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Abstract.  Program schemata and programming techniques provide a mechanism for
representing the essential characteristics of logic programs.  By abstracting out
common recursive control flow patterns, program schemata capture large classes of
logic programs.  Programming techniques represent common program components.
By instantiating portions of program schemata with programming techniques, it is
possible to generate arbitrary logic programs.  In order to represent program schemata
and programming techniques for any programming language, it is desirable to use a
higher-order programming language as the representation language.  �Prolog is a
higher-order logic programming language that extends Prolog by incorporating
higher-order unification and �-terms, making it an ideal logic programming language
for representing logic program schemata and programming techniques.  Because
�Prolog program schemata and programming techniques can be represented in
�Prolog, there is no need for the creation of an abstract meta-language in order to
define and classify logic program schemata and programming techniques.

1  Introduction

The strength of logic programming languages is their duality of semantics.  The
declarative semantics of a logic programming language is based on logic, while the
procedural semantics of a logic programming language is based on execution
mechanisms (e.g., SLD-resolution + computation rule + search rule).  Because the
declarative and procedural semantics can be shown to be equivalent (at least for some
classes of programs), it is possible for logic programmers to think less in terms of what
processes the computer must go through and much more in terms of the logic of the
problem itself and its possible solution.  Logic programming promotes thinking about
what the problem is rather than how to solve the problem.  Problem solving becomes a
process that is independent of the particular machine.  Programs become easier to write
and easier to debug because their structures more closely resembles the problem that is
being solved rather some representation of the procedure required to solve it.

Since logic programming languages embody a declarative programming style and
their syntax is extremely simple, it would seem that they should be easy to learn and easy
to use.  However, logic programming languages require their programmers to define
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their programs recursively.  Recursion is a very difficult concept at first, but once it is
learned it becomes a very straightforward (and natural) problem solving technique.  The
trick is finding a method for representing common recursive control flow patterns.  The
solution is program schemata and programming techniques.  Program schemata enable
the creation of conditional recursion (i.e., a structured recursive equivalent to FOR and
WHILE loops).  Conditional iteration imposes structure on iterative programming
languages, abstracting the essence of conditional repetition.  Conditional recursion can
serve the same role for logic programming languages.

Program schemata have proven useful in teaching recursive Prolog programming
to novices [8], debugging Prolog programs [11], transforming Prolog programs [6], and
synthesizing Prolog programs [5].  Furthermore, using program schemata to teach
programming facilitates instruction that is tailored to the student's capabilities [9].
Program schemata enable improved instruction for novice programmers while at the
same time promoting a structured programming style and the acquisition of abstract
problem solving skills.  In addition to being helpful for novice programmers, program
schemata are essential to expert programmers.  The key difference between experts and
novices is not the size of their memory span, but rather their ability to chunk information
together into meaningful units.  Schemata provide a method of organizing meaningful
information about complex domains.  Experts have more and better problem schemata
than novices.  Novice programmers tend to categorize problems based on surface syntax-
based features of the problem statement, while experts categorized problems with respect
to a more abstract hierarchical organization of algorithms [1,16].  Thus, program
schemata are essential to expert programmers.

By abstracting out common recursive control flow patterns, program schemata
capture large classes of logic programs.  Programming techniques represent common
program components.  By instantiating portions of program schemata with programming
techniques, it is possible to generate arbitrary logic programs.  In order to represent
program schemata and programming techniques for any programming language, it is
desirable to use a higher-order programming language as the representation language.
Functional programming languages (e.g., Lisp, ML, Miranda, etc.) support higher-order
functions.  Most logic programming languages, on the other hand, do not have full
support of higher-order predicates.  Prolog supports first-order Horn clauses with only
limited higher-order features.  �Prolog is a higher-order logic programming language
that extends Prolog by incorporating higher-order unification and �-terms [14].  Because
of its support of higher-order Horn clauses [15], �Prolog makes an excellent logic
programming language for representing logic program schemata and programming
techniques.  In this paper, we present a set of logic program schemata and programming
techniques.  We begin by highlighting those features of �Prolog which are useful in
defining logic program schemata and programming techniques.



3

2 Classifying Logic Programs

The present work is motivated by our previous research on Prolog program schemata
[7,10], the work by Brna and his colleagues on Prolog programming techniques [3,4],
the work by Barker-Plummer on Prolog clichés [2], and the related work by
Kirschenbaum and Sterling on Prolog skeletons and programming techniques [12,13].
The major shortcoming of each of these approaches is their reliance on an abstract meta-
language to represent the program schemata and programming techniques.  We propose
the use of �Prolog which alleviates the need for a meta-language.  �Prolog is an ideal
choice for a representation language since it supports higher-order Horn clauses.
�Prolog schemata and techniques are represented as �Prolog programs.

The basic syntactic conventions of �Prolog are the same as those of Prolog:  all
legal statements must be in clausal form where :-  represents implication, the comma
represents conjunction, the semicolon represents disjunction, cut is represented by the
exclamation mark, and identifiers that begin with an uppercase letter represent variables
while identifiers that begin with a lowercase letter represent constants.  The same set of
built-in predicates for unifying terms and evaluating arithmetic expressions exist in
�Prolog.  In addition to �Prolog's support of predicate variables and �-terms, the most
notable difference between the syntax of the Prolog and �Prolog is that �Prolog uses a
curried notation.  Thus, the Prolog program enqueue/3 :

enqueue([],E,[E]).
enqueue([H|T],E,[H|X]) :- enqueue(T,E,X).

which enqueues an element onto the end of a list would be written in �Prolog's curried
form as:

enqueue [] E [E].
enqueue [H|T] E [H|X] :- enqueue T E X.

�-terms are used in �Prolog to represent predicate application and anonymous
predicates (i.e., predicates that have no name associated with them).  Predicate
application is denoted in �Prolog by juxtaposition.  Anonymous predicates are denoted
with �-abstractions which have the form �x. '(x)  in �-calculus and the form
(X\( '(X))  in �Prolog and represents an anonymous predicate that has a single
argument X which succeeds if '(X)  succeeds where '(X)  is an arbitrary set of �Prolog
subgoals.  In addition to supporting �-terms, �Prolog also permits existential quantifiers.
�Prolog uses the keyword sigma  to represent the existential quantifier } so the �-term
�x. �y. }z.(p x y z)  would be coded in �Prolog as (X\Y\(sigma Z\(p X
Y Z)))  and represents an anonymous predicate that has two arguments X and Y which
succeeds if p X Y Z  succeeds for some Z.

Another important difference between Prolog and �Prolog is that �Prolog is a
typed language.  �Prolog has several built-in types, including types for int, bool, list, and
o (the type of propositions).  If -  and -  are types then (-  � - ) is a type corresponding1 2 1 2
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to the set of functions whose domain and range are given by -  and - , respectively.  The1 2

application of T  to T  is represented as (T  T ) and has the type -  if T  is a term of type1 2 1 2 1 1

(-  � - ) and T  is a term of type - . If X is a variable and T is a term of type -1, then the2 1 2 2   

abstraction (X : - \ T) is a term of type - � -1.
�Prolog has a built-in type inference mechanism which gives its programmers the

illusion that they are programming in a typeless language.  Thus, the type system of
�Prolog serves as an aid to the programmer rather than an added layer of syntax.  Lists
and integers are handled the same way in �Prolog as they are in Prolog.  Unlike Prolog,
however, �Prolog supports separate types for propositions and booleans.  The type o
captures propositions and has the values true  and fail  and operations for conjunc-
tion, disjunction, and implication of propositions.  The type bool captures boolean
expressions and has the values truth  and false  and operations for conjunction and
disjunction of booleans, and relationship comparisons (<, =<, >, >=).  Note that because
booleans are distinct from propositions, it is necessary to have the �Prolog subgoal
truth is X < Y  in place of the Prolog subgoal X < Y .

3 Logic Program Schemata

It is possible to define a set of �Prolog program schemata which enable the incorporation
of conditional recursion into logic programming.  Conditional iteration in the form of
FOR and WHILE loops imposes structure on imperative languages, abstracting the
essence of conditional repetition.  FOR and WHILE loops are basic program schemata
which capture commonly occurring imperative programming techniques.  Conditional
recursion serves the same role for logic programming languages.

Lists are a basic type in most logic programming languages, including Prolog and
�Prolog.  As an example of a list processing task, assume we simply want to traverse a
list of elements and count the number of elements in the list.  A �Prolog program which
does this task could be written:

length [] 0.
length [H|T] Result :- length T X, Result is X + 1.

Assume we wanted to find the summation of all the elements of an arbitrary list of
integers (e.g., the summation of the list [2,4,1,9,12,3] is 31).  A �Prolog program which
does this task could be written:

sum [] 0.
sum [H|T] Result :- sum T X, Result is X + H.

A pattern seems to be arising here.  The only difference between sum/2  and
length/2  is that sum/2  adds the first element to the sum of the remainder of the list
whereas length/2  merely increments the length of the remainder of the list by one.
Indeed, this pattern is quite common among list processing tasks.  Consider, for example,
the task of finding the product of a list of numbers (e.g., the product of the list
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[2,4,1,9,12,3] is 2592).  Thus, we merely change the Result is X + H  subgoal to
Result is X * H  in the body of the clause and we have a product/2  program:

product [] 1.
product [H|T] Result :- product T X, Result is X * H.

Note, however, that product/2  has an additional difference.  The base case
value was changed from 0 to 1 since 1 is the identity for multiplication.  These programs
are not the only ones that show this common pattern.  Other programs which perform
quite different tasks on lists are also members of this class of programs.  Consider
appending two lists together.  A �Prolog program for this task would look like:

append [] L L.
append [H |T] L Result :- append T L X, Result = [H|X].

The more common implementation of append/3  has the Result = [H|X]
subgoal unfolded into the head of the clause:

append [] L L.
append [H|T] L [H|X] :- append T L X.

One of the most commonly used program examples for recursive list processing
is list reversal.  Although there are other ways to write a list reversal program in �Prolog,
the one produced by most novice programmers is the following naive reverse/2 :

reverse [] [].
reverse [H|T] Result :-

reverse T X, append X [H] Result.

High-level programming languages were developed to make programming easier
by abstracting out the essence of programming from the physical architecture of the
machine on which the programs are executed.  The progression of high-level program-
ming languages over time has shown higher levels of abstraction.  For example, control
structures like FOR loops were included in imperative programming languages because
it was discovered that looping structures were used throughout programs.  A similar
abstraction is possible for recursive programs.  All of the programs presented so far fall
into a class of programs that can be captured by the higher-order reduceAll/4
program:

reduceAll [] Base Constructor Base.
reduceAll [A|B] Result Constructor Base :-

reduceAll B C Constructor Base,
Constructor A C Result.

which can be written using a single disjunctive clause:
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reduceAll List Result Constructor Base :-
(List = [], Result = Base);
(List = [A|B], 
 reduceAll B C Constructor Base,
 Constructor A C Result).

We can write each of the programs that we have seen so far as one line programs
by simply invoking the reduceAll/4  program.  For example, we can write
append/3  more concisely as follows:

append A B C :- reduceAll A C
(X\Y\Z\(Z = [X|Y]))
B.

We can also write a �Prolog implementation of reverse/2  using only reduce-
All/4  as well:

reverse A B :- reduceAll A B 
(F\G\H\(reduceAll G H (X\Y\Z\(Z = [X|Y])) [F])
[].

This implementation of reverse/2  shows the notion of nested recursion, which
is synonymous to nested FOR loops in imperative languages.  An alternative
implementation of reverse/2  takes advantage of a pre-existing procedure definition
for append/3  and invokes it directly rather than redefining it:

reverse A B :- reduceAll A B 
(X\Y\Z\(append Y [X] Z))
[].

In order to capture a larger class of programs, we must generalize redu ceAll/4
to permit arbitrary termination conditions.  We also need to generalize the base case
value to a base case predicate so we have more generality in our base case clause.
Furthermore, we need to have an arbitrary list destructor.  We can produce the higher-
order program reduce/6  which represents this more robust program schema:

reduce List Result Destructor Constructor Stop Base :-
(Stop List, Base List Result);
(Destructor List A B, 
 reduce B C Destructor Constructor Stop Base,
 Constructor A C Result).

Some explanation of the �Prolog reduce/6  program schema is in order.  It
contains six arguments.  The first argument is the primary input, while the second
argument is the primary output.  As will be explained later, the primary input and output
can be either simple or structured terms, but they are both first-order terms.  The
remaining four arguments are second-order terms representing arbitrary �Prolog
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predicates.  The first of these arguments defines the process for destructing the input,
while the second of these arguments defines the process for constructing the output.  The
last two arguments are used to define the terminating condition, defining the process to
identify the terminating condition and the process which defines how to construct the
output for the terminating condition, respectively.  Some examples should help clarify
reduce/6 .

Consider append/3  again.  For an arbitrary query append A B C , the primary
input is A and primary output is C.  The destructor predicate decomposes the input into
the head element and the tail of the list.  This process can be defined with the anonymous
predicate (X\Y\Z\(X = [Y|Z])) .  Likewise, the constructor predicate for
append/3  composes a new list and can be defined with the anonymous predicate
(X\Y\Z\(Z = [X|Y])) .  The terminating condition occurs whenever the input list
becomes empty and can be defined with the anonymous predicate (X\(X = [])) .
As can be seen in the base case clause of the definition of append/3 , the terminating
output value should be assigned to B.  Combining all this together produces the
following definition for append/3 :

append A B C :- reduce A C 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z = [X|Y])) 
(X\(X = [])) 
(X\Y\(Y = B)).

In a similar fashion, we can define reverse/2  (which reverses the elements of
a list) using reduce/6 :

reverse A B :- reduce A B 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(append Y [X] Z)) 
(X\(X = []))
(X\Y\(Y = [])).

We can even rewrite reduceAll/4  (or any of the other programs we've seen so
far) using reduce/6 :

reduceAll A B C D :- reduce A B 
(X\Y\Z\(X = [Y|Z])) 
C 
(X\(X = [])) 
(X\Y\(Y = D)).

All of the programs that we have seen so far fall in the class of global list
processing programs since they process the entire input list.  Some programs only
process part of the input list.  For example, insert/3  takes a sorted list and an element
and inserts the element in its correct position in the list, stopping whenever it finds an
element in the input list that is larger than the element being inserted or the input list
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becomes empty.  A �Prolog program for insert/3  can be written using reduce/6 :

insert A B C :- reduce A C
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z = [X|Y]))
(X\(sigma V\(sigma W\(
  (X = []);
  (X = [V|W], truth is B < V)
))))
(X\Y\(Y = [B|X])).

The main difference between insert/3  and all of the previous programs is the
terminating condition.  There are actually two terminating conditions.  The correct
position for insertion of a given element into a sorted list is either immediately in front
of the first element in the list which is larger than the given element or at the end of the
list if every element in the list is smaller than or equal to the given element.  The use of
sigma  identifies the existence of variables which satisfy the terminating condition.
Specifically, the �-term  (X\(sigma V\(sigma W\((X = []); (X = [V|W],
truth is B < V)))))  represents an anonymous one-argument predicate which
succeeds if either its argument is an empty list (i.e., all of the elements in the original list
are smaller than or equal to the given element) or if there exist variables V and W such
that the predicate's argument is unifiable with [V|W]  where V is larger than the given
element (i.e., V is the smallest element in the original list which is larger than the given
element).

Other classic partial list processing programs include member/2  and posi-
tion/3 .  Each of these predicates can be written using reduce/6 .  The predicate
member/2  is a predicate that produces no outputs, it merely succeeds if the given
element is a member of the input list or fails if the given element is not a member of the
input list.  Thus, the �Prolog implementation of member/2  has a dummy variable in
place of the output argument and has the subgoal true  in place of the recursive and
base case constructors in its invocation of reduce/6 :

member A B :- reduce A Dummy
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(true))
(X\(sigma W\(X = [B|W])))
(X\Y\(true)).

The predicate position/3  takes an input list and an element and returns the
position of the element in the input list:

position A B P :- reduce A P
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(Z is Y + 1))
(X\(sigma W\(X = [B|W])))
(X\Y\(Y = 1)).
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Rather than reducing a list by combining each element with the result of reducing
the remainder of the list, sometimes it is desirable to map a function predicate across all
the elements of a list.  For example, we may want to double all of the elements in a list.
In order to double all of the elements of a list, we must first apply a function predicate
that doubles each element and then put the doubled element in the front of the list
produced by doubling all the elements in the remainder of the list.  In general, the
predicate map/3  can be used to apply an arbitrary binary function predicate to each
element of a list:

map A B C :- reduce A C 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(sigma W\(B X W, Z = [W|Y])))
(X\(X = [])) 
(X\Y\(Y = [])).

We can write doubleAll/2  using this map/3  predicate:

doubleAll A B :- map A (X\Y\(Y is 2 * X)) B.

Another common higher-order predicate is filter/3 .  The predicate filter/3
takes a unary predicate and a list and filters out all elements from the list that do not
satisfy the predicate.  For example, we may want to filter out all non-positive numbers
from a list of numbers.  We can write filter/3  using reduce/6 :

filter A B C :- reduce A C 
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\((B X, Z = [X|Y]); Z = Y))
(X\(X = [])) 
(X\Y\(Y = [])).

We can write positivesOnly/2  using this filter/3  predicate:

positivesOnly A B :- filter A (X\(truth is X > 0)) B.

It is also possible to capture programs that construct more than one output or have
more than one input list that is being decomposed.  Consider the task of partitioning an
input list into two output lists which contain all the elements that are less than or equal
to a given partitioning element and one which contains all elements that are strictly
greater than the given partitioning element.  A �Prolog implementation of parti-
tion/4  can be written using reduce/6  by combining the two output lists into a single
list which is manipulated appropriately by the constructor predicates:
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partition A B C D :- reduce A [C,D]
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(sigma V\(sigma W\(
  (false is X > B, Y = [V,W], Z = [[X|V],W]);
  (truth is X > B, Y = [V,W], Z = [V,[X|W]])
))))
(X\(X = []))
(X\Y\(Y = [[B],[]])).

Notice the use of disjunction in the constructor predicate to permit putting the
current element on the appropriate output list.  The subgoal Y = [V,W]  breaks the
output into its two output lists V and W.  If the current element is less than or equal to the
partitioning element then the current element is added to the first output list with the
subgoal  Z = [[X|V],W].   Otherwise, it is added to the second output list with the
subgoal Z = [V,[X|W]] .

Now consider the task of merging two sorted lists into a single sorted list.  This task
requires decomposing two input lists.  A �Prolog implementation of merge/3  can be
written using reduce/6  by combining the two input lists into a single input list which
is manipulated appropriately by the destructor predicate:

merge A B C :- reduce [A,B] C
(X\Y\Z\(sigma U\(sigma V\(sigma W\(

     (X = [[Y|U],[V|W]], truth is Y < V, Z = [U,[V|W]]);
     (X = [[V|W],[Y|U]], false is Y > V, Z = [[V|W],U])

)))))
(X\Y\Z\(Z = [X|Y]))
(X\(sigma W\((X = [[],W]); (X = [W,[]]))))
(X\Y\((X = [[],Y]); (X = [Y,[]]))).

Disjunction is used in the destructor predicate in the definition of merge/3  to
enable removing the first element from only one of the input lists.  The element is
removed from whichever input list has the smallest element.  If the smallest element is
contained in the first input list then it is "identified" with the subgoals X = [[Y|U],
[V|W]], truth is Y < V  and "removed" with the subgoals X = [U,[V|W]],
false is Y > V .  Likewise, if the smallest element is contained in the second input
list (or if the first element in both input lists is identical) then it is "identified" with the
subgoal X = [[V|W],[Y|U]]  and "removed" from the second input list with the
subgoal X = [[V|W],U] .

As a last example of the use of reduce/6 , consider the task of sorting a list of
elements.  One common method of sorting is insertion sort.  Insertion sort is a global list
processing program.  For each element that is processed, insertion sort ensures that the
element is inserted into its correct position in the output list using the predicate
insert/3 .  A �Prolog implementation of insertion_sort/2  using reduce/6
can be written:
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insertion_sort A B :- reduce A B
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(insert Y X Z))
(X\(X = []))
(X\Y\(Y = [])).

It is also possible to write insertion_sort/2  in terms of merge/3  instead
of insert/3 .  The advantage of this is that merge/3  is associative and therefore
enables the use of the accumulator version of reduce/6  discussed in the next section.
The following implementation of insertion_sort/2  uses merge/3  instead of
insert/3 :

insertion_sort A B :- reduce A B
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(merge Y [X] Z))
(X\(X = []))
(X\Y\(Y = [])).

4 Constructing Logic Program Schemata

In the previous section, we identified some program schemata and showed that they
capture a wide class of programs.  Another important pattern that occurs in programs is
the application of programming techniques.  One programming technique is to
decompose the input list from the back rather than the front as in the following inverse
implementation of reverse/2 :

reverse A B :- reduce A B
(X\Y\Z\(append Z [Y] X))
(X\Y\Z\(Z = [X|Y]))
(X\(X = []))
(X\Y\(Y = [])).

Another programming technique is the use of accumulator pairs to build recursive
arguments.  The use of accumulator pairs is a commonly known programming technique
and has appeared throughout the literature as a method of improving program efficiency.
For example, the efficiency of reverse/2  can be improved by accumulating the result:

reverse A B :- reduce A [B,[]]
(X\Y\Z\(X = [Y|Z]))
(X\Y\Z\(sigma V\(sigma W\(
 Z = [V,W], Y = [V, [X|W]]
))))
(X\(X = []))
(X\Y\(sigma W\(Y = [W,W]))).

which produces the well-known accumulator version (or difference-list and railway-
shunt versions which are accumulator versions that merely hide the accumulator within
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the output argument) of reverse/2 .  It is also possible to write an accumulator version
of reverse/2  using reduceAll/4 :

reverse A B :- reduceAll A [] (X\Y\Z\(Y = [X|Z])) B.

by using the second argument (Result ) as the accumulator and using the last argument
(Base ) as the final result.  In fact, any global list processing program with an associative
constructor that can be written in pure �Prolog can be defined using reduceAll/4 .
We need to formally define the notion of an associative predicate for predicates with
three arguments.  For example, the predicate append/3  is associative:

append [] L L.
append [H|T] L [H|X] :- append T L X.

There are two ways of appending three lists A, B, and C together.  We can either
append B to the end of A and then append C to end of this list or we can append C to the
end of B and then append this list to the end of A (i.e., append A B X, append X
C D  or append B C Y, append A Y D ).  Formally, the predicate p/3  is
associative if the following holds:

     ~U,V,W,X,Y,Z((p Y W X iff p U Z X) 
if (p U V Y Y p V W Z)

The predicate merge/3  given in the previous section is also associative.  Note that
the subgoal X = [Y|Z]  could be replaced by the subgoal append [Y] Z X  so such
subgoals can be thought of as associative as well.  Subgoals of the form X is Y U Z
where U is either addition (+) or multiplication (*) are also associative.  Note, however,
that predicates that contain the arithmetic evaluator is/2  cannot be written using
reduceAll/4  because they are dependent on subgoal order.  For example, although
insertion_sort/2  is a global list processing program and its constructor merge/3
is associative, it is not possible to define insertion_so rt/2  using reduceAll/4
because the righthand side of its is/2  subgoals will contain unbound variables.  For
such programs, it is necessary to define an accumulator version of reduceAll/4
which serves the same function as reduceAll/4 , but reverses the order of its
subgoals:

reduceAllAcc List Acc Constructor Result :-
(List = [], Result = Acc);
(List = [A|B], 
 Constructor A Acc C,
 reduceAllAcc B C Constructor Result).

We can define all of the global list processing programs with associative
constructors presented in the previous section using reduceAllAcc/4 .  For example,
length/2 , reverse/2 , and insertion_sort/2  can be defined using reduce-
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AllAcc/4 :

length A B :- reduceAllAcc A 0
(X\Y\Z\(Z is Y + 1))
B.

reverse A B :- reduceAllAcc A []
(X\Y\Z\(Z = [X|Y]))
B.

insertion_sort A B :- reduceAllAcc A []
(X\Y\Z\(merge [X] Y Z))
B.

The predicate reduceAllAcc/4  corresponds to the notion of reducing the input
from the left while the predicate reduceAll/4  corresponds to reducing the input from
the right.  Thus, �Prolog schemata enable a generic description of a problem solution
that is independent of the direction of the input reduction.  Programming techniques
represent components of programs that can be applied to general program schemata to
produce more specialized program schemata like the reduceAllAcc/4 , reduce-
All/4 , and reduce/6 .  

There are two major types of programming techniques:  control flow techniques
and context techniques.  Control flow techniques are applied to program schemata as a
way of defining the basic recursive control flow of the program schema.  One example
of this type of programming technique is the accumulator technique which was just
presented.  Two other common recursive control flow techniques are single_recursion
and double_recursion which enable the creation of singly recursive and doubly recursive
program schemata, respectively.

Context techniques are applied to program schemata as a way of defining a context
for arguments.  The three most common context techniques are same, decompose, and
compose which define an argument to be the same across recursive calls, decrease in size
across recursive calls, and increase in size across recursive calls, respectively.  The
techniques list subgoal and list head are special forms of decompose and compose which
apply to list arguments.  Each of these techniques are highlighted in the following
paragraphs.

Programming techniques constitute components of programs and program
schemata which enables the generation of specialized program schemata from more
generalized program schemata.  For example, it is possible to apply techniques to the
following general �Prolog program schema:

schema A1 ... An :- Goals.

to produce the reduce/6  program schemata or any of the programs given in this paper.
We begin with a 6-argument version of this schema and apply the single_recursion
technique.  The single_recursion technique is used to split the body of a clause into a
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disjunction of two sets of subgoals.  One of the subgoals contains base case clauses,
while the other set of subgoals contains a recursive call to the predicate.  Applying this
technique to the general �Prolog program schema produces:

schema A1 A2 A3 A4 A5 A6 :-
Base;
(Before, schema B1 B2 B3 B4 B5 B6, After).

We can apply the same technique to the last four arguments producing:

schema A1 A2 A3 A4 A5 A6 :-
Base;
(Before, schema B1 B2 A3 A4 A5 A6, After).

Now we can instantiate the Base  variable in the base portion and the Before  and
After  variables in the recursive portion of this clause to the subgoals (A5 A1, A6
A1 A2) , A3 A1 A B1 , and A4 A B2 A2 , respectively.  The resultant clause is
identical (modulo variable renaming) to reduce/6 .  By beginning with a 4-argument
�Prolog program schema, we can produce the global list processing reduceAll/4
schema.  After applying the single_recursion technique, we have:

schema A1 A2 A3 A4 :-
Base;
(Before, schema B1 B2 B3 B4, After).

We can apply the same technique to the last two arguments producing:

schema A1 A2 A3 A4 :-
Base;
(Before, schema B1 B2 A3 A4, After).

Applying the list head technique to the first argument produces:

schema A1 A2 A3 A4 :-
Base;
(Before, A1 = [A|B1], schema B1 B2 A3 A4, After).

Now we can remove Before  (or instantiate it to true ) and instantiate Base  and
After  to (A1 = [], A4 = A2)  and (A3 A B2 A2) , respectively.  The resultant
clause is identical (modulo variable renaming) to reduceAll/4  which captures all
global list processing programs (e.g., append/3  and reverse/2 ).  By beginning with
a 4-argument �Prolog schemata, we can produce the reduceAllAcc/4  schema.  After
applying the single_recursion technique, we have:
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schema A1 A2 A3 A4 :-
Base;
(Before, schema B1 B2 B3 B4, After).

We can apply the same technique to the last two arguments producing:

schema A1 A2 A3 A4 :-
Base;
(Before, schema B1 B2 A3 A4, After).

Now we can instantiate the Base  and Before  variables to (A1 = [], A2 =
A4)  and (A1 = [A|B1], A3 A A2 B2) , respectively.  After removing After
(or instantiating it to true ), the resultant clause is identical (modulo variable renaming)
to reduceAllAcc/4 .  

To this point, all of the programs and schemata that we have presented have had
a single recursive subgoal in the recursive clause.  Many well-known algorithms require
the use of multiple recursive subgoals (e.g., quicksort).  In order to accommodate these
programs, it is necessary to support a double_recursive technique which permits the
creation of a recursive clause with two recursive subgoals.  Applying this technique to
a 5-argument schema leads to:

   reduceDouble List Result Divide Constructor Stop Base :-
(Stop List, Base List Result);
(Divide List A B,
 reduceDouble A AR Divide Constructor Stop Base,
 reduceDouble B BR Divide Constructor Stop Base,
 Constructor AR BR Result).

which can be used to produce divide and conquer programs like quicksort/2 .  The
important thing to note about our approach to generating �Prolog program schemata  is
that there is no need for a meta-language to represent the programming techniques.
Furthermore, all intermediate programs are valid (albeit not very useful) �Prolog
programs.

5 Conclusion

Imperative programming languages provide their programmers with a set of structured
programming constructs.  There are currently no structured constructs, however, in logic
programming languages.  Conditional iteration in the form of FOR and WHILE loops
imposes structure on imperative languages, abstracting the essence of conditional
repetition.  FOR and WHILE loops are basic program schemata which capture
commonly occurring imperative programming techniques.  Conditional recursion serves
the same role for logic programming languages.

In this paper, we have argued that it is possible to incorporate a structured style of
programming into logic programming languages by exploiting program schemata and
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programming techniques.  Program schemata capture the notion of conditional recursion
which serves the same role for logic programming languages that conditional iteration
does for imperative languages.  Programming techniques correspond to common
program components within program schemata.  Representing program schemata and
programming techniques requires a higher-order representation language.

Previous approaches to representing program schemata and programming
techniques have relied on the introduction of an abstract meta-language.  Higher-order
logic programming languages like �Prolog provide an alternative to the meta-language
approach.  In addition to providing an alternative to an abstract meta-language, �Prolog's
ability to represent �Prolog program schemata and programming techniques as �Prolog
programs enables �Prolog to support conditional recursion which promotes a more
structured style of logic programming.

Schemata serve a fundamental role in most human cognitive processes.  It has been
shown that schemata enable the organization of meaningful information for complex
domains like computer programming.  In addition to being essential to expert program-
mers, program schemata have also been shown to be useful in teaching recursive Prolog
programming to novices.  Thus, the incorporation of structured constructs into logic
programming made possible with logic program schemata and programming techniques
enhances the logic programming paradigm for programmers of all levels.
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Appendix - �Prolog Program Schemata

Global List Processing Schema:

  reduceAll List Result Constructor Base :-
(List = [], Result = Base);
(List = [A|B], 
 reduceAll B C Constructor Base,
 Constructor A C Result).

Global List Processing Accumulator Schema:

  reduceAllAcc List Acc Constructor Result :-
(List = [], Result = Acc);
(List = [A|B], 
 Constructor A Acc C,
 reduceAllAcc B C Constructor Result).

General List Processing Schema:

  reduce List Result Destructor Constructor Stop Base :-
(Stop List, Base List Result);
(Destructor List A B, 
 reduce B C Destructor Constructor Stop Base,
 Constructor A C Result).

General List Processing Accumulator Schema:

  reduceAcc List Acc Destructor Constructor Stop Result :-
(Stop List, Res = Acc);
(Destructor List A B,
 Constructor A Acc C, 
reduceAcc B C Destructor Constructor Stop Result).

Divide and Conquer Schema:

  reduceDouble List Result Divide Constructor Stop Base :-
(Stop List, Base List Result);
(Divide List A B,
 reduceDouble A AR Divide Constructor Stop Base,
 reduceDouble B BR Divide Constructor Stop Base,
 Constructor AR BR Result).


