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Abstract

This paper explores the issues involved in designing and developing network software
architectures for large scale virtual environments. We present our ideas in the context
of NPSNET-1V, the first 3D virtual environment that incorporates both the IEEE 1278
Distributed Interactive Simulation (DIS) application protocol and the IP Multicast
network protocol for multi-player simulation over the Internet.
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[. Introduction

The construction of large scale virtual environments has been a long-stated goal of virtual
environment (VE) proponents and now is a major objective of both commercial and government
organizations. We define large scale environments as those that support more than a 1000
concurrent dynamic entities or players. However, there exists major technical challenges which
will require new network software architectures for distributed VEs. This paper examines these
issues and presents the efforts by the NPSNET Research Group to develop such an architecture.
We have developed the first 3D virtual environment suitable for multi-player participation over the
Internet that uses IP multicast network protocols and the IEEE 1278 Distributed Interactive
Simulation (DIS) application protocol [Deer89][IEEE93]. Though many factors have influenced

our design this paper concentrates on the networking aspects of our distributed environment,
NPSNET.



A. Motivation

The motivation for our effort is to expand the capabilities of simulations and virtual
environments to serve medium to large numbers (more than 1,000) of simultaneous users. In fact,
this has been a core but as yet unrealized idea of virtual reality. As Jaron Lanier recently wrote:

Virtual reality (VR) was intended to emphasize the social nature of shared (networked)
virtual environments, and to emphasize that one’s own body was in the world as well as
in the external environmefitanier94.

Moreover, interest by the government, military, and telecommunications industry in
distributed virtual environments has been rapidly growing. For example, the US Army has plans
for the Louisiana Maneuvers (LAM) initiative later in this decade which envisions 10,000 to
100,000 autonomous and human players participating in a simulation over a global wide-area
network [USA93]. In a military context, a virtual environment of this magnitude enables a sense
of collocation - sharing the same virtual battle space - among many geographically dispersed
players such as an aviation unit in Texas flying in support of an armored cavalry squadron in
Georgia. The Federal Aviation Administration is also interested in large scale virtual environments
in order to train the complete system of air controllers, aviators, and equipment. Boeing is building
a large scale virtual environment for its B777 airliner, the first modern aircraft built without a
mock-up, to speed the process of concurrent engineering. Though Boeing’s effort is on a massive
scale with respect to the complexity and size of the data involved, the number of concurrent users
may be equally immense when considering the huge number of engineering and subcontractor
teams involved. AT&T, Sega and other companies have already publicly expressed their desire to
construct distributed virtual environments for entertainment applications.

B. Challenges

The question we now have to answer is: how to do we build large scale environments?

The good news for those interested in developing distributed virtual environment is that
advances in computer architectures and graphics, as well as standards such as the DIS and
SIMNET (Simulator Networking) protocols have made small scale (less than 300 players) realistic
simulations possible [Miller89].

The bad news is that, until recently, the network software components of virtual environments
has often been overshadowed by issues such as human interface design or graphics realism. This
has led to the fact that there currently are not any good solutions to this hard networking problem.
In a hypothetical example, in schemes such as SIMNET, 100,000 players could require 375 Mbit
per second (Mbps) of network bandwidth to each computer participating in the simulation, an
unrealistic requirement for an affordable system in this decade [Lora92].

Even commercial systems are finding the limits to current technology in creating networked
environments for large numbers of users. American Online (AOL) provides low-bandwidth
multiuser games, messaging, and chat services for over 600,000 subscribers, yet has been forced
to block new users because customer network demand has overwhelmed AOL’s host computer. As
one observer put it - “America Online’s problems are not trivial” [Merc94]. AOL will likely delay
introduction of new services to dampen growth - not a good sign for proponents of the information
superhighway.



Another key challenge is that the appropriate systems involving human operators must deliver
packets with minimal latency (less than 100 ms) and generate textured 3D graphics at 30-60 Hz to
guarantee the illusion of reality [WIoka94].0n top of this is the need to provide real-time audio,
video, and imagery services for the simulation of player communication services.

The result is that we need to address the “technology formula” for scalability, as James Chung
has referred to in a study of enabling technologies for large scale distributed simulation [Chun92].
The formula involves the host processor processing and bandwidth, local area network speeds, and
wide area network switching and bandwidth. In addition, our own experience and research with
previous versions of NPSNET has also caused us to conclude that the development of a software
architecture for a real-time distributed environment requires a multifaceted approach to tackle
these issues while adding an additional goal: reducing the per-person cost of the simulation
[Pratt93].

C. Software Testbed for Solutions

The NPSNET-IV networked virtual environment, developed at the Computer Science
Department of the Naval Postgraduate School (NPS) in Monterey, California [Zyda94] is our
primary experimental testbed in this effort. Furthermore, we have been exploring new technologies
such as multicast networks, constructing methods for substantially reducing bandwidth
requirements with distributed simulation protocols, and designing our software to exploit parallel
computing architectures.

The NPSNET Research Group has devoted itself to exploring several functional areas of
interactive simulation including:

-- application and network level communication protocols.

-- object-oriented techniques for virtual environment construction.

-- hardware and operating system optimization.

-- real-time physically-based modeling (e.g. smoke, dynamic terrain, and weather).
-- multimedia (audio, video and imagery).

-- artificial intelligence for autonomous agents or entities.

-- integrating robots into virtual worlds.

-- human interface design (stereo vision, system controls).

NPSNET-IV is unique in distributed simulation because it incorporates all of the following in
an operational visual simulator to study the above areas:

1) Distributed Interactive Simulation (DIS 2.03) protocol for application level
communication among independently developed simulators (e.g. legacy aircraft simulators,
constructive models, and real field instrumented vehicles).

2) IP Multicast, the Internet standard for network group communication, to support large
scale distributed simulation over internetworks.

3) Heterogeneous parallelismfor system level pipelines (e.g. draw, cull, application, and
network) and for the development of a high performance network software interface.

ll. Taxonomy

Before continuing discussion of our approach we need to develop our perspective for
distributed virtual environments. Virtual environments mimic many aspects of operating systems.



For example, the system developed by the Human Interface Technology Laboratory, Virtual
Environment Operating Shell (VEOS), provides much of the functionality of a distributed
operating system in way of programming language services [Kalaws93][Brick93].

However, we are still primarily concerned with a single application and not a general purpose
computing environment. Therefore, the most important questions about virtual environment
software architectures we address here are:

What is distributed?

What are the modalities of the distribution?

Why is it distributed?

A. Communication

Several aspects of communication are largely responsible for answering the questions above.
First, the available network bandwidth determines the size and richness of a virtual environment
because as the number of participants increases so do the bandwidth requirements. On local area
networks (LANS), this is not a major issue because technologies such as Ethernet (10 Mbps) are
relatively inexpensive and the number of users is often limited. In contrast, wide area networks
(WANSs), bandwidth is generally limited to T1 (1.5 Mbps) but the potential user base is much
larger. Some distribution schemes scale better than others. We explore this issue later when
discussing multicast and internetworking.

Second, latency controls the interactive and dynamic nature of the virtual environment -- how
well the players mesh in behavior. If a distributed environment is to emulate the real world, it must
operate in real-time in terms of human perception. This becomes a major challenge in systems that
use wide area networks because of delays induced by long paths, switches and routers.

Finally, communications reliability often forces a compromise between bandwidth and
latency. Reliability means that systems can logically assume that data sent is always received
correctly and thus obviating the need to periodically re-send the information. Unfortunately, to
guarantee delivery, the underlying network architecture must use acknowledgment and error
recovery schemes that can introduce large amounts of delay - a common case on WANs and with
large distributed systems. Additionally, some transport protocols such as TCP use congestion
control mechanisms that are unsuitable for real-time traffic because they throttle back the packet
rate if congestion is detected.

B. Views

Views are the windows into the virtual environment from the perspective of the people or
processes who use it. We define two kinds of useful views for distributed environments. The first
one is the synchronous view. An example of this is in a distributed flight simulator where one
machine controls the forward image, and two other hosts each process the left and right cockpit
window perspectives. The images are coordinated to give the illusion that they are all part of single
cockpit view. Synchronism requires both high reliability and low latency. Therefore, virtual
environments that require synchronous views are for practical reasons restricted to local area
networks. An example of such an environment is the RAVEN simulator developed by Southwest
Research Institute for NASA synchronizes shuttle astronaut viewpoints which are rendered on
different machines to improve rendering performance. [Cater94]

The second and most general concept is the asynchronous view. In this paradigm, multiple
users have individual control over when and what they can see in the virtual environment



concurrently. Participants can be physically separated over a local area network or a wide area
network. Their awareness of each other’s presence, if they are represented by an object, is brought
aboutinsidethe virtual environment. NPSNET uses the asynchronous model where each view is
typically that of the simulated entity. Views not associated with an entity are often referred to as
“magic carpets” or “stealth” vehicles. Stealth entities do not need to communicate with the
distributed world because there is no need for the world to have knowledge of the viewer.

C. Data

Perhaps the most difficult decision of building a distributed environment is determining
where to put the data. One way is to initialize the state of every system participating in the
distributed environment with a homogeneous world database containing information about the
terrain, models, and behavior of all that is represented in the virtual environment. Communicated
among all the users of the environment are object state changes such as vehicle location or events
such as the detonation of a simulated missile or collisions between two objects. The advantage of
this approach is that messages are relatively small. The disadvantages are that it is relatively
inflexible and that as virtual environment content increases so must everyone’s database. This is
the model for SIMNET, a distributed military simulation system for use on Ethernet LANs
developed by BBN for ARPA. However, once a simulation begins, each host maintains its own
database without making any effort at guaranteeing consistency [Pope89].

On the other hand, the Virtual Space Teleconferencing System (VISTEL) uses a shared
world database. As its name implies, VISTEL is a teleconferencing system that displays 3D models
of each conference participant. Changes in a model’s shape, reflecting changes in a person’s facial
expression, are sent via messages to a central server and redistributed. Only one user at a time can
modify the database [Ohya93].

The Swedish Institute of Computer Science’s Distributed Interactive Virtual Environment
(DIVE) also has a homogeneous distributed database. However, unlike SIMNET the entire
database is dynamic and uses reliable multicast protocols to actively replicate new objects. A
disadvantage with this approach is that it is difficult to scale up because of the communications
costs associated with maintaining reliability and consistent data. For example, modeling terrain
interactions, such as building a berm, still would be very expensive (though highly desirable) in
terms of the number of polygons that would need to be created, changed, and communicated in
DIVE [Carls93].

Another technique is to use the client-server model in which the database is partitioned
among clients and communication is mediated by a central server. For example, in BrickNet, as an
entity moves through the virtual environment, its database is updated by an object-request broker
on a server that has knowledge of which client maintains that part of the world [Singh94]. BrickNet
maybe most appropriate for large CAD environments because it attempts to tackle the walkthrough
problem of a virtual environment that has huge numbers of component models and provides
multiple views simultaneously to a group of users. However, in a dynamic large scale world, the
servers can quickly become I/O bottlenecks (ala AOL), increasing the inherent latency of the
virtual environment. The developers of BrickNet have suggested some possible solutions including
providing multiple distributed servers.



D. Processes

Distributing processes to multiple hosts increases the aggregate computing power associated
with a simulation. We can use this not only to provide the capability to distribute views but also
handle a variety of input devices. SIMNET and its descendants, such as DIS-compliant systems,
also make use of the aggregate computing power by taking advantage of a technique called dead-
reckoning, discussed in detail later, to reduce the need for network communication.

Processes can be homogeneous or heterogeneous. With the exception of the DIS model
practically all distributed environments assume that the same kind of processes are running on each
host that has the same function (architectures may differ). The advantage of this approach is
consistency. The disadvantage is that it is very inflexible. DIS is a protocol designed so that
different developers can create different simulations on different machines that theoretically can
share in the same virtual environment. The problem with this is that no protocol is complete and
DIS is not an exception. This topic will be more fully discussed in later sections of the paper.

[ll. NPSNET-IV

NPSNET has evolved significantly since its early origins as a distributed environment.
Previous incarnations of NPSNET (I and Il) used a locally designed network scheme that required
Ethernet as the local area network protocol and incorporated an ASCII-encoded application level
protocol to convey the simulation state. The packet, or (in ISO terminology), application protocol
data unit (PDU) lengths were disproportionately long for the amount of information they contained
and they did not comply with any particular standard. Moreover, the application protocol did not
use any internetworking protocol, therefore it restricted use of NPSNET to the local LAN segment
and a single network technology (Ethernet).

Another early developmental effort of NPSNET was the NPSStealth. NPSStealth was a
version of NPSNET that integrated a translator for the BBN developed SIMNET protocol for
interaction over local and long-haul networks. The inclusion of the SIMNET protocol enabled
NPSStealth to participate in distributed simulations with other simulators that used the SIMNET
protocol.

These efforts provided our group with a substantial amount of experience in designing a
distributed virtual environment. However, these early versions were not intended for large scale
simulations. In order to develop such a system, we needed to adopt the IEEE 1278 DIS protocol
for interoperability with other simulators and create a scaleable software and network architecture
[[EEE93].
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Figure 1. Evolution of NPSNET Networking.

NPSNET-IV can be configured by the user as a simulator for an air, ground, nautical (surface
or submersible) or virtual vehicle or human. (A virtual vehicle is a non-invasive entity that
maneuvers in the simulated world but is not represented by a model - a stealth vehicle.) The user
controls the vehicle by selecting one of three interface devices which include a flight control
system (throttle and stick), a six degree of freedom SpaceBall, and/or a keyboard. The system
models vehicle movement on the surface of the earth (land or sea), below the surface of the sea,
and in the atmosphere. Other vehicles in the simulation are controlled by users on other
workstations. These users can either be human participants, rule-based autonomous entities, or
entities with scripted behavior.

The system is automatically configured for distributed network operations at start-up. In this
mode, the operator interacts with other human participants who are “piloting” other vehicles. The



virtual environment is populated with vehicles operated by players at NPS and other participants
from around the country; and a variety of static and dynamic objects which exhibit numerous visual
and multimedia behaviors including sound. For example, flying by a farm evokes a chorus of
animal noises.

V. DIS PROTOCOL

Large scale virtual environments will likely be composed of many different and unique
hardware and software platforms developed independently. The DIS protocol, which replaced the
SIMNET protocol in NPSNET, has the distinct advantage that it attempts to provide a basis for
which to tie those systems together. DIS is a group of standards being developed by the Department
of Defense and industry that address communications architecture, format and content of data,
entity information and interaction, simulation management, performance measures, radio
communications, emissions, field instrumentation, security, database formats, fidelity, exercise
control and feedback. A second purpose is to provide specifications to be used by government
agencies and engineers that build simulation systems. The effort is also meant to define the
terminology of DIS [IST93a]

A. Protocol Data Units

Simulation state and event information is conveyed by twenty-seven PDUs defined by the
IEEE 1278 DIS standard, but only four of these are for entity interaction. The remainder of the
PDUs are for transmitting information on supporting actions, electronic emanations, and for
simulation control [IST93].

The Entity State PDU is used to communicate information about a vehicle’s current state,
including position, orientation, velocity, and appearance (Table 1). The Fire PDU contains data on
any weapons or ordnance that are fired or dropped. The Detonation PDU is sent when a munition
detonates or an entity crashes. The actual structure of a PDU is very regimented and is explained
in full detail in [IST93].

Field Size . .
(Bytes) Entity State PDU Fields
12 PDU Header Protocol Version.
Exercise ID.
PDU Type.
Padding.
Time Stamp.
Length in bytes.
6 Entity ID Site.
Application.
Entity.
1 Force ID
1 Number of N.
Articulation
Parameters




Field Size . .
(Bytes) Entity State PDU Fields
8 Entity Type Entity Kind.
Domain.
Country.
Category.
Subcategory.
Specific.
Extra.
8 Alternative Same type of information as above.
Entity Type
12 Linear Velocity | X,Y, and Z (32 bit components).
24 Location X,Y, and Z (64 bit components).
12 Orientation Psi, Theta, Phi (32 bit components)
4 Appearance
40 Dead Reckon- | Algorithm.
ing Parame- Other Parameters.
ters Entity Linear Acceleration.
Entity Angular Velocity.
12 Entity Mark-
ings
4 Capabilities 32 Boolean Fields.
N * 16 Articulation Change.
Parameters ID.
Parameter Type.
Parameter Value.

Table 1: Entity State PDU
B. Simulation Philosophy

The networking technique used in NPSNET-1V, evolved from SIMNET, and embodied in
DIS follows theplayers and ghostsaradigm presented in [Blau92]. In this paradigm, each object
is controlled on its own host workstation by a software object called a Player. On every other
workstation in the network, a version of the Player is dynamically modeled as an object called a
Ghost.

The Ghost objects on each workstation update their own position each time through the
simulation loop, using a dead-reckoning algorithm. The Player tracks both its actual position and
the predicted position calculated with dead-reckoning. An updated Entity State PDU is sent out on
the network when the two postures differ by a predetermined error threshold, or when a fixed
amount or time has passed since the last update (nominally 5 seconds). When the updated posture
(location and orientation) and velocity vectors are received by the Ghost object, the Ghost’s is
corrected to the updated values, and resumes dead-reckoning from this new posture.
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Figure 2. Error Based Dead Reckoning and Actual Paths

The primary purpose of the Ghost in the machine concept is to reduce network traffic by
minimizing updates at the cost of extra computation by the host system. Analysis of this method
has confirmed that it works well with a wide variety of simulated vehicles with different
performance characteristics, including high-speed aircraft. Harvey and Shaffer showed that even
with a 3 meter position error threshold, first order dead-reckoning algorithms were sufficient to
model an F16 with a 66% decrease in network traffic -- from 50 Hz to 17 Hz for Entity PDU
updates [Harv92]. Alternatively, an updated PDU could be sent after every frame. However, even
at 10 Hz frame rate this is wasteful - 11520 bits per second (bps) for one entity - when considering
that in a large simulation many entities are stationary.

Figure 3 shows how dead-reckoning works when modeling munitions. In this case, when 5
bombs are dropped in NPSNET-IV, 5 Fire PDUs are generated followed by the instantiating of 5
Entity PDUs representing each bomb. Initially, the bombs are horizontal and they rotate to point
downward. As the bombs change orientation, the dead-reckoning thresholds are exceeded. Less
time is required for updates as the bombs maintain their orientation. They hit the ground and a
Detonate PDU is issued for each one and they stop sending Entity PDUSs.

Figure 4 demonstrates the advantages of the Ghost technique. It traces the number of PDUs
per second generated by 9 simulated aircraft in a highly dynamic situation (everyone was trying to
shoot each other down). Even the spike of approximately 76 PDUs per second is half the rate
expected of a system not using dead-reckoning (9 entities x 15 Hz = 135 PDUs/sec if updates are
issued on every frame). Typical bandwidth used by one entity in this simulation is approximately
3200 bps. The graph also shows another characteristic of DIS traffic induced by dead-reckoning -
- very bursty and not easily modeled.
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Figure 3. Time Traces of PDU Events

DIS also inherited two other concepts from SIMNET that influence bandwidth and
reliability. First, with the exception of resupply operations, there are no transactions among entities
about their state. Every entity is presumed honest. For example, when a vehicle fires a weapon, it
is the determiner of who was hit and communicates that to all other entities. The targeted entities
inform everyone including the shooter what damage occurred. In this manner, only one entity must
make a ballistic computation and only the targets must compute the effects; minimizing overall
simulation computation and avoiding the need to consume bandwidth and simulation time by
negotiating ‘who shot who'.

Secondly, there is no central database therefore, an entity has to ‘learn’ about the world by
state updates from other entities. Entities that are not doing anything (e.g. parked vehicles) still
must periodically send an update packet, as mentioned above, even though their state does not
change.

11
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Figure 4. PDU Rates (10 Second Sample Rate)

C. NPSNET DIS Performance Values

NPSNET-IV is capable of generating one PDU at a peak rate of one per frame. For example,
at thirty frames per second it can generate thirty packets per second. Weapons are restricted to one
firing per second. Upon a firing, the simulation generates two additional packets: one Fire PDU to
establish the firing and one Entity State PDU to model the munition (Figure 3). Upon munition
impact, one Detonation PDU is transmitted. However, during past experimentation, we have
observed a peak rate of twelve Entity State PDUs per second for the aircraft. The packet rate was
constrained by dead reckoning thresholds. In addition to the twelve packets per second, the aircraft
simulator generated at most three packets for a weapon firing sequence totaling fifteen packets per
second. The peak packet transmission rate for this type of simulator is fifteen packets per second
[Zesw93].

As can be seen in Figure 4, Entity State PDUs dominate DIS network traffic. Figure 5 shows
how these rates, along with bandwidth, affect the number of simultaneous users that can participate
in the distributed virtual environment using NPSNET-IV. The bandwidths are representative of
current communications technology -- 28 Kbps for high speed modems, 1.5 Mbps for T-1 lines,
and 10 Mbps for Ethernet (though Ethernet becomes saturated at roughly 70% utilization). Note
that this is a simple model of performance. It assumes (falsely) that traffic would be perfectly
distributed and that hosts and routers could actually process the PDUs without delay at the higher
rates. We discuss these issues and provide some experimental data later. However, the graph is
provided to give an approximate feel for the entity-bandwidth-PDU relationship. With NPSNET-
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IV, we approach a maximum of 300 players on an Ethernet LAN without modification to the DIS
protocol.
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Figure 5. Bandwidth vs. Number of Players

D. Problems with the DIS Protocol

IEEE 1278 is still an immature protocol and is very much a work in progress. DIS involves
and affects so many users and developers that it embodies many different and sometimes
competing ideas. This section outlines some of those problems.

For example, DIS has struggled with the important question of how to adapt to different
demands for realism in simulations. One community is interested primarily in using DIS for
training large numbers of soldiers on a virtual battlefield while another sees it as atestyéw
systems. Unfortunately, the requirements for precision and minimal latency are much greater in a
testing environment leading to specifications that would be considered somewhat excessive in a
training simulation such as using 64 bit floating point numbers.

Furthermore, the protocol's SIMNET heritage has had several negative consequences
primarily because SIMNET was designed for a local area network with small numbers of players
(less than 50). SIMNET's reliance on broadcasting PDU’s over bridged networks (with many
attendant problems -- discussed later) is still the most common mode of communication for DIS.
DIS also avoids centralized databases or servers of any kind. Therefore, the protocol requires that
all the data about an entity be transmitted when its status changes.

The result is that much of the data sent is redundant (e.g. the markings on the aircraft). It
remains to be proved that the redundant data in the packet is of much consequence because, in
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general, they are typically small (144 bytes). Rather, the major concern of developers is the number
of packets per second. The packet rate is affected by the number and activity (state changes) of the
entities, and the type of dead-reckoning algorithms being used.

However, a major influence on the PDU rate is that late arriving players have no idea of what
has transpired so the only way they can learn is to listen for a while and accumulate knowledge
from the Entity PDUs being issued. Therefore, the DIS protocol requires that Entity PDUs be sent
after a predetermined tineen though their state has not changgdw much time? If the time
is too long then new entrants will operate for that period without complete knowledge of the world
and realism is lost (e.g., being shot by vehicles they did not know existed but, should have known).
Update too often and a major burden is added to the network in the form of additional PDUs per
second. Moreover, it is presumed that in large simulations many of the entities will be static (e.g.
missile batteries or parked tanks). Unfortunately, the answer to the maximum PDU update rate
guestion is not know at this time.

Contrary to practices of standards organizations such as the Internet Engineering Task Force
(IETF), there is no requirement to have working tested implementations before the IEEE 1278
standard is changed. This results in the adoption of ideas such as the Signal PDU which is used for
simulating radio traffic by sending voice or data between participants. This may have several
unintended consequences. For example, the distributed simulation application is now burdened
with the considerable task of multiplexing and buffering audio streams in real-time at the
application layer. The DIS community would probably be better off adopting well-tested
applications or protocols developed for the Internet such as Van Jacobson’s and Steven McCanne’s
Visual Audio Tool (vat) or the Real Time Protocol (RTP) [Casnher93b].

Furthermore, DIS lacks a “middleware” layer --a software layer that mediates between the
distributed applications and the network. A problem with this is demonstrated by the fact that
models and world databases must be replicated at each simulator because no mechanism exists like
BrickNet's object exchange to distribute objects on demand. For large scale simulation, this is a
necessity, particularly when the simulators are heterogenous, controlled by different organizations,
and little coordination is expected prior to an exercise. Furthermore, it is not feasible nor efficient
for each simulator to store every model and database for a 100,000 entity simulation. For example,
an F15 simulator normally does not need to concern itself with naval vessels -- unless some unique
scenario has it going over the ocean.

This leads to the unresolved issue of communicating dynamic changes with respect to
normally static objects or the environment. Objects could be clouds or static entities like bridges
and buildings that may change with respect to an event (e.g. an explosion). Representing realistic
views of the weather consistently and efficiently on a large number of heterogenous systems is a
major and possibly intractable challenge.

Another, insidious issue is caused by the fact that DIS assumes every simulator to be truthful.
An unintended side effect, in a large scale heterogenous simulation, is that the quality of realism
expressed by simulators may vary by wide margins, reducing the overall realism of the simulation.
For example, a highly realistic and accurately portrayed F15 simulator would not compete
favorably against a simulator that is only functionally realistic but without the difficult flight
dynamics of a high performance aircraft [Harris93].

However, these are just a few of the many issues regarding the DIS protocol. Several
organizations, including the NPSNET Research Group, are examining ways to improve or
restructure the protocol, operational concept, and physical network architecture.
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V. Multicast

NPSNET-IV is the first DIS application to use the IP Multicast protocol. Multicast network
services are necessary to build large scale distributed virtual environments. Multicast promises to
provide an efficient mechanism for partitioning player groups in virtual environments to optimize
the computational load on the simulation hosts and possibly reduce bandwidth requirements on
network ‘tail links’ extending from the backbone [Doris93].

Multicast services allow arbitrarily sized groups to communicate on a network via a single
transmission by the source [Perl92]. Multicast provides one-to-many and many-to-many delivery
services for applications such as teleconferencing and distributed simulation in which there is a
need to communicate with several other hosts simultaneously. For example, a multicast
teleconference allows a host to send voice and video simultaneously to a set of (but not necessarily
all) locations. With broadcast, data is send to all hosts while unicast or point-to-point routes
communication only between two hosts.

Most other distributed simulations have employed some form of broadcast (hardware-based
or IP) or point-to-point communications. For example, the MR Toolkit Peer Package, which is used
for creating distributed virtual reality applications over the Internet, uses unicast for
communications among the applications though the developers have considered using IP Multicast
[Shaw93].

However, these schemes are bandwidth inefficient and broadcast, which is used in SIMNET
and most DIS implementations, is not suitable for internetworks. Moreover, IP broadcast requires
that all nodes examine a packet even if the information is not intended for that host, incurring a
major performance penalty for that host because it must interrupt operations in order to perform
this task at the operating system level. (SIMNET used the hardware multicast capability of
Ethernet but only to create a single multicast group for the entire distributed simulation.) Point-to-
point requires the establishment of a connection or path from each node to every other node in the
network for a total of N*(N-1) virtual connections in a group. For example, with a 1000 member
group each individual host would have to separately address and send 999 identical packets.

A. Internetworking

Internetworking (routing over the network layer) is important for large scale simulations
because it provides the capability to:

-- use commercial services as opposed to private networks to bring together diverse,
geographically dispersed sites.

-- use different local network topologies and technologies, e.g. Ethernet or Fiber
Distributed Data Interface (FDDI).

-- take advantage of “rich” topologies for partitioning bandwidth, providing robustness
and optimization of routes for minimizing latency.

Confining DIS to the data link layer would require the use of bridges which:
-- are a magnitude slower to reconfigure after a topological change than routers.

-- the number of stations are limited to the tens of thousands while with routing it is
limited to the numbers accommodated by the address space [Perl92].
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We have built NPSNET-IV on top of IP Multicast to provide dynamic group communication
services and internetworking to the application. IP Multicast, developed by Steve Deering, is an
IETF standard (RFC 1112), and is supported by a variety of operating systems including SGI’s Irix
and Sun’s Solaris [Deer89] [Comer91]. Through the use of multicast routers, NPSNET can
communicate across the Internet via the Multicast Backbone (MBONE) [Maced94].

B. MBONE

MBONE stands for Multicast Backbone, a virtual network that originated from an effort to
multicast audio and video from the Internet Engineering Task Force (IETF) meetings [Casner93a].
MBONE today is used by several hundred researchers for developing protocols and applications
for group communication.

Multicasting has existed for years on local area networks such at Ethernet and FDDI.
However, with IP multicast addressing at the network layer, the service group communication can
be established across the Internet. Categorized officially as an IP Class D address, an IP multicast
address is mapped to the underlying hardware multicast services of a local area network.

The reason that MBONE is a virtual network is that in most cases it shares the same physical
media as the Internet, though it must use a system of parallel routers that can support multicast (i.e.
Sun workstations) augmented with ‘tunnels’. Tunneling is a scheme to forward multicast packets
among the islands of MBONE subnets through Internet IP routers which, for the most part, do not
support IP multicast. This is done by encapsulating the multicast packets in regular IP packets.

When a host on a subnet establishes or joins a group, it announces that event via the Internet
Group Management Protocol (IGMP). The multicast router on the subnet forwards it the other
routers in the network. Groups are disestablished when everyone leaves, freeing up the IP multicast
address for reuse. The routers occasionally poll hosts on the subnets to determine if any are still
group members. If there is no reply by a host, the router stops advertising group membership to the
other multicast routers [Comer91].

The routing protocols for MBONE are still immature and a part of the central experiment of
the network. Most of the MBONE routers employ the Distance Vector Multicast Routing Protocol
(DVMRP) which is commonly considered inadequate for rapidly changing network topologies
because routing information propagates too slowly. A multicast extension to the Multicast Open
Shortest Path (MOSPF) link-state protocol has been proposed that addresses this problem
[Moy93]. With both protocols each router must compute a source tree for each participant in a
multicast group. MBONE is now small enough that this is not a problem. However, for a large
network with constantly changing group memberships, these routing techniques could be
computationally inefficient [Perl92]. However, the success of MBONE is spurring more research
into providing for this possibility. For example, Cisco Systems, a major router vendor, intends to
include IP Multicast routing capability in the near future using the Protocol- Independent Multicast
(PIM) protocol being considered by the IETF Internet Domain Multicast Routing group.

A further problem is that the topology and the multicast sessions must now be actively
managed by the MBONE community to minimize congestion. MBONE is currently experimenting
with automatically pruning and grafting subtrees but, for the most part uses truncated broadcasts
to the leaf routers. The truncating is based on the setting for the time-to-live (ttl) field in a packet
which is decremented when it passes though a router. A ttl value of 16 would limit multicasts to a
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campus versus a value of 100 which could send it to every subnet on the entire MBONE (and at
least twelve countries).

However, we have used MBONE to demonstrate the feasibility of IP Multicast for distributed
simulations over a wide area network. In the past, participation with other sites required prior
coordination for reserving bandwidth on the Defense Simulations Internet (DSI). DSI, funded by
ARPA, is a private line network composed of T-1 (1.5 Mbps) links, BBN switches and gateways
using the ST-II network protocol. It has been necessary to use DSI because ARPA sponsored DIS
simulations used IP broadcast - requiring a unique wide area bridged network.

With the inclusion of IP Multicast, sites connected via the MBONE can immediately
participate in a simulation. MBONE uses a tool developed by Van Jacobson and Steven McCanne
called the Session Directorydj to display the advertisements by multicast groups. SD is also used
for launching multicast applications like NPSNET-IV and for automatically selecting an unused
address for the new group. Furthermore, we can integrate other multicast services such as video
with NPSNET-IV. For example, participants are able to view each other’s simulation with a video
tool, nv, developed by Ron Fredrickson at Xerox Parc [Maced94].

C. Rationale

IP Multicast uses the User Datagram Protocol (UDP) and therefore, by itself, is an unreliable,
connectionless service. However, reliable multicast protocols are currently not practical for large
groups because in order to guarantee that a packet is properly received at every host in the group
an acknowledgment and retransmission scheme is required [Part94]. With a large member
distributed simulation, reliability, e.g. as provided in the Transmission Control Protocol (TCP),
would penalize real-time performance merely by having to maintain timers for each host's
acknowledgment. Flow control is also not appropriate for DIS which can recover from a lost packet
more gracefully than from late arrivals.

This does not mean that researchers are not trying to develop both a reliabdaleatle
multicast service. The communication for DIVE is provided by the ISIS system, developed by Ken
Birman, which uses reliable multicast to guarantee that the virtual environment databases are
accurately and synchronously replicated [Carls93]. (A recent version of ISIS implements a reliable
transport layer on top of IP Multicast). However, a peer group with more than 20 or 30 members
is about as large as can be efficiently supported [ISIS92]. Brian Whetten and Simon Kaplan have
recently developed the Reliable Multicast Protocol (RMP) which is based on a token ring protocol
that sits atop IP Multicast. They claim that RMP should scale to hundreds of users across the
Internet [Whet94].

Fortunately, within the context of DIS, a certain amount of unreliability is tolerable and is
mediated through the use of the dead-reckoning and smoothing algorithms and by the fact that
entity postures are frequently updated [Harv92] [Lora92]. Other applications such as packet voice
and video can use adaptive techniques to handle lost packets and delays [Part94].

If a truly scaleable reliable multicast protocol was developed, then much of the redundant
communication caused by periodic entity updates and over-descriptive PDUs could be eliminated.
Moreover, using DIS for system development testing would become a reasonable concept since we
could guarantee the reliability or ordering of data. For example, accurately finding out ‘who shot
who when’ is important to system developers. We could possibly move DIS to a model that would
allow us to observe and control this transaction atomically.
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IP Multicast also allows the creation of transient multicast groups. Thus, it is suitable for
developing virtual environments that associate geographical location, simulator services (e.g.
environment servers), radio frequencies, or sensor capabilities with particular dynamic groups. For
example, a virtual battlefield could be partitioned into grid squares where each square coincided
with a single multicast group. When a player moved through this world and crossed into another
grid, the simulated entity would join the new group.

As mentioned before, this partitioning is necessary to reduce the enormous computational
requirements of large scale (100,000 player) simulations. For a 1000 object exercise conducted in
1990 with SIMNET, the limiting factor was not network bandwidth, with loads running at 50%,
but the local host processor performance [Chun92]. Network simulations done by Van Hook of
Loral have shown that a 90% reduction in traffic to a particular node is achievable for a 10,000
player exercise using multicast services [VanH93]. For the estimated peak bandwidth of 350 Mbps
for a 100,000 player exercise, this translates into 35 Mbps peak and 10 Mbps for the “expected”
average loads. We emphasize “expected” because no one really knows. No research has been done
to characterize the traffic of distributed simulation other than some extrapolations of from small
groups. The models used so far make simplistic assumptions like Poisson distribution, which are
known to be inappropriate for bursty activities.

These are reasonable numbers for constructing a system with current (albeit expensive)
technology. A system composed of T-3 (45 Mbps) WAN links and FDDI or Asynchronous
Transfer Mode (ATM) LANs could be a reality today. However, long distance carriers have been
quietly installing Synchronous Optical Network (SONET) switches to provide ubiquitous support
for those speeds. SONET is a US and international standard for optical signals, the synchronous
frame structure for multiplexed digital traffic, and operations procedures for fiber optic switching
and transmission systems. SONET defines data transmission speeds to 2.4 Gbps and allows lower
speed channels such as OC-3 (155 Mbps) to be inserted and extracted from the main rate. Both
MCI and Sprint have announced that they will have SONET completely deployed by 1995.

D. ATM

New SONET switches will also incorporate asynchronous transfer mode (ATM) technology.
ATM provides fast variable rate packet switching using fixed-length 53-byte cells. This permits
ATM networks to carry both asynchronous and isochronous (video and voice) at SONET speeds.
AT&T will offer its Interspan ATM service to over 300 locations by the middle of 1994 with access
speeds initially ranging from 512 Kbps to 34 Mbps.

ATM will likely support multicasting and CCITT has written a standard for interfacing ATM
with SONET. The IETF has also developed an interface standard for ATM and IP, though an
interface to ATM’s multicasting service has yet to be defined. However, several researchers are
investigating how ATM could support IP Multicast [Wei92].

ATM may offer another significant advantage because it is a virtual network service offered
by the major carriers. Multicasting will not necessarily reduce bandwidth requirements on the
backbone. However, the aggregate bandwidth of a large scale simulation could be absorbed by the
carriers backbone network. A 50,000 player distributed environment would roughly require, for
simulation traffic alone, a 150 Mbps backbone, approximately the bandwidth of the standard ATM
OC-3 rate.

ATM is also expected to provide on-demand quality of service guarantees in terms of latency
and bandwidth that are not now available with most networks. This will be necessary for real-time
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applications like distributed virtual environments. Finally, we believe that the DIS protocol could

be optimized for ATM by making the PDU’s conform to the 48 byte size of the ATM cell. For
example, Danny Cohen, of Perceptronics, has suggested that much of the Entity State PDU could
be reduced in size by eliminating redundant information such as the host and site identification
which is already contained in the IP address of the sender. Some other ways to reduce the size
include:

-- use canonical versus hierarchial representation of the entity types, and appearances.

-- reducing precision. For example, DIS using 64 bit floating point numbers for
coordinates which give an accuracy of 0.2nm in a 500 KM box -- as Cohen points out,
a bit of overkill [Cohen93].

-- eliminate the use of the Entity State PDU to communicate markings (use some other
means to do this).

-- use a single dead-reckoning algorithm.

-- eliminate guises (alternate identities).

-- eliminate the capabilities field. Only the first 4 bits are defined and they should be part
of the entity type.

More importantly, current computer architectures (particularly with respect to the memory
and system interfaces) such as SGI's can accommodate T-3 (DS3) bandwidths through the reduced
packet rates brought about by multicasting. This was demonstrated by the XUNET testbed which
developed an ATM host interface for the SGI Indigo VME bus [Beren93]. Their software and
interface was able to simultaneously send and receive at 40 Mbps TCP packets encapsulated in
ATM cells through SGI Power series hosts acting as routers. Moreover, by partitioning the groups,
a host only needs to maintain state information for the entities in its particular group. We conjecture
that 1000 entities in a highly dynamic simulation would form an appropriate size multicast group
for 3D graphics workstation architectures before the end of this decade. This is another area
requiring study.

We are currently researching the appropriate scheme and algorithms that exploit multicast -
used as the DIS middleware - for this partitioning. Our future architecture must include a
mechanism for abstracting information regarding players or entities based on their location and
relationships with each other. Additionally, a means for mediating the fidelity of the simulation
(much like the Level of Detail (LOD) function in computer graphics) is needed for entities that
require global information like simulated intelligence platforms and fast aircraft, as well as for
system management functions. Fidelity can be adjusted by aggregating information about entities
on special servers or increasing the time period for updates on a special multicast channel or group.
Finally, we are examining ways to provide a set of universal services to the virtual environment
including synchronization, load balancing, simulation management, weather and hypermedia.

We propose the use of a software “glue” between the DIS event and state PDU paradigm and
network layers that is wedded to reality of the domain being simulated. The Area of Interest
manager (AOIM) partitions the VE into a set of workable, small scale environments to reduce
computational load on hosts, minimize communications on network tail links, and localizes
reliability problems. Furthermore, the AOIM exists with every simulator to distribute partitioning
processing among hosts. The AOIM uses spatial, temporal, and functional classes for establishing
membership in multicast network groups.
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VI. Heterogeneous Parallelism

Graphics Hardware Pipeline

T

Draw Thread

Arena ] Cull Thread

Simulation Thread

net_read() on each
frame

net_write() on each frame Arena

T receiveprocess()

Network Thread

¢ sendto() T recvfrom()

UDP/IP/Operating System

Local Area Network

Figure 6. NPSNET-IV Software Architecture

Man-in-the-loop simulators function in real (wall-clock) time and are measured in the human
perception time frame, which is approximately 100 milliseconds. Update information must be
received by all other participating simulation hosts in sufficient time for reading the information
from the network, updating the database, and rendering the display.

NPSNET-IV is designed to minimize system latency and maintain a frame rate (throughput)
of at least 10 frames per second. To accomplish, this we have taken advantage of the
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multiprocessor architecture and heterogenous parallelism offered by the SGI Onyx computers with
Reality Engine2 graphics and the Performer graphics library.

Exploiting parallelism to achieve high performance graphics is not a new concept and has in
fact been incorporated into the Performer library. As an example, Akeley showed in 1989 that a
sixfold increase in frame rates could be achieved using a four processor architecture instead of a
uniprocessor system [Akeley89]. This is because out-of-view regions of a geometric database can
be culled using spatial partitioning by one of the processors.

The effect is to reduce the number of polygons needed to be rendered by the drawing
processor and eventually sent to the graphics hardware. In NPSNET-IV, the cull thread traverses
the database, selects the geometry that is in the view volume, does Level of Detail selection, and
constructs the display list for the draw function. In turn, draw renders the display list data structure.

We have expanded the use of parallelism to improvenéteork throughputs well as
graphics throughput. Network processing makes significant demands for system resources,
particularly within the context of large distributed environments. When a simulator receives data,
a network frame is examined and copied from the interface to a system buffer by means of a direct
memory access (DMA) block write. The operating system checks the IP and UDP headers to see
if the packets are correctly addressed. For IP multicast, this may require demultiplexing among
several addresses and destination application ports. The datagram is again copied by the CPU to
the application memory space where it must be decoded by the network thread. The type of PDU
and length are determined to allocate the appropriately sized structure in the arena.

With a four-processor machine, NPSNET-IV divides the draw, cull, application, and
network threads into a system level pipeline using shared memory (IRIX arena’s) for
communication among the tasks. At the first stage, the network thread continuously reads the IP
multicast receive socket and immediately writes new PDUs to an arena (Figure 6).

A. Advantages

The advantages of placing the network thread on its own processor are twofold: it off-loads
the work that would otherwise compete with the application, cull, or draw processes; and it
immediately receives and buffers PDUs when offered by the network interface (rather than waiting
for the other threads to complete) thus, reducing the probability that packets are dropped at the
lower system network levels. For example, with a simulation frame rate of 10 Hz and an arrival
rate of 1000 PDUs per second, approximately 15K bytes must be buffered by the network thread
while the simulation loop performs the following:

-- updates the terrain database and the visual database maintained by Performer.
-- computes dead-reckoning and detonation effects.

-- takes user commands to the vehicle via flight control sticks or a spaceball.

-- updates the posture of the vehicle and computes the firing solutions for weapons.
-- writes new PDUSs to the network process.

-- hands off to the cull process.

Note that the size required for this buffer (arena) is variable and dependent on the network
load and the complexity of the scene rendered which influences the cycle time for frame updates.
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B. Disadvantages

There are several disadvantages to the NPSNET-IV approach. First, the implementation is
specific to SGI systems. Second, there is a penalty incurred by the extra data copying which causes
more contention for memory, bus bandwidth, and the CPU which must do the copying. Another
cost is that latency may increase in a particular stage with respect to the CPU buffering data.
However, these problems are more than offset by the overall gains in system throughput and by the
fact that a CPU is dedicated to the network data movement in a multiprocessor machine [Clark89].
Furthermore, the handling of DIS traffic at the application level will likely become more
complicated as the protocol matures, demanding more processing resources. An example of this is
that future DIS PDUs are expected to be aggregated within a UDP datagram to reduce data link
and network level processing while further increasing the overhead of decoding by the receiving
application.

VIl. Demonstrated Results

We were able to demonstrate NPSNET-IV to a large audience at the SIGGRAPH93
Tomorrow’s Reality Group albeit using IP broadcast over a bridged wide area network for
compatibility with other sites. We have also successfully conducted demonstrations and test of our
multicast version over the MBONE.

A. SIGGRAPH 93

At SIGGRAPH, participants were able to operate in a three-dimensional virtual environment
via local and wide area communication networks with other players using independently
developed simulations at geographically dispersed sites. Our SGI hosts in Anaheim, California
communicated locally through Ethernet and to other sites via a T-1 based private network. Other
participating sites were the Air Force Institute of Technology (AFIT), Dayton, Ohio, the
Simulation Center, Advanced Research Projects Agency (ARPA), Arlington, Virginia, the Naval
Postgraduate School (NPS) in Monterey, California, and Naval Research and Development
(NRaD) in San Diego, California. The connection with ARPA was unique in that it included
simultaneous high-quality two-way video and audio over the network. The video from Arlington
was displayed at the convention center on a Sony high-definition television using the Advanced
Television (ATV) format -- while images from the simulation were shown at ARPA on a 15 meter
“video wall”.

Five sites were interconnected using the Defense Simulation Internet (DSI) and other leased
T-1 facilities. NPS, AFIT, and the Naval Research and Development (NRaD) facility in San Diego,
California were connected by DSI. ARPA was connected to NRaD using their own facilities.
NRaD bridged the two networks to a leased T-1 link that terminated in the Anaheim Convention
Center. Because the T-1 was multiplexed with video, simulation bandwidth was restricted to 704
Kbps.
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Figure 7. SIGGRAPH’93 Setup

A network load analysis was conducted during SIGGRAPH to approximate an upper bound
of the number of simulation hosts and entities that can reliably participate on our Ethernet segment.
The bandwidth required for the distributed simulation experiments was predictable based on the
previous discussion. There was a maximum of eleven hosts simulating 50 entities during the free-
play scenario. Seven high-performance aircraft were simulated while four of the simulators
modeled multiple slow moving vehicles.

The average broadcast packet length was 190 bytes, including network overhead. Over 90%
of the traffic was represented by Entity State PDUs. Simulation traffic peaked at 168 packets per
second accounting for 2.5% of Ethernet and 16% of T-1 bandwidth. Extrapolating from these
numbers Ethernet could handle at most roughly 600 players at 70% utilization while each T-1 link
could accommodate only 130. Note, again, that this extrapolation only gives us only upper bounds
using the current DIS protocol.

We met our goals of minimizing latency and conforming to DIS 2.0.3. Comments from
observers and players indicated that there were no noticeable delays in interacting with other
players over the wide-area and local nets. Moreover, NPSNET-IV operated smoothly with AFIT’s
Virtual Cockpit which also uses the DIS standard. With the configuration used at SIGGRAPH, we
could expect no more than several hundred simultaneous interactive players over the network.
Overall, NPSNET-IV demonstrated robust network capabilities.
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B. MBONE

After SIGGRAPH, we completed the multicast version of NPSNET-IV. After some initial
tests over the Naval Postgraduate School campus network, we began experimentation over the
MBONE with the help of Stephen Lau at SRI. Communicating between SRI and NPS presents a
significant challenge for interactive simulation. SRI, which is on DARTNET, and NPS, attached
to BARRNET, are separated by six routers with a variable delay of between 100 to 1000 ms. Figure
8 shows the routing over the MBONE. The annotations indicate physical or tunneled links and the
metric associated with the links. For example, P1 indicates that a link is a direct multicast link with
its metric (cost value used by the routing algorithm) set to 1. Moreover, DIS traffic must compete
with MBONE video and audio multicasts. Figure 9 shows the PDU traffic generated across the
MBONE between two SGI workstations running NPSNET-IV at NPS and SRI.

NPS Graphics and Video Laj

CiscoSG| DEC Apple

P1 mbone.nps.navy.mjl
T32
Shopvac.Stanford.Equ
Su
Pl
Australia Numenor.Stanford.Equ
Japa T64
Korea mbone.nsi.nasa.gov
P64
P1 ames.dart.net

Figure 8. MBONE Routing between NPS and SRI

24



PDU Rates by Type (10 Sec Sample Rate)

18 v
Entity PDU —
Fire PDU —
16 Detonate PDU— 1
14 ¢
12
2
3 10 4 Nov 93 -- 2 interactive simulators
$
=)
2 8t
Qo
6k
4L
2t
0 - L o AARDAAPN

0 200 400 600 800 1000 1200
Time (Seconds)

Figure 9.IP Multicast between SRI and NPS.

Despite a hostile network environment, NPSNET-IV showed little perceptual latency. We
used Lau’s version of a multicast video tool to transmit images of his simulation running on an SGI
Onyx to the players at NPS. We could observe what was been viewed at SRI, including weapons
fire on our aircraft.

We are now currently collecting additional network performance data and expanding the
number of players over the MBONE. We are constrained at present by the limited number of sites
which possess both access to MBONE and have the SGI platforms.

VIll. Conclusion

We see the importance of distributed virtual environments continuing to grow within the next
several years. Government organizations like ARPA and the US Army have recognized this
through programs such as the Combined Arms Tactical Trainer (CATT), a distributed 3D
simulator for training tank crews and units, and the Louisiana Maneuver (LAM) exercises which
will involve major elements of the Army in large simulated battles at the end of the decade to test
new operational concepts [USA93].

Commercial interest is also keen. Companies such AT&T, TCI, and Nintendo are pursuing
distributed VR for multi-player games. Robert Kavner’s, former CEO for Multimedia Products and
Services, AT&T, in a speech to the 1994 Winter Consumer Electronics Show:

The only dedicated gaming network in today’s narrowband world is ImagiNation
Network, in which we are a part-owner -- and, more importantly, with whom we are
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working to develop new services. It has advanced graphics and lots of interactive
flexibility. As people use this communications-intensive service, they’re seeing its
potential and adapting it to their life-styles. We are often asked why are we working with
this small, online network? We are working with ImagiNation Network to find ways that

people can use the network to strengthen their sense of community.

We want to build software that allows such a capability and more. However, much remains
to be done in the development of a network architecture to support large scale virtual environments.
Further integrating networked hypermedia and improving the DIS protocols are both major
challenges we intend to pursue. Additionally, we are exploring the use of ATM and local shared
memory networks to meet future real-time performance requirements for large scale simulations.

This paper has presented these challenges and the work by the NPSNET Research Group to
develop such an architecture. The emphasis of this paper has been on the networking issues of
distributed environments with respect to NPSNET-IV. We believe that with the creation of the first
3D distributed virtual environment suitable for use on the Internet, we have shown the viability of
using DIS, IP Multicast and heterogeneous parallel processing for developing large scale virtual
environments virtual environments.
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