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Abstract. One-way hash functions are an important tool in achieving
authentication and data integrity. The aim of this paper is to propose
a novel one-way hash function based on cellular automata whose cryp-
tographic properties have been extensively studied over the past decade
or so. Furthermore, security of the proposed one-way hash function is
analyzed by the use of very recently published results on applications
of cellular automata in cryptography. The analysis indicates that the
one-way hash function is secure against all known attacks. An important
feature of the proposed one-way hash function is that it is especially
suitable for compact and fast implementation in hardware, which is par-
ticularly attractive to emerging security applications that employ smart
cards, such as digital identification cards and electronic cash payment
protocols,

1 Introduction

Cryptographic hash functions play an important role in modern cryptography.
The basic idea of cryptographic hash functions is that a hash-value serves as a
compact representative image (sometimes called an imprint, digital fingerprint,
or message digest) of an input string, and can be used as if it were uniquely
identifiable with that string.

Following [1], at the highest level, cryptographic hash functions may be clas-
sified into two classes: hash functions, whose specification dictates a single in-
put parameter - a message (unkeyed hash functions); and keyed hash functions,
whose specification dictates two distinct inputs - a message and a secret key. This
paper is concerned with unkeyed hash functions which are also called one-way
hash functions.

A typical usage of one-way hash functions for data integrity is as follows.
The hash-value corresponding to a particular message M is computed at time
t1. The integrity of this hash-value (but not the message itself) is protected in
some manner. At a subsequent time to, the following test is carried out to de-
termine whether the message has been altered, i.e., whether a message M’ is



the same as the original message. The hash-value of M’ is computed and com-
pared to the protected hash-value; if they are identical, one accepts that the
inputs are also equal, and thus that the message has not been altered. The prob-
lem of preserving the integrity of a potentially large message is thus reduced to
that of a small fixed-size hash-value. Since the existence of collisions is guaran-
teed in many-to-one mappings, the unique association between the inputs and
hash-values can, at best, be in a computational sense. A hash-value should be
uniquely identifiable with a single input in practice, and collisions should be
computationally infeasible to find (essentially never occurring in practice).

In this paper, a novel and fast one-way hash function is proposed and an-
alyzed. The proposed one-way hash function is based on a quite different ap-
proach than these employed in other one-way hash functions in that it is based
on programmable cellular automata. Advantages of one-way hash functions that
employ cellular automata include: it is fast and suitable for hardware implemen-
tation, and its security can be analyzed by borrowing some of the well-established
research results in cellular automaton theory.

In Sections 2 - 4 relevant background about one-way hash functions and
cellular automata is summarized. In Section 5 the novel one-way hash function
is proposed. Its security together with efficiency is analyzed in Section 6. Some
concluding remarks are made in Section 7.

2 One-Way Hash Functions

A hash function (in the unrestricted sense) is a function hash(-) which has, as
minimum the following two properties (see [1], for example):

— compression - hash maps an input M of arbitrary finite bit-length, to an
output hash(M) of a fixed bit-length n.

— ease of computation - given hash(-) and an input M, hash(M) is easy to
compute.

In addition, for a one-way hash function hash(:) with inputs M, M' and
outputs Z, Z', the following three properties are expected to hold (see [1], for
example):

1. preimage resistance - for essentially all pre-specified outputs, it is computa-
tionally infeasible to find any input which hashes to the output, i.e., to find
any preimage M’ such that hash(M') = Z when given any Z for which a
corresponding input is not known.

2. 2nd-preimage resistance - it is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given M, to
find a 2nd-preimage M' # M such that hash(M) = hash(M').

3. collision resistance - it is computationally infeasible to find two distinct in-
puts M and M’ which hash to the same output, i.e., such that hash(M) =
hash(M').



Note that the following relationships between the three properties of a one-
way hash function hold:

— 2nd-preimage resistance implies preimage resistance.
— Collision resistance implies both 2nd-preimage resistance and preimage re-
sistance.

2.1 General Model for Iterated Hash Functions

Most one-way hash functions hash(:) are designed as iterative processes which
hash arbitrary-length inputs by processing successive fixed-size blocks of the in-
put (see [1], for example). A hash input M of arbitrary finite length is divided
into fixed-length /-bit blocks M;. This preprocessing typically involves append-
ing extra bits (padding) as necessary to attain an overall bit-length which is a
multiple m of the block-length ¢ and often includes (for security reasons, see [3]
and [4]) a block indicating the bit-length of the unpadded input. Each block M;
then serves as input to an internal fixed-size function h, the compression function
of hash, which computes a new intermediate result of bit-length n for some fixed
n, as a function of the previous n-bit intermediate results and the next input
block M;. Let H; denote the partial result after Stage ¢ Then the general process
for an iterated one-way hash function with inputs M = (M, Ms, ..., My,) can
be modeled as follows:
Hy =1V |

H;=h(Hi—1,M;), 1<i<m,
hash(M) = g(Hy,) . (1)

H;_1 serves as the n-bit chaining variable between Stage ¢ — 1 and Stage i, and
Hj is a pre-defined starting value or initial value IV. An optional transformation
g is used in a final step to map the n-bit chaining variable to an n'-bit result
g(Hynm); g is often the identity mapping g(H,,) = H,,.

Specific one-way hash functions proposed in the literature differ from one
another in preprocessing, compression function, and output transformation.

2.2 Dedicated One-Way Hash Functions

i From a structural viewpoint, one-way hash functions may be categorized based
on the nature of the operations comprising their internal compression functions.
From this viewpoint, the three broadest categories of iterated one-way hash
functions studied to date are:

- one-way hash functions based on block ciphers,

- one-way hash functions based on modular arithmetic, and

- dedicated one-way hash functions.

Dedicated one-way hash functions are those designed specifically for hashing,
with speed in mind and independent of other system subcomponents (e.g., block
cipher or modular multiplication subcomponents which may already be present
for non-hashing purposes).



The following one-way hash functions, all based on the so called MD4 initially
proposed in [11] have received the greatest attention:
- MD5, [12],
- SHA-1, [13],
- RIPEMD-160, [14],
- HAVAL, [15] .
A quite different class of dedicated hash functions based on a particular linear
finite state machines - cellular automata have been reported in [4], [16] and [17].
The one-way hash function to be proposed below belongs to the class of
dedicated one-way hash functions, it is a development of the cellular automata
approach, and it is suitable for hardware implementation.

2.3 Security of the One-Way Hash Function

Given a specific one-way hash function, it is desirable to be able to prove a lower
bound on the complexity of attacking it under specified scenarios, with as few
and weak assumptions as possible. However, such results are scarce. Typically,
the best guidance available regarding the security of a particular one-way hash
function is the complexity of the (most efficient) applicable known attack, which
gives an upper bound on security. An attack of complexity 2" is one which
requires approximately 2" operations, each being an appropriate unit of work.
The storage complexity of an attack should also be considered.

Assuming that the hash-code approximates a uniform random variable it is
well known that the following holds:

— For an n-bit hash function h, one may expect a guessing attack to find a
preimage or second preimage within 2" hashing operations.

— For an adversary able to choose messages, a birthday attack, [2], allows
colliding pairs of messages M, M' with hash(M) = hash(M') to be found
in about 2"/2 operations and a reasonable amount of memory.

An n-bit one-way hash function hash(-) has ideal security if both: (a) given
a hash output, producing each of a preimage and a 2nd-preimage requires ap-
proximately 2™ operations; and (b) producing a collision requires approximately
27/2 operations.

Following [3] and [4] denote by MD-strengthening appending an additional
block at the end of of the input string containing its length.

Based on [3], [4], [5], [6], [7], [8], in a number of models, it is possible to relate
the security of hash(-) to the security of h and g according to the following result:

Theorem 1. (cf. [8]) Let hash(:) be an iterated hash function with MD-
strengthening. Then preimage and collision attacks on hash(-) (where an attacker
can choose I'V freely) have roughly the same complexity as the corresponding
attacks on h and g.

Theorem 1 gives a lower bound on the security of hash(-).



According to [10] and [8] the iterated hash functions based on the Davis-
Mayer compression function given by the following

hM;,Hi—1) = Ep;(Hi—1) @ Hi—q (2)

where Ek(+) is a block cipher controlled by the key K, are believed to be as
secure as the underlying cipher Ek(+) is.

As a direct extension of the results of security related to cipher block chaining
[9], and the assumption 1 from [8] (which is a standard one in cryptography
today), we assume the following.

Assumption 1. Let the compression function i be the Davis-Meyer function
(2) and the employed cryptographic transformation is a secure one. Then finding
collisions for h requires about 2/2 encryption (of an n-bit block), and finding a
preimage for h requires about 2™ encryption.

The above discussions imply that the main problem in the design of a secure
one-way hash function can be reduced to the design of a secure compression
function and a good output function.

3 Cellular Automata

A one-dimensional binary cellular automaton (CA) consists of a linearly con-
nected array of L cells, each of which takes the value 0 or 1, and a Boolean
function f(x) with ¢ variables. The value of the cell z; is updated in paral-
lel (synchronously) using this function in discrete time steps as z; = f(x) for
i =1,2,...,L. The boundary conditions are usually handled by taking the index
value modulo L. The parameter ¢ is usually an odd integer, i.e., ¢ = 2r + 1,
where r is often named the radius of the function f(x); the new value of the ith
cell is calculated using the value of the ith cell and the values of r neighboring
cells to the right and left of the ith cell.

Since there are L cells, each of which takes the values of 0 or 1, there are 2
possible state vectors. Let Sy denote the state vector at the time step k. Starting
from an initial state vector Sg, the cellular automaton moves to the states Sy, S,
S; etc., at time steps k = 1,2, 3, ... etc. The state vector Sy, takes values from the
set of L-bit binary vectors as k advances, and the state machine will eventually
cycle, i.e., it will reach a state Sy p which was visited earlier Sy, = Sg+p. The
period P is a function of the initial state, the updating function, and the number
of cells.

For a CA with ¢ = 3, the evolution of of the ith cell in each discrete time
step ¢ (clock cycle) can be represented as a function of the present state of the
(i — 1)th, (i)th, and (i + 1)th cells as

zi(t+1) = fizim1(t), (), wis1 (8)} - (3)

f is also called the combinatorial logic associated with the CA. Each combina-
torial logic represents an updating rule for evolving to the next state.



If the next state function of a cell is expressed in the form of a truth table,
then the decimal equivalent of the output column in the truth table is conven-
tionally called a CA rule number. A nonlinear rule, called Rule 30, proposed and
considered by Wolfram in [18], realizes updating according to the following:

zi(t+1) =2, 1(t) XOR [2;(t) OR wi41(t)] . (4)

Of particular interest are two linear rules in GF(2). These are known as Rule
90 and Rule 150 respectively. Rule 90 specifies an evolution (updating) from
current to the next state according the following combinatorial logic:

zi(t+1) = zi1 (1) © zit1 (2) ()

where @ denotes XOR operation. Note that when Rule 90 is applied the next
state of the ith cell depends on the present state of its left and right neighbors.
Similarly, the combinational logic for Rule 150 is given by

zi(t +1) = zi—1(t) B i (t) ® it () , (6)

that is, the next state of the ith cell depends on the present states of its left and
right neighbors and also on its own present state.

If in a CA the same rule applies to all cells, then the CA is called a uniform
CA; otherwise it is called a hybrid CA. There can be various boundary con-
ditions; namely, null (where extreme cells are connected to logic ”0”), periodic
(extreme cells are adjacent), etc.

3.1 Additive Cellular Automata

A very important class of CA are linear CA in GF(2) or additive CA. If the
next-state generating logic employs only XOR or X NOR operations, then the
CA is said to be an additive CA. Linear CA is a special form of Linear Finite
State Machines (LFSM’s). Every LFSM is uniquely represented by a transition
matrix over GF(2), and every transition matrix has a characteristic polynomial.
For an L-cell one-dimensional additive CA with XOR operations only, it
has been shown in [19] that the CA can be characterized by a linear operator
denoted by T which is an L x L Boolean matrix and whose ith row specifies the
neighborhood dependency of the ith cell. The next state of CA is generated by
applying this linear operator on the present CA state represented as a column
vector. The operation is the normal matrix multiplication, but the addition
involved is modulo-2 sum. If x(¢) is a column vector representing the state of
the automaton at the tth instant of time, then the next state of the automaton
is given by:
x(t+1) =T x x(¢) . (7)
If the characteristic polynomial of a CA is primitive, then it is referred to as

a maximal length CA. Such an L cell CA generates all 2F — 1 states in successive
cycles excluding the all zero state.



Since, for a fixed order L, there are 2L% transition matrices (and hence L
LFSM’s) but only 2* degree L polynomials, we have the following situation:
There is a one-to-one correspondence between L-cell LFSM and L x L matrices,
and at the same time a many-to-one correspondence between the transition
matrices and the polynomials of degree L.

The characteristic polynomial of an LFSM is never difficult to obtain, as
it can be calculated by evaluating a determinant. On the other hand, finding a
particular type of LFSM (such as a CA) with a specific characteristic polynomial
is a problem solved in [20] where a method is presented for obtaining a CA that
has a given characteristic polynomial. The same method can also be used to
solve the problem as to whether a CA exists for each irreducible polynomial.

A systematic treatment of the additive CA theory and applications is pre-
sented in a recent book [22], as well as in [21].

3.2 Programmable Cellular Automata

Positional representations of Rule 90 and Rule 150 show that their neighborhood
dependence differ in only one position, viz., on the cell itself. Therefore, by
allowing a single control line per cell, one can apply both Rule 90 and Rule 150 on
the same cell at different time steps. Thereby, an L cell CA structure can be used
for implementing 2/ CA configurations. Realizing different CA configurations
(cell updating rules) on the same structure can be achieved using a control logic
to control the appropriate switches and a control program, stored in ROM, can
be employed to activate the control. The 1(0) state of the ith bit of a ROM word
closes (opens) the switch that controls the ith cell. Such a structure is referred
as to as a programmable cellular automaton (PCA).

Accordingly, allowing one control input per cell that configures the updating
rule, we can apply to that cell, either Rule 90 or Rule 150. The n-bits control
word for an n cells PCA has 0(1) on the ith cell if Rule 90(150) is applied to the
ith cell.

4 Cryptographic Applications of Cellular Automata

Cellular automata have been considered as a building block for the design of both
block and stream ciphers, as well as for design of certain hash functions. The first
cryptographic application of a cellular automaton was given in [18]. A block and a
stream cipher based on cellular automata were proposed in [23]. Two PCA based
key stream generators, called PCA with ROM (Read Only Memory) and Two
Stage PCA respectively, together with results on theirs security analysis, were
proposed in [23]. Some cryptographic CA / PCA applications are summarized
in [22].

Also, additional cryptanalysis of certain CA /PCA based key stream gen-
erators have been published. A method for reconstructing of a CA initial state
based on the sequence of bits generated by a central CA cell is given in [24].
In [26] the inversion algorithm which computes the predecessor of a given state



vector, assuming a nonlinear CA configuration rule, is proposed. Cryptographic
security examination of the Two Stage PCA and the PCA with ROM have been
reported in [27] and [28], respectively, assuming ciphertext only attacks. Some
vulnerabilities of these schemes on certain cryptanalytic attacks were demon-
strated, and it is shown that the effective secret key size is significantly smaller
than its formal length. The same weaknesses are pointed out in [25] assuming
known plaintext attacks.

Recently, an improved key stream generator based on programmable cellular
automata was proposed and analyzed in [29].

4.1 Hash Functions Based on Cellular Automata

The first proposal of the CA application for one-way hash function design has
been reported in [4].

The vulnerability of the scheme from [4] is presented in [16] together with
a proposal for new CA based hash function called Cellhash. Callhash assumes
preparation of a message so that it is a concatenation of N 32-bit words M;,
i=0,1,...,N — 1, and application of the following procedure:

H =1V |

HI = FC(Hj_l, Mj—lemodN---Mj—i-(SmodN) , =12 ...N ,

HY is the hash result,

where F.(H, A) is a function with argument H a bitstring of length 257, A is a
bitstring of length 256, and IV is the all-zero bitstring of length 257; it returns
a bitstring of length 257. F.(H, A) consists of five steps with the following prop-
erties [16]:

Step 1 is a nonlinear cellular automation operation where each bitvalue is up-
dated according to the bitvalues in its neighborhood applying a nonlinear updat-
ing rule considered in [18]. The nonlinearity of the updating rule has to guarantee
the needed confusion.

Step 2 consists merely of complementing 1 bit to eliminate circular symmetry in
case bitstring A consists of only 0's.

Step 3 is a linear CA operation that has to increases the diffusion.

Step 4 realizes the actual messagebits injection in H to be diffused and confused
in subsequent rounds.

Step 5 is a bit permutation where bits are placed away from their previous
neighbors.

In [17] a one-way function based on two-dimensional CA is proposed and an-
alyzed. The transition function of the two-dimensional CA is the composition of
two state transition functions of a one-dimensional CA. The first state transition
function is computed by regarding the two-dimensional CA as a one-dimensional
one in column order, and the second state transition function is computed by
regarding it as a one-dimensional in a row order. For each message block the
two-dimensional CA runs certain number of cycles, and the hash result is the
CA state after the last cycle.



5 A Novel Cellular Automaton Based Hash Function

In this section, a novel hash function is proposed. The proposed function follows
the general model for iterated hash functions (see relation (1)), and employs the
Davies-Meyer principle, which according to (2) assumes that the compression
function h is defined by the following;:

h(M;,H;_1) = Fuy,(Hi—1) ® Hi—q (8)

where Fy, (H;_1) is a function which maps H;_; according to M; which consists
of 2n bits. These would guarantee the approved basis for design and imply se-
cure hash function construction assuming that the compression function and the
output function are secure. The novel construction of the compression function h
and the output function g is based on cellular automata and recently published
results which imply the security of the novel h and g functions.

The proposed hash function provides:

— very fast hashing,
— application of cellular automaton theory for the security examination,

— the preimage and collision resistance due to the employed principles and
building blocks.

The novel compression function h*, the output function g*, and the whole
hash function hash* are defined by the next three parts of this section.

5.1 Compression Function h*(-)

We assume the following notations:
- £ is an integer such that n/{ is also an integer (for example ¢ = 8);
- or(+), k = 1,2,..., K, are functions each of which nonlinearly maps two /-
dimensional binary vectors into an ¢-dimensional binary vector according to the
certain ¢ Boolean functions, assuming that the criteria from [15] are satisfied;
- CA(") is an operator of mapping a current CA state into the next state, as-
suming CA with primitive characteristic polynomial;
- PCAx(-) is an operator of mapping a current PCA state into the next state
assuming that the applied configuration rule is controlled by a binary vector X
according to the following:

(-) if the ith bit of X is O then the next state of ith PCA cell is defined by
Rule 90,

(-) if the ith bit of X is 1 then the next state of ith PCA cell is defined by
Rule 150.

Let M; be split into 27" successive nonoverlapping equal length blocks of /-
bits, M; 1, M;s,..., M; 2., and let H;_; be split into 7 blocks of ¢ bits each,

l,[

Hi11,Hi—12,...Hi_1n.



The two vectors X; and Z; defined below are certain arguments of the novel
compression function.

The novel compression function consists of the following four sets of opera-
tions.

— First Nonlinear Processing
X; is an n-dimensional binary vector obtained by concatenating and inter-
leaving the values V}, of the functions @gmoeax (+),

Vi = Qrmodk (Prmodr (M, Hi—1,1), M=y ),

according to the following;:
the jth bit of Vj, is equal to the ((k — 1)¢ + j)th bit of Xj.

Y; is an n-dimensional binary vector obtained by concatenating and inter-
leaving the values Wy, of the functions prmoedx (+),

Wi = Ormodr ( Vi, Vat1-k ),

n

=1,2,...,— 1
k ) ) 7257 ( 0)
Wi = Prmodk ( Vi, Vi—z )
n n n
k_2_£+1’2_£+2""’7’ (11)

(where V}, is defined by (9)), according to the following:
the jth bit of Wy, is equal to the ((k — 1)¢ 4 j)th bit of V;.

— CA Processing
Y, is an n-dimensional binary vector obtained by the following:

Y; = CA(Y) . (12)

— Second Nonlinear Processing
Let Y7 be split into % blocks of £ bits each, Y7y, Y75, ..., Yl%
Z; is an n-dimensional binary vector obtained by concatenating and inter-

leaving the values Y}’ of the functions Yrmoar (:),

Y[: = (pkmodK( Y]é; Y%+17k ) )

n
k=12 ..,— 13
= 7257 ( )
Yk;’ = (pkmodK( kaa Yk;_% ) )
n n n
=—+1,—+2 .., - 14
k=g tlg+2y, (14)

(where Y} is defined by (12)), according to the following:
the jth bit of Y} is equal to the ((k — 1) + j)th bit of Z;.



— PCA Processing
The compression function h*(-) is then defined by the following

h*(M;,H;—1) = PCAx,(Z;) ® Hi_1 (15)

where @& denotes bit-by-bit mod2 addition.

Note that in defining h*(-), we have assumed that CA and PCA embodied
in it run only one transition cycle. Theoretical analysis to be presented below
indicates that this arrangement suffices in resisting currently known attacks. In
practice, however, one may choose to allow the CA and PCA to run a number
of transitions before reaching a state which will be used as an output. Such a
variant would provide a higher level of security.

5.2 Output Function g*(+)

The output function g*(-) is a variant of the cellular automaton based key stream
generator proposed and analyzed in [29]. The output function uses the input
argument H,, as a secret key and based on it generates n output bits.

The main parts of the key stream generator which realizes the output function
g* are the following: an n-cell PCA, a ROM which contains the configuration
rules for the PCA, an n-length binary buffer, and an n-dimensional varying
permutation.

Assume that n < n maximal length CA’s are chosen out of all possible
maximal length CA’s with Rule 90 and Rule 150. These rules are noted as
{Ro, R1,..., R, }. The rule configuration control word corresponding to a rule R;
is stored in a ROM word. The output function operates as following:

— Initially the PCA is configured with the rule Ro4+ a,, where Aq is mod n value
of H,, decimal representation, and loaded with the output H,, of the com-
pression function from the last iteration. With this configuration the PCA
runs one clock cycle. Then it is reconfigured with next rule (i.e., R;) and
runs another cycle. The rule configuration of PCA changes after every run,
i.e., in the next run, a rule is R(i114A)mod n, Where A is decimal equivalent
of the previous PCA state.

— After each clock cycle, the content of a middle cell of the PCA is taken as
an output and stored in the n-length binary buffer.

— After n clock cycles, the buffer content is permuted according the varying
permutation controlled by the current PCA state.



5.3 Hash Function hash*(+) Algorithm

Accordingly, we propose the following fast hash function.

1. INPUT. A bitstring of the message M, and the n-bits initial value IV

2. PREPROCESSING.
— MD-strengthening and padding using the approach proposed in [15].

— Splitting the processed message into m blocks of 2n-bits each:
M = (M17 M27 sty Mm)

3. ITERATIVE PROCESSING.
Assuming that Hy = IV, for each i = 1,2, ...,m, do the following:
— calculate the compression function h*(-) value:
H; = h*(M;, H;_y) ,
where h*(+) is defined in the Section 5.1.

4. If H,, is the all zero vector recalculate H,, according to the following:
H,, = h*(M,,, Hy), and proceed to the next step.

5. OUTPUT FUNCTION. Calculate g*(H,,), where g*(-) is defined in the Sec-
tion 5.2.

6. OUTPUT. n-bits message digest: hash*(M) = ¢*(Hp,)-

6 Analysis of the Proposed Hash Function

In this section the security and complexity analysis of the hash function proposed
in the previous section are given.

6.1 Security Analysis

Note that according to the Theorem 1, a lower bound on security of the proposed
hash function is determined by the characteristics of its compression and output
functions. Accordingly, the security will be considered through the security of
the proposed functions g*(-) and h*(:). Security of both the functions will be
examined on the preimage / 2nd preimage and collisions attacks.

The facts and discussions which are given in this section imply that the
proposed hash function has ideal security, i.e., given a hash output, producing
each of a preimage or 2nd preimage requires approximately 2™ operations and
producing a collision requires approximately 2n/2 gperations. Also, due to the
structure of the compression function h*(-), the Assumption 1 implies that we
can expect that the proposed hash function is an ideal one.



Security of Compression Function h*(-)
Processing of each message block M;, i = 1,2, ..., m, by the compression function
h*(M;, H;_1) consists of the following:
- nonlinear mapping of M; and H;_; into two n-dimensional binary vectors: the
CA current state Y; and the configuration rule vector X; for the PCA;
- CA mapping of its current state into the next one - an n-bits vector CA(Y;);
- nonlinear mapping of C'A(Y;) into the vector Z;.
- PCA mapping of its current state equal to the the vector Z; into the next
one - an n-bits vector PCAx,(Z;) assuming that the PCA configuration rule
is controlled by the binary vector X according to the following: the next state
transition rule for the ith PCA cell is 90 or 150 if the ith bit of X; is 0 or 1,
respectively;
- bit-by-bit mod2 addition of the n-bits vectors PCAx,(Z;) and H;_; yielding
the new intermediate result H;.

Accordingly, the following facts imply the security of the compression func-
tion:

1. The CA has primitive characteristic polynomial so that any nonzero state
is mapped into a nonzero state which belongs to the sequence of all pos-
sible different 2™ — 1 nonzero n-dimensional vectors in such manner that
the expected Hamming distance between the current state and the next one
is n/2. The pattern generated by maximal length CA’s meet the crypto-
graphic criteria (and the quality of randomness of the patterns generated by
CA’s is significantly better than that of linear feedback shift register based
structures), [23].

2. High nonlinearity of the compression function due to the employed Boolean
functions and PCA (with unknown configuration rule, [23]).

3. So far published algorithms for reconstruction of a CA/PCA state employing
certain CA/PCA outputs, are the following:

(a) algorithm from [24] based on noiseless sequence of bits generated by
certain CA cell assuming, in general, a nonlinear configuration rule;

(b) algorithm from [26] based on error-free next CA state assuming a non-
linear configuration rule;

(c) algorithm from [28] based on the sequence of noisy CA (PCA) states
assuming an additive configuration rule;

(d) algorithm from [29] based on the noisy sequence of bits sampled from
CA (PCA) states assuming an additive configuration rule.

It can be directly shown that all these methods for reconstruction of certain

CA (PCA) state can not work in the case of h*(-).

4. The compression function is a cryptographic transformation.

Facts 1-4 imply that h*(-) could be considered as a cryptographically secure
one-way function, so that according to the Assumption 1 the following hold:
- finding preimage for given h*(-) output requires about 2™ operations (i.e. test-
ing of 2" hypothesis);



- finding collision for h*(-) requires about 2"/2 operations (testing of 2"/2 hy-
pothesis).

Security of Output Function g*(-)
Recall that the output function g*(-) is realized by a variant of the key stream
generator proposed and analyzed in [29].

Cryptographic security examination of this generator shows that this genera-
tor is resistant on all attacks known so far, assuming that the length of employed
PCA is greater than 120, [29].

Accordingly, we can accept that the output function ¢g*(-) is the secure one,
and that finding the input argument of g*(-) (preimage or 2nd preimage), i.e.,
the value H,, for given hash value hash*(M) has complexity 2" assuming that
n > 120.

Due to the same reasons, i.e., because g*(-) is realized by the cryptographi-
cally secure key stream generator, we can accept that no better attack than the
Yuval’s birthday attack, [2], can be expected for finding the collisions for the
output function. The previous implies that finding a collision for g*(-) requires
testing about 2"/2 hypothesis, i.e. employing about 2"/ operations.

6.2 Complexity Analysis

As the first, note that the set of functions @ (-) (see the Section 5.1) can be
efficiently realized by the truth tables in ROM.

Based on the structure of the compression function h*(-) it can be directly
shown that processing of each 2n-bits message block employs no more than
n+ 3n + 3n = Tn mod2 additions (recalling that updating of each CA cell
employ 2 or 3 mod2 additions), and approximately no more than n reading from
ROM.

Similarly, it can be directly shown that the processing cost in the output
function g*(-) (for its n-bits input) is approximately equal to 3n? mod2 additions
+ n mod n additions + realization of the permutation.

Accordingly, the overall complexity of processing (hashing) a message con-
sisting of m blocks and each 2n-bits long, can be estimated as approximately
equal to performing m(8n) + 3n? mod2 additions (including the ROM reading
costs, mod n additions, and realization of the permutation). So, the proposed
hash function employs the number of operations approximately equal to 4 + 23—772
mod2 additions for hashing each message bit.

Also, it can be directly shown that, according to the previous result, the
proposed hash function is significantly faster than all other dedicated hash func-
tions published so far, assuming hashing of a binary string, i.e. the situations
where, due to certain reasons, a word is equal to a bit which appear in hardware
implementations. Finally, note that hardware implementation could be realized
using 4k ROM (assuming ¢ = 4 and K = 3), two VLSI PCA chips and moderate
complexity control logic.



6.3 Comparison with Published CA Based Hash Functions

The novel proposal will be compared with the proposals from [16] and [17], only,
because of the reported vulnerabilities of the scheme from [4] (see [16]).

The novel scheme employs a secure and fast PCA based key-stream generator,
[29], as the output function. On the other hand, the schemes from [16] and [17]
do not employ the output function block.

The compression function from [16] employs a nonlinear CA and a linear
CA, and the scheme from [17] could be considered as one which employs two
nonlinear CA. But, the employed nonlinear CA’s belong to a class of nonlinear
CA for which a procedure for inversion of the CA iterations is very recently
published in [26].

The compression function, h*(-), of the hash function proposed in this paper
is one of the Davis-Mayer type (which is recognized as a recommended one), and
it employs cascade of the nonlinear function and PCA which yields strengthening
of security in comparison with employed nonlinear CA in [16] and [17]. Also, it
employs an efficient nonlinear and iteration dependent injection of the message
blocks into the h*(-).

Note that employment of the cascade (nonlinear mapping + PCA) for a trans-
formation of the cascade input could be considered as approximately equivalent
with processing of the nonlinear CA input through a number of cycles, and that
the multiple CA steps are more complex for a factor approximately equal to
number of the CA clocks. So, the scheme [17] is significantly more complex than
the novel scheme.

Also, it can be directly shown that complexity measured by the average
number of elementary operations per bit for a message hashing by the scheme
from [16], due to the employed approach of injecting the message bits into the
compression function (each message bit is processed 8 times), is nearly eight
times greater than the complexity of the here reported scheme.

Accordingly, the proposed hash function preserves all good characteristics
of the schemes from [16] and [17], and yields improvement of the security and
reduction of the complexity.

7 Conclusions

The paper addresses the problem of designing a fast one-way hash function for
bits oriented applications, and it points out a new application of programmable
cellular automata.

A novel hash function is proposed and its security and complexity are ana-
lyzed. The proposed hash function employs the approved model of iterative hash
function with novel compression and output functions.

The proposed compression function is one of the Davis-Meyer type based on
cryptographic transformation employing cellular automata, and the output func-
tion is a key stream generator, also based on cellular automata. The employment
of cellular automata ensures the efficiency of the proposed hash function.



The security of the proposed hash function was analyzed through the security
of the compression and output functions. The analysis, based on the so far
published results, implies that the proposed hash function has ideal security,
i.e., given a hash n-bits output, producing each of a preimage or 2nd preimage
requires testing of approximately 2" hypothesis, and producing of a collision
requires testing of approximately 2"/ hypothesis, assuming n > 120.

Assuming a message of m blocks, each with 2n bits, the proposed hash func-
tion employs number of operations approximately equal to 4 + 23—:; mod2 addi-
tions, for hashing each message bit. Accordingly it can be directly shown that
the proposed hash function is significantly faster than all other dedicated hash
functions published so far, assuming the bits oriented hashing.

Note that using the linear feedback shift register instead CA / PCA in the
proposed hash function yields insecure hash function.

Finally, note that an extension of the proposed hash function for the word
oriented applications instead of the here considered bit oriented could be also
considered. Future research will be directed toward employment of the CA/PCA
over the finite field GF(¢) which could be more appropriate for standard word
oriented applications.
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