
A Fast T-decomposition Algorithm

Jia Yang
(Department of Computer Science, The University of Auckland, New Zealand

jyan055@cs.auckland.ac.nz)
Ulrich Speidel 1

(Department of Computer Science, The University of Auckland, New Zealand
ulrich@cs.auckland.ac.nz)

Abstract: T-decomposition was first proposed and implemented as an algorithm by
Mark Titchener. It has applications in communication of code sets and in the fields of
entropy and similarity measurement. The first implementation of a T-decomposition
algorithm by Titchener was subsequently followed by a faster version named tcalc, de-
veloped in conjunction with Scott Wackrow. An improved T-decomposition algorithm
was published in 2003 by the authors with the implementation tlist. This paper
introduces a new algorithm that builds on our 2003 algorithm. Comparative experi-
mental results are given to show that the new version has a significantly better time
performance than previous algorithms.

Key Words: T-decomposition, computable complexity measures, parsing, entropy

Category: E.4

1 Introduction

T-decomposition was first introduced by Mark R. Titchener [Titchener 1993,
Titchener and Wackrow 1995, Titchener 1996]. It describes a self-learning au-
tomaton that analyzes how a given string can be constructed recursively. It has
since been studied within the context of revealing the information structure in
strings and led to the development of a computable complexity measure named
T-complexity, which in turn serves as the basis for two further measures, T-
information and T-entropy [Titchener 1998a, Titchener 1998b, Titchener 1998c,
Titchener 2000, Guenther 1998]. The latter of these is also known as determin-
istic entropy. The relationship between T-entropy and the Kolmogorov-Sinai en-
tropy (Pesin entropy) of the logistic map was discussed in [Ebeling et al. 2001].
A further link [Titchener et. al. 2005] with the Shannon entropy has since been
pointed out.

The authors’ particular interest in T-decomposition lies in its application to
the area of similarity measures [Yang and Speidel 2003c]. Using T-decomposition
in large-volume tasks requires an efficient T-decomposition algorithm. Examples
are the real-time text classification of a large number of files, or the similarity
comparison of large files.
1 nee Günther (Guenther)

Journal of Universal Computer Science, vol. 11, no. 6 (2005), 1083-1101
submitted: 23/9/04, accepted: 25/5/05, appeared: 28/6/05 © J.UCS

In this paper, we will first revisit the principle of T-decomposition. We will
then briefly describe the previous T-decomposition algorithms by Wackrow and
Titchener as well as our own approach in [Yang and Speidel 2003b], on which
the algorithm presented here is based. This is followed by a discussion of our
new approach and a presentation of its experimental performance.

1.1 The principle of T-decomposition

Let the set A = {a1, a2, . . . , an−1, an} be a finite alphabet. We denote the car-
dinality of A by #A, thus #A = n. Elements ai ∈ A are called characters. Let
A∗ denote the set of all finite strings that can be generated by concatenating
characters from A. We denote the empty string by λ. Let A+ = A∗ \ {λ}. For
two strings x, y ∈ A∗, let xy denote the concatenation of x and y. We use xk to
denote the concatenation of k copies of x. A token is a string from A+.

Assume that x ∈ A+. The principle of T-decomposition may be described as
follows:

1. Parse x over A. Thus each of the |x| characters in x is parsed into a token.

2. Identify the last (rightmost) token in the current parsing of x. We will call
this last token a.

3. Set i = 1.

4. Identify pi as the penultimate token. Identify the maximum length ki (in
tokens) of the run pki

i of ki ≥ 1 instances of pi which ends in the penultimate
token.

5. If the run in the previous step starts with the leftmost token, go to step 8

6. Parse x left-to-right. Each run of one or more tokens pi in the parsing followed
by another token q is combined (merged) into a single token according to
one of the following two patterns:

(a) pi
lq, where q �= pi and 1 ≤ l ≤ ki; or

(b) pi
ki+1.

Note that all tokens in the parsing of x that are instances of pi can be merged
into a new token under one of the two pattern rules above.

7. Increment i and go to step 4

8. End.

1084 Yang J., Speidel U.: A Fast T-decomposition Algorithm

Note that after each parsing pass, the tokens that make up x belong to a
prefix-free complete code set called a T-code. This guarantees that the result of
the next parsing pass is unambiguous.

T-decomposition thus parses x into a series of tokens pkm
m p

km−1
m−1 ...pk2

2 pk1
1 a.

pi is called a T-prefix, while ki is called a T-expansion parameter. These pa-
rameters may be used to build x or, alternatively, construct the T-code set for
which x is one of the longest codeword. The existence and uniqueness of the
T-decomposed result of a given finite string has been proved by Nicolescu and
Titchener [Nicolescu 1995, Nicolescu and Titchener 1998].

[Titchener 1998a, Titchener 1998b, Titchener 1998c, Guenther 1998] give de-
tailed descriptions of the principle of T-decomposition. Here we use an example
to demonstrate the T-decomposition process.

Let A = {0, 1} and x = 10100100100110011101. We will now decompose x

using T-decomposition.

1. Parse x over A. Using commas to separate the tokens, we get
x = 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1.

2. Identify a. Since the last character of x is 1, a = 1. Thus
x = 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1

︸︷︷︸

a

.

3. The penultimate token p1 is 0 in this case. There are no more instances of
p1 immediately to the left of the penultimate token, Thus the length of the
run is k1 = 1. We get
x = 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0

︸︷︷︸

01

, 1
︸︷︷︸

a

.

4. Parse x left-to-right. Consecutive tokens are merged into a new token if they
combine as:

(a) p1
lq, where q �= p1 and 1 ≤ l ≤ k1; or

(b) p1
k1+1

After this parsing, we thus get

x = 1, 01, 00, 1, 00, 1, 00, 1, 1, 00, 1, 1, 1, 0
︸︷︷︸

01

1
︸︷︷︸

a

.

5. The penultimate token of x here is p2 = 1. Since there are three consecutive
tokens equal to p2 to the left of and including the penultimate token k2 =
3, the second T-decomposition step yields pk2

2 = 13 = 111.
x = 1, 01, 00, 1, 00, 1, 00, 1, 1, 00, 111

︸︷︷︸

13

, 0
︸︷︷︸

01

1
︸︷︷︸

a

.

1085Yang J., Speidel U.: A Fast T-decomposition Algorithm

6. Repeating for p2 what we did in step 4 for p1, we parse x and get
x = 101, 00, 100, 100, 1100, 111

︸︷︷︸

13

0
︸︷︷︸

01

1
︸︷︷︸

a

.

As in 5, we complete the third T-decomposition step, which yields pk3
3 =

11001 = 1100. Thus x = 101, 00, 100, 100, 1100
︸︷︷︸

11001

, 111
︸︷︷︸

13

0
︸︷︷︸

01

1
︸︷︷︸

a

7. Keep repeating the previous steps until we obtain all T-decomposition pa-
rameters of x. The final result is
p1 = 0, p2 = 1, p3 = 1100, p4 = 100, p5 = 00, p6 = 101, and

k1 = 1, k2 = 3, k3 = 1, k4 = 2, k5 = 1, k6 = 1.
x = 101

︸︷︷︸

1011

00
︸︷︷︸

001

100100
︸ ︷︷ ︸

1002

1100
︸︷︷︸

11001

111
︸︷︷︸

13

0
︸︷︷︸

01

1
︸︷︷︸

a

.

Thus after T-decomposition, x = pk6
6 pk5

5 pk4
4 pk3

3 pk2
2 pk1

1 a

= 101100110021100113011

1.2 Algorithm by Titchener and Wackrow

T-decomposition was first implemented by Titchener in 1993 [Titchener 1993]. It
is a simple implementation of the principle of T-decomposition as shown above.
In each parsing pass, the implementation uses a character-by-character string
comparison (literal comparison) to establish whether a token under consideration
is equal to pi, and therefore whether it belongs to the run of i in one of the two
patterns in step 6 of the fundamental algorithm. Note that for most tokens in
most strings, this comparison is unsuccessful – finding an instance of pi is the
exception, not the rule.

Together with Scott Wackrow, Titchener improved the original algorithm in
1995 by recording the start position of each token and by skipping the comparison
for tokens whose length (=difference between the start position of the current
and the subsequent token) was not equal to |pi| [Titchener and Wackrow 1995].
Only if the lengths match, a literal comparison between the token and pi is
carried out. This produced a faster version of the algorithm and was published
under the program name tcalc [Wackrow and Titchener 1998]. However, their
implementation still requires each token length to be compared against |pi| in
each parsing pass.

Like the fundamental algorithm, Wackrow and Titchener’s algorithm exe-
cutes in O(|x|2 log |x|). This may be seen when considering a string x that con-
sists of |x| different characters. Such a string requires |x| parsing passes with a
total number of |x|(|x| + 1)/2 comparisons. The comparison of token length is
O(log |x|).

In practical measurements on real computers (which absorb the log |x| com-
plexity factor into hardware by limiting |x|), Wackrow and Titchener’s algorithm
shows a quadratic time behaviour for most strings.

1086 Yang J., Speidel U.: A Fast T-decomposition Algorithm

1.3 Algorithm by Speidel and Yang (2003)

The authors proposed an improved T-decomposition algorithm in
2003 [Yang and Speidel 2003b].

Similar to Wackrow and Titchener’s algorithm, our 2003 algorithm, called
tlist, also uses the information such as the boundaries and lengths of tokens
and T-prefixes to facilitate comparisons. However, in Wackrow and Titchener’s
algorithm, the length of each token is compared against the respective |pi| in
each parsing pass.

In contrast, our 2003 algorithm classifies each token by length as it is created.
In each parsing pass, only tokens of length |pi| are thus considered for comparison
with pi. This yields a considerable reduction in the number of length compar-
isons, which is reflected in a much faster execution.

This is achieved by the use of a number of intertwined doubly linked lists.
One of these doubly linked lists (called string list) is used to record all existing
tokens in the order in which they appear in x. Each list item represents exactly
one token in the current parsing of x.

Each list item in the string list is simultaneously part of another doubly
linked list that links all existing tokens with the same length. We call this linked
list the length list for the length of the token. For example, all tokens of length
m are linked together in the length list listlength[m].

During each parsing pass, comparisons are thus only carried out between pi

and tokens of length |pi|. This is achieved by following the respective length list
for |pi| rather than the string list. The string list is used only to establish whether
a token following an instance of pi equals pi or not. Thus, all other tokens whose
lengths do not match |pi| are automatically skipped.

During the parsing, items that represent instances of pi and are merged with
subsequent tokens are removed from the length list for |pi|. Items representing
tokens that are merged with a preceding pi token (or a run of pi tokens) are
moved from their old length list to the length list for the length of the new
combined token. The string list and the corresponding length lists have to be
updated accordingly.

The string list and old length lists are subject to removal only, and the
removal point is given by the current token. Insertion into the length list for the
new length, however, is more complicated. We need to retrieve the head of the
new length list and then search along the list to find the correct insertion point.

To retrieve the length lists, tlist maintains another linked list (called the
entry list) to store the heads of all the length lists. Finding the correct insertion
point may thus require quite a number of comparisons if the length list is long.

Fortunately, there are two effects that work in our favour in practice. The
first is that as tokens get longer, the linked lists necessarily get shorter as tokens
are merged. The second is that most strings give rise to tokens with a variety of

1087Yang J., Speidel U.: A Fast T-decomposition Algorithm

lengths, thus distributing the tokens across a relatively large number of linked
lists.

As a result, the total number of comparisons required in our 2003 algorithm
is thus generally lower than that required in Wackrow and Titchener’s original
algorithm. In practice, it runs significantly faster than tcalc. Its fundamental
time complexity is nevertheless still O(|x|2 log |x|), as may be readily shown using
the same argument as for tcalc: There are O(|x|) token elements at the start,
each of which requires O(log |x|) memory and each may get visited up to O(|x|)
times. In practice, time behaviour is sub-quadratic in |x| but still well above
linear for most strings.

The amount of memory required per character in tlist is constant,
but it is higher than that in tcalc, as one needs to accommodate four
list references per token. More information about tlist may be found
in [Yang and Speidel 2003b].

2 A faster algorithm

Experiments showed that our 2003 algorithm tlist spent a substantial part of
its computational effort on two tasks:

1. traversing length lists to find the insert position for a newly merged token,
and

2. comparing tokens of length |pi| with pi even though the tokens were not
equal to pi.

This effect is particularly significant in two circumstances: during the early pars-
ing passes of the T-decomposition and in the case of large alphabets. In these
circumstances, tokens are generally still short and, in the case of large alphabets,
diverse. That is, there are a lot of different tokens of the same length(s). There
are only a few length lists, and they contain the majority of tokens. At this stage,
the length lists are typically at their longest length during the entire process.

In summary, a large number of items in the length lists, especially coupled
with a low “concentration” of pi, can lead to significant delays in both insertion
and actual parsing.

To become faster, we would need shorter length lists for faster insertion as
well as fewer comparisons of unrelated codewords with pi. However, neither the
number of items in a length list nor its “concentration” of pi depend on the
algorithm, of course. Rather, they are a property of the string itself.

The solution proposed here is to abandon the length as the criterion for token
membership of the “length lists” and replace it with a different criterion.

The new algorithm proposed in this paper, called thash, replaces the length
criterion by a hash criterion. Rather than using an entry list, it uses a hash table

1088 Yang J., Speidel U.: A Fast T-decomposition Algorithm

to store what used to be the heads of the length lists. The former length lists
now store tokens with equal hash value. This permits an increase in the number
of lists, thereby reducing the average number of tokens per list.

The basic strategy of using a hash function in our new algorithm is as follows:

1. Hash each token into an integer (hash value).

2. Use hash values to assign a token to a linked list item, akin to the way the
length of a token was used to assign the token to a linked list in the previous
algorithm. Each of these linked lists (now called hash lists) links all tokens
with a common unique hash value.

3. A hash table rather than an entry list is used to store the heads of the hash
lists.

The main advantages of the new algorithm are:

1. If a suitable hash function is used, the different tokens can be distributed
more evenly over the hash lists, leading to shorter lists with higher concen-
trations for pi and thus fewer comparisons and faster insert times;

2. A hash list can be retrieved directly from the hash table (an array). In our
previous algorithm, a search in the entry list was less efficient but unavoid-
able.

Our new algorithm works as follows. Assume x ∈ A+. Let fhash(y) denote the
hash value of a token y. Let listhash[m] denote the hash list corresponding to hash
value m. Further, let Thash[m] denote the m’th entry of the hash table, which
records the head of listhash[m]. Thus, listhash[m] can be retrieved directly from the
hash table.

1. Initialize Thash with all the hash lists empty. Set a counter i = 1.

2. Parse x over A (i.e., each character of x is regarded as a token with length
1). Create the string list to record all initial tokens of x.

3. Determine pi and ki using the string list as before.

– If i = 1: remove the corresponding ki consecutive instances of pi from
the string list; for each token y that remains in the string list, com-
pute the hash value fhash(y) and add a corresponding item to the end of
listhash[fhash(y)]. There are now up to #A non-empty hash lists referenced
from the hash table.

– Otherwise: remove the corresponding ki consecutive instances of pi from
their hash lists and the string list.

1089Yang J., Speidel U.: A Fast T-decomposition Algorithm

If the second-to-right token is also the leftmost token, the T-decomposition
process is finished. Note that during the whole T-decomposition process, the
corresponding item of the last character of x serves as the dummy tail of
the string list. This item is only used to locate the penultimate token in the
string list.

4. Retrieve the hash list listhash[fhash(pi)] for the hash value of pi, fhash(pi).

(a) If listhash[fhash(pi)] is empty, increment i and go to step 3; otherwise

(b) traverse the hash list listhash[fhash(pi)] and compare each of its items with
pi. If it equals pi, merge it with its successor in the string list to form
token items of the form of pi

lq where q �= pi if 1 ≤ l ≤ ki, or pi
ki+1

otherwise. These are the same rules as introduced in Section 1.1.

Note that the comparisons are now carried out only between pi and the to-
kens from listhash[fhash(pi)]. During this parsing, a new token is created upon
each merge, while those corresponding to the merged items disappear. The
disappearing token items are deleted from the string list and the correspond-
ing hash lists. The hash value of each new token is computed, and the new
item for it is inserted into the corresponding hash list. When the last item
of listhash[fhash(pi)] has been processed, increment i and go to step 3.

Figures 1 – 11 show the T-decomposition of 011110010110 using the new
algorithm. Here we use a trivial hash function, the additive hash func-
tion [Jenkins 2004]. According to the additive hash function, the hash value of
a string is the sum of this string’s characters. For example, the hash value of
10001 is 2, while that of 111001 is 4.

3 Choice of hash function

While we have already discussed the advantages of using the hasing approach,
there are also a number of problems. Calculating a hash value for a string is
computationally more expensive than measuring its length, except for very trivial
hash functions.

While it is convenient to use the additive hash function to demonstrate the
T-decomposition process, this function does not meet our requirements in prac-
tice. A suitable hash function fhash(x) is important for our new algorithm as it
determines how evenly different tokens are distributed across the hash lists. Of
the different categories of hash functions, we are obviously only interested in
string-hashing functions. Our hash function needs to meet two requirements:

– It needs to be efficient, such that the tokens of x can be hashed quickly (the
number of tokens may be large). Sophisticated hash functions, such as those
designed for cryptography, do not meet this requirement.

1090 Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 1: First parsing – initialize a hash table and set up a string list.

Figure 2: First parsing – identify literal character and first T-prefix copies.

1091Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 3: First parsing – compute the hash values of all the tokens, and put them

into the corresponding hash lists.

Figure 4: Second parsing on remainder of string.

1092 Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 5: Second parsing – merge tokens following T-prefix copies.

Figure 6: Third parsing on remainder of string.

1093Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 7: Third parsing – merge tokens following T-prefix copy.

Figure 8: Fourth parsing on remainder of string.

1094 Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 9: Fourth parsing – identify the fourth T-prefix.

Figure 10: Fifth parsing on remainder of string.

1095Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 11: Fifth parsing – identify the last T-prefix.

– To reduce the overall number of comparisons, the hash values for different
tokens should result in an even distribution (at least in an ideal situation).
We thus need a hash function with few collisions.

Thus what we need is a fast hash function with few collisions. As these two
goals are somewhat incompatible, a compromise had to be found.

We tried a number of hash functions (some of them may be found un-
der [Jenkins 2004]), which included the additive hash function, the rotating hash
function, P.J. Weinberger’s hash function, Pearson’s Hash function and the cyclic
redundancy checksum (CRC) function.

After comparing performance, we chose the SDBM hash function for the
implementation of our algorithm. SDBM hashing is used in the open source
SDBM project [Partow 2004].

The choice of hash function makes it rather difficult to derive a reliable upper
bound for the time complexity of the algorithm presented here. If we use the
length of a token as its hash value, the same bound as for tlist applies – in this
case, the two algorithms are virtually identical. However, for more complex hash
functions, the time complexity may exceed O(|x|2 log |x|) because of the extra
costs associated with hash value computation. On the other hand, one would
expect more complex hashes to produce fewer collsions and hence lead to faster
parsing. As the next section shows, this somewhat complex picture looks very
much favourable in practical situations, though.

1096 Yang J., Speidel U.: A Fast T-decomposition Algorithm

File index File name thash [s] tlist [s] tcalc [s]
1 lgst3.573550 1.2 2.9 6.50
2 lgst3.586787 0.8 3.7 21.7
3 lgst3.611055 0.7 5.7 41.3
4 lgst3.651050 0.7 9.2 65.8
5 lgst3.687660 0.7 8.1 100.5
6 lgst3.766200 0.7 12.3 130.4
7 lgst3.907580 0.9 16.6 159.6
8 lgst3.925405 0.9 23.1 182.8
9 lgst3.971029 0.9 28.4 192.8
10 lgst4.000000 0.9 38.9 205.2

Table 1: Execution time comparison for thash, tcalc and tlist. All the strings

are 2000000 bits long.

4 Comparison

This section studies the comparative performance of the three algorithms pre-
viously discussed in this paper. Three C implementations were used for this
purpose: tcalc by Wackrow and Titchener, tlist, and thash, our implementa-
tion of our new algorithm.

The comparison was performed on a Redhat 8.0 Linux PC, using the Unix
time command to measure the execution times.

Table 1 shows a comparison based on two-million-character strings with var-
ious degrees of pseudo-randomness. The strings used for comparison were gen-
erated via a bipartition of the logistic map [Weisstein 2004] and were generously
supplied to us by Mark Titchener. This comparison is also displayed in Figure 12.

The strings are stored in files whose file names indicate their degree of pseudo-
randomness. The larger the number in the file name, the more “random” the
string (file) is presumed to be. The highest Kolmogorov-Sinai (Pesin) entropy is
found in the file “lgst4.000000”. All files were based on a binary alphabet {0, 1}.
In other words these files consist of “0” and “1” characters, which were processed
as a single bit each.

Table 2 shows the execution times for these pseudo-random strings of differ-
ent lengths. All these strings were generated as the n-character suffixes of the
same pseudo random 2000000-character string (lgst4.000000) generated from the
logistic map. This comparison is also displayed in Figure 13.

Besides these binary alphabet-based files, we also used three English texts
in our comparison. The result is shown in Table 3. These plain text files were
downloaded from Project Gutenberg [Gutenberg 2004]. They are:

1097Yang J., Speidel U.: A Fast T-decomposition Algorithm

Figure 12: Execution time comparison for thash, tcalc and tlist. The data are

from Table 1.

Figure 13: Execution time by string length for thash, tcalc and tlist. The data

are from Table 2.

1098 Yang J., Speidel U.: A Fast T-decomposition Algorithm

Length (characters) thash [s] tlist [s] tcalc [s]
100,000 0.1 0.3 0.7
200,000 0.1 0.9 2.6
300,000 0.1 1.6 5.5
400,000 0.2 2.9 9.5
500,000 0.2 3.8 14.6
600,000 0.2 5.2 20.6
700,000 0.3 6.6 27.8
800,000 0.3 8.3 35.5
900,000 0.4 10.2 44.6
1,000,000 0.4 12.2 54.4
1,100,000 0.5 14.1 65.3
1,200,000 0.6 16.3 77.6
1,300,000 0.6 18.7 90.0
1,400,000 0.6 21.4 103.0
1,500,000 0.7 23.7 118.3
1,600,000 0.7 26.5 134.0
1,700,000 0.8 29.5 150.4
1,800,000 0.8 32.8 167.8
1,900,000 0.9 35.6 187.3
2,000,000 0.9 38.9 205.2

Table 2: Execution time by string length for thash, tcalc and tlist.

File name thash [s] tlist [s] tcalc [s]
Mansfield Park (905,074 bytes) 0.7 94.3 114.9
Ulysses (1,560,001 bytes) 1.3 343.7 394.6
The King James Bible (4,445,260 bytes) 3.4 1020.9 1956.5

Table 3: Execution time comparison for thash, tcalc and tlist.

– Mansfield Park by Jane Austen, 905074 bytes plain text

– Ulysses by James Joyce, 1560001 bytes plain text

– The King James Bible, 4445260 bytes plain text

Our comparison showed that our new algorithm performs much faster than
the previous algorithm in every aspect.

1099Yang J., Speidel U.: A Fast T-decomposition Algorithm

5 Conclusion

An efficient T-decomposition algorithm is desirable because it permits the anal-
ysis of large strings. However, real-time analysis and the analysis of very large
strings have in the past been hampered by well-above-linear execution times. In
all our experiments to date, thash executes with almost linear time for most
strings of practical lengths. T-decomposition processing for large data sets is
thus feasible. The new algorithm also opens the path for T-decomposition to
be applied in real time data processing situations. The concept of de-crowding
the string/hash lists will be further pursued in an upcoming paper by the au-
thors [Yang and Speidel 2005]. It proposes a replacement for thash which can
be shown to execute in O(|x| log |x|) and achieves a further significant practical
speed-up compared to thash.

Acknowledgements

We would like to thank Mark Titchener for his constructive comments and for
suggesting the use of his calibrated files for the comparative testing. We are also
indebted to the anonymous referees for their extensive constructive comments,
and to Cris Calude for saving us from the pitfalls of modern e-mail traffic.

References

[Ebeling et al. 2001] W. Ebeling, R. Steuer, and M. R. Titchener: Partition-Based En-
tropies of Deterministic and Stochastic Maps, Stochastics and Dynamics, 1(1), p.
45., March 2001.

[Guenther et al. 1997] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener:
Representing Variable-Length Codes in Fixed-Length T-Depletion Format in En-
coders and Decoders, Journal of Universal Computer Science, 3(11), November 1997,
pp. 1207–1225. http://www.iicm.edu/jucs 3 11.

[Guenther 1998] U. Guenther: Robust Source Coding with General-
ized T-Codes. PhD Thesis, The University of Auckland, 1998.
http://www.tcs.auckland.ac.nz/~ulrich/phd.pdf.

[Gutenberg 2004] Project Gutenberg, http://www.gutenberg.net/.
[Jenkins 2004] Bob Jenkins’ Web site: http://burtleburtle.net/bob/hash/doobs.html.
[Nicolescu 1995] R. Nicolescu: Uniqueness Theorems for T-Codes. Technical Report.

Tamaki Report Series no.9, The University of Auckland, 1995.
[Nicolescu and Titchener 1998] R. Nicolescu and M. R. Titchener, Uniqueness Theo-

rems for T-Codes, Romanian Journal of Information Science and Technology, 1(3),
March 1998, pp. 243–258.

[Partow 2004] Arash Partow’s Web site: http://www.partow.net/programming/
hashfunctions.

[Speidel 2000] Ulrich Speidel: Similarity Searches Using a Recursive String Parsing
Algorithm, Supplemental Papers for the 2nd International Conference on Uncon-
ventional Models of Computation, UMC2K, Brussels, December 13 - 16, 2000, page
54.

1100 Yang J., Speidel U.: A Fast T-decomposition Algorithm

[Titchener 1993] M. R. Titchener: Unequivocal Dodes: String Complexity and Com-
pressibility (Tamaki T-code project series), Technique report, Computer Science
Dept., The University of Auckland, August, 1993.

[Titchener and Wackrow 1995] M. R. Titchener and S. Wackrow: T-CODE Software
Documentation (Tamaki T-code project series), Technique report, Computer Science
Dept., The University of Auckland, August, 1995.

[Titchener 1996] M. R. Titchener: Generalized T-Codes: an Extended Construction
Algorithm for Self-Synchronizing Variable-Length Codes, IEE Proceedings – Com-
puters and Digital Techniques, 143(3), June 1996, pp. 122-128.

[Titchener 1998a] M. R. Titchener, Deterministic computation of string complexity,
information and entropy, International Symposium on Information Theory, August
16-21, 1998, MIT, Boston.

[Titchener 1998b] M. R. Titchener: A Deterministic Theory of Complexity, Informa-
tion and Entropy, IEEE Information Theory Workshop, February 1998, San Diego.

[Titchener 1998c] M. R. Titchener, A novel deterministic approach to evaluating the
entropy of language texts, Third International Conference on Information Theo-
retic Approaches to Logic, Language and Computation, June 16-19, 1998, Hsi-tou,
Taiwan.

[Titchener 2000] M. R. Titchener: A measure of Information, IEEE Data Compression
Conference, Snowbird, Utah, March 2000.

[Titchener et. al. 2005] M. R. Titchener and A. Gulliver and R. Nicolescu and U.
Speidel and L. Staiger: Deterministic Complexity and Entropy, FUINE 64(1-4)1-
482(2005), IOS Press.

[Wackrow and Titchener 1998] S. Wackrow and M. R. Titchener (with some
minor additions by U. Guenther): tcalc.c, written in C, available from
http://tcode.tcs.auckland.ac.nz/~mark/, under the GNU GPL.

[Weisstein 2004] Eric Weisstein’s Web site: http://mathworld.wolfram.com/
LogisticMap.html, also known as mathworld.

[Yang and Speidel 2003a] Jia Yang and Ulrich Speidel: tlist.c, written in C, available
on request from the authors, under the GNU GPL.

[Yang and Speidel 2003b] Jia Yang, Ulrich Speidel: An Improved T-decomposition Al-
gorithm, 4th International Conference on Information, Communications & Signal
Processing, Fourth IEEE Pacific-Rim Conference On Multimedia, Singapore, De-
cember 2003. Proceedings. Vol.3, pp. 1551 - 1555.

[Yang and Speidel 2003c] Jia Yang, Ulrich Speidel: T-information: A New Measure for
Similarity Comparison, DMTCS 2003, December 2003 (Dijon, France, July 2003).
Supplemental papers, pp. 29-39.

[Yang and Speidel 2005] Jia Yang, Ulrich Speidel: A T-decomposition algorithm with
O(n log n) time and space complexity, to appear in Proceedings of the 2005 IEEE
International Symposium on Information Theory (ISIT2005), Adelaide, Australia,
September 2005.

1101Yang J., Speidel U.: A Fast T-decomposition Algorithm

