = Tk if B does not Φ-split on Tk, and Sp(Tk,Φ, p) for some p
otherwise. We make p depend on B directly, by letting p be the shortest string
such that B ∈ Sp(Tk,Φ, p).

As usual, the construction will have approximations Tk[s] to Tk and an in-
creasing sequence 〈βs〉 of strings whose union is B. During each stage of the
construction the trees Tk[s] are enumerated a certain number of steps to find
splits above βs. We will make sure that once Tk has stabilized, if B splits on
Tk then at every s there is a split found on Tk extending βs. Thus from the
construction we can calculate a function f which bounds the search needed to
find splits on the trees. Namely, we have a function f ≤T D such that for all
k = MΦ, if B Φ-splits on Tk then for almost all n, a Φ-split extending B � n will
be found on Tk after enumerating the tree for f(n) many steps.

[We note that it is not necessary to assume that dom βs ≥ s to get such a
function; to calculate f(n) we can simply wait for a stage at which dom βs > n.
This will be helpful in the full construction we give at the end].

First, we would like to ensure that the above conditions on the construction
indeed produce the desired result. Suppose, then, that B, 〈Tk〉 and f are given
as described.

Lemma 4.1. B has minimal Turing degree.

Proof. See [Ler83, V.2.6] a
Suppose that g is a function which dominates f .

Lemma 4.2. 〈Tk〉 ≤T (B ⊕ g)′.

Proof. Take k = MΦ. Suppose we have already determined what Tk is.
First, we wish to find out what kind of tree Tk+1 is, which is the same as finding
whether B Φ-splits on Tk or not.

We first ask (B ⊕ g)′ if there is some n such that after running Tk for g(n)
many steps, no Φ-splits above B � n on Tk are found. If not, B splits on Tk.

16 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

If there is such an n, then a search (recursive in B ⊕ g) can find the least one
n0. We now ask 0′ (which is below (B ⊕ g)′) if there are any Φ-splits extending
B � n0 on Tk. If not, then B does not split on Tk. If such a split exists, we repeat
the process, asking if there is some n1 > n0 such that after g(n1) many steps
no Φ-split extending B � n1 is found on T , and if one exists, we find it and ask
0′, etc. This process must stop. For if B doesn’t split on Tk then eventually we
find some n such that there are no Φ-splits on Tk extending B � n (and of course
none before g(n).) If B does split on TK , then the properties of f ensure that
eventually, a Φ split extending B � n is always found before step f(n), hence
g(n).

Now if B doesn’t Φ-split on Tk then Tk+1 = Tk. Otherwise, we need to find
the least q such that B ∈ [Sp(Tk,Φ, q)]; We then know that Tk+1 = Sp(Tk,Φ, q).

Suppose that Tk(q) ⊂ B. Consider the following process: Let T = Sp(Tk,Φ, q).
T (〈〉) = Tk(q) ⊂ B. Since every initial segment of B splits on Tk, both T (0) and
T (1) are defined. We find them. If neither are initial segments of B, then the
process halts. Otherwise, pick the one (say T (0)) such that T (0) ⊂ B. By the
same reasoning, both T (01) and T (11) are defined, etc.

We see that this process is recursive in B. Thus B′ can tell us whether it
eventually terminates or not. However, a quick inspection shows that the process
terminates iff B /∈ [T]. Thus

{r : B ∈ [Sp(Tk,Φ, q)]}
is recursive in B′ ≤ (B⊕g)′. We can thus inductively (on q such that Tk(q) ⊂ B)
ask whether q is an element of the above set (this search is recursive in B⊕B′ ≡T

B′). Eventually we will find the least one which is the desired q. a
Now recall that we had a set A, falling under the third case, which excludes

the second case. This means that for every function f recursive in D, there is
some g recursive in A which dominates f . Thus we can go back and write A in
each place we wrote g to get 〈Tk〉 ≤T (A⊕B)′.

4.2. Construction I. The construction which yields the B, 〈Tk〉 and f with
the desired properties is not difficult, and in fact differs only slightly from
Jockusch’s construction. We describe it now.

We construct a sequence βs.
By the recursion theorem, we have a function G(T,Φ, s) ≤T D such that for

all (partial recursive function) trees T and Turing functionals Φ, lims G(T,Φ, s)
is the answer to the question

Is there some t such that βt is on T , and above βt there are no Φ-splits
on T?

At stage 0, we let k(0) = 0, T0[0] = id, β0 = 〈〉 and f(0) = 0.
At stage s+1, we are given a sequence of trees T0[s], . . . , Tk(s)[s] (each Tk+1[s]

is either equal to Tk[s] or is a splitting subtree of Tk[s]), and βs which is on every
Tk[s].

Using G we can define a function H, which tells us how far a requirement
has to search until its guess (about whether B splits or not) has evidence in
reality. Namely, if k = MΦ, then H(k, s) is defined to be the least stage t > s
such that either G(Tk[s],Φ, t) = yes, or a Φ-split extending βs is found on

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 17

Tk[s]. By the properties of G, we know that such a t must exist. We also let
F (k, s) = split if a Φ-split above βs is found on Tk[s] at stage H(k, s); otherwise
we let F (k, s) = no split. Thus F gives us k’s guess about whether B Φ-splits
on Tk[s]. There is a discrepancy between reality and k’s belief if F (k, s) = split
and Tk+1[s] = Tk[s], or if F (k, s) = no split but Tk+1[s] is a splitting subtree
of Tk[s]. If there is such a discrepancy, then it must be fixed by k by changing
the tree Tk+1 according to belief.

We thus say that k requires attention at s if there is a discrepancy between
k’s beliefs and reality. If there is some k requiring attention, we act as follows:

• If F (k, s) = no split, we let Tk+1[s + 1] = Tk[s].
• If F (k, s) = split, we want to define Tk+1[s + 1] to be Sp(Tk[s],Φ, q) for

some q ⊂ p = Tk[s]−1(βs); as discussed above, we pick q to be the least
such that βs is extended by some string on Sp(Tk[s],Φ, q).

How do we effectively find this q? This is similar to the process in the
proof of lemma 4.2: we inductively check q = 〈〉, q = p � 1, q = p � 2,
We know there is a split extending βs; thus we can search for the least split
on the tree Tk[s] extending Tk[s](q). If neither of the two strings of the split
are compatible with βs, this was the wrong q, and we try the next one. If
one is, we repeat the process for that part of the split which is an initial
segment of βs. We halt with a “yes” answer (for the q checked) if we get
to a string extending βs.

In either case we let k(s + 1) = k + 1 and Tl[s + 1] = Tl[s] for l ≤ k.

If no requirement asks for attention, we let k(s+1) = k(s)+1, Tl[s+1] = Tl[s]
for l ≤ k(s) and Tk(s)+1[s + 1] = Tk(s)[s].

Now either βs is not on Tk(s+1)[s + 1], but properly extended by some string
which is on this tree; or βs is on Tk(s+1)[s + 1] and not terminal on it. Thus we
can properly extend βs to some βs+1 on that tree. That’s the end of stage s.

We verify that the objects constructed indeed have the desired properties. We
first show that the sequence of trees stabilizes.

Lemma 4.3. For all k there is a stage s∗(k) such that for all t ≥ s∗(k), k(t) >
k.

By the construction, we have that for all t > s∗(k), Tk[t] = Tk[s∗(k)]; we let
Tk be this final tree.

Proof. s∗(0) = 1. Assume s∗(k) exists, we will show that s∗(k+1) exists too.
Suppose that k = MΦ. Suppose that after t > s∗(k), G(Tk,Φ, s) has stabilized
on the correct answer. Then we can let s∗(k +1) = t, because neither k, nor any
stronger requirement, will seek attention after t. a

Corollary 4.4. Each MΦ succeeds.

Proof. The guesses are eventually correct. Thus if B splits on Tk, then
Tk+1 is some splitting subtree of B; if B doesn’t split on Tk then we’re done
anyway. a

18 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

Also as a corollary, we have that if B splits on Tk then eventually, at every s,
a split above βs on Tk is found at stage s of the construction; this allows us to
calculate the function f as required.

Finally,

Lemma 4.5. Assume that k = MΦ and that B splits on Tk. Then Tk+1 =
Sp(Tk,Φ, q) where q is the least string such that B ∈ [Sp(Tk,Φ, q)].

Proof. Say Tk+1 = Sp(Tk,Φ, q), and was finally defined at stage s. Of course
B ∈ [Tk+1]. If r (q then at stage s we verified that βs went off Sp(Tk,Φ, r) (no
string on that tree extends βs), thus B /∈ [Sp(Tk,Φ, r)]. a

4.3. Coding D. We now add more subtrees to our sequence Tk so that we
will be able to recover D from 〈Tk〉.

We have new requirements Cn, whose aim is to code the answer to n ∈ D?
into the sequence of trees.

We organize all Cn and MΦ requirements effectively and identify each require-
ment with its place on the list.

For Cn, we use two different kinds of narrow subtrees.

Definition. For p ∈ 2<ω, let narp, rowp : 2<ω → 2<ω be defined as follows

narp(σ) = pa00σ(0)00σ(1)00σ(2) . . . 00σ(|σ| − 1)

rowp(σ) = pa11σ(0)11σ(1)11σ(2) . . . 11σ(|σ| − 1).

Now, suppose that T is a tree and that p ∈ dom T . We let Nar(T, p) = T ◦narp

and Row(T, p) = T ◦ rowp.

It is easy to see that if T is partial recursive, then so are Nar(T, p) and
Row(T, p), and an index for each can be obtained uniformly from p and an
index for T .

Lemma 4.6. Suppose that T is a tree, and that p, q ∈ dom T . Then

[Nar(T, p)] ∩ [Row(T, q)] = 0. a

This property motivates us to satisfy k = Cn by letting Tk+1 = Nar(Tk, p) for
some p if n ∈ D and Tk+1 = Row(Tk, p) for some p otherwise. As we did for the
splitting subtrees, to be able to recover Tk+1 from Tk and (A⊕B)′ we eliminate
the element of chance in the game by ensuring that Tk+1 = Nar(Tk, p) for the
least p such that B ∈ [Nar(Tk, p)] (or Row, as D decides).

Lemma 4.7. Suppose that T is partial recursive and X ∈ [T]. Then

{p ∈ dom T : X ∈ [Nar(T, p)]}

is recursive in X ′ (similarly for Row).

Proof. From X we can determine the h ∈ 2ω such that X ⊃ T [pah] (if
T (p) 6⊂ X then X knows that p is not in the set). Then we simply ask if for such
h and all n 6= 0 mod 3, h(n) = 0 (1 for Row). a

So indeed if we code as promised, then B′ can find Tk+1 from Tk by inductively
asking, for longer and longer p, such that Tk(p) ⊂ B, whether B ∈ [Nar(Tk, p)]

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 19

or B ∈ Row(Tk, p). The first “yes” answer we get is the correct one (and also
tells us whether n ∈ D).

It would seem that all we need to do now is add this last element to the con-
struction, namely if at stage s, k = k(s) = Cn and no stronger requirement asks
for attention, then we should define Tk+1[s] to be Nar(Tk[s], p) (or Row(Tk[s], p) if
n /∈ D) for the shortest p such that βs is extended by some string on Nar(Tk[s], p).
However, this is not so easy, for the reason that βs may be nonterminal on Tk[s]
for some k < k(s), but terminal on the narrow subtree Tk+1[s]; for p = T−1

k (βs),
Tk(pa0) may be defined but Tk[s](pa00) or Tk[s](pa000) may be undefined. In
this case we would not be able to extend βs and would be stuck.

We note, however, that the reason that Tk[s](pa00) or Tk[s](pa000) are unde-
fined, is that some split was not found on an earlier tree Tl[s]. The strategy to
extricate ourselves from this situation is to try and extend βs on Tl[s] until we
find the necessary split or guess that such a split does not exist. In the former
case we can go on with the construction; in the latter we change our guess about
Tl+1 and remove later trees.

4.4. Construction II. We first describe the idea of the construction. The
new construction attempts to follow in the footsteps of the previous construction;
requirements k = MΦ define subtrees Tk+1 which are splitting subtrees or not,
and amend the trees according to their guesses. New requirements k = Cn will
define Tk+1 to be some narrow subtree of Tk, the type of which will be determined
by whether n ∈ D or not. All goes well as long as our initial segment β = βs is
nonterminal on the trees. Suppose, however, that β is terminal on Tk[s][s], even
after the action of M requirements. We then look at the greatest l ≤ k(s) such
that Tl[s] is a splitting subtree of Tl−1[s]. We note that β must be nonterminal
on Tl[s]; otherwise, l − 1 would have redefined Tl to be equal to Tl−1.

Let p = T−1
l β. The reason that β is terminal on Tk(s) is that for some q,

Tl(paq) is undefined; the latter is undefined because sufficiently many splits
above β have not been discovered on Tl−1. If some extension γ of β on Tl−1

really doesn’t split on Tl−1, then we would like to extend β to γ and redefine
Tl = Tl−1; this would resolve the issue. Otherwise, we will find more and more
splits until β will be discovered to not be terminal on Tk(s) after all. The question
is how to tell whether there is such γ. After all, our guessing function G only
answers questions about initial segments of B, not arbitrary nodes on the tree.

The solution is to gradually extend β, at substages of the stage s. As β is not
terminal on Tl, we can extend it for one step on Tl. Now we search for splits
on Tl−1 as usual; if we believe there are none Tl−1 can act and set Tl = Tl−1.
Otherwise, a split is found which means we can extend β one step further on Tl.
The process continues until β is nonterminal on Tk(s), or a node γ as described
is found and set as an initial segment of B.

We note a notational decision. It could be the case that at the beginning of
the stage, some k ∈ [l, k(s)) redefines Tk+1 = Tk because β is terminal on Tk.
Also, it could be the case that at some some substage we believe that β can no
longer be extended on Tl−1 (and redefine Tl = Tl−1); no previous tree is acting,
which means that the problem which was just described has just reappeared,
for a smaller pair (l, k(s)). The above actions will have to be repeated, but

20 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

we do this at the next stage s + 1 (we can move on because β is on all trees,
even if terminal on some; between substages we will not change the trees, as the
indexing would become cumbersome.)

We now give the full construction. At stage s we are given a sequence of trees
〈Tk[s]〉k≤k(s) and a string βt on all of those trees.

The guessing function G(T,Φ, s) is defined as before; it approximates the
answer to the same question:

Is there some t such that βt is on T and there is no Φ-split extending
βt on T?

The elements of the construction are as follows:
Guessing Splitting. We define guessing functions H and F . At stage s, at

a substage at which we have βr as an initial segment of B, and for k = MΦ,
H(k, s, r) is defined to be the least stage u > r+s such that either G(Tk[s],Φ, u) =
yes, or a Φ-split extending βr is found on Tk[s] after running the tree for u many
steps. F (k, s, r) is defined analogously; it is split in the former outcome and
no split in the latter.

Discrepancy between belief and reality is defined as in the previous construc-
tion; at the particular stage and substage, k feels the discrepancy if F (k, s, r) =
split but Tk+1[s] = Tk[s], or if F (k, s, r) = no split but Tk+1[s + 1] is a
splitting subtree of Tk[s].

At any stage and substage, if there is some requirement k = MΦ < k(s) asking
for attention, then the strongest such requirement receives it and redefines Tk+1

according to its belief F . As before, it lets Tk+1[s + 1] = Tk[s] if F (k, s, t) =
no split, and Tk+1[s + 1] = Sp(Tk[s],Φ, p) for the shortest p such that βr is
extended by some string on the latter tree. It lets k(s + 1) = k + 1 and leaves
the trees Tl for l ≤ k unchanged.

If βr is not on Tk+1[s + 1] then it is extended by some string on that tree; we
let βr+1 be such a string. Otherwise, we hand βr to the next stage.

Action of the last tree. At some substage of stage s, we may instruct the
last requirement k(s) to act (this may happen if no other requirement asks for
attention and if βr is not terminal on Tk(s)[s]). k(s) first extends βr to some
string βr+1 on Tk(s)[s]. Then,

• If k(s) = MΦ, it lets Tk+1[s + 1] = Tk[s].
• If k(s) = Cn and n ∈ D, then k(s) lets Tk+1[s + 1] = Nar(Tk[s], p) for p

the shortest substring of Tk[s]−1(βr+1) such that βr+1 is extended by some
node on Nar(Tk[s], p). If necessary, βr+1 is extended again to βr+2 so that
it actually lies on the new tree.

• If k(s) = Cn and n /∈ D, we act as in the previous case, but with Row
replacing Nar.

In both cases, we let k(s + 1) = k(s) + 1, and leave the trees Tl for l ≤ k(s)
unchanged.

Construction. The instructions at stage s are as follows. If some M require-
ment asks for attention, we let the strongest one act and end the stage. If no

GENERALIZED HIGH DEGREES HAVE THE COMPLEMENTATION PROPERTY 21

M requirement asks for attention at the beginning of the stage, and if βt is not
terminal on Tk(s)[s], then k(s) is asked to act and to end the stage.

Otherwise, we let Tl[s] be the last tree in our sequence which is a splitting
subtree of its predecessor Tl−1[s]. There is a function h which is either the
identity or a composition of functions of the form narq and rowq such that
Tk(s)[s] = Tl[s]◦h. Let p = T−1

l (βt), q = Tk(s)[s]−1(βt) = h−1(p) and r = h(qa0).
Our aim is to extend βt to be Tl[s](r) = Tk(s)[s](qa0). This is done in substages.

As noted above, we must have βt not terminal on Tl−1[s], for we found a
split on Tl−1 extending βt (or l − 1 would have acted). Therefore also βt is not
terminal on Tl[s]. Thus we can extend it and let βt+1 = Tl[s](r � |p| + 1). We
move to the first substage.

In general, at the beginning of substage i we have βt+i = Tl[s](r � |p| + i),
already discovered to be on Tl[s]. If no M requirement wishes to act at this
substage, then it must be that a split extending βt+i was found on Tl−1; we can
thus further extend this string on Tl and move to the next substage.

If at some substage an M requirement wishes to act, then that action ends
the stage. Otherwise, at the end of the i = |r| − |p|th substage we have βt+i =
Tl[s](r) = Tk(s)[s](pa0). (Note that during substages, βt+j may be not a string
on Tk(s)[s], but at this last substage it is.) If βt+i is terminal on Tk(s)[s] we do
not change any of the trees and move on to stage s + 1 (we let k(s + 1) = k(s)).
Otherwise, we can let k(s) act and end the stage.

4.5. Verifications II. The proof of lemma 4.3 goes through unaltered, notic-
ing that if k = Cn then once Tk has stabilized, so will Tk+1, since k never acts
to change the next tree.

As a corollary, we get that βt gets extended infinitely often (so we do get a
set B at the end). This is because if k(s + 1) > k(s) (i.e. if k(s) gets to act),
βt has been extended at stage s (in fact, βt has been extended at every stage
except perhaps at stages at which some M requirement acts at the beginning of
the stage, making k(s + 1) ≤ k(s).)

We now may conclude that the construction succeeds; the rest of the verifica-
tions are as above: we showed that 〈Tk〉 ≤ (A⊕B)′ and that D can be obtained
from 〈Tk〉.

REFERENCES

[Coo73] S. B. Cooper, Minimal degrees and the jump operator, J. Symbolic Logic, vol. 38
(1973), pp. 249–271.

[Eps75] R. L. Epstein, Minimal degrees of unsolvability and the full approximation con-

struction, Mem. Amer. Math. Soc., vol. 3 (1975), no. iss.1, 162, pp. viii+136.
[Eps81] , Initial segments of degrees below 0′, Mem. Amer. Math. Soc., vol. 30

(1981), no. 241, pp. vi+102.
[Fri57] R. Friedberg, A criterion for completeness of degrees of unsolvability, J. Symb.

Logic, vol. 22 (1957), pp. 159–160.

[Ish99] S. Ishmukhametov, Weak recursive degrees and a problem of Spector, Recursion
theory and complexity (kazan, 1997), de Gruyter Ser. Log. Appl., vol. 2, de Gruyter, Berlin,

1999, pp. 81–87.

[Joc77] C. G. Jockusch, Jr., Simple proofs of some theorems on high degrees of unsolv-
ability, Canad. J. Math., vol. 29 (1977), no. 5, pp. 1072–1080.

22 NOAM GREENBERG, ANTONIO MONTALBÁN, AND RICHARD A. SHORE

[JP78] C. G. Jockusch, Jr. and D. B. Posner, Double jumps of minimal degrees, J.
Symbolic Logic, vol. 43 (1978), no. 4, pp. 715–724.

[JS84] C. G. Jockusch, Jr. and R. A. Shore, Pseudojump operators. II. Transfinite itera-
tions, hierarchies and minimal covers, J. Symbolic Logic, vol. 49 (1984), no. 4, pp. 1205–1236.

[KP54] S.C. Kleene and E.L. Post, The upper semi-lattice of the degrees of recursive

unsolvability, Annals of Mathematics, vol. 59 (1954), pp. 379–407.
[Ler83] M. Lerman, Degrees of unsolvability, Springer-Verlag, Berlin, Heidelberg, New

York, Tokyo, 1983.

[Ler85] , On the ordering of classes in high/low hierarchies, Recursion theory week
(oberwolfach, 1984), Lecture Notes in Math., vol. 1141, Springer, Berlin, 1985, pp. 260–270.

[Ler86] , Degrees which do not bound minimal degrees, Ann. Pure Appl. Logic,
vol. 30 (1986), no. 3, pp. 249–276.

[Lew03] A. E. M. Lewis, Aspects of complementing in the turing degrees, Ph.D. thesis,
University of Leeds, 2003.

[Mar66] D. A. Martin, Classes of recursively enumerable sets and degrees of unsolvability,

Z. Math. Logik Grundlagen Math., vol. 12 (1966), pp. 295–310.

[MM68] W. Miller and D. A. Martin, The degrees of hyperimmune sets, Z. fur Math.
Logik und Grund. der Math., vol. 14 (1968), pp. 159–66.

[NSS98] A. Nies, R. A. Shore, and T. A. Slaman, Interpretability and definability in

the recursively enumerable degrees, Proc. London Math. Soc. (3), vol. 77 (1998), no. 2,
pp. 241–291.

[Pos77] D. B. Posner, High degrees, Ph.D. thesis, University of California, Berkeley, 1977.

[Pos81] , The upper semilattice of degrees ≤ 0′ is complemented, J. Symbolic Logic,
vol. 46 (1981), no. 4, pp. 705–713.

[PR81] D. B. Posner and R. W. Robinson, Degrees joining to 0′, J. Symbolic Logic,
vol. 46 (1981), no. 4, pp. 714–722.

[Rob72] R. W. Robinson, Degrees joining 0′, Notices of the American Mathematical
Society, vol. 19 (1972), pp. A–615.

[Sac61] G. E. Sacks, A minimal degree less than 0′, Bull. Amer. Math. Soc., vol. 67

(1961), pp. 416–419.

[Sas74] L. P. Sasso, Jr., A minimal degree not realizing least possible jump, J. Symbolic
Logic, vol. 39 (1974), pp. 571–574.

[SS99] R. A. Shore and T. A. Slaman, Defining the Turing jump, Math. Res. Lett.,
vol. 6 (1999), no. 5-6, pp. 711–722.

[SS89] T. A. Slaman and J. R. Steel, Complementation in the Turing degrees, J. Sym-
bolic Logic, vol. 54 (1989), no. 1, pp. 160–176.

DEPARTMENT OF MATHEMATICS

CORNELL UNIVERSITY

ITHACA, NY 14853, USA

E-mail : erlkonig@math.cornell.edu

E-mail : antonio@math.cornell.edu

E-mail : shore@math.cornell.edu

