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Abstract

Understanding the process of categorization is a
primary research goal in artificial intelligence. The
conceptual space framework provides a flexible ap-
proach to modeling context-sensitive categoriza-
tion via a geometrical representation designed for
modeling and managing concepts.

In this paper we show how algorithms developed
in computational geometry, and the Region Con-
nection Calculus can be used to model important
aspects of categorization in conceptual spaces. In
particular, we demonstrate the feasibility of using
existing geometric algorithms to build and manage
categories in conceptual spaces, and we show how
the Region Connection Calculus can be used to rea-
son about categories and other conceptual regions.
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2 Conceptual Spaces

Conceptual spaces provide a framework for modeling the for-
mation and the evolution of concepts. They can be used to
explain psychological phenomena, and to design intelligent
agents [Chellaet al, 1998; Girdenfors, 2000]. For the pur-
poses of this paper conceptual spaces provide the necessary
infrastructure for modeling the process of categorization.
Conceptual spaces are geometrical structures based on
quality dimensions. Quality dimensions correspond to the
ways in which stimuli are judged to be similar or different.
Judgments of similarity and difference typically generate an
ordering relation of stimuli, e.g. judgments of pitch gen-
erate a natural ordering from “low” to “high” [&denfors,
2000]. There have been extensive studies conducted over
the years that have explored psychological similarity judg-
ments by exposing human subjects to various physical stim-
uli. Multi-dimensional scaling is a standard technique that
can be used to transform similarity judgments into a concep-
tual space [Krusal and Wish, 1978]. An interesting line of
inquiry is pursued by Balkenius [1999] who attempts to ex-

Categorization is a fundamental cognitive activity. The abil-Plain how quality dimensions in conceptual spaces could ac-

ity to classify and identify objects with a high degree of ex- €'U€ from psychobiological activity in the brain.
ception tolerance is a hallmark of intelligence, and an essen- N conceptual spaces objects are characterized by a set of

tial skill for learning and communication. Understanding the@ttributes or qualitiega,, g,, ..., q,,}. Each qualityy; takes
processes involved in constructing categories is a primary re/2/ues in a domai;. For example, the quality of pitch (or
search goal in artificial intelligence.

The conceptual space framework as developed b
Gardenfors [2000] provides a flexible approach to model
ing context-sensitive categorization. Conceptual spaces al
based on a simple, yet powerful, geometrical representation

designed for modeling and managing concepts.

In this paper we show how algorithms developed in com
putational geometry, and the Region Connection Calculu
(RCC) [Cohnet al, 1997], a well known region-based spa-
tial reasoning framework, can be used to model important a
pects of categorization in conceptual spaces. In particular, w%
demonstrate the feasibility of using existing geometric algo
rithms to build and manage categories in conceptual spac
and we show how the RCC can be used to reason about ca

gories and other conceptual regions.

*This paper appeared in tieoceedings of the Fourteenth Inter-

national Joint Conference of Artificial Intelligenc#lorgan Kauf-
mann, 385 - 392, 2001.
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et%C_)nceptual spaces framework. Domains facilitate the shar-

frequency) for musical tones could take values in the domain
f positive real numbers. Objects are identified with points in
he conceptual spae= Q; XQ, X ...Q,,, and concepts are
{ggions in conceptual space.

In the definition above we use the standard mathematical
Interpretation of “domain”. In [@rdenfors, 2000] however,

a domain is defined to be a setiategral dimensionsthis
gnterpretation is consistent with its use in the psychology lit-
erature. For example, pitch and volume constitute the integral
dimensions of sounds discernible by the human auditory per-
eption system. Integral dimensions are such that they cannot
e separated in the perceptual sense. The ability to bundle up
Lgtegral dimensions as a domain is an important part of the

ihg and inheritance of integral dimensions across conceptual
spaces.

For the purpose of this paper, and without loss of general-
ity, we often identify a conceptual spaCewith R™, but has-
ten to note that conceptual spaces do not require the full rich-



ness ofR™. Domains can be continuous or discfetdhey Constraints like connectedness, star-shapedness and con-
can also be based on a wide range of geometrical structuregexity can be used to impose ontological structure on the cat-
for example, according to psychological evidence the humasegorization of the conceptual space, i.e. not any old region
colour perception system is best represented using polar caan serve as a category. In fact, there is compelling evidence
ordinate$ [Gardenfors, 2000]. that natural propertiescorrespond to convex regions in con-
For the purpose of problem solving, learning and commu-ceptual space, and using the idea of a natural property in this
nication, agents adopt a range of conceptualizations using difvay Gardenfors [2000] is able to sidestep the enigmatic prob-
ferent conceptual spaces depending on the cognitive task Bms associated with induction.
hand. In section 4 we show how categorization, the central theme
Similarity relations are fundamental to conceptual spacesof this paper, occurs in conceptual spaces, but first we briefly
They capture information about the similarity judgments. Indescribe the RCC.
order to model some similarity relations we can endow a con-

ceptual space with a distance measure. 3 Region Connection Calculus

Definition 1 A distance measuréis a function fromC x C  The RCC is a qualitative approach to spatial reasoning. It was
into T whereC is a conceptual space antlis a totally or-  developed in an attempt to build a commonsense reasoning
dered set. model for space, and its remarkable utility has beenillustrated

Distance measures lead to a natural model of similarity; thé" numerous innovative applications [Coahal, 1997].
smaller the distance between two objects in conceptual space, The RCC approach is region-based where spatial regions
the more similar they are. The relationship between distancare identified with their closures. The RCC is based on a con-
and similarity need not be linear, e.g. similarity may decaynection relationC' (X, Y’), which stands for “regiocX con-
exponentially with distance. nects with regiorY™”. The connection relatior(/, is reflexive

The properties of connectedness, star-shapedness and c@fd symmetric. Despite the fact that the basic building blocks

vexity of regions in conceptual spaces will prove usefulinthe RCC are regions; can be given a topological interpre-
throughout. tation, namelyC'(X,Y") holds when the topological closures

_ - of regionsX andY share at least one point.
Definition 2. A subset' of a conceptual space is: The RCC framework comprises several families of binary
(i) connectedf for every decomposition into the sum of two topological relations. One family, the RCC5 fragment uses
nonempty set§’ = C; U Cy, we haveC'; N C> UC1 N the following Jointly Exhaustive and Pairwise Disjoint base
Cy # O whereC is the closure of”. In other words(' is relations to describe the relationship between two regions (see
connected if it is not the disjoint union of two non-emptyFigure 1); DR (discrete),EQ (identical), PP (proper part),
closed sets. PP~ !(inversePP), and PO (partial overlap).

(ii) star-shaped with respect to a pomt(referred to as a

kernel poinj if, for all pointsx in C, all points between
x andp are also in C.
(iii) convexif, for all pointsx andy in C, all points between @
x andy are also in C.
DR(X,Y) EQX)Y) PPX)Y) PP'(X)Y) POX)Y)

Definition 3 Thekernel of a star-shaped regignis the set

of all possible kernel points, and will be denoted-nel(C). Figure 1:The base relations in RCC5

Connectedness is a topological notion, whilst star-
shapedness and convexity rely only on a betweenness rela- Boundaries of regions are not distinguished in RCC5; there
tion. A qualitative betweenness relation can be specified ifis no difference between two regions being totally discon-
terms of a similarity relation5(a, b, c), which says thakis  nected and externally connected, and no difference between
more similarb than it is toc. Alternatively, a betweenness g proper part tangentially connected to the boundary and a
relation can be used as primitive, and axioms introduced t@roper part disconnected from the boundary. Another frag-

govern its behaviour [Borsuk and Szmielew, 1960]. In thement, RCC8, possesses base relations that can make these
special case where the distance measure is a metric, the b§istinctions.

tweenness relation can be defined asis*betweera andc” In this paper our interests lie in similarity based categoriza-
if and only if d(a,b) + d(b,c) = d(a,c). _ tion, and we use RCCS to illustrate how the RCC can be used

Convex regions are star-shaped, and in many topologicab represent conceptual regions. Extending to a more expres-
settings star-shaped regions are connected. The kernel ofs@/e mereotopological language to reason about the adjacency
convex region is the region itself, and under the Euclidearsf categories, for example, is straightforward, and it can be
metric kernels are convex. done at no extra computational cost.

1They can even be small and finite efgnale, femalg. Transitipn tables can be_ used_ to perform reasoning abqut

2A scientific representation of colour would require a different felationships between regions in RCC5 and RCC8. It is
representation however, one that captures important scientific fea&nown that there is no complete first order finite axiomatiza-

tures of the electromagnetic spectrum such that the wave propertid®n of topology. Nebel [1995] showed that propositional rea-
of wavelength and amplitude constitute integral dimensions. soning in RCC5 and RCC8 is NP-Hard, and Renz and Nebel



[1999] identified a maximal tractable subset of relations thagtypical exemplars. They also produce stronger inductive in-
contain all the base relations. Efficient implementations inferences with typical exemplars than with atypical exemplars
Prolog have been constructed using a zero-order intuitionistifHampton, 1993].
logic [Bennett, 1997]. It is widely accepted on the basis of empirical psychologi-
The RCC can be used to represent spatial regions and il experiments that people sometimes judge membership of
reason about them in any dimension, provided that all spacategories as graded. The existence of graded concepts sup-
tial entities possess precisely the same number of dimensiongorts the notion otontinuous perceptiorThe gradedness of
It can also represent regions composed of multiple (spatiallgategory membership can be used to determine how closely
distinct) parts, but it cannot represent null regions. an object resembles a prototype and can naturally be deter-
In this paper we use the RCC to reason about spatial remined from the underlying similarity judgments.
|ati0n5hip5 between Conceptual regions, and to model the in- Psych0|ogica| evidence also suggests that peop|e distin-
determinacy of conceptual regions. The original formulationguish stimuli along a physical continuum much better when
of the RCC concerned regions with crisp well-defined bound+he stimuli are from different categories than when they are
aries, but later Cohn and Gotts [1996] extended the RCC tﬂ'om the same category. This phenomenon is Cajmdgori_
handle indeterminate vague regions that could be “crispedga| perceptiojHarnad, 1987], and is manifested in the ability
into less vague regions. We describe this crisping relation ifg discriminate stimuli with more ease and accuracy between

more detail in section 5.2. categories than within them. When categorical perception is
. at work, stimuli related to a specific category are perceived as

4  Categorization in Conceptual Spaces indistinguishable, whereas stimuli from a “nearby”category

4.1 Prototypes and Categorical Perception are perceived to be entirely different. This phenomenon has

been found in the way humans process sounds in speech.
In color perception, for example, different shades of green
Sre perceived to be more similar than green and yellow even
hough the wavelength differences are no larger. In other
ords, the psychophysical relationship between the physical

A categorization results in a partitioning of a conceptual
space into (meaningful) subregions. The geometrical natur
of conceptual spaces coupled with representations for prot
types and the ability to manipulate dimensions independentl

of one another ensures that they provide a highly flexible ango ity of a stimulus and the psychological intensity of the
practical representation of context-sensitive categorization. onc\iing sensation is related to the categorization. Categorical

Within each category certain members are judged to b : Lo
more representative than others [Rosch, 1975]. The most re%ﬁ;@e&ug{l TSZSI_SO be found in primates, other than humans

resentative members of a category pretotypes There is a Itis also well known that similarity judgments crucially de-
wealth of psychological data supporting the existence of prog end on the context in which the >(/)jccu% for both contiﬁuous
totypes and their key role in categorization. Typically humanP y

performance experiments are used to determine how welf’md categorical perception. It turns that certain features of

and how quickly humans can classify, label, rank or COm_(jbjects and concepts are more salient for a particular catego-

pare objects. Experimental results consistently show that thgzation (for both classificgtion and id_entification)_dgpending
ease of classification varies with how similar an object is to On the context. The classic example is that a robin is a proto-

prototype. Furthermore, the more similar a nonmember is t pical bird, but a canary s a prototypical pet b_|rd. :
the prototype, the more difficult it is to exclude. It has been N Summary the key findings from psychological studies of
shown, for example, that the reaction time recognizing that £at€gorization are (i) similarity judgments play a fundamen-

robin is a bird is shorter than identifying a penguin as a birgt@! role in categorization a_md they are context sensitive, (if)
regardless of whether the stimulus is the name or an image.th€ degree of similarity is judged with respect to a reference
It is evident from experiments that humans make judg-OPiectregion such as a prototype, (iii) category membership
ments about the degree of resemblance to a prototype durirfg@? P& graded (discrete membership, if and when it exists, is
nsidered to be a special case), and (iv) the psychophysical

classification and identification; a robin is judged as a mor . . ;
prototypical bird than a penguin [Harnad, 1987]. A prototype€lationship between the stimulus and the response depends
on the underlying categorization.

consists of features of either a typical, or ideal category mem
ber, rather than invariant features common to every member. . o .

For example, a prototype of a category can be thought of a4-2 A Mechanism for Building Categories
an amalgam of the characteristic attributes of its category’

$n this section results in computational geometry are applied
exemplars. P g y PP

iy : . . . to categorization in conceptual spaces. We provide computa-
Classifying an object using prototypes is accomplished by, 4| evidence for categorization based on prototypes, rather
determining its similarity to a prototype. - Instances abovey,,n annealing to the usual intuitive arguments found in the
somethresholdof S|m|Iar|ty_to the prototype are taken as cat- psychology literature derived from facts like the presentation
egory members, all other instances are nonmembers. of prototypes enhances learning. It can be shown, for exam-

. Pr(f)tont/pes are gentrﬁl t? the representtatmn and pro(;:es le, that the conceptual space model predicts that it is easier
ing of categories. People classify, generate, acquire, and regy 1oy categories in which the natural prototype is central

son about typical exemplars faster and more accurately thaly 5 set of variations than it is to learn categories in which

SExemplars are previously perceived examples of objects in dhe prototype occurs as a peripheral member, as observed by
category. Rosch [1975].



The main idea is that Voronoi tessellations around proto- Much experimental psychological data concords with the
types can be used to determine the threshold of similarity thatlea of tessellating conceptual spaces into star-shaped (and
forms category boundaries. In other words, the prototypesometimes convex) regions around prototypes or exemplars,
and the underlying similarity relation can be used to tessele.g. stop consonants in phoneme classification [Petitot,
late a conceptual space into categories. 1989], other examples can be found irgf@enfors, 2000].

Definition 4 A Voronoi tessellation in conceptual space is NOt only do Voronoi tessellations generated by prototypes
given by the tripleA (P, d, C) whereP is a set of distinct gen- SUPPOrt the prototype model of categorization, but the gen-
erator points{p,, p,., .. .,p,, }, d is a distance measure an erated boundaries provide a threshold of similarity and sup-
a conceptual space. We define the tessellated regignsto port a mephamsm whlch can explaln categonca} perception.
be {x|d(p;,x) < d(p;,x)forj = 1,2,...,m}, and we call The precise mechanism involves crisping the distance mea-
¢(p;) the category generated fpy. sure and is described in Section 5.2.

A Voronoi tessellation divides a conceptual space accord4.3 Generalized Voronoi Tessellations

ing to thenearest-neighbor rulevhich says each point/object |, ihis section we discuss some useful extensions of the ba-
in the space is associated with the prototype closest to it. Thigjc \ronoj tessellation model. Ordinary Voronoi tessella-
results in prototypes being centrally located in their categoryiins give rise to ideal categorizations, in the sense that crisp

The Euclidean metric is a basic distance measurep,ngaries are generated from a single prototype. We gener-
the Euclidean distance(x,p) between wo p0|r;ts<| = alize the definition so as to generate categories from concep-
(x1,22,...,2n) @NAP = (p1,p2, ..., pn) INR™ s caleulated 5| regions rather than specific prototype points.

asy/> j(j — p;)?. If the underlying distance measure is pofinition 6 A generalized Voronoi tessellation is given by
the Euclidean metric, then the resultant categaries), are  the triple A(P, d,C) whereP is a set of generator regions
convex, and hence star-shaped with respegt tdf the dis-  {P,, P»,..., P}, d is a distance measure ab a concep-
tance measure is the Manhattan or the supremum metric, theoal space. We define the tessellated regiof8;) to be
the generated categories are not necessarily convex, but afg|d(P;,x) < d(P;,x)forj = 1,2,...,m}, and we call
star-shaped with respectpo. In fact, it can be shown that if ¢(P;) the category generated by the regifh

x is betweery andp;, is defined agd(p;, x) +d(x,y) = d(p;,y . . :
and the distance measure satisfi(es th)e tri:gmglze ine((qualit)y, the We contrast two distance measures for generalized Voronoi

. ? c'&tegorizations; theadditively weighted distancand the
the generated categories are star-shaped with respect to ; o 4 =
S?ar-shapednessgwith respectto a p?ototy'[m deg?rable power distanck The additively weighted Voronoi diagram

roperty for cateqories: if a categor(n) is not star-shaped is typically used to model the growth of biological cells, and
\F/)vitr?regpect tap ?hen there is angob?ggztthat is betwee?p can be used to model the growth of concepts also. The power

distance, on the other hand, is best suited to handle indeter-

and some € c(p) butx ¢ c(p). minacy and exemplar variability.
Definition 5 A well behaved categorizatiom conceptual An additively weighted distance between a poirdand a
space produces regi_ons which are star.-shaped with respe@phereP € P in R™ with weightw(P), denotedi(x, P), is
to their prototype region and contain their central prototype. defined asd(x,p) — w(P)) whered(x, p) is the Euclidean

A Voronoi tessellation encapsulates the entire proximity in-distance betweer andp the center of?. A common way
formation about the set of prototypes in a computationallyto define the additively weighted distance between a point
compact fashion. Voronoi diagrams in the plane can be comand a sphere” is to takew(P) as the radius, of P, i.e.
puted inO(n log n) worst-case optimal time usin@(n)  d(x, P) = d(x,p) — rp, Which can naturally be interpreted
space [Okabet al, 2000], and in d-dimensions fet > 3  as the shortest distance between the poiand the surface
in O(n(d/ﬂ) worst-case optimal time [Klee, 1980]. of the sphereP, see Figure 2(a). The resulting tessellation

Once constructed Voronoi tessellations can be used to: (i called the Euclidean weighted Voronoi diagram. A point
identify the category of arbitrary objects in logarithmic query X lies on or inside the sphete if and only if d(x, ) < 0.
time without increasing the storage space - this is asympOkabeet al. [2000] proved that the bisector of a Euclidean
totically optimal since it matches the information theoreti- Weighted Voronoi diagram is either a hyperbolic surface or
cal lower bound [Auberhammer, 1991], and (ii) compute thed hyperplane, and that the generated regions are connected
smallest enclosing sphere containingprototype points in and star-shaped with respect to its generator spheRe"in
O(n log n) worst-case optimal time [Auberhammer, 1987]. Th|s_result also holds for the Manhattan and the supremum
Furthermore, a prototype can be added or deleted to a Vorondnetrics. ] _ ) S
tessellation inD(n) time, and two Voronoi tessellations can ~ One way to obtain convex regions (with straight line bisec-
be merged irO(n) time. tors) is to use the power distance (also known as the Laguerre

It is interesting to note that classical techniques and algodistance):d(x, P) =,/d(x,p)? — 7«12)_ Whenx is outside the

rithms for information retrieval and cluster analysis are re'sphereP centered orp the distance fron® to x is given by

e e\ ouor Jhelengh ofhetangent o 0. The power dsance and
. ISt appr ; ower bisector are illustrated in Figure 2(b) and (c), respec-
well known NP-complete information retrieval problems, i.e. tively

acceptable approximate solutions can be four@(in log n)
time [Okabeet al, 2000]. A related, but different, measure is used bgreenfors [2000].



The size of a particular prototype’s radius relative to theDefinition 8 Given a generalized Voronoi tessella-
surrounding prototype regions reflects its ability to influencetion A(P,d,C) where the categories are generated

its neighborhood. The magnitude of the radius can berelatedy P = {py,p,,...,p,,} define the Voronoi tessella-
to the actual size of the category, the variability among theion bounded by a regionS, denoted byCng, to be
exemplars, or the correlation of qualities. {c(p1) NS, c(py) NS, ..., e(p,) NS} We denote the bounded

i : o categories:(p;) N S by cns(p;)-
Definition 7 We define gpower categorizatioto be a gen- o . )
eralized Voronoi tessellation (P, d, C) generated by asetof A bounded Voronoi diagram may be disconnected if every

prototype region® using the power distance. boundary region is not star-shaped with respect to its genera-
tor point [Okabeet al., 2000].
If the radii of the generator spheres are zero or equal in

size, then the power categorization will be equivalent to th : :
categorization Ikaaased in thge ordinary (point—bgsed) Euclideae}_? Reasoning about Categories
Voronoi tessellation. Concept management involves categorization, concept ac-
quisition, concept formation and conceptual change. Cog-
dPx)=dpx)-r diPx)  x nitive processes such as learning and communication impel
V and guide concept management. In the previous section we
d(P,x) showed how conceptual spaces provide a rich and computa-
P tionally effective representation for categorization based on
1z P, prototype regions, and in this section we show that the RCC

(a) Euclidean Distance (b) Power Distance (c) Power Bisector ma.Chinery can be used to reason about Categories and to de-
scribe other aspects of concept management.

2

Fi 2:The Euclid dth dist : - . . .
igure e Euclidean and the power distance measures. . Determining Spatial Relationships

The RCC can be used to determine the relative configura-

power categorization is no worse than that for the ordinanion Of concdeptual re|g|onstuch as c?tegones, goncep_ts, pro-
Voronoi diagram. Sometimes the structure of the space caltYPes: and exemplars. For example we can determine: (i)
be exploited, which means that the actual computational timd 1€ smallest region containing all the prototypes is a proper
can be dramatically lowered. Voronoi tessellations are usefart of a given category, (ii) if some category overlaps another

in a wide range of applications and domain constraints cag2€90ry &.g.PP(c(robin), c(bird)), (iii) if the region con-
be used to improve algorithms, typically linear time can bet@ining all the prototypes contains all the exemplars, and (iv)
&a category’s kernel contains a specific region.

expected, e.g. linear time can be expected if the generatin :
spheres/points are uniformly distributed [Dwyer, 1987]. As an example let us consider the conceptual spaces de-
Parallel algorithms have also been developed [Auberhar‘rf§Cr|becj in Figure 3, below.
mer 1991] which construct Voronoi diagrams @log n)
time usingO(n) processors.
It turns out that for power categorizations, if a generator O
sphereP, is a proper part of another generator sphiey¢hen
the generated categoryP; ) will not contain the center of the

The worst-case time complexity for the construction of the

: L X hacopt
generator regior;, and a well-behaved categorization will | CoPe
not be produced. For example, using the gengrid and the
robin prototype regions in Figure 3 to generate a power cate —
. . . H H | 1r
gorization would not result in a well behaved categorization; penguino O plasypus

since P P(robin, bird), it turns out that-obin ¢ c(robin) in
the power categorization. ) ) ) ) ) ) )
RCCS5 can be used to ensure that generating spheres are f¢guré 3: Prototype regions in animal space, reptile crisp-

proper parts of other generating spheres, and hence can pli#S: & the power categorization of bird, mammal &reptile.
arole in the categorization process itself, by determining the

legitimate spheres to use as generators. Using RCC5 we can describe the following spatial relation-
Finally, we define the notion of a bounded tessellationships:

which provides a useful mechanism for selecting conceptual D R(bird, penguin), PP (robin, bird),
regions to focus on for conceptual spatial reasoning and cate- pO(c(robin), bird), PO(c(robin), kernel(c(bird))),
gorization. PO(archaeopteryz, c(reptile)),

>The standard deviation of the exemplars from the prototype gR((azcha}fopte;ym,c)(bmid)), D)
could be used [@rdenfors, 2000]. In the bird conceptual space the clarchacopteryr), cimammat)),
standard deviation of birds is larger than that of emus, so we might DR(emu, penguin),
expect the sphere that generates the bird category to be larger than D R(c(archaeopteryz), c(mammal)),

(

@
O
that used for emus as in Figure 3. DR(c(robin), c(bat)), and D R(c(robin), c(platypus))



The RCC, including the egg-yolk theory, allows discon- of the reptile category; a set of concentric spheres bounded
nected regions, i.e. multi-pieced regions, so it supports they ¢(bird) andc(mammal). These crispings could be gener-
construction of arbitrarily complex concepts. For conceptuahted in numerous ways, e.g. using prespecified degradations
spaces that means one can juxtapose disconnected conceptsithe distance measure, or by using the exemplars where each
form eclectic ones, e.g. penguins and emus (nonflying birdssuccessive blurring captures another exemplar.
and build new concepts from existing ones. Within a sin- Given a conceptual space and a crisper relation we can
gle category the set of prototypes would in some applicationduild a vast range of useful queries using the RCC such as
be better modeled by a multi-pieced region rather than as @©oes a conceptual region constitute a crisping/blurring of
connected region such as the smallest surrounding sphere, another region?” “Does crisping a particular domain change
convex hull. In Section 5.3 we show that being able to modethe classification of a specific object?”, “Does every category
multi-pieced regions is important to support nonmonotoniccontain its prototype crisping?” and so forth.
reasoning. As an example let us consider the conceptual space in Fig-

For some applications it will be necessary to impose vari-ure 3 where the crisper relation is basedioR. We have the
ous ontological constraints on interrelated categories. In parfollowing:
ticular, it may be important to enforce consistency across the
different levels of granularity so that the tessellated regions
at one level are identical to the union of tessellated regions
at lower levels:c(p) = U c.(p) c(s) wheres are subcate-

gories of¢(p). This constraint is present in many software
engineering applications, and made explicit in data modeling
techiques. One way to model this constraint in a computa- Other relations describing the relationships between inde-
tionally efficient manner (without distorting the underlying terminate regions can be constructed from the crisper relation
similarity relation) is to bound tessellations within categories.< such as=risp(X ) which is defined as “there does not exist
It is important to note here tha (P, d,Cs) is not identical ~ aY suchthat” < X, and M A(X,Y’) which holds when¥
to A(P,d, S) in general, so bounding a conceptual space beaOdY are mutually approximate, i.e. they possess a common
fore or after the tessellation can, and typically will, result in acrisping [Cohnet al, 1997]. From the conceptual space in
different categorization. For example, if the conceptual spac&igure 3 we can say:
parameters remain fixed then it would seem reasonable that Crisp(robin), Crisp(mammal)
the bird category region be the same regardless of whether - . P ’ L4 e . .
X ) . Crisp(archaeopteryx N C(bird)), Crisp(penguin),
the generator is the prototypical bird or the set of all pro- . ; : . : .
. ; X : =Crisp(bird), ~Crisp(kernel(bird)), ~Crisp(c(reptile)),
totypical birds at a lower level of granularity. In Figure 3 ! ; SR
. . ) M A(c(penguin), c(bird)), M A(robin, bird),
c(bird) can be tessellated independently ®ffeptile) and /
) } . M A(archaeopteryx, c(bird)),
c(mammal), so thate(bird) = c(robin) U c¢(penguin) U MA(archacopteryz. c(reptile))
c(emu) U (cacepira) (archaeopteryz)). In other words, the ’ '
generated subcategoriesagbird) are bounded by(bird). The RCC framework provides a number of axioms that
Other applications may possess weaker ontological regovern the crisping relation in different kinds of applications.
quirements such as: If the prototype regiBpis a subre- For example, there are axioms that ensure the existence of a
gion of the prototype regio®, thenc(P;) C ¢(P,). This qompl_ete_ crisping of any region, and the existence of alterna-
condition also places constraints on the way that a Voronolive crispings and blurrings. o
tessellation can be generated across the levels of granularity, Crispings can play a role in the process of categorization

penguin < c(penguin) < kernel(c(bird)) = c(bird)
robin < bird androbin < c(robin) < c(bird)

emu < c(emu) < c(bird)

bat < c(bat) < c(mammal)

platypus < c(platypus) < c(mammal)

and is satisfied byobins andbirds in Figure 3. itself; they can define regions to be used to generate tessel-
o lations. For example, in Figure 4, below, the bisector shifts
5.2 Crisping Conceptual Spaces towards the spher®, with centerp, and radiusr if P, is

As noted in section 3 the RCC was extended by introducerisped to a smaller sphef® with radiusr’. This crisping

ing an irreflexive, asymmetric and transitive binary relationcan be modeled precisely; the bisector betwégrand P;

X < Y read as X is crisper thart™, or “Y is a blurring of  moves by distancé- — r')/2d(p,, p,;) towardsp; in parallel

X". Cohn and Gotts also developed what has become knowto its previous location. So it is easy to show tft< P, if

as the “Egg-Yolk Theory"for modeling indeterminate spatial and only if¢(P]) < ¢(Py), i.e. alocal crisping (blurring) of

regions. Aneggis composed of two regions with definite a prototype region crisps (blurs) its category, and conversely.

boundaries; thgolk being a proper part of the egg. The egg In well behaved categorizations one can construct an egg

and its yolk define the upper and lower bounds, respectivelyolk system using the kernel of each category. The yolk of

on the range of indeterminacy of the region. the prototype regioi*; can be given by the largest sphere en-
In this section we show how the crisper relatiarcan be  closed bykernel(c(Py)), sayprotoyolk, and the egg can be

defined and the egg-yolk representation can be used to reasgiven by the smallest sphere circumscribiagnel(c(Pr)),

about categories and other conceptual regions. say protoegg. This egg-yolk prototype system can then be
A crisper relation in conceptual space can be constructedsed to generate the corresponding egg-yolk category system:

in a multitude of ways. One straightforward method is toc(protoyolk) andc(protoegg).

use the proper part relation, PP, i.& < Y if and only if Finally we extend the notion of crisping to distance mea-

PP(X,Y). Figure 3 also illustrates some potential crispingssures to capture categorical perception; the observed phenom-
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Figure 4:Crisping a prototype crisps the category. Figure 5:Changed categorization due to a change in context.

ena where category members are judged to be more similgjiogifying the underlying Conceptual Space
Lhoinn[jnaﬁggeré‘o?ggﬁqnEeTuﬁfn'gmnfg;astf:é ?;:g)ifiga:[ego%e underlying conceptual space can be modified by adding
ina of distaﬁce measut%w,here P and deleting exemplars or prototypes, changing the distance
9 measure, changing the function relating the distance measure
to similarity, or changing the generator prototype regions.

d'(a,b) = { k(d(a,b)) if a,b € ¢(P) for someP The introduction of exemplars and/or prototypes will
"=/ 71 d(a,b) otherwise shift the boundaries and create new categorical regions
[Gardenfors, 2000]. As noted earlier the addition and removal
for some0 < k < 1. of prototypes is a fundamental concept management opera-

In the limit we haved’(a, b) is 0 if aandb are in the same tjon, and can be achieved in linear time in the worst case.
category andi(a,b) otherwise. Categorical perception, and  changing the underlying distance measure or generating
hence crisping a distance measure, represents a form of leamgsgions will shift boundaries. Merely crisping the distance
ing. Our definition can be extended in numerous ways and thgeasure or modifying the function relating the distance mea-
similarity relation derived from a crisped distance measureyre to similarity will not change the underlying categoriza-
can easily be given a wide variety of threshold behaviours. tjon, but will affect the magnitude of the similarity judgments.

5.3 Nonmonotonicity and Concept Management Changing the mapping of objects to regions

In this section we highlight the nonmonotonic effects of Nonmonotonic reasoning formalisms are typically logic
changing context, and show how conceptual spaces can lased, and hence symbolic systems. The conceptual space
used as an underlying model from which more traditionalframework can be used to model nonmonotonic information,
nonmonotonic reasoning formalisms can be derived. and used to construct nonmonotonic inference rules via the
Nonmonotonic changes to the categorization can arise iIRCC. Since the conceptual space model is based on the mea-
several ways: (i) byfocusingon a region, (ii) bymodify-  sure of similarity to prototypes the RCC’s crisper relation can
ing the underlying conceptual space, or (jii) biyangingthe  be used to build representations of minimal models or usual
mapping of objects to conceptual regions. states of affairs.
Just as specific individual objects are points in conceptual

Focusing on a Region space, generic (or under specified) objects are (possibly dis-

\'/:v%?usggbcinrigemacg?emﬁgih%%ubnydi(;]haggrieng?oweoﬂngfnnbsiir?_gonnected) regions. One might expect that the more generic
ing Qr]egi(’)ng ping glon, 9 gon, or the more unspecified an object, the larger the region used

to represent it.

As noted earlier categorization is context-sensitive. In The generic bird, Tweety, would be represented as a cen-
conceptual spaces context-dependence is modeled u&gr%l region in bird s7pace e.é. the prototyhied region. In

weighted dimensions. For example, weighting the distanc hich case we would expect Tweety to possess all the fea-

measure along the x-axis results in a different categorizatioﬁlJres common to birds in that redion: we expect Tweety to
via the Voronoi tessellation such that objects change cate- glon, P y

gories. Technically this is achieved by multiplying the Spe_possess feathers, two legs, wings for flight, a four chambered

cific dimensions by a given weight where the weight reflectsheart' and so forth. As we learn more about Tweety we ad-

its salience. For instance, under the Euclidean metric aweingf'St the target region used to represent h|m.‘ If we learn he is
a robin, then he could be remapped to tléin prototype.

i i0 -/ (1 — )2 . ) ) .
can be placed on dimensioms follows:/>; wi(w; = pi)®.  on the other hand, if we learn that he is a nonflying bird,
V\/_e|g_ht|ng sp_ecmc dimensions gives rise to @ NoNMoNotoNiGhan we may remap him to the prototype:guin region and
crisping relation wherél'” < Y does not implyPP(X.,Y);  yhe prototypecmu region which in the example in Figure 3
some regions will contract in size others will dilate. In Figure is a disconnected region, and we still expect Tweety to have
5, below, the quality d_imensior_l represented by t_he X-axis ."}eathers two legs, and a’four chambered heart.

(a) becomes more saﬁent and is elongated causing the ObIGCtThe I‘\;CC can r,epresent conceptual regions which are re-
"q" to be reclassified in (b).



guired to support all concept management for nonmonotoni€Bennett, 199F Bennett, B., Logical Representations for
reasoning as described above, and as such it forms a natural Automated Reasoning about Spatial RelationsHitd)
bridge from the geometrical conceptual space representation Thesis University of Leeds, 1997.

to the symbolic representation in standard nonmonotonic for[CheIIaet al, 1994 Chella, A., Frixione, M., and Gaglio, S.

malisms. An architecture for autonomous agents exploiting con-
) ceptual representationRobotics and Autonomous Sys-
6 Conclusion tems 25(3-4):231-240, 1998.

We showed how algorithms in computational geometry andCohnet al, 1997 Cohn, A. G., Bennett, B., Gooday, J. and
the RCC can be applied to the conceptual space framework. Gotts. N.M., Qualitative Spatial Representation and Rea-
Categorization in conceptual spaces is achieved via (gener- soning with the Region Connection Calcul@goinfor-
alized) Voronoi tessellations based on a similarity relation  matica 1(3), 1-42, 1997.

which results in a prototype being centrally located in its Cat1conhn and Gotts, 1996Cohn, A. G. and Gotts. N.M. Rep-
egory. An analysis of existing algorithms in computational” ™ esanting Spatial Vagueness: A Mereological Approach
geometry established that categorization based on an under- i principles of Knowledge Representation and Reason-
lying similarity relation which is used to generate Voronoi ing: Proceedings of the 5th International Conference

diagrams is feasible. Furthermore, once a categorization is Morgan Kaufmann, San Francisco, 230-241, 1996
completed concept management tasks like determining th ’ ' ' '

category of an arbitrary object, adding and deleting protolDWyer, 1981 Dwyer, R.A., Higher-Dimensional Voronoi
types, and merging categories are computationally fast. For Diagramsin Linear Expected Time, #roceedings of the
example, once a classification has taken place the time taken 9th Annual ACM Symposium on Computational Geome-
to identify the category of an arbitrary object is logarithmic, try, 326 - 333, 1987.
and the time required to add or delete a prototype is linear. [Gardenfors, 2000 Gardenfors, P.Conceptual Spaces: The
We demonstrated that the ability to reason about categories Geometry of ThoughtA Bradford Book, MIT Press,
and other conceptual regions using the RCC enhances the Cambridge Massachusetts, 2000.
conceptual space model. We showed that the RCC can §gjanaq, 1987 Harnad, S.,Categorical Perception: The
ysed to construct both monotonic and nonmonotonic reason-  Gyoundwork of CognitionCambridge University Press.
ing systems from the information embedded in the categorie
of conceptual spaces, hence the RCC forms a natural bridd&!ampton, 1998 Hampton, J., Prototype Models of Con-
from the geometrical representation of information in con-  C€Pt RepresentatioGategories and Concepts: Theoret-
ceptual spaces to its symbolic counterpart. ical Views and Inductive Data Analysi&cademic Press,
In addition, the RCC provides facilities to determine the ~ London, 67 - 95, 1993.
prototype regions from which to generate categories so thdKrusal, 1978 Krusal, J.B., and Wish, MMulti-dimensional
well behaved categorizations are produced. Scaling Beverley Hills, CA: Sage Publications, 1978.

The crisper relation< and egg-yolk systems can be gen- [jee, 1980 Klee, V., On the complexity of d-dimensional
erated in conceptual spaces using prototypes and exemplars, \pronoi diagramsArchiv de Mathematik34: 74 - 80,
and hence can be used to model the indeterminacy of concep- 19gq.

tual regions. Interesting properties followed from our con- .
structions, for example, we were able to show that crisping aMaY et al, 1989 May, B. Moody, D.B., Stebbins, W.C,,
prototype region locally, leads to the crisping of its category ~ Catégorical perception of conspecific communication
under the power categorization, and that categorical percep- sounds by Japanese macaques, Macaca fuscata ,
tion can be explained by crisping the distance measure on the ACOUSt. Soc. AmVol. 85, No. 2, Pages 837 - 847, 1989.

conceptual space. [Nebel, 1995 Nebel, B., Computational Properties of Qual-
itative Spatial Reasoning, in Wachsmuth, Rollinger and
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