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This is a detailed expository account of Shanks’ Square Forms Factorization (SQUFOF)
method, including proofs or detailed references of all results, in light of an understanding of
continued fractions, binary quadratic forms, lattices, and ideals.
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The problem of distinguishing prime numbers from composite numbers and of resolv-
ing the latter into their prime factors is known to be one of the most important and
useful in arithmetic. It has engaged the industry and wisdom of ancient and modern
geometers ... the dignity of the science itself seems to require that every possible
means be explored for the solution of a problem so elegant and so celebrated [6].

There is a significant body of knowledge concerning quadratic forms, continued fractions,
lattices, and ideals. However, much of this information is very spread out, especially that deal-
ing with the class group “infrastructure”. Therefore, one major purpose here is to organize this
information into a usable form, along with providing some of the connecting historical informa-
tion and providing sufficient examples so that the average reader may be able to understand the
main concepts, if perhaps not all of the minutia of the proofs.

These are extremely rich fields, and there are problems and ideas that have yet to be ad-
dressed concerning binary quadratic forms and even concerning variations of SQUFOF that
Shanks considered. This paper is a complete proof of the simplest case only.
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Of these objects, continued fractions, described in §1, appear the most concrete and are the
easiest to examine examples of, especially with respect to distance, and thus are useful for a
conceptual understanding. §2 describes some of the direct applications of continued fractions and
the problems that caused Shanks to develop the theory further. Quadratic forms, described in
§3, are computationally the simplest format to implement and have given rise to composition, an
extremely useful tool. Ideals, in §4 are valuable because they provide an alternate interpretation
of composition and provide a link to lattices, described in §5, from which “distance” is derived.
§6 uses lattices and ideals to prove Theorem 10, a powerful formula concerning infrastructure
distance. §7 puts it all together to analyze Shanks’ factorization algorithm.

This investigation will also define mappings between these different objects. These maps
will be represented by the letter Φ, with subscripts indicating the two sets being considered.
For example, ΦT,F would be a map from terms in the continued fraction to quadratic forms and
ΦF,T = Φ−1

T,F would be its inverse. Note that the order of the subscripts matters. Each of these
maps will be addressed individually.

1 Continued Fractions

One tool used by many different algorithms is the continued fraction expression for
√
N , where

N is the number to be factored. This expression is calculated recursively[7]:

x0 =
√
N, b0 = bx0c (1)

∀i ≥ 1 xi =
1

xi−1 − bi−1

, bi = bxic (2)

√
N = b0 +

1

b1 + 1
b2+...

(3)

Observe that solving equation (2) for xi−1 gives xi−1 = bi−1 + 1
xi

. Repeatedly substituting
this into itself gives equation (3).

Before developing the theory too much further, allow me to offer one example of how this
works, just so that the pieces make sense to you. To simplify the expansion some, the integers
taken out in the third step of each line are the bi:

Example 1
x0 =

√
41, b0 = 6

√
41 = 6 + 1

x1

x1 = 1√
41−6

=
√

41+6
5

= 2 +
√

41−4
5

√
41 = 6 + 1

2+ 1
x2

x2 = 5√
41−4

=
√

41+4
5

= 2 +
√

41−6
5

√
41 = 6 + 1

2+ 1

2+ 1
x3

x3 = 5√
41−6

=
√

41+6
1

= 12 +
√

41−6
1

√
41 = 6 + 1

2+ 1

2+ 1

12+ 1
x4

From this step, it is evident that x4 = x1 and the cycle repeats from here. Observe that if the
sequence starts with x0 =

√
41+6, then also x3 = x0. Regardless, the expression on the right, if

truncated at any point provides a rational approximation to
√

41. Often this will be written as
merely [6, 2, 2, 12, ...] to save space or [6, 2, 2, 12] to indicate that this part repeats. The various
numbers on the left have some important properties that we will now analyze in some depth.
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Throughout, assume that N is an odd positive integer and is not a perfect square. For
number theory purposes, let

x0 =

√
N + P−1

Q0

where P−1, Q0 are integers chosen such that

P 2
−1 ≡ N (mod Q0), 0 < P−1 <

√
N, and |

√
N −Q0| < P−1. (4)

There are many ways of doing this1. The recursive formulas are:

xi+1 =
1

xi − bi bi = bxic, i ≥ 0

Formally, the assumed equation is:

xi+1 =
Qi√
N − Pi

=

√
N + Pi

Qi+1

= bi+1 +

√
N − Pi+1

Qi+1

, i ≥ 0 (5)

Note that this equation serves as a definition of Qi, Pi, Qi+1, Pi+1 ∈ Q, so that these equations
are true regardless of the conditions on these variables. Theorem 1 provides some well-known
fundamental properties and identities of continued fractions. In [13], Hans Riesel provides very
clear proofs of most of this.

Theorem 1 [13] In the continued fraction expansion of x0 satisfying (4), each xi reduces to the

form
√

N+Pi−1

Qi
, with (a) N = P 2

i +QiQi+1, (b) Pi = biQi − Pi−1, (c) bi =
⌊
b√Nc+Pi−1

Qi

⌋
≥ 1, (d)

0 < Pi <
√
N , (e) |√N −Qi| < Pi−1, (f) Qi is an integer, and (g) Qi+1 = Qi−1 + bi(Pi−1− Pi).

Furthermore, (h) this sequence is eventually periodic.

Proof:
(a) From (5), the equation Qi√

N−Pi
=

√
N+Pi

Qi+1
requires that N = P 2

i +QiQi+1.

(b) It is evident from simplifying the expression on the far right of (5) that

√
N + Pi

Qi+1

=

√
N + bi+1Qi+1 − Pi+1

Qi+1

.

Therefore, Pi+1 = bi+1Qi+1 − Pi.
(c) For i = 0, by the assumption |√N −Q0| < P−1

Q0 <
√
N + P−1

Therefore,

b0 =

⌊√
N + P−1

Q0

⌋
≥ 1

For i > 0, bi−1 = bxi−1c. By the definition of floor, xi−1−1 < bi−1 ≤ xi−1. If bi−1 = xi−1, then

the continued fraction [b0, b1, ...bi−1] is rational and is equal to x0 =
√

N+P−1

Q0
, which is irrational

1Choosing x0 =
√

N + b√Nc, so that P−1 = b√Nc and Q0 = 1 is one possibility. Choosing x0 =
√

N+P−1
2 ,

where P−1 = b√Nc or b√Nc − 1, such that P−1 is odd, is another possibility.
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since N is not a perfect square. Therefore, xi−1 − 1 < bi−1 < xi−1, so that 0 < xi−1 − bi−1 < 1.
Therefore, xi = 1

xi−1−bi−1
> 1, so that bi = bxic ≥ 1.

Note that there is no integer between b√Nc + Pi−1 and
√
N + Pi−1, so it is trivial that⌊√

N+Pi−1

Qi

⌋
=

⌊
b√Nc+Pi−1

Qi

⌋
.

(d-e) The statements |√N −Qi| < Pi−1 and 0 < Pi−1 <
√
N may be proven inductively.

Base case: i = 1
P0 = b√Nc or b√Nc − 1, so by definition 0 < P0 <

√
N .

Since x0 meets (4), |√N −Q0| < P−1.
Induction: Assume |√N −Qi| < Pi−1 and 0 < Pi−1 <

√
N .

Note that these assumptions require that 0 < Qi < 2
√
N . From (c), 0 < xi − bi < 1 means

0 <
√

N−Pi

Qi
< 1. Since Qi > 0, 0 <

√
N − Pi < Qi. From the left side of this, Pi <

√
N . Now,

either Qi ≤
√
N or Qi >

√
N .

Case 1: If Qi ≤
√
N , then

√
N − Pi < Qi ≤

√
N , so that Pi > 0.

Case 2: If Qi >
√
N , then by (b), Pi = biQi − Pi−1 > bi

√
N −√N = (bi − 1)

√
N ≥ 0.

Therefore, 0 < Pi <
√
N .

Since xi+1 > 1, it is trivial that Qi+1 <
√
N + Pi so that showing |√N −Qi+1| < Pi reduces

to showing Qi+1 >
√
N − Pi. Since 1 =

N−P 2
i

QiQi+1
=

√
N+Pi

Qi

√
N−Pi

Qi+1
, this is equivalent to showing:

√
N + Pi

Qi

> 1. (6)

Assume the contrary, that Qi ≥
√
N + Pi. Then,

bi(
√
N + Pi)− Pi ≤ biQi − Pi = Pi−1 <

√
N,

bi
√
N + Pi(bi − 1) <

√
N,

√
N(bi − 1) + Pi(bi − 1) < 0,

(bi − 1)(
√
N + Pi) < 0.

But
√
N and Pi are positive, so this implies bi < 1, contradicting Theorem 1 (c). Therefore, (6)

holds.
(f) The fact that N = P 2

i +QiQi+1 requires that Qi+1 =
N−P 2

i

Qi
. In order to show that ∀i Qi

is an integer, the statements that Qi is an integer and Qi | N − P 2
i may be proven inductively.

Base case: i = 0
By definition, Q0 is an integer and P 2

−1 ≡ N (mod Q0). But P0 ≡ P−1 (mod Q0), so P 2
0 ≡ N

(mod Q0). Therefore, Q0 | N − P 2
0 .

Induction: Assume for some i, Qi is an integer and Qi | (N − P 2
i ). Then, since N = P 2

i +

QiQi+1, Qi+1 =
N−P 2

i

Qi
, so that since Qi | (N −P 2

i ), Qi+1 is an integer. Also, Qi =
N−P 2

i

Qi+1
, so that

since Qi is an integer, Qi+1 | (N−P 2
i ), so that P 2

i ≡ N (mod Qi+1). Since Pi+1 = bi+1Qi+1−Pi,
Pi+1 ≡ Pi (mod Qi+1). Therefore, P 2

i+1 ≡ N (mod Qi+1), so that Qi+1 | (N − P 2
i+1) and the

induction is complete.
(g) Solving (b) for bi gives Pi−1+Pi

Qi
= bi. Multiply by (Pi−1 − Pi) to obtain:

P 2
i−1 − P 2

i

Qi

= bi(Pi−1 − Pi)
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Rearranging and adding N
Qi

gives:

N − P 2
i

Qi

=
N − P 2

i−1

Qi

+ bi(Pi−1 − Pi)

Qi+1 = Qi−1 + bi(Pi−1 − Pi)

.
(h) Since each xi and thus the entire sequence that follows it is defined by the two integers

Qi and Pi−1, limited by the bounds 0 < Qi < 2
√
N and 0 < Pi <

√
N , there is only a finite

number of distinct xi’s. Therefore, for some π and some k, ∀i ≥ k xi = xi+π. QED

The fact that each xi reduces to the form
√

N+Pi−1

Qi
is important for computational efficiency

because this together with (c) imply that floating point arithmetic is not necessary for any of
these calculations. Also, by use of (b) and (g), the arithmetic used in this recursion is on integers
< 2
√
N .

One application of continued fractions is rational approximations.

√
N = b0 +

1

b1 + 1
b2+...

If this continued fraction is truncated at any point, the result is an approximation to
√
N .

One might imagine that it is necessary to start simplifying at the lower right end of this ex-
pression to obtain this approximation. However, Theorem 2, also included in [13], provides a
simpler answer.

Theorem 2 Let:
A−1 = 1, A0 = b0, Ai = biAi−1 + Ai−2, i > 0

B−1 = 0, B0 = 1, Bi = biBi−1 +Bi−2, i > 0

Then for i ≥ 0, [b0, b1, ...bi] = Ai

Bi
and A2

i−1 −B2
i−1N = (−1)iQi.

Note that the last equation gives A2
i−1 ≡ (−1)iQi (mod N). Although this equation will change

some when generalized to other continued fractions, these denominators {Qi} will consistently
be referred to as pseudo-squares. A proof of this theorem is given in [13]. Therefore, instead of
reproducing the proof, I will provide an example:

Example 2
x0 =

√
403 + 20 = 40 +

√
403− 20

x1 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

x2 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

x3 = 14√
403−9

=
√

403+9
23

= 1 +
√

403−14
23

x4 = 23√
403−14

=
√

403+14
9

= 3 +
√

403−13
9

x5 = 9√
403−13

=
√

403+13
26

= 1 +
√

403−13
26

x6 = 26√
403−13

=
√

403+13
9

= 3 +
√

403−14
9

x7 = 9√
403−14

=
√

403+14
23

= 1 +
√

403−9
23

From this, a table may be used to recursively calculate the approximation2:

2Actually, in this case b0 = 40, but since that would be an approximation to x0 =
√

403 + 20, subtracting 20
from b0 yields an approximation to

√
403.
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i −1 0 1 2 3 4 5 6
bi 20 13 2 1 3 1 3
Ai 1 20 261 542 803 2951 3754 14213
Bi 0 1 13 27 40 147 187 708

filling in Ai and Bi from left to right. From the last column,
√

403 ≈ 14213/708.

Since the continued fraction is eventually periodic, it is reasonable to consider that when it
loops around on itself, the terms being considered may have come from some terms “earlier”
in the recursion. Example 2 provides some indication as to how the recursive formulas may be
reversed, as {Qi} and {bi} are symmetric about x5, so that after x5 these numbers are cycled
through in reverse order. Lemma 1 addresses how each bi is calculated two different ways and
Lemma 2 shows that by exchanging these two related expressions, the direction is reversed.

Lemma 1

b
√
N + Pi

Qi

c = b
√
N + Pi−1

Qi

c = bi

Proof: The second part of this equation, that b
√

N+Pi−1

Qi
c = bi follows from the definition of

bi.
Theorem 1 (e) implies that Qi >

√
N − Pi−1. Therefore,

b
√
N + Pi

Qi

c = b
√
N + biQi − Pi−1

Qi

c = bi + b
√
N − Pi−1

Qi

c = bi. QED

Considering Example 2, it is then natural to suspect that the mechanism for going in the
opposite direction will be precisely the same as the standard approach, except that the numerator
is changed first. Note that this same change (with the exception of c0) could be achieved by
merely changing the sign of Pi−1.

Lemma 2 Let xi, bi, Pi, Qi, and N be as in Theorem 1, i ≥ 0. Let y0 =
√

N+Pi+1

Qi+1
and let

c0 = by0c. Define inductively yj = 1
yj−1−cj−1

. Then c0 = bi+1 and yj =
√

N+Pi−j+1

Qi−j+1
, j ≥ 0.

Proof: By (6) and Lemma 1, c0 = by0c = b
√

N+Pi+1

Qi+1
c = bi+1. By mathematical induction it

suffices to prove the case j = 1. Using Theorem 1

y1 =
1

y0 − c0 =
1

√
N+Pi+1

Qi+1
− bi+1

=
1

√
N+Pi+1−bi+1Qi+1

Qi+1

=
1

√
N−Pi

Qi+1

=

√
N + Pi

N−P 2
i

Qi+1

=

√
N + Pi

Qi

QED

This demonstrates an important fact about continued fractions, the fact that the direction
of the sequences of pseudo-squares and residues can be reversed (i.e. the indices decrease) by
making a slight change and applying the same recursive mechanism.

Using Lemma 2, x3 may be used, for example, to find x2 and x1. Continuing this process, de-
note the terms before x0 as x−1, x−2, .... Define Q−i and P−i similarly3. Example 3 demonstrates
this with the continued fractions from Example 2:

3Since y0 meets (4) and the same recursive formula is applied, it is clear that Theorem 1 still applies to
negative indices.
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Example 3 x3 =
√

403+9
23

and P3 = 14, so let y0 =
√

403+14
23

to obtain

y0 =
√

403+14
23

= 1 +
√

403−9
23

y1 = 23√
403−9

=
√

403+9
14

= 2 +
√

403−19
14

y2 = 14√
403−19

=
√

403+19
3

= 13 +
√

403−20
3

y3 = 3√
403−20

=
√

403+20
1

= 40 +
√

403−20
1

y4 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

y5 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

Then, just as y2 gives x1 =
√

403+20
3

, y4 gives x−1 =
√

403+19
3

and y5 gives x−2 =
√

403+9
14

.

Combining periodicity with reversibility strengthens Theorem 1 (h).

Lemma 3 There exists a positive integer π such that ∀i xi = xi+π, i not necessarily positive.

Proof: From the proof of Theorem 1 (h) there are k and π such that ∀i ≥ k, xi = xi+π.
Essentially,this is equivalent to proving that there is no lower bound for k. Assume the contrary,
that there is some lower bound k. Let k and π be the smallest such integers. Then xk = xk+π.
But by Lemma 2 xk−1 = xk+π−1, so that k− 1 also meets this criteria, violating the assumption
that k is the smallest such integer. Therefore, ∀i xi = xi+π. QED

Throughout, π will consistently denote the period, even when considering this period in the
context of quadratic forms or lattices.

Often the continued fraction may have other characteristics that are interesting besides its
periodicity. For factorization, continued fractions with symmetries, such as at x0 and x5 from
Example 2, will be especially important. If the starting condition near some point is the same
in both directions, the entire sequence will be symmetric about that point. This is the point of
Lemma 4.

Lemma 4 Let x0 =
√

N+P−1

Q0
meet (4) such that Q0 | 2P−1. The sequence of pseudo-squares is

symmetric about Q0, so that ∀i Qi = Q−i.

Proof:
Observe that 0 <

√
N − P0 < Q0, with P0 = b0Q0 − P−1, so that

0 <
√
N − b0Q0 + P−1 < Q0.

There can only be one possible integer value of b0 that satisfies this inequality. Since 0 <√
N − P−1 < Q0, b0 = 2P−1/Q0 satisfies this inequality, so that P0 = P−1.

Let y−1 =
√

N+P1

Q1
. Then, by Lemma 2, y0 =

√
N+P0

Q0
=

√
N+P−1

Q0
= x0

Therefore, the sequence of pseudo-squares will be symmetric about Q0, since in either direc-
tion the first continued fraction term is the same. Therefore, Qi = Q−i. QED

The presence of one point of symmetry allows a proof that another point of symmetry exists
and that a factorization of N may be obtained from this symmetry4:

4This was actually discovered in the opposite order. It was clear that ambiguous forms that met this criteria
provided a factorization but was later realized that these same forms produced symmetry points. This was first
noticed by Gauss [6] and first applied by Shanks [18].
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Theorem 3 Let s = bπ
2
c, where π is the period from Lemma 3. If π is even, ∀i Qs+i = Qs−i,

but Qs 6= Q0 and Qs | 2N . If π is odd, ∀i Qs+i+1 = Qs−i and either gcd(Qs, N) is a nontrivial
factor of N or −1 is a quadratic residue of N .

Proof:
Case 1: If π is even, π = 2s. Then, by Lemmas 4 and 3, Qs+i = Q−s−i = Q2s−s−i = Qs−i.

Since Qs+1 = N−P 2
s

Qs
and Qs−1 =

N−P 2
s−1

Qs
, this simplifies to P 2

s = P 2
s−1, but since ∀i Pi > 0, this

provides Ps = Ps−1.
Now Qs = Ps+Ps−1

bs
= 2Ps

bs
, so that Qs | 2Ps.

Assume Qs = Q0. If Qs is even, then P0 ≡ Ps ≡ 1 (mod 2) and if Qs is odd, Qs | Ps. Either
way, there is then a unique integer in the range (

√
N −Q0,

√
N) satisfying these conditions, so

that Ps = P0. Therefore, xs =
√

N+P0

Q0
= x0, contradicting the fact that π is the smallest positive

integer such that ∀i Qi = Qi+π. Therefore, Qs 6= Q0.
Now N = P 2

s + QsQs+1, so it is apparent that if Qs is odd, then Qs | Ps, so that Qs | N .
Conversely, if Qs is even, then (Qs/2) | Ps, so that (Qs/2) | N . Either way, Qs | 2N .

Case 2: If π is odd, π = 2s+1. Then, by Lemma 4 and 3, Qs+i+1 = Q−s−i−1 = Q2s+1−s−i−1 =
Qs−i.

Specifically, Qs = Qs+1, so that N = P 2
s +QsQs+1 = P 2

s +Q2
s, so that P 2

s+1 ≡ −Q2
s (mod N).

If gcd(Qs, N) > 1, this is a nontrivial factor of N , and the proof is done. Therefore, assume that
Qs and N are relatively prime, so that Q−1

s (mod N) exists. Then (Q−1
s )2P 2

s+1 ≡ −1 (mod N).
Then Q−1

s Ps+1 is a square root of −1 modulo N . QED
One final concept that will appear much more important in later sections is equivalence.

Define the set T to be set of all numbers of the form
√

N+P
Q

such that:

P 2 ≡ N (mod Q), (7)

Then define

T∗ = {x ∈ T : 0 < P <
√
N, |
√
N −Q| < P}.

An element x ∈ T is reduced if x ∈ T∗. For x, y ∈ T∗, x is equivalent to y if x appears in the
same continued fraction expansion as y and it is trivial that this is an equivalence relation on
T∗. Extending this to all of T requires a lemma relating elements of T−T∗ with elements of T∗.

Lemma 5 Let x = x0 ∈ T− T∗. x0 may be reduced by applying

xi+1 =
1

xi − bi , bi = bxi − 1/2c, i ≥ 0 (8)

until |Qi| < 2
√
N for some i and then applying equation (2) normally until xk ∈ T∗ for some

k > 0.

Proof: The choice of bi yields that
∣∣∣
√

N−Pi

Qi

∣∣∣ < 1
2

after the first step, so that |Pi| < 1
2
|Qi|+

√
N .

Therefore,

|Qi+1| =
∣∣∣N−P 2

i

Qi

∣∣∣
=

∣∣∣
√

N−Pi

Qi

∣∣∣ |
√
N + Pi|

< 1
2
(2
√
N + 1

2
|Qi|

=
√
N + 1

4
|Qi|
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so that |Qi| will decrease as long as |Qi| > 4
3

√
N . When |Qr| < 2

√
N , revert back to the

standard formula for br. There are three cases for what Qr is:
Case 1: 0 < Qr <

√
N . In this case, it is clear that xr+1 will be reduced.

Case 2:
√
N < Qr < 2

√
N . In this case, if Pr > 0, then xr+1 will be reduced. Otherwise,

|Pr| <
√
N , so that xr+1 will be in Case 1.

Case 3: −2
√
N < Qr < 0. Then

√
N < Pr <

√
N + |Qr|, yielding Qr+1 < 2

√
N + |Qr|. If

Qr+1 < 2
√
N , it is in Case 1 or Case 2. If 2

√
N < Qr+1 < 2

√
N + |Qr|, the choice of br provides√

N + Pr > Qr+1, so that 0 < Pr+1 <
√
N , so that xr+2 will be in Case 1. QED

I will provide one example of reduction:

Example 4

x0 =
√

403+267
−134

= −2 +
√

403−1
−134

x1 = −134√
403−1

=
√

403+1
−3

= −8 +
√

403−23
−3

x2 = −3√
403−23

=
√

403+23
42

= 1 +
√

403−19
42

x3 = 42√
403−19

=
√

403+19
1

= 39 +
√

403−20
1

Lemma 5 defines a map from T to T∗ (Elements of T∗ are mapped to themselves). Then
two elements are equivalent if their corresponding elements of T∗ are equivalent and it is clear
that this is still an equivalence relation. Essentially, this equates to saying that two numbers x
and y are equivalent if their continued fraction expansions have the same “tail”, so that after a
certain number of terms of each they have identical cycles. §3 will define a different equivalence
relation on binary quadratic forms and then prove that it corresponds to this.

2 From Morrison-Brillhart to Shanks

Morrison and Brillhart developed one simple and fairly intuitive algorithm for using continued
fractions for factorization [11]. The entire algorithm is a bit more complicated, but here is a
description sufficient for our purposes.

If the equation

x2 ≡ y2 (mod N) (9)

can be solved such that

x 6≡ ±y (mod N), (10)

then it is evident that gcd(x − y,N) provides a nontrivial factor of N . Choosing a value for
x and then looking for a value that works for y is not computationally effective for large N .
Fermat, the first to employ this concept, tested values of x greater than

√
N to find a value

such that x2 (mod N) was already a perfect square. However, these numbers get large quickly.
Continued fractions provide a better approach to achieving this and since 0 < Qi < 2

√
N , the

chances of finding a perfect square are greatly improved. The second part of Theorem 2 states
that A2

i−1 − B2
i−1N = (−1)iQi. Therefore A2

i−1 ≡ (−1)iQi (mod N). If for some i, Q2i is a
perfect square then this provides a solution to (9) and it only remains to check whether or not
gcd(x+y,N) or gcd(x−y,N) provide a nontrivial factor of N . However, there are not very many
perfect squares in the continued fraction expansion so Morrison and Brillhart [11] used products
to obtain squares. For example, for N = 1333, the continued fraction expansion provides
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732 ≡ −3 (mod N) and 17892 ≡ −12 (mod N). From this, (73 · 1789)2 ≡ (−3)(−12) = 62

(mod N), quickly yielding 1333 = 31 · 43.
There are a couple of problems with this algorithm. First, it requires the calculation of

the Ai’s, which are of the same size as N , after reduction modulo N , while the rest of the
algorithm only requires arithmetic on numbers of size

√
N . Second, after going through a

nontrivial amount of computation to find a relation that solves (9), not all of these result in a
factorization. I provide one example:

Example 5 In the continued fraction for
√

1333, Q6 = 9 = 32 and A5 = 10661, so that
106612 ≡ 32 (mod 1333). Unfortunately 10661 ≡ −3 (mod 1333), so this does not result in a
nontrivial factor of 1333.

Although it is well enough on a computer to run the algorithm a few times and have it fail
a few times, Daniel Shanks decided he needed to understand it a little better. Based on an
understanding of quadratic forms and the class group infrastructure, Daniel Shanks developed
several very interesting algorithms for factorization ([18],[15]). First he developed an improve-
ment to the Morrison-Brillhart algorithm. Roughly speaking, rather then saving the Ai’s, he
was able to use composition of quadratic forms to combine numbers to produce squares and then
use the “infrastructure” to use those squares to find a factorization. In addition, he developed
from the concept of infrastructure a system of predicting whether or not any given square would
provide a nontrivial factor. Unfortunately, this didn’t save very much time and was a much
more complicated algorithm than the Morrison-Brillhart algorithm.

From here the development of the algorithm was prompted by the number 260 + 230 − 1. It
failed a Fermat primality test5, but when Morrison and Brillhart tried to factor it, it failed 114
times. Therefore, they stopped, multiplied it by some small constant and tried again. This time
it worked on the first try, but they wanted to know why it had failed so many times. So they
asked Shanks to analyze it. Unfortunately (or fortunately in hindsight), Shanks only had an
HP-65 available and he couldn’t fit his entire algorithm into it. Therefore, he discarded all the
work of combining numbers to form squares and just cycled through until he found one already
there. The code for this was much shorter, and as it turned out the algorithm was actually
significantly faster.

3 Quadratic Forms

A fuller account of binary quadratic forms can be found in Gauss’s [6] and in Buell’s [1]. However,
here are the necessary fundamental ideas.

A binary quadratic form is a polynomial of the form F (x, y) = ax2+bxy+cy2, x, y, a, b, c ∈ Z
(Often this is abbreviated as (a, b, c)). In some sense then, a quadratic form may be considered
to be the set of all the numbers it can represent for various values of x and y. Thus, two
quadratic forms are equivalent if they represent the same set of integers. It is evident that if one
form is transformed into another by the substitution

[
x
y

]
=

[
a b
c d

] [
x′

y′

]
, ad− bc = ±1, (11)

5The Fermat primality test is based on Fermat’s classical result that for p prime, ap ≡ a (mod p) [7].
Equivalently, if aN 6≡ a (mod N) for some integer a, then N isn’t prime.
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then, since this matrix is invertible, the two forms are equivalent. As one further useful distinc-
tion, (11) is proper if its determinant is +1 and improper if its determinant is −1. The symbol
(∼) will only apply to proper equivalence. For the purpose of factorization, the interesting forms
are those that can be improperly transformed into themselves, referred to as ambiguous forms.

Example 6 F (x, y) = −14x2 + 10xy + 5y2 is transformed into itself by the substitution:

[
x
y

]
=

[
1 0
−2 −1

] [
x′

y′

]
,

so (−14, 10, 5) is ambiguous.

Denote the set of all quadratic forms with discriminant ∆ by F∆, or often just F. The next
obvious question is the organization of all of the quadratic forms equivalent to some given form.
Since there are an infinite number of forms equivalent to any form, the search must be narrowed
some by first defining reduced forms.

Definition 1 A quadratic form ax2 + bxy + cy2, with positive discriminant ∆ = b2 − 4ac is
reduced if:

0 < b <
√

∆ (12)

|
√

∆− 2|a|| < b (13)

Note that ∆ = b2 − 4ac and (12) require that ac < 0, so that a and c must have opposite signs.
Making Gauss’s description of the organization make some sense will require one more of his

definitions:

Definition 2 Two forms F (x, y) = ax2 +bxy+cy2 and F ′(x, y) = a′x2 +b′xy+c′y2 are adjacent
if c = a′.

To each quadratic form, there is a unique reduced equivalent form adjacent to it on each
side6, and since (12-13) imply a finite number of possible coefficients, this process eventually
repeats, forming a cycle. The important aspect of this is that the cycle is actually all of the
reduced forms equivalent to the first form:

Theorem 4 [6] If the reduced forms F ,F ′ are properly equivalent, each of them will be contained
in the period of the other.

Gauss proves this in Article 193 of [6], Lenstra proves this in [9], and it is a corollary of
Lemma 13 in §5. Therefore the proof is omitted.

For now, the important detail is that the quadratic forms correspond directly to the elements
of T, and that the reduced quadratic forms correspond to elements of T∗. Note that the elements
of T have attached indices, where the important trait of the indice is whether it is odd or even.
Define a map from T to F by

ΦT,F : T→ F√
N−Pi

Qi
→ Fi(x, y) = Qi(−1)ix2 + 2Pixy +Qi+1(−1)i+1y2 (14)

6Although Gauss had a recursive mechanism for finding these, continued fractions provide a sufficient mech-
anism for this that will be defined momentarily. Note that reversal suddenly becomes trivial.
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The inverse map is

ΦF,T : F→ T

ax2 + bxy + cy2 → xi =

√
∆/4−b/2

|a| ∈ T (14′)

where the discriminant of the quadratic form is ∆ is the element of T is given either an even or
odd indice as a is positive or negative, respectively. Note that ∆ = b2 − 4ac gives 4a | ∆ − b2,
so that xi really is in T.
§1 defined an equivalence on T and suggested that it corresponded with an equivalence of

binary quadratic forms. Theorem 5 formalizes this:

Theorem 5 Under the mapping ΦT,F, the equivalence classes of T correspond to the equivalence
classes of F. That is, for xi, xj ∈ T corresponding to Fi = ΦT,F(xi), Fj = ΦT,F(xj) ∈ F,
respectively, xi ∼ xj if and only if Fi ∼ Fj.

Proof:
Let xi ∼ xj. Since xi and xj must be in the same continued fraction expansion, assume

without loss of generality that j = i+ 1. The other cases may be easily derived from this case.
Then the quadratic form related to xi is given in (14). The substitution

[
x
y

]
=

[
0 1
−1 (−1)ibi+1

] [
x′

y′

]

transforms Fi into

Qi+1(−1)i+1x2 + 2Pi+1xy +Qi+2(−1)i+2y2

Observe that this matrix has determinant 1, so that this equivalence is proper.
In order to prove the converse, that the xi’s related to equivalent quadratic forms are

equivalent, by Theorem 4, observe that the last coefficient of the quadratic form related to
xi, Qi+1(−1)i+1, is then the first coefficient of the quadratic form related to xi+1. Therefore,
these two forms are adjacent and thus equivalent. QED

The real value of quadratic forms is the composition of quadratic forms. In Article 236
of [6], Gauss provides a very flexible definition of composition. Gauss defines composition
as multiplying two quadratic forms together and then making a substitution to simplify this
into another binary quadratic form. The algorithm he provides is very complicated, allowing
for choices of variables along the way that permit the result to be any quadratic form in the
resulting equivalence class. The result of composition should be predictable, so definition needs
to be limited some. Shanks and Buell both provide a significant simplifaction of this algorithm.
The symbol (∗) will consistently be used for composition.

Proposition 1 [1] Let F1 = (a1, b1, c1) and F2 = (a2, b2, c2) be primitive forms of discriminants
d1 and d2, respectively, such that d1 = ∆n2

1 and d2 = ∆n2
2 for integers n1 and n2 and ∆, with

∆ = gcd(d1, d2). Let

m = gcd(a1n2, a2n1,
b1n2 + b2n1

2
).

Then the congruences
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mn1B ≡ mb1 (mod 2a1)
mn2B ≡ mb2 (mod 2a2)

m(b1n2 + b2n1)B ≡ m(b1b2 + ∆n1n2) (mod 4a1a2)

are simultaneously solvable7 for an integer B, and the composition of F1 and F2 is:

F1 ∗ F2 = (
a1a2

m2
, B,

(B2 −∆)m2

4a1a2

)

of discriminant ∆.

See [17] for a derivation of this in the case where the discriminants are equal or [1] for a
proof of this case. Buell [1] also provides the substitutions that would be needed for Gauss’s
definition of composition.

The next question is how this operation is related to equivalence.

Theorem 6 If F1 ∼ F2, then F ∗ F1 ∼ F ∗ F2.

Gauss proves this in Article 237-239 of [6].
Therefore, composition treats the equivalence classes in the convenient manner. These equiv-

alence classes are then the elements of the class group, with composition as the group operation.
The application of Theorem 6 is that it doesn’t matter which form is used to represent an
equivalence class.

The significance of ambiguous forms for factorization has been mentioned some above. It
is evident that if one form is ambiguous, then its entire equivalence class is also ambiguous.
Lemmas 6 generalizes the reasons to be interested in these classes.

Lemma 6 An ambiguous equivalence class contains two points of symmetry, that is, pairs of
reduced adjacent forms, (c, b, a) and (a, b, c) in the cycle that are the symmetric reverse of each
other. Let a be the connecting term of either symmetry point. Either a divides the determinant,
or a/2 divides the determinant.

Proof:
Let A be an ambiguous equivalence class and let F = ax2 + bxy + cy2 ∈ A. Let F ′ =

cx2 + bxy+ ay2. Then since F ∈ A, there is a substitution of determinant −1 that maps F into
itself. Since the obvious substitution to exchange x and y in F has determinant −1, the product
of these two is a proper substitution that transforms F into F ′. Therefore, F ′ ∈ A, so that if F
is F0, F

′ is Fj for some j. Then that F1 must be the reverse of Fj−1, and so forth. Now, if j is
even, then by this process Fj/2 is its own reverse. However, by the definition of being reduced,
the end coefficients of each form must have opposite sign, so this is impossible. Therefore, j
must be odd, and then F j−1

2
is the reverse of F j+1

2
.

At this point, observe that since the end-coefficients alternate signs, the entire period must
be even. By the same arguments as Theorem 3, one could show that there must be another
point of symmetry with the property that ∀i Qs+i = Qs−i, but such that Qs is not the same as
the connecting term at the first symmetry point. The two quadratic forms containing Qs as an
end coefficient then meet the criteria.

The fact that either a divides the determinant, or a/2 divides the determinant was proven
in Theorem 3, since the determinant is 4N . QED.

7By convention, choose the answer with the smallest absolute value.
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Note that Theorem 3 described two different types of points of symmetry. With the quadratic
form cycle, the second case can be ignored because of the alternating signs. However, it is quite
possible for the term at one symmetry point to be merely the negative of the term at the other
symmetry point. This would correspond to the continued fraction having an odd period and
there would be a symmetry point of the second type in the continued fraction at half-way.
However, this type of symmetry does not generally provide a factorization for N .

Lastly, it is important how these ambiguous forms fit into the rest of the class group. First,
addressing the class group structure requires inverses. Lemma 7 is fairly elementary and is
probably stated somewhere else. Let 1 represent the form in the principal cycle whose first
coefficient is 1. Let F−1 indicate the symmetric reverse of F , (a, b, c)−1 = (c, b, a). Lemma 7
justifies this notation:

Lemma 7 F ∗ F−1 ∼ 1

Proof:
Let F = ax2 + bxy + cy2. Then F−1 = cx2 + bxy + ay2. Let G be the next form adjacent

to F−1, that is G = ax2 + b′xy + c′y2, with a | (b+ b′) from the correspondance with continued
fractions. Composing F ∗G, n1 = n2 = 1 and m = a, so that the first coefficient of F ∗G is 1.
Therefore, F ∗G ∼ 1, but F−1 ∼ G, so F ∗ F−1 ∼ 1. QED.

Note that this implies that the square of a symmetry point is 1.
Theorem 7 was probably known by Shanks, since SQUFOF depends highly on it, but it does

not seem that he states this explicitly anywhere.

Theorem 7 An equivalence class has order 2 or 1 in the class group if and only if it is ambigu-
ous.

Proof:
Let A be an ambiguous class. Let F ∈ A. Then F ∼ F−1, so that F ∗ F ∼ F ∗ F−1 ∼ 1.

Therefore F ∗ F is in the principal cycle, so that A has order 2 or 1 in the class group.
Conversely, assume that an equivalence class A has order 2 or 1 in the class group. Let

F ∈ A. Then F ∗ F is in the principal ideal, so that F ∗ F ∼ (F ∗ F )−1. But from composition,
it is clear that (F ∗F )−1 ∼ F−1∗F−1. So F ∗F ∼ F−1∗F−1. Since the class group is associative,
composing on the right with F maintains equivalence. Therefore:

(F ∗ F ) ∗ F ∼ (F−1 ∗ F−1) ∗ F
1 ∗ F ∼ F−1 ∗ (F−1 ∗ F )

F ∼ F−1

Therefore, A is ambiguous. QED.
Certainly the class group structure is interesting, but it is now possible to return to the

problem from the Morrison-Brillhart algorithm of Example 5 with Q3 = 3, so Q6 = 9 doesn’t
provide a nontrivial factor of N . The quick explanation is that if you square the quadratic
form with first coefficient Q3, you obtain the quadratic form with first coefficient Q6. Since the
principal cycle is closed under composition, it seems as though, and perhaps would be convenient
if, the forms in the principal cycle formed a group. However, the problem of reduction prevents
this:

Example 7 Consider the quadratic form F = (36, 70,−3), with determinant 4 · 1333. Compare
(F ∗ F ) ∗ F , with F ∗ F ∗ F , where the difference is that in the first the result is reduced after
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the first composition. F ∗ F = (324,−38,−3) and the very next adjacent form (−3, 68, 59), is
reduced. F ∗ (−3, 68, 59) = (−12, 70, 9), which is already reduced. However, without reduction
F ∗ F ∗ F = F ∗ (324,−38,−3) = (729, 448,−348). When this is reduced, the first reduced form
found, after 2 steps, is (9, 56,−61).

Therefore, the principal cycle, with the operation being composition followed by reduction,
doesn’t even meet the requirements for being power associative. However, the observation that
the two results are adjacent forms, and that the second reduction took one step longer, prompts
us to dig a little deeper.

Understanding this requires what Shanks referred to as infrastructure distance. For m < n,
and for xi ∈ T, the terms in the continued fraction in (5), define

DF(xm, xn) = log(
n∏

k=m+1

xk) (15)

Lenstra [9] adds a term of 1
2
log(Qn/Qm) to this, with the effect that the resulting formulas

are slightly simplified but the proofs are more complicated and less intuitive. This definition is
used by Williams in [20].

Since the quadratic forms are cyclic, in order for the distance between two forms to be
measured consistently, it must be considered modulo the distance around the principal cycle.

Definition 3 Let π be the period of the principal cycle. The regulator R of the class group is
the distance around the principal cycle, that is,

R = DF(F0, Fπ) = D(1, Fπ)

Therefore, distance must be considered modulo R, so that DF is a map from pairs of forms to
the interval [0, R) ∈ R. The addition of two distances must be reduced modulo R as necessary.

Further analysis of this distance will require two more tools: ideals and lattices. In order
to relate to continued fractions, the ideals will be in Z[

√
N ] = {a + b

√
N : a, b ∈ Z} and the

lattices will be in Q(
√
N) = {a+ b

√
N : a, b ∈ Q}where N is a non-square positive integer.

Remark: The ideals in Z[
√
N ] typically correspond only to quadratic forms of discriminant

4N . Note that if N ≡ 1 (mod 4), then Z[
√
N ] is not the ring of integers for Q(

√
N). For N ≡ 1

(mod 4), an analysis of ideals in Z[
√

N+1
2

] is also interesting, but will be avoided in the interest of

simplicity. Quadratic forms of discriminant N ≡ 1 (mod 4) may be related to ideals in Z[
√
N ]

via first multiplying by 2 to obtain quadratic forms of discriminant 4N .

4 Ideals

For ξ ∈ Q(
√
N), let ξ refer to the conjugate of ξ (i.e. 1 +

√
3 = 1−√3).

The norm of a number in Q(
√
N) is N (ξ) = ξξ ∈ Q.

To simplify notation, the symbols H, I, J , and K will consistently be ideals, u and v will
be elements of ideals, α and β will be elements of Z[

√
N ], ξ and ζ will be elements of Q(

√
N),

and L will be a lattice.
Our definition of an ideal is the same as in any other commutative ring with identity:

Definition 4 A subset I of a ring R is an ideal if for u, v ∈ I, u±v ∈ I and for α ∈ R, u ·α ∈ I,
that is I is closed under addition and multiplication by an element of R. Define L(I) to be the
least positive rational integer in I.
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Describing ideals will require the notation for the lattice generated by a set. If

α1, α2, ..., αk ∈ Z[
√
N ],

denote8 the lattice generated by these as

[α1, α2, ..., αk] = {
k∑

i=1

niαi : ni ∈ Z} (16)

Lemma 8 identifies necessary and sufficient conditions for a set in Z[
√
N ] to be an ideal.

Lemma 8 For Q, s,N, P ∈ Z, N non-square and positive, [Q, s
√
N +P ] is an ideal of the ring

Z[
√
N ] if and only if sQ | N (s

√
N + P ), s | Q, and s | P .

Proof: Assume that I = [Q, s
√
N +P ] is an ideal of Z[

√
N ]. Then, choosing α = P −s√N ,

N (s
√
N + P ) ∈ I. Since this is an integer, Q | N (s

√
N + P ). Choosing α =

√
N , Q

√
N ∈ I.

Therefore, s | Q. Since Q | N (s
√
N + P ), this also implies that s | P . Therefore, α could have

been chosen α = P/s−√N so that Q | N (s
√
N + P )/s, so that sQ | N (s

√
N + P ).

Conversely, let I = [Q, s
√
N + P ] and assume that sQ | N (s

√
N + P ), s | Q, and s | P .

Closure under addition is trivial. To see that I is closed under multiplication by an element of
Z[
√
N ], one need only consider multiplication by 1 and

√
N , since they form a basis for Z[

√
N ].

Multiplication by 1 is trivial. For
√
N ,

Q
√
N =

Q

s
(s
√
N + P )− P

s
Q

and Q/s and −P/s are integers. Also,

(s
√
N + P )

√
N = sN + P

√
N =

P

s
(s
√
N + P ) + (

−P 2 + s2N

sQ
)Q

and P
s

and (−P 2+s2N
sQ

) are integers. QED

If s = 1, an ideal is primitive. Since s | P and s | Q, ideals that are not primitive will often
be written (s)[Q,

√
N + P ]. Let I be the set of all primitive ideals.

Represented in the form I = [Q,
√
N +P ], it is clear that |Q| is the smallest positive rational

integer in I. Define

L(I) = min{I ∩ Z+} (17)

At this point, it is possible to define a correspondance between quadratic forms (of discrim-
inant ∆ ≡ 0 (mod 4)) and ideals by:

ΦF,I(F (x, y) = Ax2 +Bxy + Cy2) = [A,

√
(
B

2
)2 − AC +

B

2
] (18)

ΦI,F([Q,
√
N + P ]) = F (x, y) = Qx2 + 2Pxy + (

P 2 −N
Q

)y2 (18′)

and define a reduced ideal as an ideal corresponding to a reduced quadratic form. Note that
∆ = 4N .

8Observe the difference between the use of [...] here and in §1. This expression is completely unrelated to
rational approximations.
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For example, the quadratic form (15, 2 · 12,−1) corresponds to the ideal [15,
√

159 + 12].
The one potential problem that immediately becomes apparent is that while [15,

√
159+12] and

[−15,
√

159 + 12] are the same ideal, (15, 2 · 12,−1) and (−15, 2 · 12, 1) are different quadratic
forms. However, it is apparent that the negative sign is merely carried through composition
without affecting the computations. Since each of these forms is in the same location within its
respective cycle, this difference will not be important to this investigation of composition and
distance.

ΦT,F and ΦF,I may be combined to obtain

ΦT,I(
Q√
N − P ) = [Q,

√
N − P ]

and ΦI,T is defined in the related obvious way.
If A = [αi] and B = [βi], i = 1, 2, 3..., d, then it is clear that A = B if and only if there exists

a d× d matrix M with determinant ±1 such that:

〈αi〉 = M〈βi〉
where 〈αi〉 and 〈βi〉 are vectors.

For these purposes, the most important operation with ideals is their multiplication. Multi-
plication is defined by

[αi] ∗ [βj] = [αiβj]

For example,

I = [15,
√

159 + 12] ∗ [10,
√

159 + 13] = [150, 10
√

159 + 120, 15
√

159 + 195, 315 + 25
√

159]

The 4th component is the sum of the 2nd and 3rd, so it is unnecessary for describing the ideal.
Applying the matrix




1 0 0
0 1 0
0 −1 1




which has determinant 1, subtracts the 2nd component from the third to obtain

I = [150, 10
√

159 + 120, 5
√

159 + 75]

The matrix, with determinant 1,




1 0 0
0 1 −2
0 0 1




will subtract twice the 3rd component from the 2nd to obtain

I = [150,−30, 5
√

159 + 75]

Here the 1st component is a multiple of the 2nd and is thus unnecessary. The answer is
simplified to obtain
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I = [30, 5
√

159 + 75] = 5[6,
√

159 + 15]

The process of multiplying ideals can be greatly simplified by several well-known formulae9

[10].

Theorem 8 Let I = [Q,
√
N + P ] and J = [Q′,

√
N + P ′] be ideals of Q

√
N . Let C = N−P 2

Q
,

C ′ = N−(P ′)2
Q′ . If gcd(Q,P,C) = gcd(Q′, P ′, C ′) = 1, then I ∗ J = s[q,

√
N + p], where

s = gcd(Q,Q′, P + P ′) (19)

h = gcd(Q,Q′, C, C ′, 2) (20)

q = hQQ′/s2 (21)

p ≡ P (mod Q/s) (22)

p ≡ P ′ (mod Q′/s) (23)

(P + P ′)p ≡ N + PP ′ (mod QQ′/s) (24)

Proof10:
Consider the product:

I ∗ J = [QQ′, Q
√
N +QP ′, Q′

√
N +Q′P,N + PP ′ + (P + P ′)

√
N ] (25)

The smallest integer in I ∗ J may be found by considering the smallest integers that may be
produced taking these elements pair-wise. Let {..} represent the least common multiple,

L(I ∗ J) = gcd(QQ′, {Q,Q′}(P − P ′), {Q,P + P ′}Q′C ′
P + P ′

,
{Q′, P + P ′}QC

P + P ′
)

Let s = gcd(Q,Q′, P +P ′), h = gcd(Q,Q′, C, C ′, 2), w = hQQ′/s. Let f 6= 2 be a prime. Let
a, b, c, d, e, k be the largest possible integers such that fa | Q, f b | Q′, f c | (P+P ′), fd | C, f e | C ′,
fk | (P − P ′). Then fa+b ‖ QQ′, fmax(a,b)+k ‖ {Q,Q′}(P − P ′), fmax(a,c)+b+e−c ‖ {Q,P+P ′}Q′C′

P+P ′ ,

and fmax(b,c)+a+d−c ‖ {Q′,P+P ′}QC
P+P ′ ).

The following analysis proves that if f 6= 2, the maximum exponent of f in L(I ∗J) is a+b−
min(a, b, c) while if h = 2, then the maximum exponent of 2 in L(I ∗J) is a+ b+1−min(a, b, c),
while if h = 1, then the maximum exponent of f in L(I ∗ J) is a + b −min(a, b, c). As this is
broken in several different cases, an outline of the proof is helpful:

1) a = 0 or b = 0 or c = 0
2) a 6= 0,b 6= 0, and c 6= 0

2.1) f 6= 2
2.1.1) a+ d 6= b+ e

f | (P − P ′)
f - (P − P ′)

2.1.2) a+ d = b+ e
f | (P − P ′)
f - (P − P ′)

9In [10], (24) is stated as (P − p)(P ′ − p) ≡ n + tp + p2 (mod QQ′/s), but in this case t = 0 and n = −N .
10Some of the arguments were taken from Buell’s proof in [1] concerning composition of quadratic forms.
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2.2) f = 2
2.2.1) a+ d 6= b+ e

c > 1, k > 1
c > 1, k ≤ 1
c = 1

2.2.2) a+ d = b+ e
c > 1, k > 1
c = 1
k = 1

Case 1) If a = 0, then max(a, c) + b + e − c = b + e ≥ b, max(b, c) + a + d − c ≥ b and
a + b = b, so the maximum exponent for f in L(I ∗ J) is b = a + b −min(a, b, c). Similarly, if
b = 0, then the maximum exponent is a = a+ b−min(a, b, c).

Assume c = 0. fa+d ‖ QC = N−P 2 and f b+e ‖ Q′C ′ = N−(P ′)2, subtracting, fmin(a+d,b+e) |
(P 2 − (P ′)2) = (P + P ′)(P − P ′). Since c = 0, then fmin(a+d,b+e) | (P − P ′). Therefore,
fmax(a,b)+min(a+d,b+e) | {Q,Q′}(P − P ′). However, max(a, b) + min(a + d, b + e) ≥ max(a, b) +
min(a, b) = a+ b. Therefore, the maximum exponent for f in L(I ∗ J) is

min(a+ b,max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(a+ b, a+ b+ e, a+ b+ d)
= a+ b = a+ b−min(a, b, c)

Case 2.1.1) Assume c 6= 0, f 6= 2, and a + d 6= b + e. Then, fmin(a+d,b+e) ‖ (P 2 − (P ′)2) =
(P +P ′)(P −P ′). If f | (P −P ′), then f | 2P and f | 2P ′. Since f 6= 2, this gives f | P , f | P ′.
Then, d = e = 0. Also, c ≤ min(a, b). Then, the maximum exponent for f in L(I ∗ J) is

min(a+b,max(a, b)+min(a, b)−c,max(a, c)+b−c,max(b, c)+a−c) = a+b−c = a+b−min(a, b, c)

If f - (P − P ′) then c = min(a+ d, b+ d) and the maximum exponent for f in L(I ∗ J) is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a = min(a, b, c), then this is min(b, c+b+e−c,max(b, c)+a+d−c) = b = a+ b−min(a, b, c).
The case is similar if b = min(a, b, c). If c = min(a, b, c), then since c = min(a + d, b + e), this
gives c = min(a, b). Then the maximum exponent is

min(max(a, b), a+ b+ e− c, b+ a+ d− c) = max(a, b) = a+ b−min(a, b) = a+ b−min(a, b, c)

Case 2.1.2) Assume c 6= 0, f 6= 2, but a+d = b+e. As before, if f | (P −P ′), then d = e = 0.
In this case also a = b. Assume c ≤ a. Note that fa−c | (P −P ′) and max(a, b) + min(a+ d, b+
e)− c = a+ b− c. Then the maximum exponent is

min(a+ b,max(a, c) + b− c,max(b, c) + a− c) = a+ b− c = a+ b−min(a, b, c).

Alternately, assume c > a. Then for some k, fk ‖ (P − P ′). The maximum exponent is

min(a+ b,max(a, b) + k, b,max(b, c) + a− c) = b = a+ b− a = a+ b−min(a, b, c)
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Conversely, assume f - (P − P ′). Then c ≥ a+ d = b+ e and the maximum exponent is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(max(a, b), a+ d)
= max(a, b) = a+ b−min(a, b) = a+ b−min(a, b, c)

Case 2.2.1) Let f = 2. Assume a + d 6= b + e. Then 2min(c,k) ‖ 2P and 2min(c,k) ‖ 2P ′, so
that 2min(c,k)−1 ‖ P, P ′. If c > 1 and k > 1, then d = e = 0 and as before the largest exponent
is a + b − min(a, b, c). Assume c > 1, k ≤ 1. Then k = 1 and c = min(a + d, b + e) − 1. The
largest exponent is then

min(a+ b,max(a, b) + 1,max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a ≤ min(b, c) this reduces to b+min(e, 1) = a+b+min(e, 1)−min(a, b, c). c+1 ≤ a+d ≤ c+d,
so d ≥ 1. Note that if e ≥ 1 then this is a special case and h = 2. If e = 0, it is the same as
before. The cases when b ≤ min(a, c) are similar.

If c ≤ min(a, b), this exponent is min(max(a, b)+ 1, a+ b+ e− c, b+ a+ d− c). Without loss
of generality, assume a+ d > b + e so that c = a+ d− 1 ≥ c+ d− 1, so that d = 1 and a = c.
Then the exponent is min(b+1, b+e, b+d) = b+min(1, e, d) = a+ b+min(1, e, d)−min(a, b, c).
Note again that if e ≥ 1 and d ≥ 1, then this is the special case where h = 2. Otherwise, it is
the same as before.

Assume c = 1. Then k ≥ 1. Then the exponent is

min(a+ b,max(a, b) + min(a+ d, b+ e)− 1, a+ b+ e− 1, a+ b+ d− 1).

If d = 0 or e = 0, h = 1 and this is a + b − 1 = a + b −min(a, b, c). Otherwise, h = 2 and the
exponent is a+ b = a+ b+ 1−min(a, b, c).

Case 2.2.2) Lastly, assume that c 6= 0 but a+d = b+e. For some k, 2k ‖ (P−P ′). c+k ≥ a+d.
If c > 1 and k > 1, then d = e = 0, a = b. The exponent is then min(2a, a+k,max(a, c)+b−c).
If c > a, this is min(2a, a + k, a) = a = a + b − min(a, b, c). If c ≤ a, the exponent is
min(2a, a+ k, 2a− c) = 2a− c = a+ b−min(a, b, c).

Alternately, if c = 1, then k ≥ a+ d− 1 and the exponent is

min(a+ b,max(a, b) + k, a+ b+ e− 1, b+ a+ d− 1) = min(a+ b, a+ b+ e− 1, a+ b+ d− 1).

If e > 0 and d > 0, h = 2 and this exponent is a+ b = a+ b+ 1−min(a, b, c). If e = 0 or d = 0,
h = 1 and this is a+ b− 1 = a+ b−min(a, b, c).

If k = 1 then c ≥ 1 and specifically c ≥ a+d−1 = b+ e−1. If c ≤ min(a, b), then d = e = 1
so that h = 2, c = a = b and the exponent is

min(2a, a+ 1) = a+ 1 = a+ b+ 1−min(a, b, c)

If a ≤ min(b, c), then d ≥ e and the exponent is

min(a+ b, b+ 1, b+ e,max(b, c) + a+ d− c) = min(b+ 1, b+ e)

If e ≥ 1, then d ≥ e ≥ 1, so h = 2 and in this case the exponent is b+1 = a+ b+1−min(a, b, c).
If e = 0, h = 1 and in this case the exponent is b = a+ b−min(a, b, c).

Therefore,
L(I ∗ J) = hQQ′/s
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so that for f 6= 2, the highest exponent is a+b−min(a, b, c) and for f = 2, the highest exponent
is a+ b−min(a, b, c) if h = 1 and a+ b+ 1−min(a, b, c) if h = 2. Note that this is still divisible
by s. After that s is factored out, the result is q = hQQ′/s2.

There are integers t, u, and v such that tQ+uQ′+v(P +P ′) = s. First, consider divisability
by s. This is trivial for every term except N + PP ′. By the definition of s,

P + P ′ ≡ 0 (mod s)
P ′ ≡ −P (mod s)
PP ′ ≡ −P 2 (mod s)

N + PP ′ ≡ N − P 2 (mod s)

and since s | Q and Q | (N − P 2), s | N + PP ′.
The linear combination of the last three elements with coefficients t, u, and v respectively is:

s
√
N + tQP ′ + uQ′P + v(N + PP ′)

so that it is evident that after s is factored out, the remaining ideal is primitive. Since this is
the element of I ∗ J with the smallest coefficient of

√
N , clearly p = t(Q/s)P ′ + u(Q′/s)P +

v(N + PP ′)/s, modulo L(I ∗ J). Then,

p = t(Q/s)P ′ + (s− tQ− v(P + P ′))P/s+ v(N + PP ′)/s
≡ P + v(N − P 2)/s (mod Q/s)

≡ P (mod Q/s)

since Q | (N − P 2). By symmetric arguments, p ≡ P ′ (mod Q′/s).
To prove (24), consider:

(P + P ′)sp = (P + P ′)(tQP ′ + uQ′P + v(N + PP ′)
= (P + P ′)(tQP ′ + uQ′P ) + (P + P ′)(N + PP ′)v

= (P + P ′)(tQP ′ + uQ′P ) + (s− tQ− uQ′)(N + PP ′)
= s(N + PP ′) + tQ((P ′)2 −D) + uQ′(P 2 −N)

≡ s(N + PP ′) (mod QQ′)

Therefore, (P + P ′)p ≡ N + PP ′ (mod QQ′/s). QED
Observe that when h = 1 (21) could be restated as

L(I ∗ J) = L(I)L(J)/s2 (26)

remembering that L(I) is defined as the smallest positive rational integer in I. This equation is
proven in [20] and will be useful later.

Also observe that for h = 1, the equations describing the product of two ideals correspond
exactly to the composition of two quadratic forms. Shanks notes this in [17]. Therefore, the
equations concerning distance and multiplication of ideals will correspond to distance and com-
position of quadratic forms.

The case when h = 2 connects composition of quadratic forms of discriminant ≡ 1 (mod 4)
to multiplication of ideals. If F and G are two quadratic forms with discriminant N ≡ 1
(mod 4), then 2F and 2G have discriminat 4N and correspond to ideals I2F and I2G in Z[

√
N ].

Multiplying, h = 2 and I2F ∗ I2G = I2(F∗G). Therefore, although this case will not be considered

further, it is readily seen that the distance formulas derived from ideals in Z[
√
N ] will still

correspond to composition of quadratic forms of discriminant ≡ 1 (mod 4).
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5 Lattices

Consider lattices in Q(
√
N)×Q(

√
N). Define L as the set of all lattices in Q(

√
N)×Q(

√
N).

Define the map M : Q(
√
N)→ Q(

√
N)×Q(

√
N) by

M(ξ) = 〈ξ, ξ〉
Multiplication in Q(

√
N)×Q(

√
N) is defined componentwise, that is, 〈ξ, ξ′〉 · 〈ζ, ζ ′〉 = 〈ξζ, ξ′ζ ′〉,

so that it is clear that M is homomorphic and one-to-one.
Distance will relate to a concept called a minimum:

Definition 5 For a vector v = 〈v1, v2, ...vd〉, the normed body of v, R(v) is the set

R(v) = {〈x1, x2, ...xd〉 : xi ∈ R, |xi| < |vi|, i = 1, 2, ...d}
Abusing notation, denote R(ξ) = R(〈ξ, ξ〉).

A number ξ (or actually the corresponding vector) is a minimum of L if R(ξ) ∩ L = {0},
where 0 is the vector 〈0, 0〉.

A lattice L is reduced if 1 ∈ L and 1 is a minimum.

For this case with d = 2, the normed body is a rectangle in R2. Note that for ξ ∈ Q(
√
N)

the normed body R(ξ) has area equal to four times the absolute value of the norm |N (ξ)|.
To avoid unnecessary generality, this investigation will focus specifically on the lattices cor-

responding to ideals. Specifically, for the primitive ideal I = [Q,
√
N +P ], define the associated

lattice containing 1 in Q(
√
N) as LI = [1, (

√
N + P )/Q].

Conversely, to each lattice containing 1 in Q(
√
N) there is an associated primitive lattice

(which may or may not be an ideal) in Z[
√
N ]. Equation (17) defined the function L. In a

similar fashion, for a lattice L, define

L(L) = min{n ∈ Z+ : nL ⊂ Z[
√
N ]} (27)

Then if L(L)L is an ideal of Z[
√
N ] it is the primitive ideal associated to a lattice L. Note that

if an ideal I is associated to a lattice LI , then L(I) = L(LI). Define

ΦI,L([Q,
√
N + P ]) = [1, (

√
N + P )/Q]

and
ΦL,I(L) = L(L)L

Note that for some lattices L, ΦL,I(L) may not actually be an ideal. Lemma 9 provides conditions
for it to be an ideal sufficient for this analysis:

Lemma 9 Let I be a primitive ideal and let L = ΦI,L(I). If L′ is a lattice with basis {1, ξ} and
for some θ, θL′ = L, then J = ΦL,I(L) is a primitive ideal and

(L(I)θ)J = (L(J))I

Proof: Let I = [Q,
√
N + P ]. Then L = [1, (

√
N + P )/Q]. The statement that θL′ = L

requires that

θ

[
1
ξ

]
= T

[
1

(
√
N + P )/Q

]
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where T is a 2 × 2 matrix with determinant ±1. Multiplying by L(I) = L(L) = Q and
L(J) = L(L′):

Qθ

[
L(L′)
L(L′)ξ

]
= L(L′)T

[
Q

(
√
N + P )

]

so that (L(I)θ)J = (L(J))I. Therefore, J is an ideal. It is primitive by the definition of ΦL,I.
QED

For an example of minima, consider the lattice [1,
√

159− 12]. R(1) is a square with sides of
length 2 centered at the origin and a simple graph demonstrates that 0 is the only point in the
lattice and contained in this square. Therefore 1 is a minimum.

√
159− 12 is also a minimum.

R(
√

159 + 12) is a narrower and taller rectangle also centered at the origin.
Given two minima, it is important to be able to determine whether or not there is another

minimum between them. In vector format, if 〈x1, y1〉 and 〈x2, y2〉 are minima with |x1| > |x2|
and |y1| < |y2|, these two minima are adjacent if there does not exist another minima 〈x3, y3〉
such that |x2| < |x3| < |x1| and |y1| < |y3| < |y2|.

Voronoi developed a method (and a theorem) concerning adjacent minima ([3], [20]).

Theorem 9 Let L be a lattice with {ξ, ζ} as a basis, where ξ, ζ ∈ Q(
√
N) and suppose that

ζ > ξ > 0. Then ζ and ξ are adjacent minima of L if and only if |ξ| > |ζ| and ζξ < 0.

Proof: Assume ξ and ζ are adjacent minima. Since they are both minima, |ξ| > |ζ|, or
else ζ would not be a minima. Also 0 < ζ − ξ < ζ. Since ζ is a minima, this requires that
|ζ − ξ| > |ζ|. If ζ and ξ had the same sign, this would not be possible. Therefore, ζξ < 0.

Conversely, assume that |ξ| > |ζ| and ζξ < 0. Assume that ξ is not a minimum of L. Then
there exists some ω ∈ Q(

√
N) such that |ω| < ξ and |ω| < |ξ|. Since ω = aξ + bζ for some

a, b ∈ Z, |aξ + bζ| < ξ and |aξ + bζ| < |ξ|. If ab = 0, then either a = 0 or b = 0. If a = 0,
then the second statement contradicts the hypothesis. If b = 0, then the first statement gives
ξ < ξ, clearly false. However, if ab > 0 then |aξ + bζ| > ξ and if ab < 0, then since ζξ < 0,
|aξ + bζ| > |ξ|. Therefore, ξ must be a minima. By similar reasoning, ζ must be a minima.

Concerning adjacency, assume that there is another minima ω between ξ and ζ. Since
ω = aξ + bζ for some a, b ∈ Z, ξ < |aξ + bζ| < ζ and |ζ| < |aξ + bζ| < |ξ|. Since ζ > ξ > 0, the
first statement requires that b = 0 and then the second statement simplifies to |a| < 1, requiring
that a = 0 and providing a contradiction. Therefore, ξ and ζ are adjacent minima. QED

From the previous example, it is now possible to check that ξ = 1 and ζ =
√

159 + 12 are
indeed adjacent minima.

The idea that will actually connect to continued fractions (and distance) is the search for
a sequence of adjacent minima. This sequence is formed by relating different lattices. The
following Lemmas are due to Williams [20].

Lemma 10 Let L and L′ be reduced lattices. If ξL′ = L, then ξ is a minimum of L.

Proof: Since 1 ∈ L′, ξ ∈ L. If ξ is not a minimum of L, then there exists a ζ ∈ L suh
that ζ 6= 0 and |ζ| < |ξ| and |ζ| < |ξ|. Let β = ζ/ξ, so that β ∈ L′. |β| = |ζ/ξ| < 1 and
|β| = |ζ/ξ| < 1, contradicting the fact that L′ is reduced. Therefore, ξ is a minimum of L.
QED

Now consider the converse of this statement. Note that bxc denotes the floor of x.

Lemma 11 Let L = [1, ξ], where 1 and ξ are adjacent minima of L with 1 > ξ > 0. Let
L′ = (1/ξ)L. Then L′ is a reduced lattice.
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Proof: L′ = (1/ξ)[1, ξ] = [1/ξ, 1] = [1/ξ − b1/ξc, 1], so that 1 ∈ L′. It is sufficient to
show that 1 and ξ′ = 1/ξ − b1/ξc are adjacent minima. First, 1 and ξ′ are a basis for L′ and
1 > ξ′ > 0. Since 0 < ξ < 1, b1/ξc > 1. Since ξ < 0, ξ′ = 1/ξ − b1/ξc < 0− 1 = −1. Thereby

satisfying both the requirement that ξ
′ · 1 < 0 and the requirement that |ξ′| > 1. Therefore, by

Theorem 9, 1 and ξ′ are adjacent minima of L′ and thus L′ is a reduced lattice. QED
Actually, these proofs provide a bit more by actually finding the minimum adjacent to 1 in

the new lattice. The next Lemma makes use of this minimum [20]:

Lemma 12 Let L, L′, ξ, and ξ′ be as above. Let ζ be the minimum adjacent to ξ other than 1
in L. Then ζ = ξξ′.

Proof: ξξ′ = ξ(1/ξ − b1/ξc) = 1− ξb1/ξc, so that [ξ, ξξ′] is a basis for L. Since 1 > ξ′ > 0,

ξ > ξξ′ > 0. Since |ξ′| > 1, |ξξ′| > |ξ|. Since ξ
′
< 0, ξ · ξξ′ = (ξ)2ξ′ < 0. Therefore, by Theorem

9, ξ and ξξ′ are adjacent minima. Since ξξ′ 6= 1, ζ = ξξ′. QED
Observe that by a similar process, one could find a reduced lattice L′′ = 1/ξ′L′, etc. Then

L′′ = 1/(ξξ′)L. To generalize, define ξ = ξ1 and L = L1 and this is a sequence of reduced
lattices and their minima, A chain of adjacent minima of L1 may be defined by

θn =
n−1∏
i=1

ξi (28)

and then

θnLn = L1 (29)

Since each Ln is a reduced lattice, by Lemma 10 each θn is a minimum of L1.
Although it is not true in higher dimensions, it is fairly trivial in 2-d that this chain of

adjacent minima provides a complete (although infinite) list of the minima with x-coordinate
between 0 and 1.

Lemma 13 Let 〈φ, φ〉 be a minimum of a lattice L, with 0 < φ < 1. Then for some n, φ = θn,
where θn is defined by equation (28)

Define distance in terms of this chain of minima by

DL(Ln,Lm) = log(θn/θm) (30)

It will become readily apparent that the subscript L is unnecessary, but it provides clarity
for now. Before continuing it is appropriate to provide an example of these concepts. First,
as a reference, consider the steps for the continued fraction expansion of

√
159 − 12 and the

quadratic form distances DF covered to the end of each step:

x1 = 1√
159−12

=
√

159+12
15

= 1 +
√

159−3
15

, DF(F0, F1) = log(
√

159+12
15

)

x2 = 15√
159−3

=
√

159+3
10

= 1 +
√

159−7
10

, DF(F0, F2) = log(
√

159+13
10

)

x3 = 10√
159−7

=
√

159+7
11

= 1 +
√

159−4
11

, DF(F0, F3) = log(2
√

159+25
11

)

x4 = 11√
159−4

=
√

159+4
13

= 1 +
√

159−9
13

, DF(F0, F4) = log(3
√

159+38
13

)

x5 = 13√
159−9

=
√

159+9
6

= 3 +
√

159−9
6

, DF(F0, F5) = log(5
√

159+63
6

).
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The continued fraction corresponds to quadratic forms which correspond to ideals, which
are associated with lattices that contain 1. In this case, the lattice associated with x1 is L1 =
[1, 1/x1] = [1,

√
159− 12] and 1/x1 is a minimum adjacent to 1 in L1. From here:

L2 = 1√
159−12

L1 = [ 1√
159−12

, 1] = [
√

159+12
15

, 1] = [1,
√

159−3
15

] = [1, 1/x2]

L3 = 15√
159−3

L2 = [ 15√
159−3

, 1] = [
√

159+3
10

, 1] = [1,
√

159−7
10

] = [1, 1/x3]

...

and it is apparent that this same pattern of correspondance will continue, that is

ΦT,L(xn) = ΦT,I(ΦI,L(xn)) = [1, 1/xn] = Ln (31)

from which it is also apparent that the sequences of lattices will be periodic.
Computing equation (28), for example, θ3 = (

√
159−12)(

√
159−3
15

) = 13−√159. With θ1 = 1,

D(L1,L3) = log(1/(13−
√

159)) = log((
√

159 + 13)/10)

It is readily apparent that the definition of distances in lattices corresponds to the definition
given for quadratic forms. Note that these distances must still be considered modulo R, the
regulator, since the sequence of lattices is still cyclic.

6 The Generalized Distance Formula

Going back to ideals, note that if I1 = L(L1)L1 and In = L(Ln)Ln is another ideal corresponding
to a lattice later in the same sequence, then

θnLn = L1

L(L1)L(Ln)θnLn = L(L1)L(Ln)L1

(L(L1)θn)In = (L(Ln)I1 (32)

where once again, the distance (this time between ideals) is given by D(I1, In) = − log(θn). Now,
this definition of distance is well and good for reduced ideals, but as of yet, it hasn’t been applied
it to non-reduced ideals. To relate the definitions of reduced lattices and continued fractions
observe that the definition of a reduced continued fraction implies that for a term xi =

√
N+Pi−1

Qi
,

being reduced equates to

√
N + Pi−1

Qi

> 1

0 <

√
N − Pi−1

Qi

< 1

so that it is clear that if Lx = [1, 1/x], then 1 and x are adjacent minima and the lattice is
reduced. The process of dealing with a non-reduced lattice correlates to the process of reducing
a continued fraction as demonstrated in the proof of Lemma 5. See [20] for a more general
Lemma.

Lemma 14 Let I be any primitive ideal in Z[
√
N ]. There exists a reduced ideal In and a θn ∈ I

such that

25



(L(I)θn)In = (L(In))I (33)

Proof:
Let I = [Q,

√
N +P ]. Then the associated lattice is LI = [1,

√
N+P
Q

] = [1, ξ1]. If I is reduced,

In = I, u = L(I), and the proof is done. If I is not reduced, then LI is not reduced. Without
loss of generality, assume that 0 < ξ1 < 1 (since otherwise it would just have to be reduced by an
integer.). Let L2 = 1/ξ1LI = [1/ξ, 1] = [1, 1/ξ − b1/ξ − 1/2c]. Then ξ1L2 = LI . Continuing in
similar manner11, by Lemma 5 and the correspondance between lattices and continued fractions
for some n,ξn reduced, and thus Ln reduced. As in (28), set

θn =
n−1∏
i=1

ξi

so that

θnLn = LI

Then (L(I)θn)In = (L(In)I. QED
Let I1, J1 be reduced primitive ideals. Let K1 be the primitive ideal found by multiplying

I1 and J1 and removing a factor and let s be the factor removed, so that (s)K1 = I1J1, s ∈ Z.
By Lemma 14 there exists a reduced ideal Kj and a λj ∈ K1 such that

(L(K1)λj)Kj = (L(Kj))K1 (34)

corresponding toD(K1, Kj) = − log(λj).
Let In ∼ I1 and Jm ∼ J1 and let H1 be the primitive ideal found by multiplying In and Jm

and removing a factor and let t be the factor removed, so that (t)H1 = InJm, t ∈ Z. By Lemma
14 there exists a reduced ideal Hk and a ηk ∈ K1 such that

(L(H1)ηk)Hk = (L(Hk))H1 (35)

corresponding to D(H1, Hk) = − log(ηk).
Also, there exist minima µn and φm in the lattices corresponding to I1 and J1, respectively,

such that

(L(I1)µn)In = (L(In))I1 (36)

and

(L(J1)φm)Jm = (L(Jm))J1 (37)

corresponding to D(I1, In) = − log(µn) and D(J1, Jm) = − log(φm).
By combining (26) and (34)-(37):

11Note that it is irrelevent whether or not the second components of the intermediate lattices are either minima
or adjacent to 1. Also note that, as in Lemma 5, the formula would change slightly when the denominators get
small.
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(L(Hk))Kj =
(

L(Hk)L(Kj)

L(K1)λj

)
K1

=
(

L(Hk)L(Kj)

L(K1)λjs

)
I1J1

=
(

L(Hk)L(Kj)L(I1)L(J1)µnφm

L(K1)λjsL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφm

λjL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφmt

λjL(In)L(Jm)

)
H1

=
(

L(Hk)L(Kj)sµnφm

λjtL(H1)

)
H1

=
(

L(Kj)sµnφmηk

λjt

)
Hk

Set

ψ =
sµnφmηk

tλj

and then

(L(Kj)ψ)Hk = (L(Hk))Kj (38)

Since Kj and Hk are reduced, by Lemma 10 ψ is a minimum of the lattice LKj
, so that for

some n, ψ = θn. Therefore,

D(Kj, Hk) = − log(ψ) = − log(µn)− log(φm)− log(ηk) + log(λj)− log(s/t)
= D(I1, In) +D(J1, Jm) + ζ

where ζ = D(H1, Hj) − D(K1, Kj) + log(t/s) will be small compared to D(Kj, Hk) for m,n
large.

By the correspondance between multiplication of ideals and composition of quadratic forms,
this result may be restated in terms of forms:

Theorem 10 If F1 ∼ Fn are equivalent forms and G1 ∼ Gm are equivalent forms and Dρ,1 is
the reduction distance for F1 ∗G1 and Dρ,2 is the reduction distance for Fn ∗Gm and s and t are
the factors cancelled in each respective composition, then

D(F1 ∗G1, Fn ∗Gm) = D(F1, Fn) +D(G1, Gn) + ζ

where ζ = Dρ,2 −Dρ,1 + log(t/s).

Example 5 from the Morrison-Brillhart algorithm is in the principal cycle. By Theorem 10
when a form F is composed with itself, the distance from 1 to F is roughly doublied, d(1, F 2) =
2d(1, F ) + ζ. Therefore, the index is roughly doubled, since distance is roughly proportional to
the difference in indices, so that F3 ∗ F3 = F6, and Q6 = 9 is the square of Q3 = 3.

Since the square of any symmetry point has first coefficient 1, observe that if the distance
around some cycle were unrelated to the distance around the principal cycle, then this result
would be affected by which symmetry point this distance was referenced from. From Definition
3 R = D(F0, Fπ) in the principal cycle. At this point, it is clear that the distance in other cycles
must be the same.

Lemma 15 Let A be a primitive amibiguous cycle with a period π. Then,
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R = D(F0, Fπ)

Proof: Let {Fi} have period π and let F0 and Fπ/2 be the two symmetry points of A.
Then F0 ∗ F0 = 1 = Fπ/2 ∗ Fπ/2, with Dρ,1 = Dρ,2 = 0, s and t the respective first coefficients.
Therefore,

0 = D(F0 ∗ F0, Fπ/2 ∗ Fπ/2) = 2D(F0, Fπ/2) + log(t/s) = D(F0, Fπ)

where the 3rd step is obtained from the 2nd by the fact that the product in D(F0, Fπ/2) includes
the last denominator t and not the first denominator s.

Therefore, D(F0, Fπ) = nR. Considering composition of F0 with forms in the principal cycle,
clearly D(F0, Fπ) ≤ R, so that D(F0, Fπ) = R. QED

7 Square Forms Factorization (SQUFOF)

It’s not certain how much Shanks may have rigorously proven concerning distances, but based on
the understanding he had of distance and infrastructure, he was able to develop Square Forms
Factorization. A short example will demonstrate and explain the algorithm: let N = 3193.
Expanding the continued fraction (principal cycle), Q10 = 49. The quadratic form for this is
F = 49x2 + 58xy − 48y2. Since 49 is a perfect square, 7x2 + 58xy − 336y2, which reduces with
Dρ = 0 to G = 7x2 + 100xy − 99y2 is a quadratic form whose square is F . Therefore, by
Theorem 7, G is in a class of order 2 or 1, so that G is an ambiguous form, so that there are
two points of symmetry in its cycle. Since by Theorem 10, 2D(Gs, G) = D(1, F ) (mod R). So
D(Gs, G) = D(1, F )/2 (mod R/2). Since the two points of symmetry are R/2 away from each
other, this means that there is a symmetry point at distance D(1, F )/2 behind G. Therefore, a
point of symmetry may be found by reversing G and traveling this short distance. Now if the
coefficient at this symmetry point is ±1, then there would have been a 7 somewhere before F
in the continued fraction expansion. If the coefficient is 2, then this symmetry point could be
composed with G to find 14 at an earlier point in the principle cycle. Therefore, the symmetry
point provides a nontrivial factor for N . In this case, after 6 steps it provides 31 as a factor of
3193.

The second phase of this algorithm can be made significantly (at least for larger numbers)
faster if the quadratic forms from the continued fraction expansion with indices that are powers
of 2 are saved. In this example, F = F10, so that G is about the 5th form in its cycle12. The
composition of G−1 with F4 and F1 is close and a simultaneous search in both direction from
there quickly finds the symmetry point. In this case, it is only necessary to store log2 k forms
for k steps, so that it is more efficient to check each square to see if it works than to check each
square root against the previous pseudo-squares to predict whether it will work.

Formally, here is the algorithm for factoring N :

12Roughly, since in this case 5 ≈ 6.
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Q0 ← 1, P0 ← b
√
Nc, Q1 ← N − P 2

0

r ← b√Nc
while Qi 6= perfect square for some i even

bi ←
⌊

r+Pi−1

Qi

⌋

Pi ← biQi − Pi−1

Qi+1 ← Qi−1 + bi(Pi−1 − Pi)
if i = 2n for some n

Store (Qi, 2 · Pi) F0 = (
√
Qi, 2 · Pi−1,

P 2
i−1−N

Qi
)

Compose F0 with stored forms according to the
binary representation of i/2 and store result to F0.
F0 = (A,B,C)
Q0 ← |A|, P0 ← B/2, Q1 ← |C|
q0 ← Q1, p0 ← P0, q1 ← Q0

while Pi 6= Pi−1 and pi 6= pi−1

Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)
If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .
If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

In [18], Shanks states that for N having k + 1 distinct prime factors, the average distance
between two square quadratic forms that provide a factorization of N is

∆n = ln(8)
2 +
√

2

4

4
√
N

2k − 1
.

Since finding a square form is the slowest portion of the algorithm, this quickly would have
proven that SQUFOF is an O( 4

√
N) algorithm. Unfortunately, Shanks did not provide a proof

for this statement. Lacking this, a proof of the runtime for SQUFOF has not been found, but
the runtime may be estimated fairly well [1]. Since for a reduced form with first coefficient a,
0 < a < 2

√
N , there are O(

√
N) integers that could potentially be the first coefficient of a

quadratic form (where the constant is affected primarily by the number of factors of N). In
order for a square of a form to be reduced, its first coefficient must be less than

√
2N1/4, so that

there are O(N1/4) of these. At worst case, N has only 1 ambiguous cycle other than the principal
cycle, so that only roughly half of these square forms are in the non-principal ambiguous cycle,
but this only introduces a constant to the calculations. Assuming even distribution, these two
estimates may be divided to estimate the number of forms between each square form, to get
O(
√
N/N1/4) = O(N1/4). Compared to finding a square form, the other parts of the algorithm

are negligibly fast, so that the expected runtime is O(N1/4).
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