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Abstract

We exhibit the rationale behind the design of Epigram, a dependently typed programming language and
interactive program development system, using refinements of a well known program—merge sort—as a
running example. We discuss its relationship with other proposals to introduce aspects of dependent types into
functional programming languages and sketch some topics for further work in this area.

1. Introduction

Types matter. That’s what they’re for—to classify data with respect to criteria which matter: how they should
be stored in memory, whether they can be safely passed as inputs to a given operation, even who is allowed to
see them. Dependent types are types expressed in terms of data, explicitly relating their inhabitants to that data.
As such, they enable you to express more of what matters about data. While conventional type systems allow
us to validate our programs with respect to a fixed set of criteria, dependent types are much more flexible, they
realize a continuum of precision from the basic assertions we are used to expect from types up to a complete
specification of the program’s behaviour. It is the programmer’s choice to what degree he wants to exploit the
expressiveness of such a powerful type discipline. While the price for formally certified software may be high,
it is good to know that we can pay it in installments and that we are free to decide how far we want to go.
Dependent types reduce certification to type checking, hence they provide a means to convince others that the
assertions we make about our programs are correct. Dependently typed programs are, by their nature, proof
carrying code [NL96, HST+03].

Functional programmers have started to incorporate many aspects of dependent types into novel type systems
usinggeneralized algebraic data typesandsingleton types. Indeed, we share Sheard’s vision [She04] of closing
the semantic gapbetween programs and their properties. While Sheard’s languageΩmega approaches this
goal by an evolutionary step from current functional languages like Haskell, we are proposing a more radical
departure with Epigram, exploiting what we have learnt from proof development tools like LEGO and COQ.

Epigram is a full dependently typed programming language defined by McBride and McKinna [MM04],
drawing on experience with the LEGO system. McBride has implemented a prototype which is available
together with basic documentation [McB04, McB05] from the Epigram homepage.1 The prototype implements
most of the features discussed in this article, and we are continuing to develop it to close the remaining

1 Currentlyhttp://sneezy.cs.nott.ac.uk/epigram/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

1 2005/4/14



gaps, improve performance and add new features. Brady has implemented a compiler [Bra05, BMM04] for
the Epigram language, providing important technology for producing efficient code from dependently typed
programs.

data
Nat : ?

where
0 : Nat

n : Nat
1+ n : Nat

data
Order : ?

where
le, ge : Order

data X : ?
List X : ?

where
nil : List X

x : X xs : List X
x :: xs : List X

let x , y : Nat
order x y : Order

order x y ⇐ recx
order 0 y ⇒ le
order (1+x ′) 0 ⇒ ge
order (1+x ′) (1+y ′) ⇒ order x ′ y ′

let xs, ys : List Nat
merge xs ys : List Nat

merge xs ys ⇐ recxs
merge nil ys ⇒ ys
merge (x :: xs ′) ys ⇐ recys
merge (x :: xs ′) nil ⇒ xs
merge (x :: xs ′) (y :: ys ′) order x y

le ⇒ x :: merge xs ′ ys
ge ⇒ y :: merge xs ys ′

let xs : List X
deal xs : List X × List X deal xs ⇐ recx

deal nil ⇒ (nil; nil)
deal (x :: nil) ⇒ (x :: nil; nil)
deal (y :: z :: xs) deal xs

(ys; zs) ⇒ (y :: ys; z :: zs)

let xs : List Nat
sort xs : List Nat

sort xs ⇐ general
deal xs
(ys; nil) ⇒ ys

(ys; z :: zs) ⇒ merge (sort ys) (sort (z :: zs))

Figure 1. Merge-sort, generally

In this article we exhibit the rationale behind Epigram’s design, using refinements of a well known program—
merge sort—as a running example. Our starting point is the implementation shown in Figure 1: it is written in
Epigram, but it could have been written in any functional language. We start by revisiting the question of totality
versus partiality in section 3, showing howsort can be made structurally recursive. Section 4 continues by
addressing the problem of how to maintain static invariants which is illustrated by implementing a sizedsort.
In section 5 we how to use dependent types to maintain static invariants about dynamic data, which is illustrated
by implementing a version ofsort which certifies that its output is in order. We look behind the curtains of the
Epigram system in section 6 and discuss how dependent types support an extensible system of programming
patterns which include, but are not restricted to, constructor case analysis and constructor guarded recursion; we
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also discuss the design of the interactive aspect of the Epigram programming environment. Finally, we describe
areas of further work in 7 and summarize our conclusions in section 8.

Before embarking on this programme let’s quickly describe Epigram’s syntax (which may look unusual to
functional programmers who have grown up with languages like ML or Haskell), taking our implementation of
merge sort as an example. Epigram uses a two-dimensional syntax for declarations, based on natural deduction
rules, a choice which pays off once type dependencies become more intricate. E.g. the declaration of the
constructor1+ for the datatype2 Nat is equivalent to writing1+ : Nat → Nat. The conclusion of a declaration
visualizes its use—this is important because parameters of any type can be implicit in Epigram. For example,
when declaringnil we do not declareX—Epigram figures out from its usage that it must inhabit?, the type of
types and internally completes the declaration

X : ?
nilX : List X

When presented withnil, Epigram uses the well known technology established by Damas and Milner [DM82]
to figure out the value of this implicit parameter. We can also make an implicit parameter explicit by writing it
as a subscript, eg.,nilNat : List Nat.

Epigram programs are tree-structured: each node has a ‘left-hand side’ indicating aprogramming problem
and a ‘right hand side’ indicating either how to solve it outright by returning a value,⇒ t (⇒ is pronounced
‘return’), or how to reduce it to subproblems by deploying a programming pattern indicated by the⇐ symbol (⇐
is pronounced ‘by’). Programming patterns include structural recursion, like recx in order, generalrecursion
and also case analysis. We suppress nonempty case analyses for the sake of brevity—they can be recovered by
the standard algorithm [Aug85]. If, as in themerge function, we need to analyse the result of an intermediate
computation, we bring it to the left with the|cdots construct (| is pronounced ‘with’).3 Here,order decides the
≤ relation, returning a value in the enumerationOrder.

We have given a complete program, but Epigram can also typecheck and evaluate incomplete programs with
unfinished sections sitting insheds, [ · · · ] , where the typechecker is forbidden to tread. Programs can be
developed interactively, with the machine showing the available context and the required type, wherever the
cursor may be. Moreover, it is Epigram which generates the left-hand sides of programs from type information,
each time a problem is simplified with⇐ on the right.

2. Related Work

Dependent types are a central feature of Martin-Löf’s Type Theory [ML84, NPS90], integrating constructive
logic and strongly typed functional programming. Type Theory and its impredicative extension, the Calculus
of Constructions, inspired many type-based proof systems, such as NUPRL [CAB+86], LEGO [LP92] and the
widely used COQ [Tea04]. Magnusson’s ALF system [MN94] was not only the first system to implement
inductive families [Dyb91] and pattern matching for dependent types [Coq92] and it also pioneered the
interactive style of type-driven program and proof development which inspired Epigram.

Xi and Pfenning’s DML (for Dependent ML) [XP99] was an impressive experiment in exploiting dependent
types for a real functional programming language. DML, like otherApplied Type Systems[Xi04], separates the
world of indexing expressions and programs, thereby keeping types unaffected from potentially badly behaved
programs. In contrast to DML, Augustsson’s implementation of the Cayenne language [Aug98], which also
inspired the AGDA proof system [CC99], uses full dependency and doesn’t differentiate between static and
dynamic types.

2 While the declaration ofNat provides a convenient interface to the type of natural numbers, there is no need to implement them using
a unary representation internally. Moreover, we shall also exploit the syntactic convenience of using the usual decimal notation to refer
to elements ofNat.
3 The current prototype doesn’t yet support the suppression of caseand it doesn’t implement the| notation. As a consequence its code is
more verbose.
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Nested types provide a poor man’s approach to many indexed data structures such as square matrices or
well scopedλ-terms, e.g. see [Hin01]. McBride suggested a more general approach [McB02b], exploiting that
Haskell’s class system provides a static logic programming language. Having realized the power of indexed data
structures, Cheney and Hinze [CH03] proposed to extend the type system to introduce a rich language of index
expressions leading togeneralized algebraic datatypes(GADTs), which are basically inductive families in a
programming language setting [She04, PWW04].

3. Why we are Partial to Totality

A popular myth, still to be found in learned articles and referee reports on grant applications, is that dependent
types and general recursion do not mix. This is a misunderstanding, but it’s an understandable one. Let us
examine the facts, beginning with the typing rule for application:

f : ∀x : S ⇒T [x ] s : S
f s : T [s]

It’s clear from the premises that, as ever, to check an application we need to compare the function domain
and the argument type. It’s also clear from the rule’s conclusion that these types may contain expressions.
If computation is to preserve typings, thenf (2+2) should have the same type asf 4, so T [2+2] mustbe
the same type asT [4]. To decide typechecking, we therefore need to decide some kind of equivalenceup to
computation. There are various approaches to this problem.

The totalitarian approach. Some proof systems based on intensional type theory, including Coq and
Lego, forbid general recursion. As all computations terminate, equality of types is just syntactic equality of
their normal forms. Decidability of typechecking is a consequence, but it’s not the primary motivation for this
choice. As a proof method, general recursion is wholly bogus—its type,∀P ⇒ (P → P) → P is a blatant
lie. General recursion, non-exhaustive patterns and other such non-total programming features compromise the
logical soundness of a proof system. Trust is more important than termination in proof checking.

Of course, even in the absence of general recursion, it’s possible to write programs which take a long
time—e.g. checking all the basic configurations of four-colouring problems. That doesn’t make dependent
typechecking necessarily intractable: the complexity of the programs in types is entirely controlled by the
programmer—the more you say, the more you pay, but the more also you can be repaid in terms of genericity, or
precision, or brevity. Georges Gonthier’s proof of the four colour theorem [Gon04] is madetractableby type-
level computation, because it lets him avoid generating and checking a separate proof for each configuration—
the latter approach would have involved at least as much work for the computer and a great deal more work for
Georges!

The libertarian approach. It’s reasonable to allow arbitrary recursion in type-level programs, provided
you have some sort of cut-off mechanism which interrupts loops when they happen in practice. This is the
approach taken by the Agda proof system, Cayenne and by Haskell with ‘undecidable instances’—Haskell’s
overloading resolution amounts to executing a kind of ‘compile-time Prolog’. Agda restores logical soundness
by a separate termination check, performed after typechecking. The basic point is that you include recursive
programs in types at your own risk: mostly they’re benign and typechecking behaves sensibly.

The legendary ‘loopiness’ of dependent typechecking stems from the particular way the libertarian approach
was implemented in Cayenne. It’s perfectly reasonable to implement recursion via fixpoints in the value-only
run-times of functional programming languages, but Lennart Augustsson’s attempt to lift this to the open terms
used in dependent typechecking had an unintended consequence—when even a structurally recursive function
is stuck on a non-constructor input, you can still expand the fixpoint, potentially putting the system into a spin:
this is intolerable, but it’s not inevitable, as the other ‘libertarian’ systems have shown.

The pragmatic advantage of libertarianism is that we don’t have to care why a program works in order to start
playing with it—it seems a shame to ban certain programs at run-time just to protect ourselves at compile-time.
However, it also seems a shame to forsake the certainties which totalitarianism supports.
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The mixed economy. As both of the above have their merits, it seems sensible to support both, as long
as programs are clear about where they stand. Dependent types can be used to express schemes of recursion
in the form of induction principles, such as constructor-guarded recursion for a given inductive datatype.
In Epigram, programs invoke recursion schemes explicitly—each recursive call must be translatable to an
‘inductive hypothesis’ arising from such a scheme. Any program which employs only constructor-guarded
recursion, or some fancier scheme derived therefrom, is guaranteed to be total.

However, general recursion also takes the form of an induction principle (with a particularly generous
inductive hypothesis). We can make general recursion available, but only by explicit appeal to this principle.
If we suppress the compile-time computational behaviour of general recursion, we can preserve decidability of
typechecking, leaving computation by explicitly total programs activated.

This opens a range of possibilities, as shown by the implementation of merge-sort shown in figure 1. The
ordering of the natural numbers with respect to≤ is a one-step constructor guarded recursion. Tomerge two
sorted lists, we need a combination of one-step recursions on each argument—for each successive element of
the first list, we step along the second list until its rightful place appears. Thedealing out of a list into two lists
of (roughly) half the length here exploits a two-step recursion, but this still fits within the constructor-guarded
scheme indicated by the keyword rec. However,sort performs a peculiar recursion viadeal—it’s not obvious
yet how to justify this, so for now we give up and usegeneral.4

This approach rules nothing out, but it still allows us to observe guaranteed totality where we can see the
explanation. The notational overhead is not large and could be reduced still further if we were to install an Agda-
style termination checker, inferring simple explanations when the user omits them. We could go even further,
pushing the total-versus-general distinction into types by treating general recursion as an effect which we lock
away safely in a monad. For practical purposes, we should need a better notation for monadic programming in
thefunctionalstyle. Both of these are active topics of research.

3.1 Totality is Good for more than the Soul

The warm fuzzy feeling you get when you’ve persuaded your program to live in a total programming language
should not be underestimated. It’s a strong static guarantee—you can say that you’ve written afunctionwithout
having to pretend that⊥ is a value. But warm fuzzy feelings don’t pay the rent: what are the practical benefits
of virtue?

Randy Pollack has often said to us ‘the point of writing a proof in a strongly normalizing calculus is that you
don’t need to normalize it’. When you have an expression of a given type in a total language, you can guarantee
that it will compute to a value: if you don’t care what that value is—as is usually the case with a proof—you
have no need to perform the computation. Now we know that we can integrate proofs of logical properties into
our programs atno run-time cost.

This is particularly important with proofs of equations. Equality is defined as follows:

data s : S t : T
s = t : ?

where
refl : t = t

An equation between types induces a coercion from one to the other which is trivial if the proof isrefl.

let Q : S = T s : S
{Q}s : T {refl}t ⇒ t

In a partial setting, we need to runQ to check that it’srefl, because trusting a false equation (likeNat =
Nat → Nat) induces a run-time type error. WhenQ is total, the compiler can erase{Q}. Contrast this
with the proposal to represent type equations in Haskell by isomorphisms, e.g. [BS02], — even though good
programmers always try to ensure that these functions turn out at run-time to be functorial liftings ofid, there
is no way to guarantee this to the compiler, so the isomorphisms must actually be executed.

4 To see how subtle the justification can be, try swapping the case analysis ondeal xs so the patterns are(nil; ys) and(z :: zs; ys).
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Moreover, an optimising compiler can exploit totality in various useful ways. The evaluation strategy of a total
program is irrelevant, so they can be run as strictly or lazily as a heuristic analysis might suggest. Optimisations
like replacingfoldr with foldl, which only work with finite values, can be applied safely. Specialisation by
partial evaluation is untroubled by⊥. Further the explicit marking of a program as structurally recursive is a
clear invitation to apply fusion techniques.

All in all, there is no bliss to be had from ignorance of totality; there is no disadvantage to wisdom.

3.2 Defusing General Recursion

A recursive function which happens to be total will generally exploit some sort of structure, but perhaps not
the ‘native’ structure of its inductive arguments. The totality of the function can be made clear if that structure,
whatever it is, can be brought into the open and expressed inductively.

A typical ‘divide and conquer’ recursion often becomes structural by introducing an intermediate data
structure which represents the division of the input, built by a process of insertion, and collapsed structurally
by ‘conquering’. This intermediate data structure thus corresponds to the control structure built by the original
recursion, which can be reconstructed by fusing the building with the collapse.

As David Turner observed [Tur95], defusing quick-sort exposes the binary search tree structure. The standard
example of a non-structural program is actually tree-sort—Rod Burstall’s first example of a structural program
[Bur69]!

We play the same game with merge-sort in figure 2. The ‘divide’ phase deals out the input to each sort into
two inputs for sub-sorts (roughly) half the size; the ‘conquer’ phase merges the two sorted outputs into one
(roughly) twice the size. If we build a tree representing the sorting processes, we find that each node deals its
inputs fairly to its subnodes, with the leaves having none or one.

data
Parity : ?

where
p0, p1 : Parity

data X : ?
DealT X : ?

where
empT : DealT X

x : X
leafT x : DealT X

p : Parity l , r : DealT X
nodeT p l r : DealT X

let x : X t : DealT X
insertT x t : DealT X insertT x t ⇐ rec t

insertT x empT ⇒ leafT x
insertT x (leafT y) ⇒ nodeT p0 (leafT y) (leafT x )
insertT x (nodeT p0 l r) ⇒ nodeT p1 (insertT x l) r
insertT x (nodeT p1 l r) ⇒ nodeT p0 l (insertT x r)

let xs : List X
dealT xs : DealT X dealT xs ⇐ recxs

dealT nil ⇒ empT
dealT (x :: xs) ⇒ insertT x (dealT xs)

let t : DealT Nat
mergeT t : List Nat

mergeT t ⇐ rec t
mergeT empT ⇒ nil
mergeT (leafT x ) ⇒ x :: nil
mergeT (nodeT p l r) ⇒ merge (mergeT l) (mergeT r)

let xs : List Nat
sort xs : List Nat

sort ⇒ mergeT · dealT

Figure 2. Merge-sort, structurally (withmerge as before)

6 2005/4/14



Correspondingly, a ‘dealing’ is a binary tree with leaves of weight zero or one, and nodes off balance by at
most one—if we keep a parity bit at each node, we shall know into which subnode the next element should be
dealt. In effect, we defuse the general recursion as a composition of folds, with ‘divide’ replacing[nil, ( :: )] by
[empT, insertT] and ‘conquer’ (mergeT) replacing[empT, leafT, nodeT] by [nil, ( :: nil), λp ⇒merge].

Of course, there is no panacea: there are all sorts of ways to write programs which conceal the structures
by which they operate. A dependent type system provides a rich language of datatypes in which to expose
these structures—other examples include evaluation for the simply typedλ-calculus with primitive recursion on
Nat, which gives a denotational semantics to both types and terms, and first-order unification, which combines
recursion on the number of available variables with recursion on terms over those variables.

If you care about totality, it’s often easier to write a new program which works with the relevant structure
than to write a proof which finds the structure which ageneral-program is hiding. The best way to tidy up the
mess is not to make it in the first place, if you can possibly avoid it.

4. Maintaining Invariants by Static Indexing

An important aspect of many recent and innovative type systems is the idea ofindexingdatatypes in order to
express and enforce structural invariants. There are various ways this can be achieved: in Epigram, we define
datatype familiesin the style of the Alf system [Dyb91]. A good introductory example is given by thevectors—
lists indexed with their length.

data n : Nat X : ?
Vec n X : ?

where
vnil : Vec 0 X

x : X xs : Vec n X
vcons x xs : Vec (1+n) X

Case analysis on inductive families [Coq92] involvesunifying the type of the scrutinee with the type of each
possible constructor pattern—those patterns for which constructors clash are rejected as impossible, as in this
notorious example:

let xs : Vec (1+n) X
vtail xs : Vec n X vtail (vcons x xs) ⇒ xs

Vectors admit operations which enforce and maintain length invariants, such as this ‘vectorized application’:

let fs : Vec n (S → T ) ss : Vec n S
fs @ ss : Vec n T

fs @ ss ⇐ rec fs
vnil @ vnil ⇒ vnil
vcons f fs ′ @ vcons s ss ′ ⇒ vcons (f s) (fs ′ @ ss ′)

Sometimes, we need some operations on the indices in order to express the type of an operation on indexed
data. Concatenating vectors is a simple example

let m,n : Nat
m + n : Nat

m + n ⇐ recm
0 + n ⇒ n
(1+ m ′) + n ⇒ 1+ (m ′ + n)

let xs : Vec m X ys : Vec n X
xs ++ ys : Vec (m + n) X xs + ys ⇐ recxs

vnil ++ ys ⇒ ys
vcons x xs ′ ++ ys ⇒ vcons x (xs ′ ++ ys)

Note the importance of the index unification in the above example—it’s the instantiation of the first argu-
ment’s length with0 or (1+ m ′) which enables the length of the concatenation to compute down to the length
of the vectors we actually return in each case.
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The fact that the length is some kind of data allows us to write generic operations by computation over it.
This example computes a constant vector of the required size.

let x : X
vecn x : Vec n X vecn x ⇐ recn

vec0 x ⇒ vnil
vec(1+ n ′) x ⇒ vcons x (vecn ′ x )

We writevec’s length argument as a subscript to indicate that it is usually to be left implicit when thevec
function is used. For example, we can map a functionf across a vectorxs just by writingvecf @ xs, because the
type of @ will require the output ofvec to have the same length asxs. The technology we have inherited from
Damas and Milner is now being used to infervalueparameters as well as types. The behaviours ofvec and @

combine conveniently to give us ‘vectorized applicative programming’ with size invariants quietly maintained:
transposition shows this in action.

let xij : Vec i (Vec j X )
xpose xij : Vec j (Vec i X ) xpose xij ⇐ recxij

xpose vnil ⇒ vec vnil
xpose (vcons xj xi ′j ) ⇒ vec vcons @ xj @ xpose xi ′j

4.1 Static Indexing and Proofs

In our definition of++ , we were lucky—the computation on the vectors was in harmony with the computation
on the numbers. We are not always so lucky—if we try to reverse a vector by the usual accumulating algorithm,
we kick against the computational behaviour of+ and the obvious program does not typecheck.

let xs : Vec m X ys : Vec n X
vrevacc xs ys : Vec (m + n) X vrevacc xs ys ⇐ recxs

vrevacc vnil ys ⇒ ys
vrevacc (vcons x xs ′) ys ⇒ vrevacc xs ′ (vcons x ys)

The trouble is that the shaded expression has lengthm ′ + (1+ n), and we require a length of1+ (m ′ + n),
wherexs ′ andys have lengthsm ′ andn respectively. The fact that these two lengths are the same does not
follow directly from applying the computational behaviour of+ , rather it’s an algebraic property for which we
can offer an inductive explanation.

let plusSuc m n : m + (1+ n) = 1+ (m + n)

plusSuc m n ⇐ recm
plusSuc 0 n ⇒ refl
plusSuc (1+ m ′) n ⇒ [plusSuc m ′ n〉

We write [q〉 for the proof of an equationp[s] = p[t ] whereq : s = t and〈q ] for the symmetric proof of
p[t ] = p[s] Once we have this proof, we can fix our accumulating reverse:

let xs : Vec m X ys : Vec n X
vrevaccm n xs ys : Vec (m + n) X

vrevacc xs ys ⇐ recxs
vrevacc vnil ys ⇒ ys
vrevacc(1+ m′) n (vcons x xs ′) ys ⇒ {[plusSuc m ′ n〉} vrevacc xs ′ (vcons x ys)

It is perhaps not surprising that to finish the job, we need another lemma (whose proof is an unremarkable
induction):
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let plusZero n : n + 0 = n · · ·

let xs : Vec n X
vrevn xs : Vec n X vrevn xs ⇒ {[plusZero n〉} vrevacc xs vnil

As we have already mentioned, these proofs are erased at run-time—their only rôle is to make the typechecker
aware of more than it can figure out by computation alone. Perhaps it’s undesirable to ‘repair’ programs with
proofs—ourvrev is certainly more trouble to write than the reversal of an unsized list, but this is just the work
which has to be done if you want to know that length is preserved. If we don’t care, we don’t have to work so
hard—we could just return a vector ofsomelength, rather than thesamelength:

let xs : Vec m X ys : Vec n X
vrevacc′ xs ys : ∃l ⇒Vec l X

vrevacc′ xs ys ⇐ recxs
vrevacc′ vnil ys ⇒ ys
vrevacc′ (vcons x xs ′) ys ⇒ vrevacc′ xs ′ (vcons x ys)

The notion of ‘some length’ is expressed via animplicit existential∃l ⇒ Vec l X . The vector is packed
(inferring the witness) and unpacked (discarding the witness) automatically. It allows us to recover a less
dependent type by hiding an index—here we recover ordinary lists. We can write the old programs with the
old precision just as easily as before.

As with totality, we have enough language to negotiate a pragmatic compromise, adopting more precise
methods where the gain is worth the work. The more prudent course, perhaps, is to try to make the unremarkable
proofs as cheap as possible. Xi and Pfenning’s approach of equipping the typechecker with decision procedures
for standard problem classes is a great help in practice: DML has no difficulty discharging the elementary
properties of+ we required above. We should certainly emulate this functionality.

4.2 Sized Merge-Sort

We can provide a more substantial example of ‘the pragmatics of precision’ by rolling out size invariants across
our development of merge-sort. We shall replace the lists by vectors, and we shall seek to ensure that sorting
preserves the length of its input.

How will sizing affectmerge? The output length should be the sum of the input lengths.

let xs : Vec m Nat ys : Vec n Nat
mergem n xs ys : Vec (m + n) Nat

merge xs ys ⇐ recxs
merge vnil ys ⇒ ys
merge (vcons x xs ′) ys ⇐ recys
merge(1+ m′) 0 (vcons x xs ′) vnil ⇒ {〈plusZero (1+ m ′)]} xs
merge(1+ m′) (1+ n ′) (vcons x xs ′) (vcons y ys ′)

order x y
le ⇒ vcons x (merge xs ′ ys)
ge ⇒ vcons y ({〈plusSuc m ′ n]} merge xs ys ′)

We shall also need to add sizes to our intermediateDealT data structure. The sizes forempT andleafT are
obvious enough, but what aboutnodeT? A useful clue is provided by thebalancinginvariant which our program
preserves—the size of the left subtree is either equal to that of the right subtree or just one more, depending on
the parity bit. Let’s write that down (we use decimals to abbreviate numerical constants):
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let p : Parity
p̂ : Nat

p̂0 ⇒ 0

p̂1 ⇒ 1

data n : Nat X : ?
DealT n X : ?

where
empT : DealT 0 X

x : X
leafT x : DealT 1 X

p : Parity l : DealT (p̂ + n) X r : DealT n X
nodeTn p l r : DealT ((p̂ + n) + n) X

There is more than one way to write down the size of anodeT.5 The choice we make here is motivated by
themergeT operation, which now has a more informative type:

let t : DealT n Nat
mergeT t : Vec n Nat

mergeT t ⇐ rec t
mergeT empT ⇒ vnil
mergeT (leafT x ) ⇒ vcons x nil
mergeT (nodeT p l r) ⇒ merge (mergeT l) (mergeT r)

We simply chose the return type fornodeT which made the old code formergeT go through as it stood,
given the new type ofmerge! Of course, we shall pay when we come to writeinsertT—we could shift the
burden the other way by taking the size of anodeT to bep̂ + n ∗ 2.

let x : X t : DealT n X
insertT x t : DealT (1+ n) X

insertT x t ⇐ rec t
insertT x empT ⇒ leafT x
insertT x (leafT y) ⇒ nodeT p0 (leafT y) (leafT x )
insertT x (nodeT p0 l r) ⇒ nodeT p1 (insertT x l) r
insertT x (nodeTn p1 l r) ⇒ {[plusSuc n n〉} nodeT(1+ n) p0 l (insertT x r)

The damage is not too bad—we just have to appeal to algebraic properties of+ , to show that the constructed
tree of size(1+n) + n fits the constraint1+(n + n). This leavesdealT andsort with new types, but basically
the same code:

let xs : Vec n X
dealT xs : DealT n X dealT xs ⇐ recxs

dealT vnil ⇒ empT
dealT (vcons x xs) ⇒ insertT x (dealT xs)

let xs : Vec n Nat
sort xs : Vec n Nat

sort ⇒ mergeT · dealT

It seems appropriate at this point to emphasize the importance of feedback from the typechecker when doing
a development like this. It’s the typechecker which tells you which lemmas you need and where you need to
insert them, and it’s the constraints which arise during typechecking which tell you how to engineer a data
structure’s indices so that its operations typecheck where possible. The computational coincidences between the
indices we encounter are really a matter of care, not luck.

5 Indeed, the above does not ensure that the subtrees of a node are nonempty—this can be done by replacingn with (1+ n ′) in the type
of nodeT.
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4.3 A Question of Phase

In our sorting example, the natural numbersNat are playing two separate parts—dynamically, they represent the
data being sorted; statically, they give sizes to the data structures involved in the process. All the case analysis
happens over the indexed datatypes, rather than the indices themselves, so there is no need for sizes at run-time.
It would appear that, in this example at least, the data on which types depend is entirely static. Although we need
something like the natural numbers within the language of types, should it be the natural numbers? Perhaps it
would be simpler if, as well as the natural numbers, there was something else exactly like them.

It’s not as ridiculous as it sounds: it enables us to keep the workaday term language out of types, allowing de-
pendency only on the static things. This keeps the type/term distinction in alignment with the phase distinction,
separating the static∀ from the dynamic→, each with their own distinct notions of abstraction, application and
now of datatype.

Of course, static datatypes are not quite enough: ourDealT datatype family relies on operations such as
+ . We need static functions over static data, together with the associated partial evaluation technology. We
need to find design criteria for this emerging static programming language. Will all our static data structures be
monomorphic? Do we believe that static data will never need to be indexed itself? It would be bold to imagine
that ‘yes’ is the answer to these questions. At what point will we stop extending the static language with a
replica of the dynamic language?

We’re beginning to see more and more of the same phenomema showing up on either side of the phase
distinction; we’re even beginning to see the potential emergence of a phasehierarchy. Occam’s razor suggests
that we should understand ‘data’ and ‘function’ once, regardless of phase, since the phase distinction no longer
distinguishes where these notions arise.

But Occam’s razor is a subjective instrument, so we cannot presume that others will come to the same
judgment as ourselves. We can, however, examine the impact of the underlying presumption that ‘the data
on which types depend is entirely static’.

5. Evidence is About Data; Evidence is Data

Type systems without dependency on dynamic data tend to satisfy thereplacementproperty—any subexpression
of a well typed expression can be replaced by an alternative subexpression of the same type in the same scope,
and the whole will remain well typed. For example, in Java or Haskell, you can always swap thethen and
else branches of conditionals and nothing will go wrong—nothing of any static significance, anyway. The
simplifying assumption is that within any given type, one value is as good as another. These type systems have
no means to express the way that different data mean different things, and should be treated accordingly in
different ways. That is why dependent types matter.

More specifically, we have seen how the apparatus of dependent types can be used to maintain the length
invariant in our sorting algorithm, but that the length can essentially be regarded as a prior static notion which
the code mustrespectdynamically. What if we wanted to guarantee the the output of our sorting algorithm is in
order? The order is not a prior static notion—that is why we need a sorting algorithm—the order isestablished
by run-time testing of the dynamic data. Can we observe this fact statically? As things stand,Order does not
matter: we can swap around thele andge outputs of ourorder test without affecting the well typedness of
merge. How can we makeOrder matter? By makingOrder a dependent type!

5.1 Evidence of Ordering

We replace the uninformative typeOrder by an inductive family withOrder x y expressing thatx andy can be
ordered and each possibility can be established withevidence.

data x , y : Nat
x ≤ y : ?

where · · ·

data x , y : Nat
Order x y : ?

where xley : x ≤ y
le xley : Order x y

ylex : y ≤ x
ge ylex : Order x y
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We shall give≤ its constructors shortly. First, let us see what happens to theorder test—for a start, its type
now tells us what its output says about its input! We provide empty sheds[] which will be completed once we
have decided how to represent≤ proofs. The freedom to delay implementation decisions while type checking
the rest of the code is an essential feature of Epigram which we further elaborate in the next section.

let order x y : Order x y order x y ⇐ recx
order 0 y ⇒ le []
order (1+x ′) 0 ⇒ ge []
order (1+x ′) (1+y ′) order x ′ y ′

le x ′ley ′ ⇒ le []
ge y ′lex ′ ⇒ ge []

This program is almost as before, except that we cannot pass the recursive call back directly—it is the ordering
of x ′ andy ′, but we need to order their successors. We can treat this partial program as a clue to good constructors
for ≤. What should we wish them to be? Well, our first[] requires a proof that0 ≤ y , so let us have

le0 : 0 ≤ y

Actually, that will also satisfy our second[] , which needs a proof of0 ≤ (1+x ′). Our third [] requires us

to establish(1+x ′) ≤ (1+y ′), givenx ′ley ′ : x ′ ≤ y ′, and the fourth[] is similar, so let us have

xley : x ≤ y
leS xley : (1+x ′) ≤ (1+y ′)

The two seem like a reasonable definition of≤, and they certainly enable us to fill in our[] s.

let order x y : Order x y order x y ⇐ recx
order 0 y ⇒ le le0
order (1+x ′) 0 ⇒ ge le0
order (1+x ′) (1+y ′) order x ′ y ′

le x ′ley ′ ⇒ le (leS x ′ley ′)
ge y ′lex ′ ⇒ ge (leS y ′lex ′)

What has happened here? We started with a program whichdid the right thing but did notsayso. It should
be no surprise that when we try to make this program say what it does, we learn how to say the right thing.

However, some of you may be wondering whether it is worth saying the right thing, if it means spending
heap on this data structure of evidence and losing the tail-call optimisation into the bargain. Fortunately, our≤
type has the property of beingcontent-free[BMM04]: just as with = , for any given indicesx andy , x ≤ y
contains at most one value, so the evidence can be erased at run-time and the tail-call restored. Moreover, it is
no accident that≤ is content-free: our method of packing up the cases arising ensured thatle0 andleS covered
distinct indices, and that the indices of any recursive proofs were determined in turn.

Just to be sure, let us check that≤ is a total ordering—givenorder, we just need
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let leReflx : x ≤ x leReflx ⇐ recx
leRefl0 ⇒ le0
leRefl(1+ x ′) ⇒ leS leReflx ′

let xley : x ≤ y ylez : y ≤ z
leTrans xley ylez : x ≤ z leTrans xley ylez ⇐ recxley

leTrans le0 ylez ⇒ le0
leTrans (leS xley ′) (leS ylez ′) ⇒ leS (leTrans xley ′ ylez ′)

let xley : x ≤ y ylex : y ≤ x
leASym xley ylex : x = y leASym xley ylex ⇐ recxley

leASym le0 le0 ⇒ refl
leASym (leS xley ′) (leS ylex ′) ⇒ [leASym xley ′ ylex ′〉

As it happens, these properties of≤ are not necessary in order to implement sorting. To be sure that a list is
sorted, you need at least to have checked that each adjacent pair is in order—that it’slocally sorted. It’s not hard
to see that a list can always be locally sorted with respect to any binary relation which always holds one way
around or the other (when inserting a new element, if it fits nowhere before the end, then it must fit at the end).
Of course, knowing that it is also a partial order enhances what you can deduce from a locally sorted list.

5.2 Locally Sorted Lists

How shall we define locally sorted lists? We shall clearly have to index lists with some sort of interval, but there
are several ways we might do it: one bound or two? open bounds or closed bounds? As with the design of the
sizedDealT, we should take care to ensure that the decision leads to operations which are as cleanly defined as
possible. For pedagogical purposes, we shall sort lists rather than vectors—sizing and sorting are independent
refinements of the list structure. We do not verify the fact that the resulting list is a permutation of the input
here.

One bound or two? In order to do a ‘cons’, we shall certainly need to know that the head and the tail are
suitably ordered, so the tail will require a lower bound. Meanwhile,merge makes no restrictions between the
bounds of its inputs—only between the input bounds and the output bounds. That suggests that we can get away
with a lower bound for this example. Of course, if we wanted toconcatenatesorted lists (in an algorithm based
on pivoting, say), we should need upper bounds too.

Open or closed? It is perhaps a little tricky to give a precise lower bound for the empty list—we could
make a bound ‘elements lifted with∞’ and lift ≤ accordingly:

data b : Lifted Nat
CList b : ?

where
cnil : CList ∞

x : Nat xley : x ≤ y xs : CList y
ccons x xley xs : CList (lift x )

The lifting is not a big issue here—we only get away without−∞ becauseNat stops at0. The advantage of
this definition is its precision: each list is assigned its tightest bound. The disadvantage of this definition is also
its precision—when we are making aCList, we must either specify its lower bound (eg.,sort is bounded by
min) and satisfy that specification, or say ‘don’t care’ with an existential. But we do care! The recursive calls
in merge can’t have any old lower bound—the lower bound of the tail must be at least the head!

The fact that we canassignclosed bounds to sorted lists does not necessarily make them a good choice for
a type, because we also need toprescribebounds. We can usually think of an open bound, even if it is not the
best one. Let us try:

data b : Nat
OList b : ?

where
onil : OList b

x : Nat blex : b ≤ x xs : OList x
ocons x blex xs : OList b
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Here, we have thatonil trivially satisfies any prescribed bound, whilst forocons, the head must exceed the
prescribed lower bound and bound the tail in turn. Any old sorted list can certainly be represented as an element
of OList 0. Meanwhile, ifboth inputs tomerge share a lower bound, then the output certainly shares it too.

let xs, ys : OList b
merge xs ys : OList b

merge xs ys ⇐ recxs
merge onil ys ⇒ ys
merge (ocons x blex xs ′) ys ⇐ recys
merge (ocons x blex xs ′) onil ⇒ xs
merge (ocons x blex xs ′) (ocons y bley ys ′)

order x y
le xley ⇒ ocons x blex (merge xs ′ (ocons y xley ys ′))
ge ylex ⇒ ocons y bley (merge (ocons x ylex xs ′) ys ′)

Each input list already satisfies the bound required for the output, so theonil cases are trivial. When we have
two oconses, we know both heads satisfy the lower bound, but whichever we pick must bound the recursive
merge. Hence, we had better pick the smaller one—the evidence we get fromorder is exactly what we need
to show that the list which keeps its head satisfies the newer tighter bound.

Now we can flatten aDealT into a sorted list. This gives us a new back end which we can compose with the
old dealT to get a sort which produces sorted output:

let t : DealT Nat
mergeT t : OList 0

mergeT t ⇐ rec t
mergeT empT ⇒ onil
mergeT (leafT x ) ⇒ ocons x le0 onil
mergeT (nodeT p l r) ⇒ merge (mergeT l) (mergeT r)

let xs : List Nat
sort xs : OList 0

sort ⇒ mergeT · dealT

Remark. In the above definitions ofmerge andmergeT, all of the≤ proofs which we supply in the
lists we build are either byle0 or by direct appeal to a hypothesis in scope. The proofs which we uncover by
case analysis are only used in this way. It seems reasonable to consider suppressing all of them by default from
the explicit syntax of the program. Implicit hypotheses could be kept in the context and searched whenever an
implicit proof is required, in much the way that Haskell handles the implicit dictionaries when unpacking and
packing existential types. Of course, a ‘manual override’ is still necessary—not all proofs are so immediate.

5.3 Programming with Evidence

The idea that one datatype can represent evidence about the values in another is alien to mainstream functional
programming languages, but its absence is beginning to cause pain. A recent experiment in ‘dynamically typed’
generic programming—the ‘Scrap Your Boilerplate’ library of traversal operators by Ralf Lämmel and Simon
Peyton Jones [LP03]—is a case in point. The library relies on a ‘type safe cast’ operator, effectively comparing
types at run time by comparing their encodings as data:

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r

where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)
else Nothing
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get :: Maybe a -> a
get x = undefined

Here, the Boolean testtypeOf x == typeOf (get r) serves the purpose of comparing typea with type
b, but the Haskell typechecker cannot interpret the valueTrue as a reason to unify types. In the absence of
evidence, the programmers resort to coercion.We trust them, of course, but this degree of trust should not be
necessary. This is an example where static dependency on dynamic data is the solution, not the problem.

We now work in a setting where we expect operations which test their input in some way to have a dependent
type which explains what the output reveals about the input—order is a simple example. Without some kind
of movement between terms and types this is impossible—you can exploit valid data (eg., writing a type-
preserving evaluator for a typed expression language) , but you cannotvalidateit dynamically (eg., by writing
a typechecker).

Traditional dependent types achieve this movement directly—the argument of a function can appear in the
type of its result, and often will, if the result is evidence of the argument’s properties. An alternative, adopted
for DML’s numerical indices, is to push the other way withsingleton types—types of dynamic data constrained
to be equal to the corresponding static data. We would have something like this:

order : ∀x , y : Nat ⇒Only x → Only y → Order x y

Here every piece of data about which we seek evidence must be abstracted twice—the type of evidence
depends on the static copy, but the testing itself is performed on the dynamic copy. In the context of DML,
this is a sensible separation—erasing the indices is intended to yield a well typed SML program. In a broader
context, where we might need to represent properties of any kind of dynamic data, this approach seems unlikely
to scale. Effectively, we may need to replace each typeT by the existential pairing of its static and dynamic
copies∃t : T ⇒Only t throughout our programs, in order to have data at all the levels where it is used.

Singleton types thus provide a convenient way to retro-fit a more sophisticated type system to an existing
compiler architecture. With just one notion of data at all levels, dependent types provide a convenient way for
programmers to exploit the potential of working with data as evidence. Our typechecker example in [MM04]
not only generates enough evidence about the types being inferred and compared to feed the tagless interpreter,
it generates evidence about the program being checked—it is the first typechecker in the literature which is
statically guaranteed to check its input!

6. The Tools of the Trade

Programming is a complex task which can be made easier for people to do with the help of computers. The
conventional cycle of programming with a text editor then compiling in ‘batch mode’ is a welcome shortening of
the feedback loop since the days of punched cards, but it clearly under-uses the technology available today. Any
typed programming language can benefit from the capacity—but not necessarily the compulsion—to invoke the
typechecker incrementally on incomplete subprograms whilst they are under development. The more powerful
the type system, the more pressing this need becomes—it just gets harder to do it in your head, especially when
types containcomputations, for which computers are inherently useful.

Moreover, a type acts as a partial specification of a program, and can thus be used to narrow the search space
for correct programs, even if only as a key for searching a library. The choice of a program’s type is inherently
suggestive of the programming strategies with which that type is naturally equipped—constructors and case
analysis for datatypes, abstraction and application for functions, and so on. It is a tragic waste if types play only
a passive r̂ole in programming, providing a basis for error reporting. Our technology should enable programmers
to exploit the clues which types provide.
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6.1 Dependent Types Also Matter Behind the Scenes

The key innovation of Epigram is its use of types to express programming tasks and programming patterns. For
example, the pattern of primitive recursion on a datatype is expressed by aninduction principle, like

∀P : Nat → ? ⇒
P 0 → (∀n ′ : Nat ⇒ P n ′ → P (1+ n ′)) →
∀n : Nat ⇒ P n

The conventional type of primitive recursion may be shorter, but it is less informative.

∀P ⇒P → (Nat → P → P) → Nat → P

This type does not connect the arguments to the tasks they serve, whereas the induction principle is a dependent
type which explains that a recursive computation forn needs a method for0 and a method for(1 + n ′).
Correspondingly, the system transforms a programming problem such as

let x , y : Nat
x + y : Nat

into a ‘computability proof’ goal ? : ∀x , y : Nat ⇒ 〈x + y : Nat〉

We read〈x + y : Nat〉 as ‘x + y is computable’. If we attack this goal with induction, we acquire subgoals
like these:

? : ∀y :Nat ⇒ 〈0 + y : Nat〉
? : ∀x ′ :Nat ⇒

(∀y :Nat ⇒ 〈x ′ + y : Nat〉) →
∀y :Nat ⇒ 〈(1+ x ′) + y : Nat〉

These goals tell us exactly the ‘left-hand sides’ for the subprograms which the recursive strategy requires.
By using dependent types to represent programming problems and programming patterns, we have acquired

an interactive programming environment for the price of an interactive proof system. The basic constructs of the
Epigram language give a ‘programming’ presentation to the basic tactics of the system. The⇐ construct is just
McBride’s ‘elimination with a motive’ tactic [McB02a] which synthesizes an appropriate ‘P ’ parameter for any
induction-like rule. The|scrutinee construct is just ‘cut’. The details of the process by which Epigram code is
elaboratedinto the underlying type theory—a variation of Luo’s UTT [Luo94]—are given in [MM04]. Edwin
Brady’s compiler for UTT, which erases extraneous information at run time, is presented in [Bra05].

The point is this: UTT is not our programming language—UTT is our language for describing how pro-
gramming works. Epigram has no hard-wired construct for constructor case analysis or constructor-guarded
recursion—these are just programming patterns specified by type and supplied as standard with every datatype
you define. However, UTT types are Epigram types, so you are free to extend our language by specifying and
implementing your own patterns. Our typechecking example in [MM04] is a derived case analysis principle
for expressions, exposing not their syntax, but their types or type errors. By making programming patterns
first-class citizens via dependent types, we raise the level of abstraction available to programmers and provide
interactive support for its deployment at a single stroke.

6.2 Programming Interactively

The interface to Epigram is inspired by the Alf proof editor [MN94], which introduced a type-directed structure
editor for incomplete programs. In Epigram’s concrete syntax, ashed [ raw text ] may stand in for any
subexpression. The elaborator is not permitted inside ashed, so the text it contains may be edited freely. There
are two basic editing moves—removing the brackets to admit the elaborator (which will process as far as any
nested sheds) and placing brackets around an elaborated subexpression to ‘undo’ it and return it to a shed.
Correspondingly, the full spectrum of interactivity is supported: an entire program can be written (or, more to the
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point, reloaded) inside a shed, then elaborated in ‘batch mode’; or a single syntactic construct can be elaborated,
with sheds for subexpressions. The advantages of structure editing are available, but the disadvantages are not
compulsory.

The interactive development of a program is a kind of dialogue. The system poses the problems—the left-
hand sides of programs. We supply the solutions by filling in the right-hand sides, either by directly giving the
program’s output⇒ t , or by invoking a programming pattern which reduces the problem to subproblems which
are then posed in turn. There is a direct mapping from sheds[ · · · ] in source code to metavariables,?x in the
underlying proof state—when you elaborate a shed, your code triggers a refinement of the proof state, and the
resulting refinement to the source code is read off from the types of the subgoals. Nothing is hidden—the proof
state is recoverable from the source code simply by re-elaborating it in a single step.

Our approach to metavariables basically follows McBride’s OLEG system [McB99]—metavariables repre-
sent not only the missing contents of sheds, but also all the unknowns arising from implicit quantification. The
latter are resolved, where possible, by solving the unification constraints which arise during typechecking—we
follow Dale Miller’s ‘mixed prefix’ approach [Mil92]. Epigram will not guess the type of your program, but
it will infer the bits of your program which the type determines. The Damas-Milner approach to type infer-
ence [DM82] is alive and well and working harder than ever, even though we have dispensed with the shackles
on programming which allow it to be complete.

7. Further Work

We have hardly started. Exploiting the expressivity of dependent types in a practicable way involves a wide
range of challenges in the development of the theory, the design of language, the engineering of tools and the
pragmatics of programming. In this section, we summarize just a few of them.

First-Class Modules. No programming language can succeed without strong support for the large-scale
engineering of systems. Dependent type systems already allow us to express record types which pack up data
structures, operations over them—and also proofs of the properties of those operations.Manifestrecord types,
which specify the values of some of their fields, can be used to express sharing between records, and between the
the inputs and outputs of record-transforming operations [Pol00]. Epigram’s first-class notion of programming
pattern allows an abstract datatype to offer admissible notions of pattern matching which hide the actual data
representation but are guaranteed to be faithful to it—we have Wadler’sviewsfor free [Wad87].

We now need a practical theory of subtyping to deliver a suitable form of inheritance, and a convenient
high-level syntax for working with records. Our elaboration mechanism naturally lends itself to the approach
of coercive subtyping, where subsumptions in source code elaborate to explicit coercion functions—typically
projections—in the underlying theory [Luo97].

Universe Polymorphism. What is the type of types, and how do we quantify over them safely and consis-
tently? In [MM04], we follow thepredicativefragment of Luo’s Extended Calculus of Constructions [Luo90],
installing a cumulative hierarchy of universes?0, ?1, . . . each of which both inhabits and embeds in the next, so
that?i : ?i+1 holds andT : ?i impliesT : ?i+1. As Harper and Pollack have shown [HP91], the user need never
write a universe level explicitly—the machine can maintain a graph of relative level constraints and protest if
any construction induces a cycle.

This much is certainly safe, and it allows every type to find its own particular level—this is calledtypical
ambiguity. The trouble is that, as things stand, there is no satisfactory way to define datatype constructors which
operate ateverylevel—this is calleduniverse polymorphism. A simple example shows up if we have a listTs
of element types, and we want to construct the corresponding list of list types

map List Ts

The typesin Ts live one level below the typeof Ts, so we needList to operate atboth levels. There has been
some very promising theoretical work in this area [CL01, Cou02] but again, a clear and convenient design has
yet to emerge. In the interim, we have adopted the cheap but inconsistent fudge of taking? : ?.
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Generics and Reflection. Any function T : U → ? naturally reflectsa sublanguage oruniverseof
types—those given byT u. We can think ofu as the ‘name’ of a type in the universe. IfU happens to be a
datatype, we can write generic programs which work for all the types named by a valueu. PerhapsU is the
type of regular expressions andT computes for each regular expression the type of its words, yieldingregular
expression types[HVP00]. PerhapsU represents a collection of datatypes with a decidable equality

eq : ∀u : U ; x , y : T u ⇒ x = y ∨ x 6= y

Peter Morris has recently implemented exactly such a generic equality in Epigram for the universe of regular
types [Mor05]. Dependently typed generic programming is a lively research area [AM03, BDJ03], inspired by
the pioneering work on generics in Haskell [BJJM98, HJL04, CHJ+01].

Alternatively, perhaps our universeU represents a class of decidable propositions, equipped with a decision
procedure

decide : ∀u : U ⇒ T u ∨ T u → ⊥
Such a procedure could be used to extend the elaborator’s capacity to solve simple proof obligations and
equational constraints automatically, following the lead of DML [XP99], but without wiring a particular
constraint domain into the language design and the compiler. However, to make this work conveniently, we
need language support for the declaration of universes(U ,T ) whereU reflects a given class of types andT
is invertible by construction, enabling the elaborator to infer the appropriateu : U when invoking a generic
operation.

Observational Type Theory. The type of equality proofs used in an intensional theory like Epigram’s
underlying Type Theory, is inconvenient when working with infinite objects like function types or lazy lists (co-
data). We plan to overcome this restriction without affecting the decidability of type checking by implementing
anObservational Type Theorybased on [Alt99, Hof95].

Monadic interfaces to the real world. A dependently typed language offers the opportunity to develop
the idea of monadic IO further. Such a monadic interface comes in two guises: a static, denotational semantics
which can be used to reason about the programs and an operational semantics, which is employed at runtime.
This approach is not only relevant for IO, based on [Cap05] we can develop apartiality monadwhich allows
us not only to implement but also reason about genuinely partial programs like interpreters or programs on the
computable reals.

Refactoring. Epigram’srefinementstyle of editing supports the process of working from types to pro-
grams, but it does not help with the inevitable iterations of the design cycle, as our plans evolve. Indeed, it is
quite normal to build up the index structure for our in layers, as we did for oursort example. Our interactive
editing technology should support these process also, allowing us to experiment at pushing different type re-
finements through our programs. We should be able to try out the options which gave rise to the ‘open lower
bound’ choice for sorted lists.

More generally, we can seek to emulate existing tools forrefactoringevolving the design of data structures
and programs [LRT03], now in the context of a system which supports incomplete objects. There is plenty of
scope to develop tools which really reflect the way most programmers work, iteratively improving program
attempts—good ideas often come a bit at a time.

8. Conclusions

This much is clear: many programmers are already finding practical uses for the approximants to dependent
types which mainstream functional languages (especially Haskell) admit, by hook or by crook. From arrows
and functional reactive programming [Hug05, Nil05], through extensible records [KLS04], database program-
ming [BH04] and dynamic web scripting [Thi02] to code generation [BS04], people are ‘faking it’ any way
they can to great effect. Each little step along the road to dependent types makes the task a little easier, the
code a little neater and the next improvement a little closer: the arrival of GADTs in Haskell is a joy and a
relief [PWW04].
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Now is the time to recognize the direction of these developments and pursue it by design, not drift. In the long
term, there is a great deal more chaos and confusion to be feared from fumbling through today’s jungle of type
class Prolog, singletons and proxies than from a dependent type system whose core rules have been well studied
and fit on the back of an envelope. The Epigram project is our attempt to plunder the proof systems based on
Type Theory for the technology they can offer programmers. It is also a platform for radical experimentation
without industrial inertia—an attempt to discover in which ways dependent types might affect the assumptions
upon which mainstream functional language designs have been predicated. We are having a lot of fun, and there
is plenty of fun left for many more researchers, but we do not expect to change the mainstream overnight. What
we can hope to do is contribute a resource of experiments—successful or otherwise—to this design process.

More technically, what we have tried to demonstrate here is that the distinctions term/type, dynamic/static,
explicit/inferred are no longer naturally aligned to each other in a type system which recognizes the relationships
between values. We have decoupled these dichotomies and found a language which enables us to explore the
continuum of pragmatism and precision and find new sweet spots within it. Of course this continuum also
contains opportunities for remarkable ugliness and convolution—one can never legislate against bad design—
but that is no reason to toss away its opportunities. Often, by bringing out the ideas which lie behind good
designs, by expressing the things which matter, dependent types make data and programs fit better.
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