
Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 5, 1999. pp. 665-678

On Disparity Matching in Stereo Vision via a Neural
Network Framework

JUNG-HUA WANG*  AND CHIH-PING HSIAO**

* Department of Electrical Engineering
National Taiwan Ocean University

Keelung, Taiwan, R.O.C.
** Aetex Biometric Corp.
Taipei, Taiwan, R.O.C.

(Received December 15, 1998; Accepted March 29, 1999)

ABSTRACT

This paper presents a neural framework for dealing with the problem of disparity matching in stereo
vision.  Two different types of neural networks are used in this framework: one is called the vitality
conservation (VC) network for learning clustering, and the other is the back-propagation (BP) network
for learning disparity matching.  The VC network utilizes a vitality conservation principle to facilitate
self-development in network growing.  The training process of VC is smooth and incremental; it not only
achieves the biologically plausible learning property, but also facilitates systematic derivations for training
parameters.  Using the [intensity, variation, orientation, x, y] of each pixel (or a block) as the training
vector, the VC network dismembers the input image into several clusters, and results can be used by the
BP network to achieve accurate matching.  Unlike the conventional k-means and self-organizing feature
map (SOFM), VC is a self-creating network; the number of clusters is self-organizing and need not be
pre-specified.  The BP network, using differential features as input training data, can learn the functional
relationship between differential features and the matching degree.  After training, the BP network is first
used to generate an initial disparity (range) map.  With the clustering results and the initial map, a matching
algorithm that incorporates the BP network is then applied to recursively refine the map in a cluster-by-
cluster manner. In the matching process, useful constraints, such as a epipolar line, ordering, geometry
and continuity, are employed to reduce the occurrence of mismatching.  The matching process continues
until all clusters are matched.  Empirical results indicate that the proposed framework is very promising
for applications in stereo vision.

Key Words: stereo vision, disparity matching, self-creating network, back-propagation network, clustering,
neural networks, self-organizing feature map
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I. Introduction

Stereo imaging or stereo vision (Kanade and
Okutomi, 1994) refers to a process which transforms
the information of two plane images into a 3-D descrip-
tion of the scene and recovers depth information in
terms of the exact distance.  With depth information,
one can create models of the terrain and other natural
environments for use in various applications, such as
virtual reality, flight simulation, air navigation, and
robotics.  Due to its inherent characteristics, stereo
vision is a better choice for achieving high-resolution
3-D description of moving objects than other methods,
such as laser range finding.  The basic idea of stereo
vision is illustrated in Fig. 1.  An arbitrary point in a
3-D scene is projected onto different locations in stereo
images.  Assume that a point p in a surface is projected

onto two cameras image planes, PL and PR, respectively.
When the imaging geometry is known, the disparity
between these two locations provides an estimate of
the corresponding 3-D position.  Specifically, the lo-
cation of p can be calculated from the known

Fig. 1. Basic concept of stereo vision.
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information, PL and PR, and the internal and external
parameters of these two cameras, such as the focal
lengths and positions of two cameras (Dhond and
Aggarwal, 1989; Barnard and Fishler, 1987).  Shown
in Fig. 2 is a parallel configuration, where one point,
p(x,y,z), is projected onto the left and right imaging
planes at PL(xl,yl) and PR(xr,yr), respectively.  The
coordinates of p can be calculated as follows:

x=b(xl+xr)/[2(xl−xr)],

y=b(yl+yr)/[2(xl−xr)],

z=bf/(xl−xr), (1)

where (xl−xr) = the disparily, base line b = the distance
between the left and right cameras, and f = the focal
length of the camera.  It should be noted that even if
the camera is arbitrarily configured, we can always
generate a parallel configuration through the process
of rectification (Papadimitriou and Dennis, 1996).
Stereo vision systems are not only low in cost, but also
offer great utility in depth recovery.  Depth is a visual
cue essent ial  to appl icat ions such as surface
reconstruction, pattern recognition, and 3D computer
vision.  Although other sources, such as camera ver-
gence and lens focus, have also been investigated (Nayar
and Nakagawa, 1994; Subbarao and Tao, 1995; Capurro
et al., 1996; Park et al., 1998; Horng et al., 1998) for
their use in depth recovery, much research has empha-
sized stereo disparity as a source of depth information.
This is because among the three most important issues
in stereo vision, namely, feature extraction, disparity
matching, and surface reconstruction, disparity match-
ing still is the most challenging task due to its com-
plexity (Marr and Poggio, 1976).  As can be seen in
Figs. 1 and 2, in order to obtain the disparity, one has
to first determine if a point PL matches PR (called a
template point or candidate).  However, it is by no
means a trivial task to accurately match the pixels in
left and right images.  Thus, as shown in Fig. 2, the
goal is to find a correspondence which minimizes a
measure of the error between a pair of pixels (PL, PR).
In this parallel configuration, it can be shown that a
match pair must be found on yr=yl, which is called the
epipolar line constraint in the stereo image.  This
constraint is important because it can be used to reduce
the search area from the entire image to one horizontal
line across the image.

Traditionally, the two mainstream types of tech-
niques used in solving the problem of disparity match-
ing are area-based (Marapane and Trivedi, 1989; Kanade
and Okutomi, 1994) and feature-based (Nasrabadi et
al., 1989; Nasrabadi and Choo, 1992) techniques.  Area-

based (aka window-based) techniques utilize correla-
tion between the intensity pattems in the neighborhood
of a pixel in the left image and those in the neighbor-
hood of a corresponding pixel at the right image.  They
are simple and fast. However, the intensity value of
each pixel is sensitive to changes in absolute intensity,
contrast and illumination.  Hence, area-based tech-
niques usually give low accuracy results.  The sum of
the squared difference (SSD) or auto-correlation has
often been used as a criterion to determine the best
matching pair.  However, mismatches can arise if the
pair with the minimum SSD is chosen as the best
matching pair because the functional relationship
between the matching degree and the correlation in
intensity patterns is by no means structural or linear
and cannot be fully described using such a simple clear-
cut rule.  In addition, the size of the window can
significantly affect the matching accuracy.  Kanade and
Okutomi (1994) have presented an adaptive window
algorithm with impressive results.  Still, it is virtually
impossible to correctly match pixels using only infor-
mation about distortion and variation inside a window
area.  Feature-based techniques, on the other hand, use
symbolic features derived from intensity images rather
than image intensities per se.  Symbolic features, such
as edge points and edge segments, are often used in
these techniques.  For example, Cochran and Medioni
(1992) have used the edge extraction technique devel-
oped by Nevatia and Babu (1980) to obtain twelve
different edge orientations.  Nasrabadi and Choo (1992)
have used a special operator developed by Moravec
(1980) to obtain directional variances.  Because fea-
ture-based techniques allow simple comparisons be-
tween the attributes of features, they are generally
faster and more accurate than area-based methods.  Still,

Fig. 2. The parallel configuration in stereo vision.  The baseline
between the two cameras is b, and the focal length is f.
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f inding an appropriate interpolation method for
non-featured areas is still a problem, especially in
cases where reconstruction of a 3-D surface is de-
sired.

A neural network derives its computing power
through, first, its massively parallel distributed struc-
ture and, second, its ability to learn and, therefore,
generalize; generalization refers to production by the
network of reasonable outputs for inputs not en-
countered during training.  The present paper deals
with disparity matching by using a neural framework,
in which a self-creating neural network (named
VC) is incorporated along with a back-propagation
(BP) neural network to achieve high performance
disparity matching.  The goal is to combine the advan-
tages of the area-based and feature-based methods.
The framework employs the capabilities of the BP
network in function approximation (Hornik et al.,
1989) and generalization to learn the non-structured
knowledge required to achieve higher accuracy
in disparity matching compared to area-based me-
thods.  In addition, the VC network, which utilizes
a conservation principle (Wang and Hsiao, 1997)
to facilitate network development, is introduced.
The conservation principle, originally developed
for learning vector quantization, is applied in this
paper to learning image clustering, the result of which
can be incorporated with the BP network and a match-
ing algorithm to implement a matching process in
which pixels are matched on a cluster-by-cluster basis.
Thus, the main contributions of this paper are an
effective matching algorithm, which applies the
conservation principle to online learning image
clustering, incorporation of the BP and VC networks
to implement a high performance disparity matching
system, and further validation through simulation
studies.

The organization of this paper is as follows.  In
Section II, the architecture of the neural-based frame-
work is described.  The matching process in which
pixels are matched on a cluster-by-cluster basis by
combining the BP network and a matching algorithm
is discussed.  Constraints imposed by the epipolar
line, ordering, geometry and continuity are shown
to be useful in reducing the number of unmatched
pixels as well as unnecessary interpolation during
surface reconstruction.  In Section III, the VC network
is introduced and its use in learning image cluster-
ing is described.  A merging algorithm is developed
to agglomerate code vectors into several clusters.
Empirical results are presented in Section IV to show
the performance in terms of matching of the pro-
posed framework.  Finally, concluding remarks are
given.

II. The Neural-based Stereo Vision
System

1. System Overview

Figure 3 illustrates the block diagram of our
proposed system.  To avoid the drawback of area-based
methods, our idea is to employ a BP network to compute
the matching degree (0.0-1.0) between the two local
windows (7×7) from the left and right images.  The
two pixels to be matched correspond to the centers of
the two windows.  Several constraints are used to help
determine the best matching pair.  In feature extraction,
the Sobel operation is applied to input images to obtain
the variation and orientation of each pixel; these data
will form the basic input features.  To prepare the
training data, 200 matched and unmatched pixels were
hand picked (by means of visual examination) trom
both flat regions and highly varying regions in the
image pair.  For example, it is easy to spot the pixel
in the right image which matches a very bright pixel
(i.e., an interesting pixel) surrounded by a dark region
in the left image.  In addition, the continuity constraint
can be employed to obtain more matched pairs because
pixels near the interesting pixel must have the same
disparity.  Fifty pairs of matched and unmatched pixels
are randomly selected to offline train the BP network.
During training, the differences in intensity, variation
and orientation between two local windows are fed to
the BP network. The BP network after training should
have the ability to differentiate the matched pairs from
unmatched pairs.  The trained BP network is first used
to generate an initial or primitive disparity map, which
will then be used as a reference map for the subsequent
matching process.  Using the BP network and the
clustering results from the VC network, a matching
process further refines the primitive map on a cluster-

Fig. 3. Block diagram of the proposed disparity matching system.
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by-cluster basis.  Because the matching problem can
be treated as a many-to-one problem, in order to reduce
the search space, the process also involves application
of some useful constraints so as to effectively extract
out the best matching pixel from among multiple
candidates.  Due to its critical importance, the matching
process will be elaborated on later in Subsection II.4.

2. The Differential Input Features

Because the intensity value of each pixel is sen-
sitive to changes in contrast and illumination, and
despite the fact that intensity is the information most
commonly used in matching process, the variation and
orientation of each pixel deserve more detailed inves-
tigation with regard to their use as features.  Denote
the intensity of an arbitrary pixel in location (x,y) as
f(x,y).  The gradient of f(x,y) is defined as

   
∇f =

∂f
∂x
∂f
∂y

=
Gx

Gy
, (2)

and its magnitude is defined as the variation of f(x,y)
and is written as

   ∇f = mag(∇f) = [G x
2 + G y

2]
1/ 2

. (3)

The orientation α(x,y) of the vector ∇f at (x,y) is

   α(x, y) = tan– 1 Gx

Gy
. (4)

In this work, variation and orientation values are
all normalized to [0,255].  The Sobel operator gives
good approximations of Gx and Gy (Gonzalez and
Woods, 1992).  Using the Sobel operator in feature
extraction has two advantages: (1) it can quickly cal-
culate variation and orientation simultaneously; (2) it
gives accurate orientations.  Each pixel in the left and
right image has three basic features: intensity, variation
and orientation.  When the BP network is used to
compute the matching degree between two pixels from
the left and right images, each input vector in fact
consists of data from two 7×7 windows (one from the
left image, the other from the right) in which the centers
are the pixels to be matched.  In particular, the dif-
ferences between the three features are calculated for
each 7×7 window to form a 147-Dimensional input
feature vector. That is:

Differences of Indensity=fLi−fRi,

Differences of Variation=|∇fLi |−|∇fRi|, (5)

Differences of Orientation=αLi−αRi,

where fLi, |∇fLi|, αLi and fRi, |∇fRi|, αRi are the intensity,
variation and orientation values of the i th pixel in the
left and right images, respectively.  Note that these
differential features constitute the actual input vectors
both in the training and in matching processes.  Figure
4 illustrates how this differential feature vector is
generated.  As will be shown later, the major advantage
of using this differential feature is that it produces the
property of image-independence; that is, a BP network
trained with one pair of stereo images can be used to
match another pair.

3. The BP Network

In traditional matching methods, one often needs
to determine an appropriate window size.  It must be
large enough to cover intensity variations while small
enough to avoid the effects of projective distortions
(Kanade and Okutomi, 1994).  Considering the fact that
the functional relationship between the matching de-
gree and the correlation in intensity patterns cannot be
easily obtained, this paper presents use of the function
approximation capability of the BP network to replace
the traditional auto-correlation or SSD.  The first clear
insight into the versatility of neural networks for use
in function approximation came with the discovery of
Kolmogorov’s therorem (Hecht-Nielsen, 1987), which
essentially states that the BP network can implement
any function of practical interest to any desired degree
of accuracy.  More formally, we rewrite the theorem
as follows:

Theorem of Function Approximation. Given any
ε>0 and any L2 function f: [0,1 ]n→Rm, there exists a
three-layer back-propagation neural network that can
approximate f to within ε mean squared error accuracy.

Fig. 4. Feature extraction in the BP network.
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The proof of this theorem, along with the related
derivations of the back-propagation neural network,
can be found in Hornik et al. (1989) and is thus omitted
here.

Thus, unlike traditional area-based methods, using
the supervised steepest descent algorithm (Haykin,
1998), the BP network can learn to approximate any
functional mapping between well-defined input vectors
and outputs.  Figure 5 shows the architecture of the
three-layer BP network that we used in this paper.  The
input layer has 147 neurons (=7×7×3, i.e., two 7×7
windows from the left and right images); the hidden
layer contains 50 perceptron-type (Haykin, 1998)
neurons; a perceptron output neuron gives a real number,
i.e., 0.0≤match_degree≤1.0.  A few feature vectors of
matched and unmatched pixel-pairs are sampled as
training data.  During training, whenever a match pair
appears in the input, the network is taught to output
a target value of 1.0 by propagating the error = (1.0−
match_degree) back to the hidden layer; otherwise,
error = (match_degree-0.0) when a mismatch occurs.

Initially, a primitive disparity map is generated
by the BP network itself; then, the map is refined by
a matching process which contains the same BP network.
As in the training process, we use differential features
to generate the primitive disparity map.  We first note
that, under the geometric constraint, the larger the
image size is, the greater the value of maximum dis-
parity can be.  For example, for a 128×128 image, the
corresponding maximum disparity (denoted as Dmax)
normally will not exceed 10 whereas for a 256×256
image, the corresponding Dmax normally is less than 20.
Starting from the upper left pixel in the left image, the

best matching pixel in the right image is determined
pixel by pixel.  To be specific, for an arbitrary matching
pixel in the left image PL(x1,y1), we compute the
matching degrees for the next Dmax pixels located to
the left of the PR(xr,yr) in the right image, where xr=x1

and yr=y1.  Among the candidates PR(xr,yr), PR(xr−1,
yr), PR(xr−2,yr), ...PR(xr−Dmax,yr), the one that produces
the largest output match_degree is chosen, say, PR(xr−
3,yr).  Hence, the disparity for the point (x1,y1) is 3.
Continuing in this manner until all the pixels are matched
and the corresponding disparities are obtained, the
primitive disparity map is drawn by assigning to the
point that has the largest disparity the highest intensity
level (say 255), and to the one with null disparity an
intensity level of zero.

4. The Matching Algorithm

After the initial disparity map is obtained, the BP
network is incorporated along with a VC network and
a matching algorithm to work on this map to achieve
more accurate disparity.  In doing so, we note that a
pixel in the left image might have several pixels with
high matching degrees in the right image.  In order to
effectively reduce the number of unmatched pixels and
reduce the distortion caused by unnecessary interpo-
lation dunng surface reconstruction, our idea is to first
classify the pixels in both input images into TC (e.g.
10) clusters using the VC network.  Pixels belonging
to the same cluster in the feature space should have
similar characteristics; hence, pixels in the j th cluster
in left image tend to have matching pixels in the same
cluster in the right image.  Performing clustering before
matching should greatly reduce the search space needed
to find correspondence pixels and increase the likeli-
hood of correct matches.

Bearing with this in mind, Fig. 6 shows the match-
ing process on a cluster-by-cluster basis.  The BP
network computes the matching degrees between an
arbitrary pixel in the i th cluster in the left image and
pixels in the same cluster in the right image.  We denote
those pixels having output match_degree>0.9 as the
candidate set C.  Then, the best match (in the right
image) for the said pixel will be determined by applying
various constraints to each pixel in C so as to exclude
the incorrect ones.  Some useful constraints are as
follows.

(1)Epipolar Line Constraint: As shown in Fig. 2,
a matching pair of pixels should always be located
on the same epipolar line in parallel stereo images.
This limits the search space for a given pixel in
the left image to the corresponding scan line in
the right image.  However, if the axes of the
cameras are not parallel, the epipolar lines in the

Fig. 5. The BP neural network.
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images will appear to be inclined to the horizon-
tal (Dhond and Aggarwal, 1989).

(2)Geometric Constraint: For parallel stereo images,
objects located at infinity distance will cause
zero disparity.  If there is a disparity, the position
of a pixel in the right image should always be
on the left side of its matching pixel in the left
image.

(3)Ordering Constraint: A left-right ordering re-
lation between two pixels in the left image should
have the same ordering for the correspondence
pixels in the right image.

(4)Continuity Constraint: This, in its most primi-
tive form, refers to the depth constancy theory
developed by Marr and Poggio (1976).  Later,
Grimson (1985) observed that the 1-D continuity
constraint using Marr-Poggio theory caused
difficulty in propagation of disparity at occlud-
ing boundaries between objects and along thin
elongated surfaces.  His implementation instead
imposes a more complicated (but more accurate)
regional continuity check on disparity in order

to validate  matches.  In our implementation, for
a matching pixel PL(xl,yl), a candidate pixel PR

(xr,yr) in the right image looks for local support
within a support window in the space of the
disparity map.  The range of the window is
defined by

{ xi−ω≤x′≤xi+ω, yi−ε≤y′≤yi+ε}, (6)

where (ω,ε) denote the width and the height of
the region, respectively.  The local support for
PR(xr,yr) is defined as the number of pixels
P(x′,y′) inside the window (centered at (xl,yl))
that have a disparity of (xl−xr).

Note that the epiploar and geometric constraints
were also employed by the BP network to generate the
initial disparity map.  In Fig. 6, the best match is chosen
as the one that has the maximum value of (support+
match_degree×T), where T is a control factor. Increas-
ing or decreasing T has the effect of suppressing or
enhancing the local support inferred from the conti-
nuity constraint.  Here, an interesting point  is that the
underlying physical meaning of match_degree is analo-
gous to the window size effect in the median filtering.
For pixels in image details and edges (i.e., high fre-
quency components), their support values are much
smaller than those of pixels located in smooth areas.
Thus, the matching process tends to preserve more high
trequency components, provided that the value of
support is kept relatively smaller than that of
match_degree.  After the best match is determined, the
new disparity value is used to replace the old disparity
in the disparity map.  It this recursive manner, the new
disparity as well as its preceding replacements should
provide more accurate local support so that subsequent
pixels can be matched.

III. VC for Learning Clustering

As implied in the previous section, the reason way
we perform clustering before matching is that we can
enjoy the advantage of feature-based methods, i.e., fast
and accurate matching results.  As a result, the proposed
neural framework combines the advantages of feature-
based and area-based methods.  This section discusses
how we apply the vitality conservation principle (VC)
(Wang and Hsiao, 1997) to learning image clustering.
Unlike the k-means method (Gose et al., 1996), VC is
a self-creating network, the number of clusters is self-
organizing and does not need to be pre-specified.

1. The Self-creating Network: VC

In the following, we will introduce the conserva-

Fig. 6. Illustration of the matching process shown in Fig. 3.
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tion principle and demonstrate how it can be incorpo-
rated into the competitive learning algorithm (Kohonen,
1989) to deal with the most important issue in devel-
oping a self-creating network, namely, the mechanism
that determines when and where to generate a node
during the training process.  The basic idea behind
vitality is to estimate the wining frequency of each
individual node (neuron) so that nodes which are
excessively or rarely (in a relative sense) accessed can
be determined.  The winner is the only node that has
the right to update its weight vector.  The total vitality
in the proposed network at any time is a constant,
hence, the name conservation.  Combined with a pro-
cedure that redistributes the learning rate variables
after generation, the conservation principle not only
provides a novel approach to the problem of harmo-
nizing equi-error and equi-probable criteria (Matsuya-
ma, 1996), but also facilitates systematic derivations
of various training parameters.  The VC network will
be shown to be (1) fast in terms of computation time,
(2) smooth and incremental so that it can overcome the
dead-node problem, stability-plasticity dilemma, and
the deficiency of the local minimum, and (3) flexible
enough for learning both vector quantization and
clustering.

Define vitality θk(t) as the measure of the winning
frequency of the kth node after the tth input presentation.
The kth node is selected as the winner if it is the least
distance dk from the present input vector.  Not only is
its weight vector updated, but its vitality is also in-
creased by an amount of ∆θ+(t).  On the other hand,
an amount of ∆θ−(t) will be subtracted from the vitality
of the non-wining nodes.  In this sense, vitality rep-
resents the a priori probability that a node will win at
the time the input vector is presented.  Considering that
integrating an arbitrary probability density function is
1, it follows that vitality conservation can be stated as

   
θ k(t)Σ

k – 1

N(t)

= 1 ,  t≥0, (7)

where M(t) is the total number of nodes at time t.  Given
an initial vitality θk(0), the vitality θk(t) at time t can
be formulated as

   θ k(t) = θ k(0) + [Wk(i)∆θ +(i) – (1 – Wk(i))∆θ –(i)]Σ
i = 0

t
,
(8)

where

  
Wk(i) =

1, if kth node wins at time i
0, otherwise .

After each input presentation, the vitality of the

winner is checked; if it is larger than the threshold, then
that winner will generate a son node.  The mother/son
pair will then equally share the original vitality of the
mother node.  Thus, the following parameters are vital
in training a VC network:

∆θ+=increment in vitality for a wining node;

∆θ−=decrement in vitality for a non-wining node;

θborn(t)=dynamic threshold for node-generation;

θinit=initial vitality .

We start by letting θk(0)=θinit=the initial vitality of the
kth node, k=1, 2, ..., M(0).  Considering that all nodes
have not received any input initially, it makes sense
to assume that all nodes have the identical initial wining
probability.  Thus,    θ k(0) = 1

M(0)
.  For other training

parameters, readers can refer to (Wang and Hsiao,
1997).  The following exponential function with a
decaying rate λ can be used to obtain the solution for
∆θ−(t):

   ∆θ –(t) = 1
M(0)

λe – λt , (9)

and it follows that

   ∆θ +(t) =
M(t) – 1

M(0)
λe – λt . (10)

After each input presentation, the vitality values of all
the nodes are updated.  Considering the fact that equal
partitioning of the probability space yields maximum
entropy, it follows that half of the original vitality
associated with the mother node should be given to the
son node after it is generated.  As to the threshold θborn

(t), it is easily seen that   1
M(t)

<θborn(t)<1 must hold for

the generation process to work properly.  This can be
understood by recalling that the initial vitality =1/M
(0).  Naturally, a VC network with a smaller θborn(t)
grows faster than one with a larger θborn(t).

After a node-generation, the coordinates of the
present input vector are used as the insertion place for
the new node.  This simple insertion strategy has the
advantages of saving computation time and avoiding
the likelihood of producing dead nodes.  Figure 7
illustrates this generation process.  Figure 7(a) shows
a 2-D structured input data with 4 nodes.  Initially, each
node (marked as a circle) has a vitality value of 1/4
(the bold area), as shown in Fig. 7(b).  As the training
proceeds, Fig. 7(c) shows that nodes located in the
denser local density area accumulate more vitality
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accumulation, and vice versa.  In Fig. 7(d), the node
with vitality greater than θborn will generate a new node
and share its vitality with the new node.  Most com-
petitive learning networks use a global rate ηk(t), whose
initial value ηinit has a great effect on the final training
results.  Usually 0<ηinit<1, and ηinit decays monotoni-
cally by a constant γ.

However, too large a value of γ will result in pre-
mature training, and too small a value of γ will result
in convergence that is too slow.  To solve this dilemma,
we let

   γ =
card(x(t)) – 1

card(x(t))
, (11)

where card(x(t)) is the cardinal number of x(t).  Denote
ηk(t)

s as the learning rate of the kth node at the begin-
ning of the sth iteration.  Assume that the kth node never
wins during a training iteration; as card (x(t))>>1, then
ηk(t)

s converges to

ηk(t)
s=ηinitγ card(x(t)), s=1

≈ηinite
−1,

ηk(t)
s=ηk(t)

s−1γ card(x(t)), s>1

≈ηk(t)
s−1e−1. (12)

From Eq. (12), ηk(t) is irrelevant to the number of input
vectors.  In VC, the learning rates of the new node and

its mother node are re-initialized to ηinit. In addition,
if the neighboring nodes around the mother/son can
also react to the new situation more quickly incurred
by the node-generation, then the quantization error can
be decreased.  Without loss of generality, we consider
a 2-D uniform input stretching from (0,0) to (n,m).
Assuming that twelve codewords (i.e., nodes) are used,
it can be shown that the mean Voronoi space (Haykin,
1998) of each codeword is (n×m)/12 with diameter
ρ(0)≈((n×m) /12)1/2.  For simplicity, when a new node
is generated, the learning rates of its neighboring nodes
are increased by an amount ∆ηk, given by

   ∆ηk∝e . (13)

As training proceeds, the dynamic equation of ρ(t) for
N-dimension input data with length s in each dimension
is approximated by

   ρ(t) ∝ s
M(t)N

. (14)

Thus, letting ηmin= the stop learning rate, the local
dynamic learning rate ηk(t) in VC can be stated as
follows:

   

ηk(t) =

η init

when t = 0 ; or
kth node is a new born node; or
kth node is a mother node at time t.

Max{ηmin, Min{η init, γ(ηk(t – 1) + I(t)∆ηk)}},
otherwise ,

(15)

where

the indicator function 
  

I(t) =
0 if M(t) = M(t – 1)

1 if M(t) > M(t – 1) .

As can be seen, ηk(t) is bounded by [ηmin, ηinit].
Usually ηmin=0.001 will work well.  Unlike the mono-
tonically decreasing learning rate in SOFM (Kohonen,
1989), Eq. (15) provides dynamic perturbations in ηk

(t) during the training process.  While the decay factor
γ guarantees a long-term decreasing trend for ηk(t), the
intermittent perturbations caused by node-generation
can help avoid trapping in a local minimum.  The
redistribution of learning rate variables and vitality-
sharing together create an important property: harmony

Fig. 7. Illustration of the generation process in VC. (a) 2-D input
data; (b) 3 initial nodes, each with 1/3 vitality initially; (c)
after certain input presentations; (d) a node with vitality
exceeding the threshold generates a new son node and shares
vitality with its son node.

   – dk
ρ(t)
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between learning quality and growth rate.  This is
because too many nodes generated in the earlier stage
of training will force the network to use more com-
putation time to complete an iteration.  With Eq. (15)
and vitality-sharing after a node-generation, VC at-
tempts to keep the growth rate and learning quality in
balance as training proceeds, in the sense that a new
node will not be generated until enough input presen-
tations have been presented.  Note that implementation
of Eq. (15) is computationally efficient because the
input distortion dk has been obtained earlier in selecting
the winner node.  Finally, once M(t) grows to the pre-
specified Mf, the learning rate will globally decay, and
the network will then enter the stage of fine-tuning and
eventually converge in less than ln(ηmin−ηinit)/ln(γ)
input presentation.

2. From VQ to Clustering

In applying VC to clustering, we first add the x
and y coordinates of the pixel into the original feature
vector to form the input training vector [intensity,
variation, orientation, x, y].  The left image is used to
train the VC network; after training, the network can
then be used to cluster both images.  After clustering,
every pixel (in the left and right images) will be labeled
with a cluster number.

We used a 2-D input distribution to visually
examine the performance of the VC in learning
clustering.  The input data contained four clusters.
Figure 8 compares the clustering results obtained using
SOFM, k-means (Gose et al., 1996), and the VC network.
Clearly, VC has the least number of misclassifications.

To obtain the clustering result in Fig. 8(d), our ap-
proach first employed VC to quantize the input data
into Mf=32 code vectors.  Then, a merging algorithm
was used, in a self-organizing manner, to aggregate the
code vectors (for which the coordinates were repre-
sented by nodes in the VC network) into four clusters.
Figure 9 shows the merging algonthm.  Therefore, after
the merging process was completed, a cluster label was
assigned to each and every input data point.  To provide
better insight into how the algorithm works, Figure 10
shows the step-by-step results after applying the merging

Fig. 8. (a) Input data.  The clustering result obtained using (b)
SOFM, (c) k-means, and (d) VC.

Fig. 9. The merging algorithm.

Notes: V: total number of input data.  xi: an arbitrary input data,
i=1, 2, ..., V. Mf: a pre-specified number of nodes after
training the VC network. L(y,z): create a logical link, where
y, z can represent a node or a centroid (e.g., if y and z has
a mother-son relation, L(y,z)=1, else L(y,z)=0). Familyi:  A
family refers to a set in which for any arbitrary node or
centroid, there exists a connected path (comprising a few
links) to another node in the set. F: number of families, where
F is a variable.  CFi: centroid of Familyi. LMAXi: Max path
(Euclidean distance) in Familyi.  L : average of LMAXi. label
(x,varj): label x as varj.
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algorithm to the quantization obtained using the VC
network.

IV. Experimental Results

In the following simulations, the BP network we
used had 7×7×3 input neurons, 50 hidden neurons and
1 output neuron.   Fifty matched pixel pairs and 50
unmatched pixel pairs constituted the training data set.
It should be noted that, due to the generalization
capability of the BP network, the training vectors can
use a different stereo image pair; that is, a trained BP
network is image-independent.

1. Clustering Result

The test image was an indoor picture, shown in
Fig. 11(a).  To save computation time, the image was
first divided into 16384 equal-size blocks, each with
2×2 pixels.  In this case, the feature vector for each
block was the mean of four vectors, namely, [f(xi,yi),
|∇f(xi,yi)|, α(xi ,yi), xi, yi], i=1...4.  Then, 1000 5-D
feature vectors were randomly selected to train the VC
network that was initialized with 3 nodes and allowed
to grow to 10 nodes at most.  The network converged
in less than 1 second on a Pentium-133 PC, which is
a very small amount of total processing time.  In
comparison, the BP matcher needed about 40 minutes
to finish execution.  However, it should be noted that
the efficiency of the BP matcher can be significantly
improved if it is implemented with parallel hardware
(e.g., neural chips).  After training, all of the 16384
feature vectors were input into the VC network for

clustering. The result is shown in Fig. 11(b), where
each cluster is plotted with a different grave level.

Testing on the Renault images shown in Fig. 12
led to similarly good results, as can be seen in Fig. 13.
Note that the VC network was trained using only the
left image, and that the trained network was used to
cluster both the left and right images.  Also, it is
interesting to note that the “image segmentation” effect
as seen in the tables in Fig. 11(b) and Fig. 13(b) is
mainly due to the x and y input features.  This is good
because of the smaller searching space it offers.  This
also implies that matching can still proceed even if the
epipolar line constraint is not applicable wherever the
parallel image configuration is not available.

2. Disparity Matching

First, we will present the performance of the BP
matcher obtained without using the matching algorithm
on any constraints.  The result will be compared with
that obtained using SSD.  The Fruit images shown in
Fig. 14 were tested, and the results are shown in Fig.
15. In order to visualize the disparity map, each dis-
parity value is represented by a gray level intensity.

Fig. 10. Results after each step in the merging algorithm.  The result
after (a) STEP_1, (b) STEP_2, (c) STEP_3, and (d) STEP_4.
The result after STEP_5 is shown in Fig. 8(d).

(a) (b)

Fig. 11. (a) An indoor image (256×256): a cup with a spoon; (b)
the clustering result.  Tc=10.

Fig. 12. Original stereo images of Renault (256×256), (a) left view,
(b) right view.

(a) (b)
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Although both results show ambiguous regions in the
smooth area, the disparity map obtained using the BP
matcher evidently shows higher accuracy than does that
obtained using SSD.  This simulation result clearly
indicates that the BP matcher can generate an accept-
able disparity matching result.

In the following, we will demonstrate how the
proposed neural framework can be applied to achieve
accurate disparity matching.  The implementation in-
volves a matching process incorporated along with the
BP network and VC.  Recall that in the matching
process, a matching pixel PL in the left image is checked
against multiple candidates in the right image that have
the same cluster label as PL.  In examining Fig. 6, one
may wonder if the ordering sequence of the cluster to
be processed can affect matching accuracy.  Indeed,
determining which cluster is to be processed first and
which one next is a nontrivial task.  That problem will
be addressed in our future work.

Since this is a subject that is beyond the scope
of this paper, we here will only give a practical example
to show the feasibility of our proposed neural framework.
In determining the sequence of clusters to be matched,
some a prior knowledge can be used.  For example,
the human visual system is sensitive to intensity changes;

hence, the input feature of variation can be used as an
index for sequencing the input clusters.  At the extreme,
one may cluster input images simply according to their
levels of variation.  In this case, the matching process
shown in Fig. 3 is implemented using the following
procedure:

(1) Classify all pixels into several clusters based on
their levels of variation.  Starting from clusters
with the highest average variation value and
continuing to the lowest one, perform steps (2)-
(4) for each cluster.  Use the BP network to
choose candidate pixels.

(2) Unlike in step (1) where only the pixel with the
largest matching degree can be chosen and used
in generating the primitive disparity map, in this
stage, multiple potential matching pixels can be
chosen by the BP network and processed in step
(3).

(3) Apply the four previously described constraints
to the candidate pixels in order to determine the
best matching pixel.  Calculate the disparity of
the best matching pixel.

(4) Update the disparity map with the newly ob-
tained disparity.

(5) Iterate steps (2)-(4) until all the clusters are
processed, except for the one with the lowest
variation level cluster.

(6) Use interpolation techniques to process the area
of the cluster with the lowest variation level and
unmatched pixels.

The rationale behind step (6) is that a very low
variation area indicates a flat surface.  If we continue
to process the lowest variation cluster using the match-
ing algorithm, we could severely blur image details due
to the lack of significant features needed to obtain
correct matches.  The test image was the Renault stereo
image, yet it is interesting to note that here we used
the fruit images shown in Fig. 14 instead to train the
BP network; afterwards, the Renault images were used

(a) (b)

Fig. 13. Clustering results of the Renault images; (a) left image,
(b) right image. Tc=10.

(a) (b)

Fig. 14. Original stereo images of fruits (256×256); (a) left view,
(b) right view.

(a) (b)

Fig. 15. Disparity map without any constraints or clustering results;
(a) SSD, (b) the BP network with Dmax=15.
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to generate the primitive disparity map.  As can be seen
in the final disparity map shown in Fig. 15, our match-
ing algorithm can still work well, sufficiently verifying
that the BP network indeed has the capabilities of
generalization and function approximation.  Note that
the “salt and pepper” area in Fig. 16(a) can be easily
removed by means of median filtering.  The result is
shown in Fig. 16(b).  A 3D mesh reconstructed from
the disparity map is shown in Fig. 17(a).  Figure 17
(b) is the 3D model with the the left image used as its
texture.

V. Concluding Remarks

We have developed a stereo vision system capable
of capturing depth information from stereo images.
The system uses two neural networks, a VC network
for learning clustering and a BP network for learning
disparity matching.  The BP network has been trained
to act as an area-based disparity matcher.  A matching
algorithm incorporating the clustering results by means
of VC is then applied to refine the primitive disparity
map, which is generated by the BP network itself.

Constraints, such as epipolar lines, ordering, geometry
and continuity, are used to effectively reduce the search
space.  Refining the disparity map is performed in a
cluster-by-cluster manner.  The matching process con-
tinues until all the clusters are matched.  As such, our
proposed system is more like a combination of the area-
based and feature-based methods.  We have also shown
that the BP network trained using fruit images can be
used to match the Renault images.  This verifies the
generalization capability of the BP network.  It also
implies that the knowledge extracted by the BP network
is image-independent and useful for disparity matching.

We have successfully applied the self-creating
VC network to learning image clustering.  Analogous
to the feature-based methods, the VC network can
provide fast but good clustering performance by using
fairly simple features, i.e., [intensity, variation,
orientation, x, y] for a single pixel, or [mean intensity,
mean variation, mean orientation,  x ,  y ] for an image
block.  While we believe that two pixels belonging to
the same cluster have a good chance of being a match-
ing pair, there still exist other unknown factors or
outliers that can cause mismatches.  One way to de-
crease the mismatch rate is to divide the image into
smaller clusters (cells), and to group these cells based
on specific objects.  This in a sense may be viewed
as segmentation of the image.  An image can be viewed
as a combination of several segments (objects), and
each segment may consist of many small clusters.  Such
a course-to-fine approach or tree-structured represen-
tation of an image, we believe, can effectively reduce
the occurrence of mismatch.

In the future works, we note that a more general
active vergence stereo vision system (Ahuja and Abbott,
1993; Blake et al., 1993; Grosso and Tistarelli, 1995)
can be used to overcome the disadvantages of ordinary
parallel stereo vision systems.  Several cues (Ahuja and
Abbott, 1993), such as the vergence angle and focus,
can be used to obtain a more accurate range map of
a scene.  The internal parameters of the cameras from
the stereo images also deserve investigation for use in
improving the accuracy of the range map.
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