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Abstract 
 Due to increasing power densities, both on-chip 
average and peak temperatures are fast becoming a 
serious bottleneck in processor design. This is due to 
the cost of removing the heat generated, and the 
performance impact of dealing with thermal 
emergencies. So far microarchitectural techniques to 
control temperature have mainly focused on the 
processor backend (in particular the execution units), 
whereas the frontend has not received much attention. 
However, as the temperature of the backend remains 
controlled and the processor throughput increases, the 
heat dissipated by the frontend becomes more 
significant, and one of the major contributors to the 
total average temperature. 

This paper proposes and evaluates a distributed 
frontend for clustered microarchitectures that is able 
to reduce power density and temperature. First, a 
distributed mechanism for renaming and committing 
instructions is proposed. Second, a sub-banked trace 
cache with a bank hopping mechanism is presented. 
Finally, a method to improve the sub-banking is 
proposed based on a biased mapping function to 
distribute bank accesses to balance temperature. 

 
 

1. Introduction 
Power dissipation is one of the major hurdles in the 
design of next-generation microarchitectures. Power 
density is increasing in each generation due to the fact 
that frequency and leakage currents are scaling up very 
fast and their effect cannot be offset by decreasing the 
supply voltage. Power density directly translates into 
heat which must be removed from the processor die in 
order to keep the silicon temperature below a certain 
limit. The increase in power density makes the cost of 
the cooling system grow and challenges the 
performance benefits that can be obtained by the ever 
growing transistor density. For instance, traditionally 
the cooling system of a processor was designed to 
support the worst case peak temperature. Because of 

the growth of the cooling solution cost and some form 
factor constraints (especially in mobile computers), the 
cooling system is now designed for the common case 
and a thermal emergency mechanism is in charge of 
restoring the processor to its operating temperature. 
This solution has been adopted because the processor 
spends most of the time running at much lower 
temperatures than the worst-case scenario. Whenever a 
thermal emergency arises, a back-up mechanism to 
cool down the chip is triggered. Such mechanisms have 
a negative impact on performance.  

The cost of the cooling system has been quantified 
in the order of $1-3 or more per Watt when the average 
power exceeds 40 Watts [4][14], which represents a 
significant part of the total cost of the chip. The cost of 
the heat removal system is especially important for 
data centers where air conditioning is a main 
contributor over the whole data center cost [22]. 
Furthermore, circuit reliability depends exponentially 
upon operating temperature. Temperature variations 
account for over 50% of electronic failures [28]. 

In order to reduce dynamic power dissipation, chip 
designers rely on scaling down the supply voltage. To 
counteract the negative effect of a lower supply voltage 
on gate delay, the threshold voltage is also scaled down 
along with the supply voltage. However, lowering the 
threshold voltage has a significant impact on leakage 
current due to the exponential relationship between 
them. In fact, it is expected that within a few process 
generations the contribution of leakage power to the 
total power will be comparable to that of dynamic 
power [4][9]. It is also important to note that leakage 
power is exponentially dependent on temperature. 

On the other hand, wire delays scale much slower 
than gate delays [1][3][21] and pose a serious obstacle 
to the scalability of superscalar processors. Clustered 
microarchitectures are an effective organization to deal 
with the problem of wire delays and complexity by 
means of partitioning some of the processor resources 
[6][11], such as the processor backend, and attempting 
to minimize the use of global (slow) communications. 

Clustered microprocessors achieve a significant 
reduction of the backend temperature due to an 
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effective distribution of the activity among the 
different clusters [8]. The frontend accounts for an 
important part of the processor area (about 39% in the 
Pentium® 4 at 90nm [29], and 20% in the clustered 
architecture presented in this paper) and power (at least 
29% for the Pentium® Pro [20]; 30% of the dynamic 
power and 36% of the leakage for our micro-
architecture). Figure 1 shows temperature results for 
our baseline clustered architecture averaged for the 26 
SPEC2000. The frontend exhibits some of the highest 
temperatures in the processor (about 107ºC peak 
temperature and 70ºC average temperature) and, in our 
design, is also one of the largest contributors to 
temperature, which motivates our effort to reduce the 
temperature of the frontend. In any case, previous 
papers have already addressed the temperature problem 
in the clustered backend [7]. 
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Figure 1. Temperature comparison of the 
different processor elements 

This paper proposes a distributed frontend for 
clustered microarchitectures with the goal of reducing 
on-chip temperature. Two different techniques are 
proposed: a distributed rename and commit mechanism 
and a bank hopping scheme for the trace cache with a 
thermal-aware mapping function.  

The rest of the paper is organized as follows: 
Section 2 briefly describes the processor micro-
architecture and the power and temperature models. 
Section 3 describes the proposal for the distributed 
rename and commit mechanism and the thermal-aware, 
sub-banked trace cache. Section 4 presents the 
performance results (execution time and temperature). 
Section 5 reviews the related work, and Section 6 
concludes the paper. 

2. Processor Architecture 
Figure 2 depicts the block diagram of the assumed 
clustered microarchitecture. Figure 2a shows the two 
main components of the processor: the frontend and 
the clustered backends. The frontend reads IA32 
instructions from the UL2, translates them into micro-

ops and stores them in the trace cache, from where they 
are read, decoded, renamed and steered to any of the 
backends. Figure 2b shows the details of one of the 
backends. Each of them has its own integer and 
floating point register files and issue queues along with 
a memory order buffer coupled with a data TLB and a 
first-level data cache. This clustered backend 
organization has been previously shown to be effective 
at reducing the backend temperature [8]. 

Micro-ops are first handled by the dispatch logic, 
where the steering unit decides the destination cluster. 
Once the destination cluster is decided, the logical 
output register is mapped into a free register of that 
cluster and the instruction is dispatched. 

 

 
(a) 

 
(b) 

Figure 2. (a) Block diagram of the clustered 
microarchitecture (b) Backend detail 

After being dispatched, instructions remain in an 
issue queue until their inputs become available, and 
then, they are executed and results are written back to 
the register file. Special copy instructions are in charge 
of communicating register values between backends 
through a point-to-point link [6][23]. Each hop 
between tow neighbor clusters in the link requires 1 
cycle. 

Data caches are distributed and a load can be 
steered to any cluster. If there is a cache miss, the UL2 
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is accessed using the memory bus and the line is 
written in the cache of the cluster where the requesting 
load resides [13]. Store instructions are steered like any 
other instruction in order to compute their effective 
addresses, but a slot is allocated in all memory order 
buffers in order to disambiguate them from subsequent 
loads [2]. When the store address is computed, it is 
sent through the disambiguation bus and copied to all 
clusters, so disambiguation can be performed locally.  

Integer and floating point instructions leave its issue 
queue after being issued. Store instructions remain in 
the memory order buffer until they commit and loads 
are kept in the memory order buffer until they are 
disambiguated. After being executed, instructions send 
a completion signal to the reorder buffer and they can 
be committed once they reach the head of the buffer. 

2.1. Power Model and Temperature Models 
This section briefly outlines the models for dynamic 
power, leakage power and the temperature that have 
been used to conduct the experiments. 

Our dynamic power model is very similar to those 
existing in the literature [5]. Basically, an activity 
counter is associated to each functional block (e.g. 
register file, data cache, etc) and, in order to compute 
the energy, the activity counter is multiplied by its 
corresponding energy-per-operation value. 

For each functional block of the processor, leakage 
power has been modeled as the average dynamic 
power multiplied by a factor dependent on the 
temperature. It is assumed that leakage power is going 
to be roughly 30% of dynamic power at ambient, 
inside box temperature (45º [19][27]). This percentage 
is increased as a function of temperature, in order to 
establish an exponential dependence between 
temperature and leakage.  

The temperature model is similar to the one by 
Skadron et al. [26][27]. It is based on the duality of the 
thermal and the electrical phenomena. The temperature 
is estimated using an RC model that represents the heat 
transfer, also known as dynamic compact model 
(dynamic because it includes thermal capacitors 
modeling the timing response of the system). 

Power and thermal models have been validated 
using both internal and public domain data. More 
details about the models can be found in [8]. 

3. Frontend Distribution 
3.1. Distributed Renaming and Commit 
In conventional microarchitectures, the rename table 
and the reorder buffer are monolithic structures. In 
order to sustain a high bandwidth both of them are 
complex multi-ported structures (especially for wide-
issue processors). Such high activity translates into a 

high power density and, thus, high temperature. To 
make them more thermally efficient, we propose to 
distribute such structures into N different clusters. Each 
one of the frontend clusters (or frontends for short) 
feeds a subset of the backend clusters (or backends for 
short). For instance, assume a bi-clustered frontend, 
quad-clustered backend architecture (Figure 3): 
frontend 0 feeds backend 0 and 1 whereas frontend 1 
feeds backend 2 and 3. In the proposed clustered 
frontend, instructions are fetched and decoded in the 
same way as in a centralized frontend. The steering 
engine (Figure 3-A) is kept centralized. It only requires 
a table with as many entries as number of logical 
registers. Each entry stores a bit per cluster , indicating 
whether there is a copy of that register in the cluster. 
Then, after the steering logic decides the destination 
backend, the instruction is directed to the frontend 
assigned to the chosen backend.  

Figure 3. Rename table and reorder buffer 
distribution 

Each one of the frontends has its own rename table 
and reorder buffer (Figure 3-B and Figure 3-C): the 
rename table stores the mappings only for its 
associated backends and the reorder buffer only holds 
the instructions that have been steered, but not yet 
retired, to its assigned backends. A disjoint rename 
table allows for a frontend clustering with no impact in 
the total latency, since there is no communication 
among clusters in order to rename registers. On the 
other hand, smaller rename tables and reorder buffers 
may have reduced access time. The delay of some 
wires might be increased but since each partition of the 
frontend is coupled to a subset of backends the 
communication costs from frontend to backend are 
reduced. Anyway, a blind physical distribution would 
increase the delays and the length of the dispatch stage 
if banks are far apart. 
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Two extensions to the current frontend are needed 
in order to complete the scheme: support for 
distributed renaming and distributed committing of 
instructions. 

3.1.1. Distributed Renaming 

The original centralized rename table (Figure 4) is split 
into several rename tables (Figure 5). In order to 
implement distributed register renaming with no 
communication among the different rename tables, 
some minor modifications are applied in the rename 
process. First, the renaming of the output register of 
any instruction is carried out at the steering stage 
(Figure 3-A), so that the freelists (one bit vector per 
backend) are kept centralized along with the steering 
logic. Right after the steering unit selects the 
destination backend, the corresponding freelist is 
accessed in order to obtain a free physical register to be 
assigned to the destination logical register.   

 
Logical 
Register 

Cluster 
0 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Ri Pj,0 Pk,1 Pl,2 Pm,3 
… 

Figure 4. Centralized rename table 

Second, when a copy instruction is needed, two 
cases can be distinguished. Suppose a given instruction 
is directed to frontend F. If the value needed is present 
in any of the backends assigned to F, the copy is 
processed normally. When the copy has to be sent to a 
backend belonging to some other frontend, a copy 
request mechanism is needed. Copy request is a two 
steps process: 
1. The request is generated (Figure 3-A): 

• A destination register for the value is obtained 
from the corresponding freelist. 

• The request is sent to frontend G (where at 
least one of its backends holds the value). It 
indicates the logical register to be copied as 
well as the destination physical register and 
backend. 

2. Frontend G generates the copy (Figure 3-B). 
The hardware required to check whether a register 

is mapped into a cluster is very simple: an “availability 
table” that has as many entries as number of logical 
registers and as many bits per entry as number of 
backends. Each one of these bits indicates that the 
logical register has a valid copy in that backend. Note 
that this is not the actual rename table. Still in the 
steering stage, mappings for destination registers are 
written in the rename table. 

The actual mapping of source registers into physical 
registers is done independently in each one of the 
frontends (Figure 3-B). 

The simplicity of this mechanism is such that no 
impact is expected on the frontend latency. The only 
overhead of this mechanism is related with the copy 
request (a signal between frontends) generation. 
However, this task can be done in parallel with the 
destination register renaming. Moreover, latency can 
be hidden because the smaller structures resulting from 
the distribution mechanism are expected to have 
smaller latency. 
 

Logical Register Cluster 0 Cluster 1 
Ri Pj,0 Pk,1 

… 
 

Logical Register Cluster 2 Cluster 3 
Ri Pl,2 Pm,3 

… 

Figure 5. Distributed rename table 

3.1.2. Distributed Commit 

Since the reorder buffer is distributed, a mechanism is 
needed in order to synchronize instructions that are 
being committed (Figure 3-C). Each frontend owns a 
portion of the reorder buffer that contains the 
instructions that were steered to any of the backends of 
that frontend. A simple modification in the reorder 
buffer structure is needed in order to support the 
distribution. 

 
Reorder buffer Ready to commit bit 
ROB contents  R 

  … 
  

   

Figure 6. Centralized reorder buffer 

Reorder buffer Commit bits 
ROB contents  R L 

   … 
   

    

Figure 7. Distributed reorder buffer 

In a traditional reorder buffer (Figure 6) a bit 
indicates whether an instruction is ready (R) to commit 
or not. Committing implies reading from the reorder 
buffer some of the oldest entries in order to free the 
physical registers that are no longer needed. 

In the distributed version each frontend has a partial 
reorder buffer (Figure 7). A local extra field L indicates 
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the reorder buffer where the next instruction in 
program order is located (it can be the same or any 
other reorder buffer). A special register points to the 
reorder buffer that holds the next instruction to be 
committed. By examining the R and L bits a simple 
logic can decide how many instructions must be 
committed from each frontend. First, the C older R-L 
fields of each reorder buffer are read, where C is the 
commit bandwidth. Then, the R-L pairs of the reorder 
buffer that holds the oldest instruction are checked: 

• If R=0 then no more instructions are committed. 
• If R=1 and L points to the current reorder buffer, 

the instruction is selected to be committed and the 
next instruction in the same reorder buffer is 
analyzed. 

• If R=1 and L points to another reorder buffer the 
instruction is selected to be committed and the 
next instruction to be analyzed is selected from the 
reorder buffer pointed by L. 

• This process is repeated until C instructions have 
been selected to be committed. 

Once the instructions to be committed are 
identified, the corresponding entries of the various 
reorder buffers are read. 

 
 
 
 

Frontend 0 R L  Frontend 1 R L 
I 0-0 1 0  I 1-0 1 1 
I 0-1 1 1  I 1-1 1 0 
I 0-2 1 0  I 1-2 1 0 
I 0-3 0 0  I 1-3 0 1 
I 0-4 0 1  I 1-4 1 0 

…    …   
(a) 

 
 
 
 

Frontend 0 R L  Frontend 1 R L 
I 0-0 1 0  I 1-0 1 1 
I 0-1 1 1  I 1-1 1 0 
I 0-2 1 0  I 1-2 1 0 
I 0-3 0 0  I 1-3 0 1 
I 0-4 0 1  I 1-4 1 0 

…    …   
(b) 

 
 
 

Frontend 0 R L  Frontend 1 R L 
I 0-0 1 0  I 1-0 1 1 
I 0-1 1 1  I 1-1 1 0 
I 0-2 1 0  I 1-2 1 0 
I 0-3 0 0  I 1-3 0 1 
I 0-4 0 1  I 1-4 1 0 

…    …   
(c) 

 
 
 
 

Frontend 0 R L  Frontend 1 R L 
I 0-0 1 0  I 1-0 1 1 
I 0-1 1 1  I 1-1 1 0 
I 0-2 1 0  I 1-2 1 0 
I 0-3 0 0  I 1-3 0 1 
I 0-4 0 1  I 1-4 1 0 

…    …   
(d) 

 
 
 
 

Frontend 0 R L  Frontend 1 R L 
I 0-0 1 0  I 1-0 1 1 
I 0-1 1 1  I 1-1 1 0 
I 0-2 1 0  I 1-2 1 0 
I 0-3 0 0  I 1-3 0 1 
I 0-4 0 1  I 1-4 1 0 

…    …   
(e) 

Figure 8. Example of distributed committing 

Figure 8 shows an example for a commit bandwidth 
of 4 instructions per cycle. Instructions are processed 
following the previous algorithm until a “not-ready to 
commit” one is found (i.e. I 0-3) or until the commit 
bandwidth is reached (four instructions). It is assumed 
that L=0 means that the next instruction is in the same 
reorder buffer (L=1 otherwise). 

Since the commit complexity has been increased, its 
delay might increase. Therefore, in the simulation 
section, the commit latency will be increased by 1 
cycle. 

3.2. Sub-banked Thermal-Aware Trace Cache 
An important part of the front-end area is devoted to 
the instruction cache (in our case a trace cache). Two 
orthogonal mechanisms are evaluated in order to 
reduce peak temperatures in the trace cache. 

Instruction to commit Total = 4 

Instruction to commit Total = 1 

Instruction to commit Total = 2 

Instruction to commit Total = 3 

Instruction to commit Total = 4 
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Bank 0 
(4/32) 

 
 
 

Bank 1 
(28/32) 

The trace cache is supposed to be divided into banks 
with non-overlapping contents. This allows extra 
flexibility to relocate some blocks in the frontend’s 
layout in order to surround hot blocks of cold blocks. 

3.2.1. Bank Hopping 

The term bank hopping refers to Vdd-gating one or 
more of the cache banks during a given interval of time 
in a rotating manner. It is based on the idea of 
migrating activity to reduce average power density 
over time [15]. Contents of a Vdd-gated bank are lost, 
so, when reconfiguring, the mapping function must be 
changed to steer all accesses previously mapped into 
that bank to a new enabled bank. 

In order not to reduce the total effective cache size, 
we add an extra bank to the ones already present in the 
trace cache to do the hopping. This way the total area 
devoted to the trace cache is increased, but the power is 
not (except for the misses caused because of hopping), 
since always one of the banks is gated. We have 
evaluated the effect of devoting this extra area to hold 
traces, observing minor performance improvements. 

3.2.2. Thermal-Effective Bank Mapping Function 

Banking is a well known technique, applied to caches 
in general, in order to reduce complexity, power 
dissipation and area. These cache organizations attempt 
to balance accesses across banks in order not to 
increase the miss rate. However, we have observed 
that, from a temperature standpoint, balancing the 
accesses in a banked trace cache entails an important 
temperature imbalance across banks due to floorplan 
issues and access bursts (i.e. a balanced mapping 
function can distribute accesses across banks 
effectively in the long term but may be inefficient in 
the short term, stressing one of the banks). Therefore, 
any of the banks may become a hot spot or there may 
be a high temperature imbalance.  

To solve these thermal inefficiencies, we propose a 
new bank mapping function with the purpose of 
distributing the accesses not in a balanced way but in a 
thermally effective way. 

Whenever the trace cache is accessed, a mapping 
function selects the bank where the line is going to be 
inserted. When sub-banking, the selection policy 
performs a bitwise XOR of two five-bit fields of the 
trace cache address (composed of the branch bits plus 
the PC of the first instruction of the trace) to obtain a 
five bit number. The set of bits was picked to obtain 
the best distribution of addresses over bit 
combinations. 

These five bits are used to index a table that holds in 
each entry the bank assigned to that particular 
combination. For N banks, a “balanced” distribution 
would assign 1/N of the combinations to each bank. 

That is, entries from 0 to 15 would point to bank 0 
whereas entries from 16 to 31 would point to bank 1. 
The thermal-aware mapping function modifies the 
distribution of entries among banks, assigning more 
entries of the table to the colder banks, so at least a 
thermal sensor is required on each bank. This way a 
biased mapping function is implemented. At every 
given interval (10M cycles in our experiments) the 
mapping table is recalculated depending on current 
temperatures of the different banks (Figure 9). The 
number of entries that best match the requirements 
(because of temperature) are allocated to each bank. 

 
Combination Bank 

0000 0 
0001 0 
0010 0 
0011 0 

… … 
1100 1 
1101 1 
1110 1 
1111 1 

Figure 9. Bank mapping table for two banks 

Experimentally it was found that the activity of a 
bank should be divided by a factor of two, for each 3ºC 
of difference between the temperature of a bank and 
the average temperature of all banks. 

4. Evaluation 
Experiments have been conducted using an execution-
driven simulator that runs IA32 binaries. The processor 
can fetch, dispatch and commit up to 8 micro-ops per 
cycle. Table 1 summarizes the main parameters of the 
baseline monolithic architecture. 

We have run 26 SPEC2000 applications for the 
evaluation process.  Each execution trace (from the test 
input set) is divided in ten equal-size slices (i.e., slices 
of different applications have different size) and the 
fourth of them is selected to be executed in the 
simulator (the whole slice or up to 200 million 
instructions). When this slice division ends up with 
traces shorter than 200M instructions (which happens 
for eon, gap, gcc, gzip, perlbmk, vortex, swim, fma3d, 
and ammp) the program is divided into slices of 200M 
instruction. At the end all traces were 200M 
instructions long except eon, fma3d, mcf, perlbmk and 
swim, whose whole trace was shorter, which were run 
for 127, 30, 156, 58 and 112 millions of instructions 
respectively. 

As far as the thermal model is concerned, at the 
beginning of the simulation we assume that the 
processor has already been running for a long time 
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dissipating its nominal average dynamic power 
(obtained for 50M instructions), and the leakage 
corresponding to its temperature, until temperature 
converges or reaches the emergency limit (381K). In 
this way, simulations are started with the processor 
already warm. Then, during normal execution, every 
ten million cycles the temperature is updated using the 
per-block dissipated power. When using the thermal-
aware mapping function, the power of the trace cache 
is supposed to be the proportional part of the total 
cache power (as if all banks had the same activity) in 
order not to benefit any bank. 

Table 1. Processor configuration 

Frontend 
Trace 

cache/Fetch 
32K micro-ops, 4-way, 4 cycle 

fetch-to-dispatch latency 
Decode, 

rename and 
steer 

8 cycles (regardless of the 
destination cluster) 

UL2 2 MB/8-way, 12 cycle hit, 500+ 
miss 

Communi-
cations 

2 memory buses, 2 disambiguation 
buses, 4-cycle latency + 1-cycle 

arbiter, 2 bidirectional p2p link (1 
cycle per hop; 2 from side to side of 

the chip) 
Each backend 

Q
ue

ue
s 

40-entry IQueue 1 inst/cycle, 40-entry 
FPQueue 1 inst/cycle, 40-entry 

CopyQueue 1inst/cycle , 96-entry 
MemQueue 1inst/cycle, 10 cycle 
dispatch latency; 20 entries per 

prescheduler queue 

R
eg

is
te

r 
fi

le
 160 int. registers  (6 read and 3 write 

ports) and 160 FP registers (5 read and 
3 write ports) 

Data 
cache 

16 KB/2-way, 1 cycle hit, 1 read port, 1 
write port, write update 

 
Figure 10 shows the floorplan of the processor. We 

assume a processor designed at 65nm, running at 
10GHz, with a Vdd of 1.1V. Areas were computed 
using an enhanced version of Cacti [25] for cache-like 
structures, and scaling down the rest of the structures 
from current designs. The thermal solution attached to 
the die of the processor consists of a copper heat 
spreader, in contact with the die, whose size is 
3.1x3.1x0.23cm (similar to the one used in Pentium® 4 
Northwood processors [17]). On top of it there is a 
copper heat sink of 7x8.3x4.11cm [17]. 

In all figures, the baseline is a quad-cluster 
processor with unified renaming and commit, and a 
two-banked trace cache with no thermal-aware bank 

selection policy. Temperature improvements are 
measured as the reduction on the temperature increase 
over ambient (45ºC). The metrics presented are: 

• AbsMax: Peak temperature. 
• Average: Average temperature over time and 

space. 
• AvgMax: Average of the maximum temperatures 

obtained in each interval. 

 

 
Figure 10. Floorplan of 2-banked trace cache 
baseline processor (a) Processor (b) Cluster 

details 

The frontend floorplan for bank hopping is shown 
in Figure 11. In all the cases the floorplans are intended 
to keep constant the aspect ratio (because that affects 
the ability to spread heat laterally) of the critical blocks 
(in our case, the schedulers). Floorplans for distributed 
commit are not shown due to lack of space, but both 
ROB and RAT partitions are kept together in the same 
location as in the original centralized version. 
We have not enabled any mechanism to be is triggered 
at a thermal emergency (it is part of our future work). 
As stated before, whenever a peak temperature is 
reached, a technique in charge of cooling down the 
processor is triggered. Such mechanisms degrade 
performance and techniques reducing peak 

ROB 

RAT  ITLB TC-0 

DECO   BP    TC-1 

UL2 

E
ac

h 
cl

us
te

r  

DL1        DTLB 

FPFU    IFU       MS/MOB 

FPRF    IRF 

FPS CS   IS 
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temperatures would reduce the number of times that 
these mechanisms are initiated. Including such 
mechanisms would improve our results, since any 
technique that reduces the peak temperature may 
experience smaller slowdowns and even speedups. 

 
Figure 11. Floorplan for two-banked trace 

cache for bank hopping configurations 

4.1. Distributed Renaming and Commit 
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Figure 12. Reduction of temperature for the 
distributed renaming and commit 

Figure 12 shows the results for the distributed 
renaming and commit technique. The results show the 
average for the 26 SPEC applications (all of them 
follow the same trend).  

It can be seen that the technique drastically reduces 
the temperature of both the reorder buffer and the 
rename table with a slowdown of only 2%. It indirectly 
reduces the trace cache temperature because of heat 
spreading. The area overhead is 3% over the total 
processor area, and the temperature reductions are 32% 
and 34% for the peak temperature of the reorder buffer 

and rename table, respectively, and 33% and 35% for 
the average. The benefit does not come from the area 
increase (i.e. inserting a piece of bulk silicon of that 
size does not obtain such reductions), but from the 
reduction in the power density due to the distribution 
of the activity and the reduction in the energy per 
access. For instance, the distributed ROB reduces 
power by 11% on average. This is due to the reduction 
in its complexity (each access consumes less than half 
the energy that consumed in the centralized version). 

4.2. Thermal-Aware Trace Cache 
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Figure 13. Sub-banked trace cache 
temperature improvements 

In Figure 13 the results for trace cache techniques 
are depicted.  The biased mapping function alone 
reduces the peak temperature of the trace cache (by 
4%) since the activity is effectively spread across the 
banks as a function of the temperature. However, the 
average temperature is not reduced since the activity is 
spread but not reduced. The slowdown is only 2%. 

The benefit on the trace cache increases when bank 
hopping is considered. The trace cache average 
temperature is decreased by 17% and the peak 
temperature by 12%. This allows the rename table to 
dissipate part of its heat towards the trace cache,  
achieving a reduction in the peak and average 
temperature of 16% and 15% respectively. The 
slowdown due to bank invalidation when hopping is 
only 3% (the hit ratio is reduced less than 1%). Area 
overhead is 1.6% over total processor area.  

For comparison purposes, a configuration including 
blank silicon (1 out of the 3 banks statically gated) is 
included. It can be seen that the proposed techniques 
outperform this option. 

The combination of bank hopping and a thermal-
aware mapping function achieves temperature 
reductions of 14% for the peak temperature and 18% 
for the average temperature with a slowdown of only 
4%. 
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4.3. Distributed Frontend 
Figure 14 shows the results when the distributed 
rename and commit is combined with a thermal-aware 
trace cache. Results for each individual technique are 
also presented for comparison purposes. 

Combining both techniques achieves a synergistic 
effect. It is interesting to observe that reducing the 
temperature of some area, affects positively the blocks 
placed around it. For instance, distributing the reorder 
buffer and decreasing its temperature also decreases 
trace cache temperature since part of its heat is spread 
towards the reorder buffer. On the other hand, the 
opposite effect may also appear. For example, when 
trace cache hopping is applied along with distributed 
rename and commit, the temperature reductions of the 
rename table are lower because the trace cache is 
actually spreading heat towards it (as the thermal maps 
show). This did not happen (or at least, not as much) in 
the configuration without bank hopping. 
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Figure 14. Overall temperature results for the 
distributed frontend 

Nevertheless, the combination of distributed rename 
and commit along with a thermally effective trace 
cache is a very effective approach to reduce the 
frontend temperature. The temperature of the reorder 
buffer, rename table and trace cache are reduced by 
35%, 32% and 25% respectively. 

5. Related Work 
Controlling temperature through microarchitectural 
techniques is a fairly new area. Huang et al. [16] 
propose a framework to maximize energy savings and 
to guarantee that temperature remains under a certain 
threshold. The framework combines a number of 
energy-management techniques, such as voltage-
frequency scaling, and sub-banking of the data cache, 
among others. Brooks and Martonosi [5] propose a set 
of control techniques evaluated on top of different 
triggering mechanisms, with the aim of reducing 
thermal emergencies. They use the average power in an 

interval as a proxy for temperature. Skadron et al. 
[26][27] propose a thermal simulator based on the 
duality between heat transfer and the electrical 
phenomena. Several techniques are proposed to control 
peak temperature and to reduce thermal emergencies: 
PID controllers, frequency scaling, fetch toggling, and 
register file replication. Lim et al. [18] propose a 
secondary ultra-low power pipeline that is used when a 
given temperature threshold is exceeded. Asanovi� et 
al. [15] study the impact of activity migration among 
replicated units on power density. Donald et al. address 
design issues for SMT and CMP architectures [10], 
and Ghiasi et al. for dual-core processors [12]. Some 
current commercial processors such as the Pentium® 
M implement thermal monitors to control the 
temperature of the chip [24]. 

6. Conclusions 
Keeping silicon at an operating temperature is 
becoming more challenging and expensive as the 
power density of microprocessors keeps increasing. 
Higher temperatures increase the cost of the package 
and the thermal solution of a processor, increase its 
leakage power, and penalize its performance. This 
paper addresses the issue of temperature in the 
frontend of a clustered microarchitecture, which is an 
important contributor of the total heat dissipated by the 
processor. 

A thermally efficient frontend is proposed and 
analyzed. First, a mechanism to distribute the rename 
and commit logic is shown to reduce temperature by 
more than 30% (both peak and average temperatures) 
in the rename table and in the reorder buffer, with a 
small impact on performance (only 2%). In order to 
reduce temperature in the trace cache a banked design 
with a bank hoping scheme is proposed. The trace 
cache is enhanced with a thermal-aware mapping that 
attempts to balance temperature among cache banks. 
Experiments show reductions of 14% for the maximum 
and 17% for the average temperature. When both 
techniques are combined together, the temperature of 
the reorder buffer, rename table, and trace cache is 
reduced by 35%, 32% and 25% respectively. 
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