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Abstract

In cellular telephone systems, an important problem is to dynami-
cally allocate the communication resource (channels) so as to max-
imize service in a stochastic caller environment. This problem is
naturally formulated as a dynamic programming problem and we
use a reinforcement learning (RL) method to �nd dynamic channel
allocation policies that are better than previous heuristic solutions.
The policies obtained perform well for a broad variety of call traf-
�c patterns. We present results on a large cellular system with
approximately 4949 states.

In cellular communication systems, an important problem is to allocate the com-
munication resource (bandwidth) so as to maximize the service provided to a set of
mobile callers whose demand for service changes stochastically. A given geograph-
ical area is divided into mutually disjoint cells, and each cell serves the calls that
are within its boundaries (see Figure 1a). The total system bandwidth is divided
into channels, with each channel centered around a frequency. Each channel can be
used simultaneously at di�erent cells, provided these cells are su�ciently separated
spatially, so that there is no interference between them. The minimum separation
distance between simultaneous reuse of the same channel is called the channel reuse
constraint .

When a call requests service in a given cell either a free channel (one that does not
violate the channel reuse constraint) may be assigned to the call, or else the call is
blocked from the system; this will happen if no free channel can be found. Also,
when a mobile caller crosses from one cell to another, the call is \handed o�" to the
cell of entry; that is, a new free channel is provided to the call at the new cell. If no
such channel is available, the call must be dropped/disconnected from the system.



One objective of a channel allocation policy is to allocate the available channels
to calls so that the number of blocked calls is minimized. An additional objective
is to minimize the number of calls that are dropped when they are handed o� to
a busy cell. These two objectives must be weighted appropriately to re
ect their
relative importance, since dropping existing calls is generally more undesirable than
blocking new calls.

To illustrate the qualitative nature of the channel assignment decisions, suppose
that there are only two channels and three cells arranged in a line. Assume a
channel reuse constraint of 2, i.e., a channel may be used simultaneously in cells
1 and 3, but may not be used in channel 2 if it is already used in cell 1 or in cell
3. Suppose that the system is serving one call in cell 1 and another call in cell
3. Then serving both calls on the same channel results in a better channel usage
pattern than serving them on di�erent channels, since in the former case the other
channel is free to be used in cell 2. The purpose of the channel assignment and
channel rearrangement strategy is, roughly speaking, to create such favorable usage
patterns that minimize the likelihood of calls being blocked.

We formulate the channel assignment problem as a dynamic programming problem,
which, however, is too complex to be solved exactly. We introduce approximations
based on the methodology of reinforcement learning (RL) (e.g., Barto, Bradtke and
Singh, 1995, or the recent textbook by Bertsekas and Tsitsiklis, 1996). Our method
learns channel allocation policies that outperform not only the most commonly used
policy in cellular systems, but also the best heuristic policy we could �nd in the
literature.

1 CHANNEL ASSIGNMENT POLICIES

Many cellular systems are based on a �xed assignment (FA) channel allocation; that
is, the set of channels is partitioned, and the partitions are permanently assigned
to cells so that all cells can use all the channels assigned to them simultaneously
without interference (see Figure 1a). When a call arrives in a cell, if any pre-
assigned channel is unused; it is assigned, else the call is blocked. No rearrangement
is done when a call terminates. Such a policy is static and cannot take advantage of
temporary stochastic variations in demand for service. More e�cient are dynamic
channel allocation policies, which assign channels to di�erent cells, so that every
channel is available to every cell on a need basis, unless the channel is used in a
nearby cell and the reuse constraint is violated.

The best existing dynamic channel allocation policy we found in the literature is
Borrowing with Directional Channel Locking (BDCL) of Zhang & Yum (1989). It
numbers the channels from 1 to N , partitions and assigns them to cells as in FA.
The channels assigned to a cell are its nominal channels. If a nominal channel
is available when a call arrives in a cell, the smallest numbered such channel is
assigned to the call. If no nominal channel is available, then the largest numbered
free channel is borrowed from the neighbour with the most free channels. When a
channel is borrowed, careful accounting of the directional e�ect of which cells can
no longer use that channel because of interference is done. The call is blocked if
there are no free channels at all. When a call terminates in a cell and the channel
so freed is a nominal channel, say numbered i, of that cell, then if there is a call
in that cell on a borrowed channel, the call on the smallest numbered borrowed
channel is reassigned to i and the borrowed channel is returned to the appropriate
cell. If there is no call on a borrowed channel, then if there is a call on a nominal
channel numbered larger than i, the call on the highest numbered nominal channel
is reassigned to i. If the call just terminated was itself on a borrowed channel, the



call on the smallest numbered borrowed channel is reassigned to it and that channel
is returned to the cell from which it was borrowed. Notice that when a borrowed
channel is returned to its original cell, a nominal channel becomes free in that cell
and triggers a reassignment. Thus, in the worst case a call termination in one cell
can sequentially cause reassignments in arbitrarily far away cells | making BDCL
somewhat impractical.

BDCL is quite sophisticated and combines the notions of channel-ordering, nominal
channels, and channel borrowing. Zhang and Yum (1989) show that BDCL is
superior to its competitors, including FA. Generally, BDCL has continued to be
highly regarded in the literature as a powerful heuristic (Enrico et.al., 1996). In
this paper, we compare the performance of dynamic channel allocation policies
learned by RL with both FA and BDCL.

1.1 DYNAMIC PROGRAMMING FORMULATION

We can formulate the dynamic channel allocation problem using dynamic program-
ming (e.g., Bertsekas, 1995). State transitions occur when channels become free due
to call departures, or when a call arrives at a given cell and wishes to be assigned
a channel, or when there is a hando�, which can be viewed as a simultaneous call
departure from one cell and a call arrival at another cell. The state at each time
consists of two components:

(1) The list of occupied and unoccupied channels at each cell. We call this the
con�guration of the cellular system. It is exponential in the number of cells.

(2) The event that causes the state transition (arrival, departure, or hando�). This
component of the state is uncontrollable.

The decision/control applied at the time of a call departure is the rearrangement
of the channels in use with the aim of creating a more favorable channel packing
pattern among the cells (one that will leave more channels free for future assign-
ments). Unlike BDCL, our RL solution will restrict this rearrangement to the cell
with the current call departure. The control exercised at the time of a call arrival
is the assignment of a free channel, or the blocking of the call if no free channel is
currently available. In general, it may also be useful to do admission control , i.e.,
to allow the possibility of not accepting a new call even when there exists a free
channel to minimize the dropping of ongoing calls during hando� in the future. We
address admission control in a separate paper and here restrict ourselves to always
accepting a call if a free channel is available. The objective is to learn a policy that
assigns decisions (assignment or rearrangement depending on event) to each state
so as to maximize

J = E

�Z
1

0

e��tc(t)dt

�
;

where Ef�g is the expectation operator, c(t) is the number of ongoing calls at time
t, and � is a discount factor that makes immediate pro�t more valuable than future
pro�t. Maximizing J is equivalent to minimizing the expected (discounted) number
of blocked calls over an in�nite horizon.

2 REINFORCEMENT LEARNING SOLUTION

RL methods solve optimal control (or dynamic programming) problems by learning
good approximations to the optimal value function, J�, given by the solution to



the Bellman optimality equation which takes the following form for the dynamic
channel allocation problem:

J(x) = Ee

�
max

a2A(x;e)
[E�tfc(x; a;�t)+ 
(�t)J(y)g]

�
; (1)

where x is a con�guration, e is the random event (a call arrival or departure), A(x; e)
is the set of actions available in the current state (x; e), �t is the random time until
the next event, c(x; a;�t) is the e�ective immediate payo� with the discounting,
and 
(�t) is the e�ective discount for the next con�guration y.

RL learns approximations to J� using Sutton's (1988) temporal di�erence (TD(0))
algorithm. A �xed feature extractor is used to form an approximate compact rep-
resentation of the exponential con�guration of the cellular array. This approxi-
mate representation forms the input to a function approximator (see Figure 1) that
learns/stores estimates of J�. No partitioning of channels is done; all channels are
available in each cell. On each event, the estimates of J� are used both to make
decisions and to update the estimates themselves as follows:

Call Arrival: When a call arrives, evaluate the next con�guration for each free
channel and assign the channel that leads to the con�guration with the largest
estimated value. If there is no free channel at all, no decision has to be made.

Call Termination: When a call terminates, one by one each ongoing call in that
cell is considered for reassignment to the just freed channel; the resulting con�gu-
rations are evaluated and compared to the value of not doing any reassignment at
all. The action that leads to the highest value con�guration is then executed.

On call arrival, as long as there is a free channel, the number of ongoing calls and the
time to next event do not depend on the free channel assigned. Similarly, the number
of ongoing calls and the time to next event do not depend on the rearrangement done
on call departure. Therefore, both the sample immediate payo� which depends on
the number of ongoing calls and the time to next event, and the e�ective discount
factor which depends only on the time to next event are independent of the choice
of action. Thus one can choose the current best action by simply considering the
estimated values of the next con�gurations. The next con�guration for each action
is deterministic and trivial to compute.

When the next random event occurs, the sample payo� and the discount factor be-
come available and are used to update the value function as follows: on a transition
from con�guration x to y on action a in time �t,

Jnew(~x) = (1� �)Jold(~x) + � (c(x; a;�t) + 
(�t)Jold(~y)) (2)

where ~x is used to indicate the approximate feature-based representation of x. The
parameters of the function approximator are then updated to best represent Jnew(~x)
using gradient descent in mean-squared error (Jnew(~x)� Jold(~x))2.

3 SIMULATION RESULTS

Call arrivals are modeled as Poisson processes with a separate mean for each cell,
and call durations are modeled with an exponential distribution. The �rst set of
results are on the 7 by 7 cellular array of Figure ??a with 70 channels (roughly
7049 con�gurations) and a channel reuse constraint of 3 (this problem is borrowed
from Zhang and Yum's (1989) paper on an empirical comparison of BDCL and its
competitors). Figures 2a, b & c are for uniform call arrival rates of 150, 200, and
350 calls/hr respectively in each cell. The mean call duration for all the experiments



reported here is 3 minutes. Figure 2d is for non-uniform call arrival rates. Each
curve plots the cumulative empirical blocking probability as a function of simulated
time. Each data point is therefore the percentage of system-wide calls that were
blocked up until that point in time. All simulations start with no ongoing calls.
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Figure 1: a) Cellular Array. The market area is divided up into cells, shown here as
hexagons. The available bandwidth is divided into channels. Each cell has a base sta-
tion responsible for calls within its area. Calls arrive randomly, have random durations
and callers may move around in the market area creating hando�s. The channel reuse
constraint requires that there be a minimum distance between simultaneous reuse of the
same channel. In a �xed assignment channel allocation policy (assuming a channel reuse
constraint of 3), the channels are partitioned into 7 lots labeled 1 to 7 and assigned to the
cells in the compact pattern shown here. Note that the minimum distance between cells
with the same number is at least three. b) A block diagram of the RL system. The ex-
ponential con�guration is mapped into a feature-based approximate representation which
forms the input to a function approximation system that learns values for con�gurations.
The parameters of the function approximator are trained using gradient descent on the
squared TD(0) error in value function estimates (c.f. Equation 2).

The RL system uses a linear neural network and two sets of features as input: one
availability feature for each cell and one packing feature for each cell-channel pair.
The availability feature for a cell is the number of free channels in that cell, while the
packing feature for a cell-channel pair is the number of times that channel is used
in a 4 cell radius. Other packing features were tried but are not reported because
they were insigni�cant. The RL curves in Figure 2 show the empirical blocking
probability whilst learning. Note that learning is quite rapid. As the mean call
arrival rate is increased the relative di�erence between the 3 algorithms decreases.
In fact, FA can be shown to be optimal in the limit of in�nite call arrival rates
(see McEliece and Sivarajan, 1994). With so many customers in every cell there
are no short-term 
uctuations to exploit. However, as demonstrated in Figure 2,
for practical tra�c rates RL consistently gives a big win over FA and a smaller win
over BDCL.

One di�erence between RL and BDCL is that while the BDCL policy is independent
of call tra�c, RL adapts its policy to the particulars of the call tra�c it is trained
on and should therefore be less sensitive to di�erent patterns of non-uniformity of
call tra�c across cells. Figure 3b presents multiple sets of bar-graphs of asymptotic
blocking probabilities for the three algorithms on a 20 by 1 cellular array with 24
channels and a channel reuse constraint of 3. For each set, the average per-cell call
arrival rate is the same (120 calls/hr; mean duration of 3 minutes), but the pattern
of call arrival rates across the 20 cells is varied. The patterns are shown on the left
of the bar-graphs and are explained in the caption of Figure 3b. From Figure 3b
it is apparent that RL is much less sensitive to varied patterns of non-uniformity
than both BDCL and FA.

We have showed that RL with a linear function approximator is able to �nd better
dynamic channel allocation policies than the BDCL and FA policies. Using nonlin-
ear neural networks as function approximators for RL did in some cases improve
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Figure 2: a), b), c) & d) These �gures compare performance of RL, FA, and BDCL on the 7
by 7 cellular array of Figure 1a. The means of the call arrival (Poisson) processes are shown
in the graph titles. Each curve presents the cumulative empirical blocking probability as
a function of time elapsed in minutes. All simulations start with no ongoing calls and
therefore the blocking probabilities are low in the early minutes of the performance curves.
The RL curves presented here are for a linear function approximator and show performance
while learning. Note that learning is quite rapid.

performance over linear networks by a small amount but at the cost of a big in-
crease in training time. We chose to present results for linear networks because they
have the advantage that even though training is centralized, the policy so learned
is decentralized because the features are local and therefore just the weights from
the local features in the trained linear network can be used to choose actions in
each cell. For large cellular arrays, training itself could be decentralized because
the choice of action in a particular cell has a minor e�ect on far away cells. We will
explore the e�ect of decentralized training in future work.

4 CONCLUSION

The dynamic channel allocation problem is naturally formulated as an optimal con-
trol or dynamic programming problem, albeit one with very large state spaces. Tra-
ditional dynamic programming techniques are computationally infeasible for such
large-scale problems. Therefore, knowledge-intensive heuristic solutions that ig-
nore the optimal control framework have been developed. Recent approximations
to dynamic programming introduced in the reinforcement learning (RL) commu-
nity make it possible to go back to the channel assignment problem and solve it
as an optimal control problem, in the process �nding better solutions than previ-
ously available. We presented such a solution using Sutton's (1988) TD(0) with a
feature-based linear network and demonstrated its superiority on a problem with
approximately 7049 states. Other recent examples of similar successes are the game
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Figure 3: a) Screen dump of a Java Demonstration available publicly at http://
www.cs.colorado.edu/ebaveja/Demo.html b) Sensitivity of channel assignment methods to
non-uniform tra�c patterns. This �gure plots asymptotic empirical blocking probability
for RL, BDCL, and FA for a linear array of cells with di�erent patterns (shown at left) of
mean call arrival rates | chosen so that the average per cell call arrival rate is the same
across patterns. The symbol l is for low, m for medium, and h for high. The numeric
values of l, h, and m are chosen separately for each pattern to ensure that the average per
cell rate of arrival is 120 calls/hr. The results show that RL is able to adapt its allocation
strategy and thereby is better able to exploit the non-uniform call arrival rates.

of backgammon (Tesauro, 1992), elevator-scheduling (Crites & Barto, 1995), and
job-shop scheduling (Zhang & Dietterich, 1995). The neuro-dynamic programming
textbook (Bertsekas and Tsitsiklis, 1996) presents a variety of related case studies.
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