

Distributing the Frontend for Temperature Reduction

Pedro Chaparro, Grigorios Magklis, José González and Antonio González
Intel Barcelona Research Center - Intel Labs – UPC

{pedro.chaparro.monferrer, grigoriosx.magklis, pepe.gonzalez, antoniox.gonzalez}@intel.com

Abstract
 Due to increasing power densities, both on-chip
average and peak temperatures are fast becoming a
serious bottleneck in processor design. This is due to
the cost of removing the heat generated, and the
performance impact of dealing with thermal
emergencies. So far microarchitectural techniques to
control temperature have mainly focused on the
processor backend (in particular the execution units),
whereas the frontend has not received much attention.
However, as the temperature of the backend remains
controlled and the processor throughput increases, the
heat dissipated by the frontend becomes more
significant, and one of the major contributors to the
total average temperature.

This paper proposes and evaluates a distributed
frontend for clustered microarchitectures that is able
to reduce power density and temperature. First, a
distributed mechanism for renaming and committing
instructions is proposed. Second, a sub-banked trace
cache with a bank hopping mechanism is presented.
Finally, a method to improve the sub-banking is
proposed based on a biased mapping function to
distribute bank accesses to balance temperature.

1. Introduction
Power dissipation is one of the major hurdles in the
design of next-generation microarchitectures. Power
density is increasing in each generation due to the fact
that frequency and leakage currents are scaling up very
fast and their effect cannot be offset by decreasing the
supply voltage. Power density directly translates into
heat which must be removed from the processor die in
order to keep the silicon temperature below a certain
limit. The increase in power density makes the cost of
the cooling system grow and challenges the
performance benefits that can be obtained by the ever
growing transistor density. For instance, traditionally
the cooling system of a processor was designed to
support the worst case peak temperature. Because of

the growth of the cooling solution cost and some form
factor constraints (especially in mobile computers), the
cooling system is now designed for the common case
and a thermal emergency mechanism is in charge of
restoring the processor to its operating temperature.
This solution has been adopted because the processor
spends most of the time running at much lower
temperatures than the worst-case scenario. Whenever a
thermal emergency arises, a back-up mechanism to
cool down the chip is triggered. Such mechanisms have
a negative impact on performance.

The cost of the cooling system has been quantified
in the order of $1-3 or more per Watt when the average
power exceeds 40 Watts [4][14], which represents a
significant part of the total cost of the chip. The cost of
the heat removal system is especially important for
data centers where air conditioning is a main
contributor over the whole data center cost [22].
Furthermore, circuit reliability depends exponentially
upon operating temperature. Temperature variations
account for over 50% of electronic failures [28].

In order to reduce dynamic power dissipation, chip
designers rely on scaling down the supply voltage. To
counteract the negative effect of a lower supply voltage
on gate delay, the threshold voltage is also scaled down
along with the supply voltage. However, lowering the
threshold voltage has a significant impact on leakage
current due to the exponential relationship between
them. In fact, it is expected that within a few process
generations the contribution of leakage power to the
total power will be comparable to that of dynamic
power [4][9]. It is also important to note that leakage
power is exponentially dependent on temperature.

On the other hand, wire delays scale much slower
than gate delays [1][3][21] and pose a serious obstacle
to the scalability of superscalar processors. Clustered
microarchitectures are an effective organization to deal
with the problem of wire delays and complexity by
means of partitioning some of the processor resources
[6][11], such as the processor backend, and attempting
to minimize the use of global (slow) communications.

Clustered microprocessors achieve a significant
reduction of the backend temperature due to an

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

effective distribution of the activity among the
different clusters [8]. The frontend accounts for an
important part of the processor area (about 39% in the
Pentium® 4 at 90nm [29], and 20% in the clustered
architecture presented in this paper) and power (at least
29% for the Pentium® Pro [20]; 30% of the dynamic
power and 36% of the leakage for our micro-
architecture). Figure 1 shows temperature results for
our baseline clustered architecture averaged for the 26
SPEC2000. The frontend exhibits some of the highest
temperatures in the processor (about 107ºC peak
temperature and 70ºC average temperature) and, in our
design, is also one of the largest contributors to
temperature, which motivates our effort to reduce the
temperature of the frontend. In any case, previous
papers have already addressed the temperature problem
in the clustered backend [7].

0
10
20
30
40
50
60
70

Peak AverageIn
cr

ea
se

 o
ve

r
am

bi
en

t (
ºC

)

 Processor Frontend Backend UL2

Figure 1. Temperature comparison of the
different processor elements

This paper proposes a distributed frontend for
clustered microarchitectures with the goal of reducing
on-chip temperature. Two different techniques are
proposed: a distributed rename and commit mechanism
and a bank hopping scheme for the trace cache with a
thermal-aware mapping function.

The rest of the paper is organized as follows:
Section 2 briefly describes the processor micro-
architecture and the power and temperature models.
Section 3 describes the proposal for the distributed
rename and commit mechanism and the thermal-aware,
sub-banked trace cache. Section 4 presents the
performance results (execution time and temperature).
Section 5 reviews the related work, and Section 6
concludes the paper.

2. Processor Architecture
Figure 2 depicts the block diagram of the assumed
clustered microarchitecture. Figure 2a shows the two
main components of the processor: the frontend and
the clustered backends. The frontend reads IA32
instructions from the UL2, translates them into micro-

ops and stores them in the trace cache, from where they
are read, decoded, renamed and steered to any of the
backends. Figure 2b shows the details of one of the
backends. Each of them has its own integer and
floating point register files and issue queues along with
a memory order buffer coupled with a data TLB and a
first-level data cache. This clustered backend
organization has been previously shown to be effective
at reducing the backend temperature [8].

Micro-ops are first handled by the dispatch logic,
where the steering unit decides the destination cluster.
Once the destination cluster is decided, the logical
output register is mapped into a free register of that
cluster and the instruction is dispatched.

(a)

(b)

Figure 2. (a) Block diagram of the clustered
microarchitecture (b) Backend detail

After being dispatched, instructions remain in an
issue queue until their inputs become available, and
then, they are executed and results are written back to
the register file. Special copy instructions are in charge
of communicating register values between backends
through a point-to-point link [6][23]. Each hop
between tow neighbor clusters in the link requires 1
cycle.

Data caches are distributed and a load can be
steered to any cluster. If there is a cache miss, the UL2

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

is accessed using the memory bus and the line is
written in the cache of the cluster where the requesting
load resides [13]. Store instructions are steered like any
other instruction in order to compute their effective
addresses, but a slot is allocated in all memory order
buffers in order to disambiguate them from subsequent
loads [2]. When the store address is computed, it is
sent through the disambiguation bus and copied to all
clusters, so disambiguation can be performed locally.

Integer and floating point instructions leave its issue
queue after being issued. Store instructions remain in
the memory order buffer until they commit and loads
are kept in the memory order buffer until they are
disambiguated. After being executed, instructions send
a completion signal to the reorder buffer and they can
be committed once they reach the head of the buffer.

2.1. Power Model and Temperature Models
This section briefly outlines the models for dynamic
power, leakage power and the temperature that have
been used to conduct the experiments.

Our dynamic power model is very similar to those
existing in the literature [5]. Basically, an activity
counter is associated to each functional block (e.g.
register file, data cache, etc) and, in order to compute
the energy, the activity counter is multiplied by its
corresponding energy-per-operation value.

For each functional block of the processor, leakage
power has been modeled as the average dynamic
power multiplied by a factor dependent on the
temperature. It is assumed that leakage power is going
to be roughly 30% of dynamic power at ambient,
inside box temperature (45º [19][27]). This percentage
is increased as a function of temperature, in order to
establish an exponential dependence between
temperature and leakage.

The temperature model is similar to the one by
Skadron et al. [26][27]. It is based on the duality of the
thermal and the electrical phenomena. The temperature
is estimated using an RC model that represents the heat
transfer, also known as dynamic compact model
(dynamic because it includes thermal capacitors
modeling the timing response of the system).

Power and thermal models have been validated
using both internal and public domain data. More
details about the models can be found in [8].

3. Frontend Distribution
3.1. Distributed Renaming and Commit
In conventional microarchitectures, the rename table
and the reorder buffer are monolithic structures. In
order to sustain a high bandwidth both of them are
complex multi-ported structures (especially for wide-
issue processors). Such high activity translates into a

high power density and, thus, high temperature. To
make them more thermally efficient, we propose to
distribute such structures into N different clusters. Each
one of the frontend clusters (or frontends for short)
feeds a subset of the backend clusters (or backends for
short). For instance, assume a bi-clustered frontend,
quad-clustered backend architecture (Figure 3):
frontend 0 feeds backend 0 and 1 whereas frontend 1
feeds backend 2 and 3. In the proposed clustered
frontend, instructions are fetched and decoded in the
same way as in a centralized frontend. The steering
engine (Figure 3-A) is kept centralized. It only requires
a table with as many entries as number of logical
registers. Each entry stores a bit per cluster , indicating
whether there is a copy of that register in the cluster.
Then, after the steering logic decides the destination
backend, the instruction is directed to the frontend
assigned to the chosen backend.

Figure 3. Rename table and reorder buffer
distribution

Each one of the frontends has its own rename table
and reorder buffer (Figure 3-B and Figure 3-C): the
rename table stores the mappings only for its
associated backends and the reorder buffer only holds
the instructions that have been steered, but not yet
retired, to its assigned backends. A disjoint rename
table allows for a frontend clustering with no impact in
the total latency, since there is no communication
among clusters in order to rename registers. On the
other hand, smaller rename tables and reorder buffers
may have reduced access time. The delay of some
wires might be increased but since each partition of the
frontend is coupled to a subset of backends the
communication costs from frontend to backend are
reduced. Anyway, a blind physical distribution would
increase the delays and the length of the dispatch stage
if banks are far apart.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Two extensions to the current frontend are needed
in order to complete the scheme: support for
distributed renaming and distributed committing of
instructions.

3.1.1. Distributed Renaming

The original centralized rename table (Figure 4) is split
into several rename tables (Figure 5). In order to
implement distributed register renaming with no
communication among the different rename tables,
some minor modifications are applied in the rename
process. First, the renaming of the output register of
any instruction is carried out at the steering stage
(Figure 3-A), so that the freelists (one bit vector per
backend) are kept centralized along with the steering
logic. Right after the steering unit selects the
destination backend, the corresponding freelist is
accessed in order to obtain a free physical register to be
assigned to the destination logical register.

Logical
Register

Cluster
0

Cluster
1

Cluster
2

Cluster
3

Ri Pj,0 Pk,1 Pl,2 Pm,3
…

Figure 4. Centralized rename table

Second, when a copy instruction is needed, two
cases can be distinguished. Suppose a given instruction
is directed to frontend F. If the value needed is present
in any of the backends assigned to F, the copy is
processed normally. When the copy has to be sent to a
backend belonging to some other frontend, a copy
request mechanism is needed. Copy request is a two
steps process:
1. The request is generated (Figure 3-A):

• A destination register for the value is obtained
from the corresponding freelist.

• The request is sent to frontend G (where at
least one of its backends holds the value). It
indicates the logical register to be copied as
well as the destination physical register and
backend.

2. Frontend G generates the copy (Figure 3-B).
The hardware required to check whether a register

is mapped into a cluster is very simple: an “availability
table” that has as many entries as number of logical
registers and as many bits per entry as number of
backends. Each one of these bits indicates that the
logical register has a valid copy in that backend. Note
that this is not the actual rename table. Still in the
steering stage, mappings for destination registers are
written in the rename table.

The actual mapping of source registers into physical
registers is done independently in each one of the
frontends (Figure 3-B).

The simplicity of this mechanism is such that no
impact is expected on the frontend latency. The only
overhead of this mechanism is related with the copy
request (a signal between frontends) generation.
However, this task can be done in parallel with the
destination register renaming. Moreover, latency can
be hidden because the smaller structures resulting from
the distribution mechanism are expected to have
smaller latency.

Logical Register Cluster 0 Cluster 1
Ri Pj,0 Pk,1

…

Logical Register Cluster 2 Cluster 3
Ri Pl,2 Pm,3

…

Figure 5. Distributed rename table

3.1.2. Distributed Commit

Since the reorder buffer is distributed, a mechanism is
needed in order to synchronize instructions that are
being committed (Figure 3-C). Each frontend owns a
portion of the reorder buffer that contains the
instructions that were steered to any of the backends of
that frontend. A simple modification in the reorder
buffer structure is needed in order to support the
distribution.

Reorder buffer Ready to commit bit
ROB contents R

 …

Figure 6. Centralized reorder buffer

Reorder buffer Commit bits
ROB contents R L

 …

Figure 7. Distributed reorder buffer

In a traditional reorder buffer (Figure 6) a bit
indicates whether an instruction is ready (R) to commit
or not. Committing implies reading from the reorder
buffer some of the oldest entries in order to free the
physical registers that are no longer needed.

In the distributed version each frontend has a partial
reorder buffer (Figure 7). A local extra field L indicates

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

the reorder buffer where the next instruction in
program order is located (it can be the same or any
other reorder buffer). A special register points to the
reorder buffer that holds the next instruction to be
committed. By examining the R and L bits a simple
logic can decide how many instructions must be
committed from each frontend. First, the C older R-L
fields of each reorder buffer are read, where C is the
commit bandwidth. Then, the R-L pairs of the reorder
buffer that holds the oldest instruction are checked:

• If R=0 then no more instructions are committed.
• If R=1 and L points to the current reorder buffer,

the instruction is selected to be committed and the
next instruction in the same reorder buffer is
analyzed.

• If R=1 and L points to another reorder buffer the
instruction is selected to be committed and the
next instruction to be analyzed is selected from the
reorder buffer pointed by L.

• This process is repeated until C instructions have
been selected to be committed.

Once the instructions to be committed are
identified, the corresponding entries of the various
reorder buffers are read.

Frontend 0 R L Frontend 1 R L
I 0-0 1 0 I 1-0 1 1
I 0-1 1 1 I 1-1 1 0
I 0-2 1 0 I 1-2 1 0
I 0-3 0 0 I 1-3 0 1
I 0-4 0 1 I 1-4 1 0

… …
(a)

Frontend 0 R L Frontend 1 R L
I 0-0 1 0 I 1-0 1 1
I 0-1 1 1 I 1-1 1 0
I 0-2 1 0 I 1-2 1 0
I 0-3 0 0 I 1-3 0 1
I 0-4 0 1 I 1-4 1 0

… …
(b)

Frontend 0 R L Frontend 1 R L
I 0-0 1 0 I 1-0 1 1
I 0-1 1 1 I 1-1 1 0
I 0-2 1 0 I 1-2 1 0
I 0-3 0 0 I 1-3 0 1
I 0-4 0 1 I 1-4 1 0

… …
(c)

Frontend 0 R L Frontend 1 R L
I 0-0 1 0 I 1-0 1 1
I 0-1 1 1 I 1-1 1 0
I 0-2 1 0 I 1-2 1 0
I 0-3 0 0 I 1-3 0 1
I 0-4 0 1 I 1-4 1 0

… …
(d)

Frontend 0 R L Frontend 1 R L
I 0-0 1 0 I 1-0 1 1
I 0-1 1 1 I 1-1 1 0
I 0-2 1 0 I 1-2 1 0
I 0-3 0 0 I 1-3 0 1
I 0-4 0 1 I 1-4 1 0

… …
(e)

Figure 8. Example of distributed committing

Figure 8 shows an example for a commit bandwidth
of 4 instructions per cycle. Instructions are processed
following the previous algorithm until a “not-ready to
commit” one is found (i.e. I 0-3) or until the commit
bandwidth is reached (four instructions). It is assumed
that L=0 means that the next instruction is in the same
reorder buffer (L=1 otherwise).

Since the commit complexity has been increased, its
delay might increase. Therefore, in the simulation
section, the commit latency will be increased by 1
cycle.

3.2. Sub-banked Thermal-Aware Trace Cache
An important part of the front-end area is devoted to
the instruction cache (in our case a trace cache). Two
orthogonal mechanisms are evaluated in order to
reduce peak temperatures in the trace cache.

Instruction to commit Total = 4

Instruction to commit Total = 1

Instruction to commit Total = 2

Instruction to commit Total = 3

Instruction to commit Total = 4

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Bank 0
(4/32)

Bank 1
(28/32)

The trace cache is supposed to be divided into banks
with non-overlapping contents. This allows extra
flexibility to relocate some blocks in the frontend’s
layout in order to surround hot blocks of cold blocks.

3.2.1. Bank Hopping

The term bank hopping refers to Vdd-gating one or
more of the cache banks during a given interval of time
in a rotating manner. It is based on the idea of
migrating activity to reduce average power density
over time [15]. Contents of a Vdd-gated bank are lost,
so, when reconfiguring, the mapping function must be
changed to steer all accesses previously mapped into
that bank to a new enabled bank.

In order not to reduce the total effective cache size,
we add an extra bank to the ones already present in the
trace cache to do the hopping. This way the total area
devoted to the trace cache is increased, but the power is
not (except for the misses caused because of hopping),
since always one of the banks is gated. We have
evaluated the effect of devoting this extra area to hold
traces, observing minor performance improvements.

3.2.2. Thermal-Effective Bank Mapping Function

Banking is a well known technique, applied to caches
in general, in order to reduce complexity, power
dissipation and area. These cache organizations attempt
to balance accesses across banks in order not to
increase the miss rate. However, we have observed
that, from a temperature standpoint, balancing the
accesses in a banked trace cache entails an important
temperature imbalance across banks due to floorplan
issues and access bursts (i.e. a balanced mapping
function can distribute accesses across banks
effectively in the long term but may be inefficient in
the short term, stressing one of the banks). Therefore,
any of the banks may become a hot spot or there may
be a high temperature imbalance.

To solve these thermal inefficiencies, we propose a
new bank mapping function with the purpose of
distributing the accesses not in a balanced way but in a
thermally effective way.

Whenever the trace cache is accessed, a mapping
function selects the bank where the line is going to be
inserted. When sub-banking, the selection policy
performs a bitwise XOR of two five-bit fields of the
trace cache address (composed of the branch bits plus
the PC of the first instruction of the trace) to obtain a
five bit number. The set of bits was picked to obtain
the best distribution of addresses over bit
combinations.

These five bits are used to index a table that holds in
each entry the bank assigned to that particular
combination. For N banks, a “balanced” distribution
would assign 1/N of the combinations to each bank.

That is, entries from 0 to 15 would point to bank 0
whereas entries from 16 to 31 would point to bank 1.
The thermal-aware mapping function modifies the
distribution of entries among banks, assigning more
entries of the table to the colder banks, so at least a
thermal sensor is required on each bank. This way a
biased mapping function is implemented. At every
given interval (10M cycles in our experiments) the
mapping table is recalculated depending on current
temperatures of the different banks (Figure 9). The
number of entries that best match the requirements
(because of temperature) are allocated to each bank.

Combination Bank

0000 0
0001 0
0010 0
0011 0

… …
1100 1
1101 1
1110 1
1111 1

Figure 9. Bank mapping table for two banks

Experimentally it was found that the activity of a
bank should be divided by a factor of two, for each 3ºC
of difference between the temperature of a bank and
the average temperature of all banks.

4. Evaluation
Experiments have been conducted using an execution-
driven simulator that runs IA32 binaries. The processor
can fetch, dispatch and commit up to 8 micro-ops per
cycle. Table 1 summarizes the main parameters of the
baseline monolithic architecture.

We have run 26 SPEC2000 applications for the
evaluation process. Each execution trace (from the test
input set) is divided in ten equal-size slices (i.e., slices
of different applications have different size) and the
fourth of them is selected to be executed in the
simulator (the whole slice or up to 200 million
instructions). When this slice division ends up with
traces shorter than 200M instructions (which happens
for eon, gap, gcc, gzip, perlbmk, vortex, swim, fma3d,
and ammp) the program is divided into slices of 200M
instruction. At the end all traces were 200M
instructions long except eon, fma3d, mcf, perlbmk and
swim, whose whole trace was shorter, which were run
for 127, 30, 156, 58 and 112 millions of instructions
respectively.

As far as the thermal model is concerned, at the
beginning of the simulation we assume that the
processor has already been running for a long time

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

dissipating its nominal average dynamic power
(obtained for 50M instructions), and the leakage
corresponding to its temperature, until temperature
converges or reaches the emergency limit (381K). In
this way, simulations are started with the processor
already warm. Then, during normal execution, every
ten million cycles the temperature is updated using the
per-block dissipated power. When using the thermal-
aware mapping function, the power of the trace cache
is supposed to be the proportional part of the total
cache power (as if all banks had the same activity) in
order not to benefit any bank.

Table 1. Processor configuration

Frontend
Trace

cache/Fetch
32K micro-ops, 4-way, 4 cycle

fetch-to-dispatch latency
Decode,

rename and
steer

8 cycles (regardless of the
destination cluster)

UL2 2 MB/8-way, 12 cycle hit, 500+
miss

Communi-
cations

2 memory buses, 2 disambiguation
buses, 4-cycle latency + 1-cycle

arbiter, 2 bidirectional p2p link (1
cycle per hop; 2 from side to side of

the chip)
Each backend

Q
ue

ue
s

40-entry IQueue 1 inst/cycle, 40-entry
FPQueue 1 inst/cycle, 40-entry

CopyQueue 1inst/cycle , 96-entry
MemQueue 1inst/cycle, 10 cycle
dispatch latency; 20 entries per

prescheduler queue

R
eg

is
te

r
fi

le
 160 int. registers (6 read and 3 write

ports) and 160 FP registers (5 read and
3 write ports)

Data
cache

16 KB/2-way, 1 cycle hit, 1 read port, 1
write port, write update

Figure 10 shows the floorplan of the processor. We

assume a processor designed at 65nm, running at
10GHz, with a Vdd of 1.1V. Areas were computed
using an enhanced version of Cacti [25] for cache-like
structures, and scaling down the rest of the structures
from current designs. The thermal solution attached to
the die of the processor consists of a copper heat
spreader, in contact with the die, whose size is
3.1x3.1x0.23cm (similar to the one used in Pentium® 4
Northwood processors [17]). On top of it there is a
copper heat sink of 7x8.3x4.11cm [17].

In all figures, the baseline is a quad-cluster
processor with unified renaming and commit, and a
two-banked trace cache with no thermal-aware bank

selection policy. Temperature improvements are
measured as the reduction on the temperature increase
over ambient (45ºC). The metrics presented are:

• AbsMax: Peak temperature.
• Average: Average temperature over time and

space.
• AvgMax: Average of the maximum temperatures

obtained in each interval.

Figure 10. Floorplan of 2-banked trace cache
baseline processor (a) Processor (b) Cluster

details

The frontend floorplan for bank hopping is shown
in Figure 11. In all the cases the floorplans are intended
to keep constant the aspect ratio (because that affects
the ability to spread heat laterally) of the critical blocks
(in our case, the schedulers). Floorplans for distributed
commit are not shown due to lack of space, but both
ROB and RAT partitions are kept together in the same
location as in the original centralized version.
We have not enabled any mechanism to be is triggered
at a thermal emergency (it is part of our future work).
As stated before, whenever a peak temperature is
reached, a technique in charge of cooling down the
processor is triggered. Such mechanisms degrade
performance and techniques reducing peak

ROB

RAT ITLB TC-0

DECO BP TC-1

UL2

E
ac

h
cl

us
te

r

DL1 DTLB

FPFU IFU MS/MOB

FPRF IRF

FPS CS IS

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

temperatures would reduce the number of times that
these mechanisms are initiated. Including such
mechanisms would improve our results, since any
technique that reduces the peak temperature may
experience smaller slowdowns and even speedups.

Figure 11. Floorplan for two-banked trace

cache for bank hopping configurations

4.1. Distributed Renaming and Commit

0%

5%

10%

15%

20%

25%

30%

35%

40%

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

S
lo

w
d

ow
n

Reorder Buffer Rename Table Trace Cache

Figure 12. Reduction of temperature for the
distributed renaming and commit

Figure 12 shows the results for the distributed
renaming and commit technique. The results show the
average for the 26 SPEC applications (all of them
follow the same trend).

It can be seen that the technique drastically reduces
the temperature of both the reorder buffer and the
rename table with a slowdown of only 2%. It indirectly
reduces the trace cache temperature because of heat
spreading. The area overhead is 3% over the total
processor area, and the temperature reductions are 32%
and 34% for the peak temperature of the reorder buffer

and rename table, respectively, and 33% and 35% for
the average. The benefit does not come from the area
increase (i.e. inserting a piece of bulk silicon of that
size does not obtain such reductions), but from the
reduction in the power density due to the distribution
of the activity and the reduction in the energy per
access. For instance, the distributed ROB reduces
power by 11% on average. This is due to the reduction
in its complexity (each access consumes less than half
the energy that consumed in the centralized version).

4.2. Thermal-Aware Trace Cache

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

S
lo

w
do

w
n

Reorder Buffer Rename Table Trace Cache

Address Biasing Blank silicon
Bank Hopping Bank Hopping + Address Biasing

Figure 13. Sub-banked trace cache
temperature improvements

In Figure 13 the results for trace cache techniques
are depicted. The biased mapping function alone
reduces the peak temperature of the trace cache (by
4%) since the activity is effectively spread across the
banks as a function of the temperature. However, the
average temperature is not reduced since the activity is
spread but not reduced. The slowdown is only 2%.

The benefit on the trace cache increases when bank
hopping is considered. The trace cache average
temperature is decreased by 17% and the peak
temperature by 12%. This allows the rename table to
dissipate part of its heat towards the trace cache,
achieving a reduction in the peak and average
temperature of 16% and 15% respectively. The
slowdown due to bank invalidation when hopping is
only 3% (the hit ratio is reduced less than 1%). Area
overhead is 1.6% over total processor area.

For comparison purposes, a configuration including
blank silicon (1 out of the 3 banks statically gated) is
included. It can be seen that the proposed techniques
outperform this option.

The combination of bank hopping and a thermal-
aware mapping function achieves temperature
reductions of 14% for the peak temperature and 18%
for the average temperature with a slowdown of only
4%.

ROB

DECO TC-0 ITLB

RAT TC-1 BP TC-2

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

4.3. Distributed Frontend
Figure 14 shows the results when the distributed
rename and commit is combined with a thermal-aware
trace cache. Results for each individual technique are
also presented for comparison purposes.

Combining both techniques achieves a synergistic
effect. It is interesting to observe that reducing the
temperature of some area, affects positively the blocks
placed around it. For instance, distributing the reorder
buffer and decreasing its temperature also decreases
trace cache temperature since part of its heat is spread
towards the reorder buffer. On the other hand, the
opposite effect may also appear. For example, when
trace cache hopping is applied along with distributed
rename and commit, the temperature reductions of the
rename table are lower because the trace cache is
actually spreading heat towards it (as the thermal maps
show). This did not happen (or at least, not as much) in
the configuration without bank hopping.

0%
5%

10%
15%
20%
25%
30%
35%
40%

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

A
bs

M
ax

A
ve

ra
ge

A
vg

M
ax

S
lo

w
do

w
n

Reorder Buffer Rename Table Trace Cache

Bank Hopping + Address Biasing

Distributed Rename and Commit

Distributed Rename and Commit + Bank Hopping + Address Biasing

Figure 14. Overall temperature results for the
distributed frontend

Nevertheless, the combination of distributed rename
and commit along with a thermally effective trace
cache is a very effective approach to reduce the
frontend temperature. The temperature of the reorder
buffer, rename table and trace cache are reduced by
35%, 32% and 25% respectively.

5. Related Work
Controlling temperature through microarchitectural
techniques is a fairly new area. Huang et al. [16]
propose a framework to maximize energy savings and
to guarantee that temperature remains under a certain
threshold. The framework combines a number of
energy-management techniques, such as voltage-
frequency scaling, and sub-banking of the data cache,
among others. Brooks and Martonosi [5] propose a set
of control techniques evaluated on top of different
triggering mechanisms, with the aim of reducing
thermal emergencies. They use the average power in an

interval as a proxy for temperature. Skadron et al.
[26][27] propose a thermal simulator based on the
duality between heat transfer and the electrical
phenomena. Several techniques are proposed to control
peak temperature and to reduce thermal emergencies:
PID controllers, frequency scaling, fetch toggling, and
register file replication. Lim et al. [18] propose a
secondary ultra-low power pipeline that is used when a
given temperature threshold is exceeded. Asanovi� et
al. [15] study the impact of activity migration among
replicated units on power density. Donald et al. address
design issues for SMT and CMP architectures [10],
and Ghiasi et al. for dual-core processors [12]. Some
current commercial processors such as the Pentium®
M implement thermal monitors to control the
temperature of the chip [24].

6. Conclusions
Keeping silicon at an operating temperature is
becoming more challenging and expensive as the
power density of microprocessors keeps increasing.
Higher temperatures increase the cost of the package
and the thermal solution of a processor, increase its
leakage power, and penalize its performance. This
paper addresses the issue of temperature in the
frontend of a clustered microarchitecture, which is an
important contributor of the total heat dissipated by the
processor.

A thermally efficient frontend is proposed and
analyzed. First, a mechanism to distribute the rename
and commit logic is shown to reduce temperature by
more than 30% (both peak and average temperatures)
in the rename table and in the reorder buffer, with a
small impact on performance (only 2%). In order to
reduce temperature in the trace cache a banked design
with a bank hoping scheme is proposed. The trace
cache is enhanced with a thermal-aware mapping that
attempts to balance temperature among cache banks.
Experiments show reductions of 14% for the maximum
and 17% for the average temperature. When both
techniques are combined together, the temperature of
the reorder buffer, rename table, and trace cache is
reduced by 35%, 32% and 25% respectively.

Acknowledges
The authors would like to thank Kevin Skadron, for its
comments in the thermal model, Aviad Cohen for the
help on the validation and Ronny Ronen for his
comments on the draft version of the paper. This work
has been partially supported by the Ministerio de
Educación y Ciencia and FEDER funds, under grant
TIN2004-03072.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

References
[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D.

Burger. “Clock Rate versus IPC: the End of the Road
for Conventional Microarchitectures“. In Proceedings
of the 27th International Symposium on Computer
Architecture, 2000.

[2] R. Balasubramonian, S. Dwarkadas and D.H. Albonesi.
“Dynamically Managing the Communication
Parallelism Trade-off in Future Clustered Processors. “.
Proceedings of the International Symposium on
Computer Architecture, 2003.

[3] M. Bohr. “Interconnect Scaling - the Real Limiter to
High-Performance ULSI”. In Proceedings of the
International Electron Devices Meeting, pp. 241-244,
Dec. 1995.

[4] S. Borkar. “Design Challenges of Technology Scaling”.
IEEE Micro, 19(4), pp. 23-29, 1999.

[5] D. Brooks, V. Tiwari V. and M. Martonosi. “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations”, in Proceedings of the 27th International
Symposium on Computer Architecture, pp. 83-94,
2000.

[6] R. Canal, J.M. Parcerisa and A. González. “A Cost-
Effective Clustered Architecture” Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 1999.

[7] P. Chaparro, J. González and A. González. “Thermal-
Aware Clustered Microarchitectures”. ICCD 2004.

[8] P. Chaparro, J. González and A. González. “Thermal-
Effective Clustered Microarchitectures”. TACS
Workshop at ISCA-31, June 2004.

[9] V. De and S. Borkar. “Technology and Design
Challenges for Low Power and High Performance”.
Proceedings of the International Symposium on Low
Power Electronics Design pp. 163-168, 2000.

[10] J. Donald and M. Martinosi. “Temperature-Aware
Design Issues for SMT and CMP Architectures”
WCED Workshop at ISCA-31, June 2004.

[11] K. Farkas, P. Chow, N. Jouppi and Z. Vranesic. “The
Multicluster Architecture: Reducing Cycle Time
through Partitioning”. Proceedings of the International
Symposium on Microarchitecture, 2000.

[12] S. Ghiasi and D. Grunwald. “Design Choices for
Thermal Control in Dual-Core Processors”. WCED
Workshop at ISCA-31, June 2004.

[13] J. González, F. Latorre and A. González. “Cache
Organizations for Clustered Microarchitectures”. In
Proceedings of the third Workshop on Memory
Performance Issues at ISCA 04.

[14] S. Gunther, F. Binns, D. M. Carmean and J.C. Hall.
“Managing the Impact of Increasing Microprocessor
Power Consumption”. Intel Technology Journal, Q1,
2001.

[15] S. Heo, K. Barr, K. Asanovi� “Reducing power density
through activity migration” Proceedings of the 2003
International Symposium on Low Power Electronics
and Design, 2003.

[16] M. Huang, J. Renau, S-M. Yoo and J. Torrellas. “A
Framework for Dynamic Energy Efficiency and
Temperature Management”. Proceedings of the

International Symposium on Microarchitecture, pp.
202-213, 2000

[17] Intel Corporation “Intel® Pentium ® 4 Processor in the
423-pin Package Thermal Solution Functional
Specification”
http://www.intel.com/design/pentium4/guides/249204.h
tm.

[18] C. H. Lim, W. R. Daasch, G. Cai, “A Thermal-Aware
Superscalar Microprocessor” Quality Electronic
Design, 2002. Proceedings. International Symposium
on , 18-21 March 2002.

[19] R. Majan “Thermal management of CPUs: A
perspective on trends, needs and opportunities”, Oct.
2002. Keynote presentation, THERMINIC-8.

[20] S. Manne, A. Klauser and D. Grunwald. “Pipeline
Gating: Speculation Control For Energy Reduction”. In
Proceedings of the 25th Annual International
Symposium on Computer Architecture, June 1998.

[21] D. Matzke. “Will Physical Scalability Sabotage
Performance Gains?” Computer Magazine, Vol. 30, No.
9, pp 37-39.

[22] J. Moore, R. Sharma, R. Shih, J. Chase, Ch. Patel and
P. Ranganathan. “Going beyond CPUs: The Potential of
Temperature-Aware Solutions for the Data Center”. In
Proceedings of the First Workshop of Temperature-
Aware Computer Systems (TACS-1) held at ISCA 04.

[23] J.-M. Parcerisa, J. Sahuquillo, A. González, J. Duato
"Efficient Interconnects for Clustered
Microarchitectures" Proc. of the Int. Conf. on Parallel
Architectures and Compilation Techniques PACT 2002.

[24] E. Rotem, A. Naveh, M. Moffie and A. Mendelson.
“Analysis of Thermal Monitor Features of the Intel
Pentium M Processor”, TACS Workshop at ISCA-31,
June 2004.

[25] P. Shivakumar, N. P. Jouppi “CACTI 3.0: An
Integrated Cache Timing, Power and Area Model”
WRL Research Report 2001/2.

[26] K. Skadron, T. Abdelzaher and M. Stan. “Control-
Theoretic Techniques and Thermal-RC Modelling for
Accurate and Localized Dynamic Thermal
Management”. Proceedings of the International
Symposium on High Performance Computing, 2002.

[27] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. “Temperature-Aware
Microarchitecture”. In Proceedings of the 30th Annual
International Symposium on Computer Architecture,
April 2003.

[28] L.-T. Yeh and R.C. Chu. “Thermal Management of
Microelectronic Equipment: Heat Transfer Theory,
Analysis Methods and Design Practices”. ASME Press,
New York, NY, 2002.

[29] H. de Vries “Looking at Intel's Prescott die”.
http://chip-
architect.com/news/2003_03_06_Looking_at_Intels_Pr
escott.html

[30] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron
and M. Stan. “Hotleakage: A Temperature-Aware
Model of Subthreshold and Gate Leakage for
Architects”. Technical Report CS-2003-05, University
of Virginia Department of Computer Science, Mar.
2003. 34

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

