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Abstract

Understanding the process of categorization is a
primary research goal in artificial intelligence. The
conceptual space framework provides a flexible ap-
proach to modeling context-sensitive categoriza-
tion via a geometrical representation designed for
modeling and managing concepts.
In this paper we show how algorithms developed
in computational geometry, and the Region Con-
nection Calculus can be used to model important
aspects of categorization in conceptual spaces. In
particular, we demonstrate the feasibility of using
existing geometric algorithms to build and manage
categories in conceptual spaces, and we show how
the Region Connection Calculus can be used to rea-
son about categories and other conceptual regions.

1 Introduction

Categorization is a fundamental cognitive activity. The abil-
ity to classify and identify objects with a high degree of ex-
ception tolerance is a hallmark of intelligence, and an essen-
tial skill for learning and communication. Understanding the
processes involved in constructing categories is a primary re-
search goal in artificial intelligence.

The conceptual space framework as developed by
Gärdenfors [2000] provides a flexible approach to model-
ing context-sensitive categorization. Conceptual spaces are
based on a simple, yet powerful, geometrical representation
designed for modeling and managing concepts.

In this paper we show how algorithms developed in com-
putational geometry, and the Region Connection Calculus
(RCC) [Cohnet al., 1997], a well known region-based spa-
tial reasoning framework, can be used to model important as-
pects of categorization in conceptual spaces. In particular, we
demonstrate the feasibility of using existing geometric algo-
rithms to build and manage categories in conceptual spaces,
and we show how the RCC can be used to reason about cate-
gories and other conceptual regions.

∗This paper appeared in theProceedings of the Fourteenth Inter-
national Joint Conference of Artificial Intelligence, Morgan Kauf-
mann, 385 - 392, 2001.

2 Conceptual Spaces
Conceptual spaces provide a framework for modeling the for-
mation and the evolution of concepts. They can be used to
explain psychological phenomena, and to design intelligent
agents [Chellaet al., 1998; G̈ardenfors, 2000]. For the pur-
poses of this paper conceptual spaces provide the necessary
infrastructure for modeling the process of categorization.

Conceptual spaces are geometrical structures based on
quality dimensions. Quality dimensions correspond to the
ways in which stimuli are judged to be similar or different.
Judgments of similarity and difference typically generate an
ordering relation of stimuli, e.g. judgments of pitch gen-
erate a natural ordering from “low” to “high” [G̈ardenfors,
2000]. There have been extensive studies conducted over
the years that have explored psychological similarity judg-
ments by exposing human subjects to various physical stim-
uli. Multi-dimensional scaling is a standard technique that
can be used to transform similarity judgments into a concep-
tual space [Krusal and Wish, 1978]. An interesting line of
inquiry is pursued by Balkenius [1999] who attempts to ex-
plain how quality dimensions in conceptual spaces could ac-
crue from psychobiological activity in the brain.

In conceptual spaces objects are characterized by a set of
attributes or qualities{q1, q2, ..., qn}. Each qualityqi takes
values in a domainQi. For example, the quality of pitch (or
frequency) for musical tones could take values in the domain
of positive real numbers. Objects are identified with points in
the conceptual spaceC = Q1 x Q2 x . . . Qn, and concepts are
regions in conceptual space.

In the definition above we use the standard mathematical
interpretation of “domain”. In [G̈ardenfors, 2000] however,
a domain is defined to be a set ofintegral dimensions, this
interpretation is consistent with its use in the psychology lit-
erature. For example, pitch and volume constitute the integral
dimensions of sounds discernible by the human auditory per-
ception system. Integral dimensions are such that they cannot
be separated in the perceptual sense. The ability to bundle up
integral dimensions as a domain is an important part of the
conceptual spaces framework. Domains facilitate the shar-
ing and inheritance of integral dimensions across conceptual
spaces.

For the purpose of this paper, and without loss of general-
ity, we often identify a conceptual spaceC with Rn, but has-
ten to note that conceptual spaces do not require the full rich-



ness ofRn. Domains can be continuous or discrete1. They
can also be based on a wide range of geometrical structures,
for example, according to psychological evidence the human
colour perception system is best represented using polar co-
ordinates2 [Gärdenfors, 2000].

For the purpose of problem solving, learning and commu-
nication, agents adopt a range of conceptualizations using dif-
ferent conceptual spaces depending on the cognitive task at
hand.

Similarity relations are fundamental to conceptual spaces.
They capture information about the similarity judgments. In
order to model some similarity relations we can endow a con-
ceptual space with a distance measure.

Definition 1 A distance measured is a function fromC x C
into T whereC is a conceptual space andT is a totally or-
dered set.

Distance measures lead to a natural model of similarity; the
smaller the distance between two objects in conceptual space,
the more similar they are. The relationship between distance
and similarity need not be linear, e.g. similarity may decay
exponentially with distance.

The properties of connectedness, star-shapedness and con-
vexity of regions in conceptual spaces will prove useful
throughout.

Definition 2 A subsetC of a conceptual space is:

(i) connectedif for every decomposition into the sum of two
nonempty setsC = C1 ∪ C2, we haveC̄1 ∩ C2 ∪ C1 ∩
C̄2 6= ∅whereC̄ is the closure ofC. In other words,C is
connected if it is not the disjoint union of two non-empty
closed sets.

(ii) star-shaped with respect to a pointp (referred to as a
kernel point) if, for all points x in C, all points between
x andp are also in C.

(iii) convex if, for all pointsx andy in C, all points between
x andy are also in C.

Definition 3 Thekernel of a star-shaped regionC is the set
of all possible kernel points, and will be denotedkernel(C).

Connectedness is a topological notion, whilst star-
shapedness and convexity rely only on a betweenness rela-
tion. A qualitative betweenness relation can be specified in
terms of a similarity relation,S(a, b, c), which says thata is
more similarb than it is toc. Alternatively, a betweenness
relation can be used as primitive, and axioms introduced to
govern its behaviour [Borsuk and Szmielew, 1960]. In the
special case where the distance measure is a metric, the be-
tweenness relation can be defined as: “b is betweena andc”
if and only if d(a, b) + d(b, c) = d(a, c).

Convex regions are star-shaped, and in many topological
settings star-shaped regions are connected. The kernel of a
convex region is the region itself, and under the Euclidean
metric kernels are convex.

1They can even be small and finite e.g.{male, female}.
2A scientific representation of colour would require a different

representation however, one that captures important scientific fea-
tures of the electromagnetic spectrum such that the wave properties
of wavelength and amplitude constitute integral dimensions.

Constraints like connectedness, star-shapedness and con-
vexity can be used to impose ontological structure on the cat-
egorization of the conceptual space, i.e. not any old region
can serve as a category. In fact, there is compelling evidence
thatnatural propertiescorrespond to convex regions in con-
ceptual space, and using the idea of a natural property in this
way Gärdenfors [2000] is able to sidestep the enigmatic prob-
lems associated with induction.

In section 4 we show how categorization, the central theme
of this paper, occurs in conceptual spaces, but first we briefly
describe the RCC.

3 Region Connection Calculus
The RCC is a qualitative approach to spatial reasoning. It was
developed in an attempt to build a commonsense reasoning
model for space, and its remarkable utility has been illustrated
in numerous innovative applications [Cohnet al., 1997].

The RCC approach is region-based where spatial regions
are identified with their closures. The RCC is based on a con-
nection relation,C(X, Y ), which stands for “regionX con-
nects with regionY ”. The connection relation,C, is reflexive
and symmetric. Despite the fact that the basic building blocks
in the RCC are regions,C can be given a topological interpre-
tation, namelyC(X, Y ) holds when the topological closures
of regionsX andY share at least one point.

The RCC framework comprises several families of binary
topological relations. One family, the RCC5 fragment uses
the following Jointly Exhaustive and Pairwise Disjoint base
relations to describe the relationship between two regions (see
Figure 1);DR (discrete),EQ (identical),PP (proper part),
PP−1(inversePP ), andPO (partial overlap).
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Figure 1:The base relations in RCC5.

Boundaries of regions are not distinguished in RCC5; there
is no difference between two regions being totally discon-
nected and externally connected, and no difference between
a proper part tangentially connected to the boundary and a
proper part disconnected from the boundary. Another frag-
ment, RCC8, possesses base relations that can make these
distinctions.

In this paper our interests lie in similarity based categoriza-
tion, and we use RCC5 to illustrate how the RCC can be used
to represent conceptual regions. Extending to a more expres-
sive mereotopological language to reason about the adjacency
of categories, for example, is straightforward, and it can be
done at no extra computational cost.

Transition tables can be used to perform reasoning about
relationships between regions in RCC5 and RCC8. It is
known that there is no complete first order finite axiomatiza-
tion of topology. Nebel [1995] showed that propositional rea-
soning in RCC5 and RCC8 is NP-Hard, and Renz and Nebel



[1999] identified a maximal tractable subset of relations that
contain all the base relations. Efficient implementations in
Prolog have been constructed using a zero-order intuitionistic
logic [Bennett, 1997].

The RCC can be used to represent spatial regions and to
reason about them in any dimension, provided that all spa-
tial entities possess precisely the same number of dimensions.
It can also represent regions composed of multiple (spatially
distinct) parts, but it cannot represent null regions.

In this paper we use the RCC to reason about spatial re-
lationships between conceptual regions, and to model the in-
determinacy of conceptual regions. The original formulation
of the RCC concerned regions with crisp well-defined bound-
aries, but later Cohn and Gotts [1996] extended the RCC to
handle indeterminate vague regions that could be “crisped”
into less vague regions. We describe this crisping relation in
more detail in section 5.2.

4 Categorization in Conceptual Spaces
4.1 Prototypes and Categorical Perception
A categorization results in a partitioning of a conceptual
space into (meaningful) subregions. The geometrical nature
of conceptual spaces coupled with representations for proto-
types and the ability to manipulate dimensions independently
of one another ensures that they provide a highly flexible and
practical representation of context-sensitive categorization.

Within each category certain members are judged to be
more representative than others [Rosch, 1975]. The most rep-
resentative members of a category areprototypes. There is a
wealth of psychological data supporting the existence of pro-
totypes and their key role in categorization. Typically human
performance experiments are used to determine how well,
and how quickly humans can classify, label, rank or com-
pare objects. Experimental results consistently show that the
ease of classification varies with how similar an object is to a
prototype. Furthermore, the more similar a nonmember is to
the prototype, the more difficult it is to exclude. It has been
shown, for example, that the reaction time recognizing that a
robin is a bird is shorter than identifying a penguin as a bird
regardless of whether the stimulus is the name or an image.

It is evident from experiments that humans make judg-
ments about the degree of resemblance to a prototype during
classification and identification; a robin is judged as a more
prototypical bird than a penguin [Harnad, 1987]. A prototype
consists of features of either a typical, or ideal category mem-
ber, rather than invariant features common to every member.
For example, a prototype of a category can be thought of as
an amalgam of the characteristic attributes of its category’s
exemplars3.

Classifying an object using prototypes is accomplished by
determining its similarity to a prototype. Instances above
somethresholdof similarity to the prototype are taken as cat-
egory members, all other instances are nonmembers.

Prototypes are central to the representation and process-
ing of categories. People classify, generate, acquire, and rea-
son about typical exemplars faster and more accurately than

3Exemplars are previously perceived examples of objects in a
category.

atypical exemplars. They also produce stronger inductive in-
ferences with typical exemplars than with atypical exemplars
[Hampton, 1993].

It is widely accepted on the basis of empirical psychologi-
cal experiments that people sometimes judge membership of
categories as graded. The existence of graded concepts sup-
ports the notion ofcontinuous perception. The gradedness of
category membership can be used to determine how closely
an object resembles a prototype and can naturally be deter-
mined from the underlying similarity judgments.

Psychological evidence also suggests that people distin-
guish stimuli along a physical continuum much better when
the stimuli are from different categories than when they are
from the same category. This phenomenon is calledcategori-
cal perception[Harnad, 1987], and is manifested in the ability
to discriminate stimuli with more ease and accuracy between
categories than within them. When categorical perception is
at work, stimuli related to a specific category are perceived as
indistinguishable, whereas stimuli from a “nearby”category
are perceived to be entirely different. This phenomenon has
been found in the way humans process sounds in speech.
In color perception, for example, different shades of green
are perceived to be more similar than green and yellow even
though the wavelength differences are no larger. In other
words, the psychophysical relationship between the physical
intensity of a stimulus and the psychological intensity of the
ensuing sensation is related to the categorization. Categorical
perception has also be found in primates, other than humans
[May et al., 1989].

It is also well known that similarity judgments crucially de-
pend on the context in which they occur for both continuous
and categorical perception. It turns that certain features of
objects and concepts are more salient for a particular catego-
rization (for both classification and identification) depending
on the context. The classic example is that a robin is a proto-
typical bird, but a canary is a prototypical pet bird.

In summary the key findings from psychological studies of
categorization are (i) similarity judgments play a fundamen-
tal role in categorization and they are context sensitive, (ii)
the degree of similarity is judged with respect to a reference
object/region such as a prototype, (iii) category membership
can be graded (discrete membership, if and when it exists, is
considered to be a special case), and (iv) the psychophysical
relationship between the stimulus and the response depends
on the underlying categorization.

4.2 A Mechanism for Building Categories

In this section results in computational geometry are applied
to categorization in conceptual spaces. We provide computa-
tional evidence for categorization based on prototypes, rather
than appealing to the usual intuitive arguments found in the
psychology literature derived from facts like the presentation
of prototypes enhances learning. It can be shown, for exam-
ple, that the conceptual space model predicts that it is easier
to learn categories in which the natural prototype is central
to a set of variations than it is to learn categories in which
the prototype occurs as a peripheral member, as observed by
Rosch [1975].



The main idea is that Voronoi tessellations around proto-
types can be used to determine the threshold of similarity that
forms category boundaries. In other words, the prototypes
and the underlying similarity relation can be used to tessel-
late a conceptual space into categories.

Definition 4 A Voronoi tessellation in conceptual space is
given by the triple∆(P, d, C) whereP is a set of distinct gen-
erator points{p1, p2, . . . , pm}, d is a distance measure onC
a conceptual space. We define the tessellated regionsc(pi) to
be {x|d(pi, x) ≤ d(pj , x) for j = 1, 2, . . . , m}, and we call
c(pi) the category generated bypi.

A Voronoi tessellation divides a conceptual space accord-
ing to thenearest-neighbor rulewhich says each point/object
in the space is associated with the prototype closest to it. This
results in prototypes being centrally located in their category.

The Euclidean metric is a basic distance measure:
the Euclidean distanced(x, p) between two pointsx =
(x1, x2, . . . , xn) andp = (p1, p2, . . . , pn) in Rn is calculated

as
√∑n

j=1(xj − pj)2. If the underlying distance measure is

the Euclidean metric, then the resultant categoriesc(pi), are
convex, and hence star-shaped with respect topi. If the dis-
tance measure is the Manhattan or the supremum metric, then
the generated categories are not necessarily convex, but are
star-shaped with respect topi. In fact, it can be shown that if
x is betweeny andpi is defined asd(pi, x)+d(x, y) = d(pi, y)
and the distance measure satisfies the triangle inequality, then
the generated categories are star-shaped with respect topi.

Star-shapedness with respect to a prototypep is a desirable
property for categories: if a categoryc(p) is not star-shaped
with respect top, then there is an objectx that is betweenp
and somey ∈ c(p) but x 6∈ c(p).
Definition 5 A well behaved categorizationin conceptual
space produces regions which are star-shaped with respect
to their prototype region and contain their central prototype.

A Voronoi tessellation encapsulates the entire proximity in-
formation about the set of prototypes in a computationally
compact fashion. Voronoi diagrams in the plane can be com-
puted inO(n log n) worst-case optimal time usingO(n)
space [Okabeet al, 2000], and in d-dimensions ford > 3
in O(ndd/2e) worst-case optimal time [Klee, 1980].

Once constructed Voronoi tessellations can be used to: (i)
identify the category of arbitrary objects in logarithmic query
time without increasing the storage space - this is asymp-
totically optimal since it matches the information theoreti-
cal lower bound [Auberhammer, 1991], and (ii) compute the
smallest enclosing sphere containingn prototype points in
O(n log n) worst-case optimal time [Auberhammer, 1987].
Furthermore, a prototype can be added or deleted to a Voronoi
tessellation inO(n) time, and two Voronoi tessellations can
be merged inO(n) time.

It is interesting to note that classical techniques and algo-
rithms for information retrieval and cluster analysis are re-
lated to Voronoi tessellations. In fact, Voronoi tessellations
have been used to construct robust approximate solutions to
well known NP-complete information retrieval problems, i.e.
acceptable approximate solutions can be found inO(n log n)
time [Okabeet al, 2000].

Much experimental psychological data concords with the
idea of tessellating conceptual spaces into star-shaped (and
sometimes convex) regions around prototypes or exemplars,
e.g. stop consonants in phoneme classification [Petitot,
1989], other examples can be found in [Gärdenfors, 2000].

Not only do Voronoi tessellations generated by prototypes
support the prototype model of categorization, but the gen-
erated boundaries provide a threshold of similarity and sup-
port a mechanism which can explain categorical perception.
The precise mechanism involves crisping the distance mea-
sure and is described in Section 5.2.

4.3 Generalized Voronoi Tessellations
In this section we discuss some useful extensions of the ba-
sic Voronoi tessellation model. Ordinary Voronoi tessella-
tions give rise to ideal categorizations, in the sense that crisp
boundaries are generated from a single prototype. We gener-
alize the definition so as to generate categories from concep-
tual regions rather than specific prototype points.

Definition 6 A generalized Voronoi tessellation is given by
the triple ∆(P, d, C) whereP is a set of generator regions
{P1, P2, . . . , Pm}, d is a distance measure onC a concep-
tual space. We define the tessellated regionsc(Pi) to be
{x|d(Pi, x) ≤ d(Pj , x) for j = 1, 2, . . . , m}, and we call
c(Pi) the category generated by the regionPi.

We contrast two distance measures for generalized Voronoi
categorizations; theadditively weighted distanceand the
power distance4. The additively weighted Voronoi diagram
is typically used to model the growth of biological cells, and
can be used to model the growth of concepts also. The power
distance, on the other hand, is best suited to handle indeter-
minacy and exemplar variability.

An additively weighted distance between a pointx and a
sphereP ∈ P in Rn with weightw(P ), denotedd(x, P ), is
defined asd(x, p) − w(P )) whered(x, p) is the Euclidean
distance betweenx andp the center ofP . A common way
to define the additively weighted distance between a pointx
and a sphereP is to takew(P ) as the radiusrp of P , i.e.
d(x, P ) = d(x, p) − rp, which can naturally be interpreted
as the shortest distance between the pointx and the surface
of the sphereP , see Figure 2(a). The resulting tessellation
is called the Euclidean weighted Voronoi diagram. A point
x lies on or inside the sphereP if and only if d(x, P ) ≤ 0.
Okabeet al. [2000] proved that the bisector of a Euclidean
weighted Voronoi diagram is either a hyperbolic surface or
a hyperplane, and that the generated regions are connected
and star-shaped with respect to its generator sphere inRn.
This result also holds for the Manhattan and the supremum
metrics.

One way to obtain convex regions (with straight line bisec-
tors) is to use the power distance (also known as the Laguerre

distance):d(x, P ) =
√

d(x, p)2 − r2
p. Whenx is outside the

sphereP centered onp the distance fromP to x is given by
the length of the tangent fromP to x. The power distance and
power bisector are illustrated in Figure 2(b) and (c), respec-
tively.

4A related, but different, measure is used by Gärdenfors [2000].



The size of a particular prototype’s radius relative to the
surrounding prototype regions reflects its ability to influence
its neighborhood. The magnitude of the radius can be related
to the actual size of the category, the variability among the
exemplars5, or the correlation of qualities.

Definition 7 We define apower categorizationto be a gen-
eralized Voronoi tessellation∆(P, d, C) generated by a set of
prototype regionsP using the power distance.

If the radii of the generator spheres are zero or equal in
size, then the power categorization will be equivalent to the
categorization based in the ordinary (point-based) Euclidean
Voronoi tessellation.

Figure 2:The Euclidean and the power distance measures.

The worst-case time complexity for the construction of the
power categorization is no worse than that for the ordinary
Voronoi diagram. Sometimes the structure of the space can
be exploited, which means that the actual computational time
can be dramatically lowered. Voronoi tessellations are used
in a wide range of applications and domain constraints can
be used to improve algorithms, typically linear time can be
expected, e.g. linear time can be expected if the generating
spheres/points are uniformly distributed [Dwyer, 1987].

Parallel algorithms have also been developed [Auberham-
mer 1991] which construct Voronoi diagrams inO(log n)
time usingO(n) processors.

It turns out that for power categorizations, if a generator
sphereP1 is a proper part of another generator sphereP2 then
the generated categoryc(P1) will not contain the center of the
generator regionP1, and a well-behaved categorization will
not be produced. For example, using the genericbird and the
robin prototype regions in Figure 3 to generate a power cate-
gorization would not result in a well behaved categorization;
sincePP (robin, bird), it turns out thatrobin 6∈ c(robin) in
the power categorization.

RCC5 can be used to ensure that generating spheres are not
proper parts of other generating spheres, and hence can play
a role in the categorization process itself, by determining the
legitimate spheres to use as generators.

Finally, we define the notion of a bounded tessellation
which provides a useful mechanism for selecting conceptual
regions to focus on for conceptual spatial reasoning and cate-
gorization.

5The standard deviation of the exemplars from the prototype
could be used [G̈ardenfors, 2000]. In the bird conceptual space the
standard deviation of birds is larger than that of emus, so we might
expect the sphere that generates the bird category to be larger than
that used for emus as in Figure 3.

Definition 8 Given a generalized Voronoi tessella-
tion ∆(P, d, C) where the categories are generated
by P = {p1, p2, ..., pn} define the Voronoi tessella-
tion bounded by a regionS, denoted byC∩S , to be
{c(p1)∩S, c(p2)∩S, ..., c(pn)∩S}. We denote the bounded
categoriesc(pi) ∩ S by c∩S(pi).

A bounded Voronoi diagram may be disconnected if every
boundary region is not star-shaped with respect to its genera-
tor point [Okabeet al., 2000].

5 Reasoning about Categories
Concept management involves categorization, concept ac-
quisition, concept formation and conceptual change. Cog-
nitive processes such as learning and communication impel
and guide concept management. In the previous section we
showed how conceptual spaces provide a rich and computa-
tionally effective representation for categorization based on
prototype regions, and in this section we show that the RCC
machinery can be used to reason about categories and to de-
scribe other aspects of concept management.

5.1 Determining Spatial Relationships
The RCC can be used to determine the relative configura-
tion of conceptual regions such as categories, concepts, pro-
totypes, and exemplars. For example we can determine: (i)
if the smallest region containing all the prototypes is a proper
part of a given category, (ii) if some category overlaps another
category e.g.PP (c(robin), c(bird)), (iii) if the region con-
taining all the prototypes contains all the exemplars, and (iv)
if a category’s kernel contains a specific region.

As an example let us consider the conceptual spaces de-
scribed in Figure 3, below.

Figure 3: Prototype regions in animal space, reptile crisp-
ings, & the power categorization of bird, mammal &reptile.

Using RCC5 we can describe the following spatial relation-
ships:

DR(bird, penguin), PP (robin, bird),
PO(c(robin), bird), PO(c(robin), kernel(c(bird))),
PO(archaeopteryx, c(reptile)),
PO(archaeopteryx, c(bird)),
DR(c(archaeopteryx), c(mammal)),
DR(emu, penguin),
DR(c(archaeopteryx), c(mammal)),
DR(c(robin), c(bat)), andDR(c(robin), c(platypus))



The RCC, including the egg-yolk theory, allows discon-
nected regions, i.e. multi-pieced regions, so it supports the
construction of arbitrarily complex concepts. For conceptual
spaces that means one can juxtapose disconnected concepts to
form eclectic ones, e.g. penguins and emus (nonflying birds),
and build new concepts from existing ones. Within a sin-
gle category the set of prototypes would in some applications
be better modeled by a multi-pieced region rather than as a
connected region such as the smallest surrounding sphere, or
convex hull. In Section 5.3 we show that being able to model
multi-pieced regions is important to support nonmonotonic
reasoning.

For some applications it will be necessary to impose vari-
ous ontological constraints on interrelated categories. In par-
ticular, it may be important to enforce consistency across the
different levels of granularity so that the tessellated regions
at one level are identical to the union of tessellated regions
at lower levels:c(p) =

⋃
s⊆c(p) c(s) wheres are subcate-

gories ofc(p). This constraint is present in many software
engineering applications, and made explicit in data modeling
techiques. One way to model this constraint in a computa-
tionally efficient manner (without distorting the underlying
similarity relation) is to bound tessellations within categories.
It is important to note here that∆(P, d, C∩S) is not identical
to ∆(P, d, S) in general, so bounding a conceptual space be-
fore or after the tessellation can, and typically will, result in a
different categorization. For example, if the conceptual space
parameters remain fixed then it would seem reasonable that
the bird category region be the same regardless of whether
the generator is the prototypical bird or the set of all pro-
totypical birds at a lower level of granularity. In Figure 3
c(bird) can be tessellated independently ofc(reptile) and
c(mammal), so thatc(bird) = c(robin) ∪ c(penguin) ∪
c(emu) ∪ (c∩c(bird)(archaeopteryx)). In other words, the
generated subcategories ofc(bird) are bounded byc(bird).

Other applications may possess weaker ontological re-
quirements such as: If the prototype regionP1 is a subre-
gion of the prototype regionP2 thenc(P1) ⊆ c(P2). This
condition also places constraints on the way that a Voronoi
tessellation can be generated across the levels of granularity,
and is satisfied byrobins andbirds in Figure 3.

5.2 Crisping Conceptual Spaces
As noted in section 3 the RCC was extended by introduc-
ing an irreflexive, asymmetric and transitive binary relation
X < Y read as “X is crisper thanY ”, or “Y is a blurring of
X”. Cohn and Gotts also developed what has become known
as the “Egg-Yolk Theory”for modeling indeterminate spatial
regions. Anegg is composed of two regions with definite
boundaries; theyolk being a proper part of the egg. The egg
and its yolk define the upper and lower bounds, respectively,
on the range of indeterminacy of the region.

In this section we show how the crisper relation< can be
defined and the egg-yolk representation can be used to reason
about categories and other conceptual regions.

A crisper relation in conceptual space can be constructed
in a multitude of ways. One straightforward method is to
use the proper part relation, PP, i.e.X < Y if and only if
PP (X,Y ). Figure 3 also illustrates some potential crispings

of thereptile category; a set of concentric spheres bounded
by c(bird) andc(mammal). These crispings could be gener-
ated in numerous ways, e.g. using prespecified degradations
in the distance measure, or by using the exemplars where each
successive blurring captures another exemplar.

Given a conceptual space and a crisper relation we can
build a vast range of useful queries using the RCC such as
“Does a conceptual region constitute a crisping/blurring of
another region?” “Does crisping a particular domain change
the classification of a specific object?”, “Does every category
contain its prototype crisping?” and so forth.

As an example let us consider the conceptual space in Fig-
ure 3 where the crisper relation is based onPP . We have the
following:

penguin < c(penguin) < kernel(c(bird)) = c(bird)
robin < bird androbin < c(robin) < c(bird)
emu < c(emu) < c(bird)
bat < c(bat) < c(mammal)
platypus < c(platypus) < c(mammal)

Other relations describing the relationships between inde-
terminate regions can be constructed from the crisper relation
< such ascrisp(X) which is defined as “there does not exist
aY such thatY < X”, andMA(X,Y ) which holds whenX
andY are mutually approximate, i.e. they possess a common
crisping [Cohnet al., 1997]. From the conceptual space in
Figure 3 we can say:

Crisp(robin), Crisp(mammal),
Crisp(archaeopteryx ∩ C(bird)), Crisp(penguin),
¬Crisp(bird),¬Crisp(kernel(bird)),¬Crisp(c(reptile)),
MA(c(penguin), c(bird)), MA(robin, bird),
MA(archaeopteryx, c(bird)),
MA(archaeopteryx, c(reptile)),

The RCC framework provides a number of axioms that
govern the crisping relation in different kinds of applications.
For example, there are axioms that ensure the existence of a
complete crisping of any region, and the existence of alterna-
tive crispings and blurrings.

Crispings can play a role in the process of categorization
itself; they can define regions to be used to generate tessel-
lations. For example, in Figure 4, below, the bisector shifts
towards the sphereP1 with centerp1 and radiusr if P1 is
crisped to a smaller sphereP ′1 with radiusr′. This crisping
can be modeled precisely; the bisector betweenP1 and Pi

moves by distance(r − r′)/2d(p1, pi) towardsp1 in parallel
to its previous location. So it is easy to show thatP ′1 < P1 if
and only ifc(P ′1) < c(P1), i.e. a local crisping (blurring) of
a prototype region crisps (blurs) its category, and conversely.

In well behaved categorizations one can construct an egg
yolk system using the kernel of each category. The yolk of
the prototype regionP1 can be given by the largest sphere en-
closed bykernel(c(P1)), sayprotoyolk, and the egg can be
given by the smallest sphere circumscribingkernel(c(P1)),
sayprotoegg. This egg-yolk prototype system can then be
used to generate the corresponding egg-yolk category system:
c(protoyolk) andc(protoegg).

Finally we extend the notion of crisping to distance mea-
sures to capture categorical perception; the observed phenom-



Figure 4:Crisping a prototype crisps the category.

ena where category members are judged to be more similar
than members and nonmembers immediately across category
boundaries. For example, thedistance measured′ is a crisp-
ing of distance measured where

d′(a, b) =
{

k(d(a, b)) if a, b ∈ c(P ) for someP
d(a, b) otherwise

for some0 ≤ k < 1.
In the limit we haved′(a, b) is 0 if a andb are in the same

category andd(a, b) otherwise. Categorical perception, and
hence crisping a distance measure, represents a form of learn-
ing. Our definition can be extended in numerous ways and the
similarity relation derived from a crisped distance measure
can easily be given a wide variety of threshold behaviours.

5.3 Nonmonotonicity and Concept Management
In this section we highlight the nonmonotonic effects of
changing context, and show how conceptual spaces can be
used as an underlying model from which more traditional
nonmonotonic reasoning formalisms can be derived.

Nonmonotonic changes to the categorization can arise in
several ways: (i) byfocusingon a region, (ii) bymodify-
ing the underlying conceptual space, or (iii) bychangingthe
mapping of objects to conceptual regions.

Focusing on a Region
Focusing can be accomplished by changing the dimension
weights, by crisping a region, bounding a region, or combin-
ing regions.

As noted earlier categorization is context-sensitive. In
conceptual spaces context-dependence is modeled using
weighted dimensions. For example, weighting the distance
measure along the x-axis results in a different categorization
via the Voronoi tessellation such that objects change cate-
gories. Technically this is achieved by multiplying the spe-
cific dimensions by a given weight where the weight reflects
its salience. For instance, under the Euclidean metric a weight
can be placed on dimensioni as follows:

√∑
i wi(xi − pi)2.

Weighting specific dimensions gives rise to a nonmonotonic
crisping relation whereX < Y does not implyPP (X,Y );
some regions will contract in size others will dilate. In Figure
5, below, the quality dimension represented by the x-axis in
(a) becomes more salient and is elongated causing the object
”q” to be reclassified in (b).

Figure 5:Changed categorization due to a change in context.

Modifying the underlying Conceptual Space
The underlying conceptual space can be modified by adding
and deleting exemplars or prototypes, changing the distance
measure, changing the function relating the distance measure
to similarity, or changing the generator prototype regions.

The introduction of exemplars and/or prototypes will
shift the boundaries and create new categorical regions
[Gärdenfors, 2000]. As noted earlier the addition and removal
of prototypes is a fundamental concept management opera-
tion, and can be achieved in linear time in the worst case.

Changing the underlying distance measure or generating
regions will shift boundaries. Merely crisping the distance
measure or modifying the function relating the distance mea-
sure to similarity will not change the underlying categoriza-
tion, but will affect the magnitude of the similarity judgments.

Changing the mapping of objects to regions
Nonmonotonic reasoning formalisms are typically logic
based, and hence symbolic systems. The conceptual space
framework can be used to model nonmonotonic information,
and used to construct nonmonotonic inference rules via the
RCC. Since the conceptual space model is based on the mea-
sure of similarity to prototypes the RCC’s crisper relation can
be used to build representations of minimal models or usual
states of affairs.

Just as specific individual objects are points in conceptual
space, generic (or under specified) objects are (possibly dis-
connected) regions. One might expect that the more generic
or the more unspecified an object, the larger the region used
to represent it.

The generic bird, Tweety, would be represented as a cen-
tral region in bird space, e.g. the prototypebird region. In
which case we would expect Tweety to possess all the fea-
tures common to birds in that region; we expect Tweety to
possess feathers, two legs, wings for flight, a four chambered
heart, and so forth. As we learn more about Tweety we ad-
just the target region used to represent him. If we learn he is
a robin, then he could be remapped to therobin prototype.
On the other hand, if we learn that he is a nonflying bird,
then we may remap him to the prototypepenguin region and
the prototypeemu region which in the example in Figure 3
is a disconnected region, and we still expect Tweety to have
feathers, two legs, and a four chambered heart.

The RCC can represent conceptual regions which are re-



quired to support all concept management for nonmonotonic
reasoning as described above, and as such it forms a natural
bridge from the geometrical conceptual space representation
to the symbolic representation in standard nonmonotonic for-
malisms.

6 Conclusion
We showed how algorithms in computational geometry and
the RCC can be applied to the conceptual space framework.
Categorization in conceptual spaces is achieved via (gener-
alized) Voronoi tessellations based on a similarity relation
which results in a prototype being centrally located in its cat-
egory. An analysis of existing algorithms in computational
geometry established that categorization based on an under-
lying similarity relation which is used to generate Voronoi
diagrams is feasible. Furthermore, once a categorization is
completed concept management tasks like determining the
category of an arbitrary object, adding and deleting proto-
types, and merging categories are computationally fast. For
example, once a classification has taken place the time taken
to identify the category of an arbitrary object is logarithmic,
and the time required to add or delete a prototype is linear.

We demonstrated that the ability to reason about categories
and other conceptual regions using the RCC enhances the
conceptual space model. We showed that the RCC can be
used to construct both monotonic and nonmonotonic reason-
ing systems from the information embedded in the categories
of conceptual spaces, hence the RCC forms a natural bridge
from the geometrical representation of information in con-
ceptual spaces to its symbolic counterpart.

In addition, the RCC provides facilities to determine the
prototype regions from which to generate categories so that
well behaved categorizations are produced.

The crisper relation< and egg-yolk systems can be gen-
erated in conceptual spaces using prototypes and exemplars,
and hence can be used to model the indeterminacy of concep-
tual regions. Interesting properties followed from our con-
structions, for example, we were able to show that crisping a
prototype region locally, leads to the crisping of its category
under the power categorization, and that categorical percep-
tion can be explained by crisping the distance measure on the
conceptual space.
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