Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 5, 1999. pp. 665-678

On Disparity Matching in Stereo Vision via a Neural
Network Framework

Jung-HuA WANG™ anD CHIH-PiNg HSIAO™*

*Department of Electrical Engineering
National Taiwan Ocean University
Keelung, Taiwan, R.O.C.

** Aetex Biometric Corp.
Taipei, Taiwan, R.O.C.

(Received December 15, 1998; Accepted March 29, 1999)

ABSTRACT

This paper presents a neural framework for dealing with the problem of disparity matching in stereo
vision. Two different types of neural networks are used in this framework: one is called the vitality
conservation (VC) network for learning clustering, and the other is the back-propagation (BP) network
for learning disparity matching. The VC network utilizes a vitality conservation principle to facilitate
self-development in network growing. The training process of VC is smooth and incremental; it not only
achieves the biologically plausible learning property, but also facilitates systematic derivations for training
parameters. Using the [intensity, variation, orientation, X, y] of each pixel (or a block) as the training
vector, the VC network dismembers the input image into several clusters, and results can be used by the
BP network to achieve accurate matching. Unlike the conventionsans and self-organizing feature
map (SOFM), VC is a self-creating network; the number of clusters is self-organizing and need not be
pre-specified. The BP network, using differential features as input training data, can learn the functional
relationship between differential features and the matching degree. After training, the BP network is first
used to generate an initial disparity (range) map. With the clustering results and the initial map, a matching
algorithm that incorporates the BP network is then applied to recursively refine the map in a cluster-by-
cluster manner. In the matching process, useful constraints, such as a epipolar line, ordering, geometry
and continuity, are employed to reduce the occurrence of mismatching. The matching process continues
until all clusters are matched. Empirical results indicate that the proposed framework is very promising
for applications in stereo vision.

Key Words: stereo vision, disparity matching, self-creating network, back-propagation network, clustering,
neural networks, self-organizing feature map

I. Introduction

p 3-D Surface
Stereo imaging or stereo vision (Kanade and )/ N
Okutomi, 1994) refers to a process which transforms , '
the information of two plane images into a 3-D descrip- ! S
tion of the scene and recovers depth information in P’ N
terms of the exact distance. With depth information, s Pr
one can create models of the terrain and other naturs . < _
environments for use in various applications, such as Left image plane /@'magepla“e

virtual reality, flight simulation, air navigation, and
robotics. Due to its inherent characteristics, stereo
vision is a better choice for achieving high-resolution
3-D description ofmovingobjects than other methods, onto two cameras image plan®g,andPg, respectively.
such as laser range finding. The basic idea of sterahen the imaging geometry is known, the disparity
vision is illustrated in . An arbitrary point in a between these two locations provides an estimate of
3-D scene is projected onto different locations in sterethe corresponding 3-D position. Specifically, the lo-
images. Assume that a pojmin a surface is projected cation of p can be calculated from the known

Fig. 1. Basic concept of stereo vision.
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information, P. andPg, and the internal and extern: Pluy.2)
parameters of these two cameras, such as the f

lengths and positions of two cameras (Dhond &

Aggarwal, 1989; Barnard and Fishler, 1987). Sho' EripolarLine
in is a parallel configuration, where one poir
p(x,y,2), is projected onto the left and right imagir
planes atP,(x,,y;) and Pgr(X;,y:), respectively. The

coordinates op can be calculated as follows: f -
x=b(x+x)/[2(x—%:)], / / -

y=b(yi+yn)/[2(x—x7)], 0 X

Y,

z=bf/(x—x;), (1) b

Baseline

where &-x) = thed|5pa.”|yv base lineb = the distance Fig. 2. The parallel configuration in stereo vision. The baseline
between the left and right cameras, drw the focal between the two cameras lis and the focal length i

length of the camera. It should be noted that even if
the camera is arbitrarily configured, we can always
generate a parallel configuration through the procedsased (aka window-based) techniques utilize correla-
of rectification (Papadimitriou and Dennis, 1996).tion between the intensity pattems in the neighborhood
Stereo vision systems are not only low in cost, but alsof a pixel in the left image and those in the neighbor-
offer great utility in depth recovery. Depth is a visualhood of a corresponding pixel at the right image. They
cue essential to applications such as surfacare simple and fast. However, the intensity value of
reconstruction, pattern recognition, and 3D computeeach pixel is sensitive to changes in absolute intensity,
vision. Although other sources, such as camera vecontrast and illumination. Hence, area-based tech-
gence and lens focus, have also been investigated (Nayaques usually give low accuracy results. The sum of
and Nakagawa, 1994; Subbarao and Tao, 1995; Capurtioe squared difference (SSD) or auto-correlation has
et al., 1996; Parlet al,, 1998; Hornget al., 1998) for often been used as a criterion to determine the best
their use in depth recovery, much research has empharatching pair. However, mismatches can arise if the
sized stereo disparity as a source of depth informatiopair with the minimum SSD is chosen as the best
This is because among the three most important issuesatching pair because the functional relationship
in stereo vision, namely, feature extraction, disparitypetween the matching degree and the correlation in
matching, and surface reconstruction, disparity matchintensity patterns is by no means structural or linear
ing still is the most challenging task due to its com-and cannot be fully described using such a simple clear-
plexity (Marr and Poggio, 1976). As can be seen ircut rule. In addition, the size of the window can
Figs. 1 and 2, in order to obtain the disparity, one hasignificantly affect the matching accuracy. Kanade and
to first determine if a poinP, matchesPy (called a Okutomi (1994) have presented an adaptive window
template point or candidate). However, it is by noalgorithm with impressive results. Still, it is virtually
means a trivial task to accurately match the pixels immpossible to correctly match pixels using only infor-
left and right images. Thus, as shown in Fig. 2, thenation about distortion and variation inside a window
goal is to find a correspondence which minimizes area. Feature-based techniques, on the other hand, use
measure of the error between a pair of pix®s Pg).  symbolic features derived from intensity images rather
In this parallel configuration, it can be shown that athan image intensitieger se Symbolic features, such
match pair must be found gp=y;, which is called the as edge points and edge segments, are often used in
epipolar line constraint in the stereo image. Thisthese techniques. For example, Cochran and Medioni
constraint is important because it can be used to redu¢&992) have used the edge extraction technique devel-
the search area from the entire image to one horizontaped by Nevatia and Babu (1980) to obtain twelve
line across the image. different edge orientations. Nasrabadi and Choo (1992)
Traditionally, the two mainstream types of tech-have used a special operator developed by Moravec
niques used in solving the problem of disparity match{1980) to obtain directional variances. Because fea-
ing are area-based (Marapane and Trivedi, 1989; Kanadiere-based techniques allow simple comparisons be-
and Okutomi, 1994) and feature-based (Nasraleadi tween the attributes of features, they are generally
al., 1989; Nasrabadi and Choo, 1992) techniques. Aredaster and more accurate than area-based methods. Still,
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finding an appropriate interpolation method for .
non-featured areas is still a problem, especially in| -°% gt
cases where reconstruction of a 3-D surface is de-
sired.
A neural network derives its computing power [ Fomture Extraction |r

through, first, its massively parallel distributed struc- l l
ture and, second, its ability to learn and, therefore, ) The BP network

. . . . Clustering by the VC
generalize; generalization refers to production by the Neural Network
network of reasonable outputs for inputs not en- l
countered during training. The present paper deals : Local Support ——
with disparity matching by using a neural framework, é\;“:fé‘ggr‘l’;f;f;i DA D‘;}?::‘Y
in which a self-creating neural network (named .
VC) is incorporated along with a back-propagation

(BP) neural network to achieve high performance
disparity matching. The goal is to combine the advanFig. 3. Block diagram of the proposed disparity matching system.
tages of the area-based and feature-based methods.
The framework employs the capabilities of the BP
network in function approximation (Hornikt al, ||. The Neural-based Stereo Vision
1989) and generalization to learn the non-structured System
knowledge required to achieve higher accuracy
in disparity matching compared to area-based mel. System Overview
thods. In addition, the VC network, which utilizes
a conservation principle(Wang and Hsiao, 1997) illustrates the block diagram of our
to facilitate network development, is introduced.proposed system. To avoid the drawback of area-based
The conservation principle, originally developedmethods, our idea is to employ a BP network to compute
for learning vector quantization, is applied in thisthe matching degree (0.0-1.0) between the two local
paper to learning image clustering, the result of whiclwindows (%7) from the left and right images. The
can be incorporated with the BP network and a matchwo pixels to be matched correspond to the centers of
ing algorithm to implement a matching process inthe two windows. Several constraints are used to help
which pixels are matched on a cluster-by-cluster basigletermine the best matching pair. In feature extraction,
Thus, the main contributions of this paper are anhe Sobel operation is applied to input images to obtain
effective matching algorithm, which applies thethe variation and orientation of each pixel; these data
conservation principle to online learning imagewill form the basic input features. To prepare the
clustering, incorporation of the BP and VC networkstraining data, 200 matched and unmatched pixels were
to implement a high performance disparity matchinghand picked (by means of visual examination) trom
system, and further validation through simulationboth flat regions and highly varying regions in the
studies. image pair. For example, it is easy to spot the pixel
The organization of this paper is as follows. Inin the right image which matches a very bright pixel
Section Il, the architecture of the neural-based frame(i.e., an interesting pixel) surrounded by a dark region
work is described. The matching process in whichn the left image. In addition, the continuity constraint
pixels are matched on a cluster-by-cluster basis byan be employed to obtain more matched pairs because
combining the BP network and a matching algorithmpixels near the interesting pixel must have the same
is discussed. Constraints imposed by the epipolatisparity. Fifty pairs of matched and unmatched pixels
line, ordering, geometry and continuity are shownare randomly selected to offline train the BP network.
to be useful in reducing the number of unmatcheduring training, the differences in intensity, variation
pixels as well as unnecessary interpolation duringind orientation between two local windows are fed to
surface reconstruction. In Section Ill, the VC networkthe BP network. The BP network after training should
is introduced and its use in learning image clusterhave the ability to differentiate the matched pairs from
ing is described. A merging algorithm is developedunmatched pairs. The trained BP network is first used
to agglomerate code vectors into several clusterso generate an initial or primitive disparity map, which
Empirical results are presented in Section IV to showvill then be used as a reference map for the subsequent
the performance in terms of matching of the promatching process. Using the BP network and the
posed framework. Finally, concluding remarks areclustering results from the VC network, a matching
given. process further refines the primitive map on a cluster-
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by-cluster basis. Because the matching problem ca | . Riight
be treated as a many-to-one problem, in order to reduc | Image [mage
the search space, the process also involves applicatic | i
of some useful constraints so as to effectively extrac ¢}, e '-in:wl
out the best matching pixel from among multiple (peraee = Voren =7 Vanision =— o e
candidates. Due to its critical importance, the matching

process will be elaborated on later in Subsection 11.4 o Ovienintion 't | | Orienistion s |

2. The Differential Input Features —
DelFereritial Fialsri:
. . . . | Vegtor
Because the intensity value of each pixel is sen: —

sitive to changes in contrast and illumination, and Fig. 4. Feature extraction in the BP network.
despite the fact that intensity is the information most
commonly used in matching process, the variation and

orientation of each pixel deserve more detailed inves-  Differences of Variation|Of j|~|Ofgil, (5)
tigation with regard to their use as features. Denote
the intensity of an arbitrary pixel in locatior,y) as Differences of Orientationai—ar;,

f(x,y). The gradient of(x,y) is defined as
wheref;, |Of|, ay andfg;, |Ofril, dr; are the intensity,
of variation and orientation values of thi& pixel in the
X § left and right images, respectively. Note that these
of = of = lG } , (2)  differential features constitute the actual input vectors
ay both in the training and in matching processegyure
4 illustrates how this differential feature vector is
generated. As will be shown later, the major advantage
of using this differential feature is that it produces the
property of image-independence; that is, a BP network

and its magnitude is defined as the variatiorf(gfy)
and is written as

_ _ 2 trained with one pair of stereo images can be used to
‘Df‘ -mag(Df)-[G§+Gf,] : (3) match another pair.
The orientationa(x,y) of the vectordf at (x,y) is 3. The BP Network
alx, y) = tan™? Gy _ (4 In tra_ditional matching methodsl, one often needs
Gy to determine amppropriatewindow size. It must be

large enough to cover intensity variations while small

In this work, variation and orientation values areenough to avoid the effects of projective distortions
all normalized to [0,255]. The Sobel operator givedKanade and Okutomi, 1994). Considering the fact that
good approximations 06, and Gy (Gonzalezand the functional relationship between the matching de-
Woods, 1992). Using the Sobel operator in featurgree and the correlation in intensity patterns cannot be
extraction has two advantages: (1) it can quickly caleasily obtained, this paper presents use of the function
culate variation and orientation simultaneously; (2) itapproximation capability of the BP network to replace
gives accurate orientations. Each pixel in the left anthe traditional auto-correlation or SSD. The first clear
right image has three basic features: intensity, variatiomsight into the versatility of neural networks for use
and orientation. When the BP network is used ton function approximation came with the discovery of
compute the matching degree between two pixels frorKolmogorov’'s therorem (Hecht-Nielsen, 1987), which
the left and right images, each input vector in facessentially states that the BP network can implement
consists of data from twox7 windows (one from the any function of practical interest to any desired degree
left image, the other from the right) in which the center®f accuracy. More formally, we rewrite the theorem
are the pixels to be matched. In particular, the difas follows:
ferences between the three features are calculated for
each %7 window to form a 147-Dimensional input Theorem of Function Approximation. Given any

feature vector. That is: e>0 and anyL, functionf: [0,1 ]"> R™, there exists a
three-layer back-propagation neural network that can
Differences of Indensitsf—fg;, approximated to within € mean squared error accuracy.

- 668-



A Neural Framework for Disparity Matching

Matching degroe best matching pixel in the right image is determined
pixel by pixel. To be specific, for an arbitrary matching
X vevcons pixel in the left imageP (x;,y:), we compute the

matching degrees for the neRt, ., pixels located to
the left of thePr(X;,y;) in the right image, wheng=x;
andy,=y;. Among the candidateBg(X,,y;), Pr(X—1,

Vi), PR(X—2.Yr), - Pr(X—DmaxV:), the one that produces
the largest output match_degree is chosen, Bga,—
3¥r). Hence, the disparity for the poimtify,) is 3.
Continuing in this manner until all the pixels are matched
and the corresponding disparities are obtained, the
primitive disparity map is drawn by assigning to the
point that has the largest disparity the highest intensity
level (say 255), and to the one with null disparity an
intensity level of zero.

Intensity Variation Orientation
Difference Difference Difference
from from from

Left and Right pixels Left and Right pixels Left and Right pixels 4. The Matchin g Al go rithm

and their neighbors and their neighbors and their neighbors

After the initial disparity map is obtained, the BP
network is incorporated along with a VC network and
a matching algorithm to work on this map to achieve

The proof of this theorem, along with the relatedmore accurate disparity. In doing so, we note that a
derivations of the back-propagation neural networkpixel in the left image might have several pixels with
can be found in Hornikt al. (1989) and is thus omitted high matching degrees in the right image. In order to
here. effectively reduce the number of unmatched pixels and

Thus, unlike traditional area-based methods, usingeduce the distortion caused by unnecessary interpo-
the supervised steepest descent algorithm (Haykidation dunng surface reconstruction, our idea is to first
1998), the BP network can learn approximateany classify the pixels in both input images infe (e.g.
functional mapping between well-defined input vectorsl0) clusters using the VC network. Pixels belonging
and outputs. shows the architecture of the to the same cluster in the feature space should have
three-layer BP network that we used in this paper. Theimilar characteristics; hence, pixels in ffle cluster
input layer has 147 neurons (=73, i.e., two %7 in left image tend to have matching pixels in the same
windows from the left and right images); the hiddencluster in the right image. Performing clustering before
layer contains 50 perceptron-type (Haykin, 1998)matching should greatly reduce the search space needed
neurons; a perceptron output neuron gives a real numbéo, find correspondence pixels and increase the likeli-
i.e., 0.&match_degreel.0. A few feature vectors of hood of correct matches.
matched and unmatched pixel-pairs are sampled as Bearing with this in mind; shows the match-
training data. During training, whenever a match paiing process on a cluster-by-cluster basis. The BP
appears in the input, the network is taught to outpunetwork computes the matching degrees between an
a target value of 1.0 by propagating the error =<1.0 arbitrary pixel in theth cluster in the left image and
match_degree) back to the hidden layer; otherwiseixels in the same cluster in the right image. We denote
error = (match_degree-0.0) when a mismatch occurshose pixels having output match_degree>0.9 as the

Initially, a primitive disparity map is generated candidate se€C. Then, the best match (in the right
by the BP network itself; then, the map is refined byimage) for the said pixel will be determined by applying
a matching process which contains the same BP networkarious constraints to each pixel@so as to exclude
As in the training process, we use differential featurethe incorrect ones. Some useful constraints are as
to generate the primitive disparity map. We first notefollows.
that, under the geometric constraint, the larger the (1)Epipolar Line Constraint As shown in Fig. 2,

Fig. 5. The BP neural network.

image size is, the greater the value of maximum dis- a matching pair of pixels should always be located
parity can be. For example, for a X128 image, the on the same epipolar line in parallel stereo images.
corresponding maximum disparity (denoted3g,y) This limits the search space for a given pixel in
normally will not exceed 10 whereas for a 2266 the left image to the corresponding scan line in
image, the correspondirig,,x normally is less than 20. the right image. However, if the axes of the
Starting from the upper left pixel in the left image, the cameras are not parallel, the epipolar lines in the
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to validate matches. In our implementation, for

For i=1: T (Total number of . . . -
Process the sers) [« a matching pixeP,(x;,y;), a candidate pixePg
(X:,yy) in the right image looks for local support
i slostor i che 1610 within a support window in the space of the
e disparity map The range of the window is
defined by
The BP Network
Find candidate pixels in the ith
cluster of the right image whose , ,
match-degree > 0.9 {Xi_O)SX SXi"'O), yi_sSy Syi+£}1 (6)

Epipolar-line constraint
‘Ordering constraint

Are there candidate
pixels?
Yes

Continuity constraint

where @,¢) denote the width and the height of
the region, respectively. The locsipportfor
Pr(X:,y;) is defined as the number of pixels
P(x',y") inside the window (centered at.{,))
that have a disparity ofx(x;).

Note that the epiploar and geometric constraints
were also employed by the BP network to generate the
initial disparity map. In Fig. 6, the best match is chosen
as the one that has the maximum value safpport
match_degreeT), whereT is a control factor. Increas-
ing or decreasind@ has the effect of suppressing or
T enhancing thdocal supportinferred from the conti-
candidate pixels using the following: nuity constraint. Here, an interesting point is that the
Max( Support + match-degeee - T) underlying physical meaning afiatch_degreés analo-
gous to the window size effect in the median filtering.
For pixels in image details and edges (i.e., high fre-
No T guency components), their support values are much

N - smaller than those of pixels located in smooth areas.
Thus, the matching process tends to preserve more high
trequency components, provided that the value of
support is kept relatively smaller than that of
Fig. 6. lllustration of the matching process shown in Fig. 3. match_degree After the best match is determined, the

new disparity value is used to replace thé disparity

images will appear to be inclined to the horizon-in the disparity map. It this recursive manner, the new

tal (Dhond and Aggarwal, 1989). disparity as well as its preceding replacements should
(2) Geometric ConstraintFor parallel stereo images, provide more accurate local support so that subsequent

objects located at infinity distance will causepixels can be matched.

zero disparity. If there is a disparity, the position

of a pixel in the right image should always bel||l. VC for Learning Clustering

on the left side of its matching pixel in the left

image. As implied in the previous section, the reason way
(3)Ordering Constraint: A left-right ordering re- we perform clustering before matching is that we can

lation between two pixels in the left image shouldenjoy the advantage of feature-based methods, i.e., fast

have the same ordering for the correspondencend accurate matching results. As a result, the proposed

pixels in the right image. neural framework combines the advantages of feature-
(4) Continuity Constraint: This, in its most primi- based and area-based methods. This section discusses

tive form, refers to the depth constancy theoryhow we apply the vitality conservation principle (VC)

developed by Marr and Poggio (1976). Later,(Wang and Hsiao, 1997) to learning image clustering.

Grimson (1985) observed that the 1-D continuityUnlike thek-means method (Gosat al,, 1996), VC is

constraint using Marr-Poggio theory causeda self-creating network, the number of clusters is self-

difficulty in propagation of disparity at occlud- organizing and does not need to be pre-specified.

ing boundaries between objects and along thin

elongated surfaces. His implementation instead.. The Self-creating Network: VC

imposes a more complicated (but more accurate)

regional continuity check on disparity in order In the following, we will introduce the conserva-

support

Primitive disparity map
(updated recursively)

'y

No
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tion principle and demonstrate how it can be incorpowinner is checked; if it is larger than the threshold, then
rated into the competitive learning algorithm (Kohonenthat winner will generate a son node. The mother/son
1989) to deal with the most important issue in develpair will then equally share the original vitality of the
oping a self-creating network, namely, the mechanisrmother node. Thus, the following parameters are vital
that determinesvhenandwhereto generate a node in training a VC network:

during the training process. The basic idea behind

vitality is to estimate the wining frequency of each A@'=increment in vitality for a wining node
individual node (neuron) so that nodes which are

excessively or rarelyirf a relative sengeaccessed can A6 =decrement in vitality for a non-wining node
be determined. The winner is the only node that has

the right to update its weight vector. The total vitality Bhorm(t)=dynamic threshold for node-generation

in the proposed network at any time is a constant,

hence, the name conservation. Combined with a pro-  g,,;=initial vitality.

cedure that redistributes the learning rate variables

after generation, the conservation principle not onlywe start by lettingd,(0)=8;,;;=the initial vitality of the
provides a novel approach to the problem of harmokth node k=1, 2, ...,M(0). Considering that all nodes
nizing equi-error and equi-probable criteria (Matsuyahave not received any input initially, it makes sense
ma, 1996), but also facilitates systematic derivationgo assume that all nodes have the identical initial wining
of various training parameters. The VC network willprobability. Thus,ek(O):ﬁ. For other training

be shown to be (1) fast in terms of computation time, ¢ d fer to (W d Hsi
(2) smooth and incremental so that it can overcome thparameters, readers can reter to (Wang an slao,

dead-node problem, stability-plasticity dilemma, andégw): ThieIO”OWti)ng ex(pj)otnentt)ita[ fl:rr:ctiorll ;/_vithfa
the deficiency of the local minimum, and (3) flexible ecaying ratet can be used to obtain the solution for

enough for learning both vector quantization anoAg(t):
clustering.

Definevitality 6,(t) as the measure of the winning
frequency of th&th node after th&h input presentation.
Thekth node is selected as the winner if it is the leasg&nd it follows that
distancedy from the present input vector. Not only is
its weight vector updated, but its vitality is also in- 7O*(0) = MO-1, x (10)
creased by an amount Af*(t). On the other hand, M() '

an amount oD@ (t) will be subtracted from the vitality ‘ hi . he vitali | £ all
of the non-wining nodes. In this sense, vitality rep—A ter each input presentation, the vitality values of a

resents the priori probability that a node will win at the nodes are updated. Considering the fact that equal

the time the input vector is presented. Considering th&2'titioning of the probability space yields maximum

integrating an arbitrary probability density function is €NOPY. it follows that half of the original vitality
1, it follows thatvitality conservatiorcan be stated as 2SSociated with the mother node should be given to the
son node after it is generlated. As to the thresBgig
NG (1), it is easily seen thats<6horn(t)<1 must hold for
t)=1, t= 7 t
kzlek() , 120, (7) @)

AGT() = ﬁ/\e"“ , (9)

the generation process to work properly. This can be

whereM(t) is the total number of nodes at timeGiven understood by recalling that the_ initial vitality 1/
an initial vitality 6,(0), the vitality ,(t) at timet can (0). Naturally, a VC net\_/vork with a small@hor(t)
be formulated as grows faster than one with a larg8g,n(t).

After a node-generation, the coordinates of the
_ e ! - present input vector are used as the insertion place for
o= 6k(0)+zo W DAGTE) — (1 - W )A G)](’B) the new node. This simple insertion strategy has the
advantages of saving computation time and avoiding
where the likelihood of producing dead nodes:

illustrates this generation process. Figure 7(a) shows
a 2-D structured input data with 4 nodes. Initially, each
node (marked as a circle) has a vitality value of 1/4
(the bold area), as shown in Fig. 7(b). As the training
proceeds, Fig. 7(c) shows that nodes located in the
After each input presentation, the vitality of thedenser local density area accumulate more vitality

WL _fl, if kth node wins at time i
)= \ 0, otherwise.
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.. its mother node are re-initialized tp,;. In addition,
@ if the neighboring nodes around the mother/son can
. @ also react to the new situation more quickly incurred
by the node-generation, then the quantization error can
be decreased. Without loss of generality, we consider
@ a 2-D uniform input stretching from (0,0) to,M).
Assuming that twelve codewords (i.e., nodes) are used,
(a) ®) it can be shown that the me#&ioronoispace (Haykin,
1998) of each codeword isiXm)/12 with diameter

» i Y p(0)=((nxm) /12)"2 For simplicity, when a new node
> o >

is generated, the learning rates of its neighboring nodes
are increased by an amoufsty,, given by

_dk
o} Co} An,Oe A0 (13)
() @ As training proceeds, the dynamic equatiorp for

Fig. 7. Illustration of the generation process in VC. (a) 2-D input _N_dlmenSIOn input data with lengthin each dimension

data; (b) 3 initial nodes, each with 1/3 vitality initially; (c) IS @pproximated by
after certain input presentations; (d) a node with vitality
exceeding the threshold generates a new son node and shares ,O(t) 0O % (14)

vitality with its son node. N/M(t)

Thus, lettingng,in= the stop learning rate, the local
ynamic learning rate)(t) in VC can be stated as

accumulation, and vice versa. In Fig. 7(d), the nod
ollows:

with vitality greater thar@,., will generate a new node

and share its vitality with the new node. Most com-

petitive learning networks use a global rgf&), whose

initial value n;,it has a great effect on the final training whent=0; or

results. Usually 0g;,i<1, andni,i; decays monotoni- Niic¢ kth node is a new born node or

cally by a constany. \kth node is a mother node at time t.
However, too large a value gfwill result in pre-

mature training, and too small a valueyofvill result n)=

in convergence that is too slow. To solve this dilemma, Max{ 17 i MIn{ iies Ut — 1) + 1 (AN},

we let otherwise,

_ card(x(t) -1
T card(x(t)

(15)
(11)

wherecard(x(t)) is the cardinal number o{t). Denote where

nk(t)® as the learning rate of theh node at thdegin-

ning of thesth iteration. Assume that tikh node never fo it M(t)=M(t —1)
wins during a training iteration; asrd (x(t))>>1, then the indicator function (t) = .

n(t)® converges to \1 it MO)>M(t-1).

M) *=Ninity O, s=1 As can be seemy(t) is bounded by fmin, Ninitl-
Usually n1,in=0.001 will work well. Unlike the mono-
=Ninit€ tonically decreasing learning rate in SOFM (Kohonen,
1989), Eq. (15) provides dynamic perturbationsjin
Ne(t)>=Ni(t)s Ly 2 s>1 (t) during the training process. While the decay factor
y guarantees a long-term decreasing trendf¢h), the
= (t)*te™ (12) intermittent perturbations caused by node-generation

can help avoid trapping in a local minimum. The
From Eq. (12) (1) is irrelevant to the number of input redistribution of learning rate variables and vitality-
vectors. In VC, the learning rates of the new node ansharing together create an important property: harmony
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(@

(b)

To obtain the clustering result in Fig. 8(d), our ap-
proach first employed VC to quantize the input data
into M=32 code vectors. Then, a merging algorithm
was used, in a self-organizing manner, to aggregate the
code vectors (for which the coordinates were repre-
sented by nodes in the VC network) into four clusters.
shows the merging algonthm. Therefore, after
the merging process was completed, a cluster label was
assigned to each and every input data point. To provide
better insight into how the algorithm works;
shows the step-by-step results after applying the merging

(©) @

Fig. 8.(a) Input data. The clustering result obtained using (b)
SOFM, (c)k-means, and (d) VC.

betweenlearning qualityand growth rate. This is
because too many nodes generated in the earlier sta
of training will force the network to use more com-
putation time to complete an iteration. With Eq. (15)
and vitality-sharing after a node-generation, VC at-
tempts to keep the growth rate and learning quality ir
balance as training proceeds, in the sense that a ne
node will not be generated until enough input presen
tations have been presented. Note that implementatic
of Eqg. (15) is computationally efficient because the
input distortiond, has been obtained earlier in selecting
the winner node. Finally, ondd(t) grows to the pre-
specifiedMy, the learning rate wilglobally decay, and
the network will then enter the stage of fine-tuning anc
eventually converge in less than fpf.—ninit)/In(Y)
input presentation.

2. From VQ to Clustering

In applying VC to clustering, we first add the x
andy coordinates of the pixel into the original feature

STEP_I:
Search the associated codeword node, for each input vector x, and assign x to node;

Forj=1:M,
Fork=1:M,
If node, is mother of node,
L( node;,node,) = 1
Else
L{ node;,node, ) = 0
End
End

STEP_2:

Fori=1:F
LMAX, = max( || L( node,, node,) || | if L( node;, node,) =1 & node, , node,
e Family,)
If || L(node;, node,) || = LMAX;
L{ node;, node,) =0 //Remove the link
E_nd
L =avg(LMAX,|j=1...F)
STEP_3:

Fori=1:F // Some links may have been removed, so F is a variable
CF, = centroid( node|j = 1. .. M,, node; € Family,)
merge node, € Family, into anode @, , the location of 0, is CF;
If label of x, = node, and node; eFamily,, label(x,,Q,|k=1...V)
End

STEP_4:
Fori=1:F
Forj=1:F _
If i#j & |(CF,.CF)|< L
L(CF,,CF)=1
End
End
STEP_5:
Fori=1:F

CF, = centroid( Q;|j =1 ... number of Q; , Q, € Family,)

merge O, € Family, into anode Q,’, the location of Q," is CF;

If label of x,=Q, and Q; € Family, label(x,, Q," |k=1...7V)
End .

vector to form the input training vector [intensity,

variation, orientationy, y]. The left image is used t0 Notes V: total number of input datax;: an arbitrary input data,

train the VC network; after training, the network can

then be used to cluster both images. After clustering,
every pixel (in the left and right images) will be labeled

with a cluster number.

We used a 2-D input distribution to visually
examine the performance of the VC in learning
clustering. The input data contained four clusters.

compares the clustering results obtained using
SOFM,k-means (Goset al,, 1996), and the VC network.
Clearly, VC has the least number of misclassifications.
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i=1, 2, ...,V. My a pre-specified number of nodes after
training the VC networkL(y,z): create a logical link, where

y, z can represent a node or a centroid (e.gy,ahdz has

a mother-son relatior,(y,z)=1, elselL(y,z)=0). Family: A
family refers to a set in which for any arbitrary node or
centroid, there exists a connected path (comprising a few
links) to another node in the sét.number of families, where

F is a variable.CF;: centroid ofFamily. LMAX: Max path
(Euclidean distance) iRamily;. L : average oL MAX. label
(x,var): labelx asvar;.

Fig. 9. The merging algorithm.



J.H. Wang and C.P. Hsiao

N clustering. The result is shown in Fig. 11(b), where
each cluster is plotted with a different grave level.

: Testing on the Renault images shown-i. 12

: led to similarly good results, as can be seehiin 13

l Note that theVC network was trained using only the

[ left image, and that the trained network was used to

| cluster both the left and right images. Also, it is
interesting to note that the “image segmentation” effect

e e as seen in the tables in Fig. 11(b) and Fig. 13(b) is

- mainly due to thex andy input features. This is good

because of the smaller searching space it offers. This

also implies that matching can still proceed even if the

epipolar line constraint is not applicable wherever the

parallel image configuration is not available.

© ‘ @ 2. Disparity Matching

Fig. 10. Results after each step in the merging algorithm. The result . .
after (a) STEP_1, (b) STEP_2, (c) STEP_3, and (d) STEP_4.  First, we will present the performance of the BP

The result after STEP_5 is shown in Fig. 8(d). matcher obtained without using the matching algorithm
on any constraints. The result will be compared with
that obtained using SSD. The Fruit images shown in

algorithm to the quantization obtained using the VC-ig. 14 were tested, and the results are showRin
network. 15. In order to visualize the disparity map, each dis-
parity value is represented by a gray level intensity.

IV. Experimental Results

In the following simulations, the BP network we
used had ¥7x3 input neurons, 50 hidden neurons anc
1 output neuron. Fifty matched pixel pairs and 5(
unmatched pixel pairs constituted the training data se
It should be noted that, due to the generalizatio
capability of the BP network, the training vectors ca
use a different stereo image pair; that is, a trained
network is image-independent.

1. Clustering Result
(a) (b)

. The test image was an |_nd09r plcture_, shown II’}:ig. 11. (a) An indoor image (256256): a cup with a spoon; (b)
Fig. 11(a). To save computation time, the image was the clustering result.Tc=10.
first divided into 16384 equal-size blocks, each with
2x2 pixels. In this case, the feature vector for each
block was the mean of four vectors, namelgxi[yi),
|Df(Xi,yi)|, G(Xi,yi), Xi, yi], i=1...4. Then, 1000 5-D 1
feature vectors were randomly selected to train the V{
network that was initialized with 3 nodes and allowec
to grow to 10 nodes at most. The network converge
in less than 1 second on a Pentium-133 PC, which
a very small amount of total processing time. |
comparison, the BP matcher needed about 40 minut
to finish execution. However, it should be noted tha
the efficiency of the BP matcher can be significantl

improved if it is implemented with parallel hardware (a) (b)
(e.g., neural chips). After training, all of the 16384Fig. 12. Original stereo images of Renault (2&56), (a) left view,
feature vectors were input into the VC network for (b) right view.
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hence, the input feature of variation can be used as an

index for sequencing the input clusters. At the extreme,

one may cluster input images simply according to their
levels of variation. In this case, the matching process
shown in Fig. 3 is implemented using the following
procedure:

(1) Classify all pixels into several clusters based on
their levels of variation. Starting from clusters
with the highest average variation value and

b) continuing to the lowest one, perform steps (2)-

(4) for each cluster. Use the BP network to

Fig. 13. Clustering results of the Renault images; (a) left image, choose candidate pixels.

(b) right image Tc=10. (2) Unlike in step (1) where only the pixel with the
largest matching degree can be chosen and used
in generating the primitive disparity map, in this
stage, multiple potential matching pixels can be
chosen by the BP network and processed in step
(3).

(3) Apply the four previously described constraints
to the candidate pixels in order to determine the
best matching pixel. Calculate the disparity of
the best matching pixel.

(4)Update the disparity map with the newly ob-
tained disparity.

(b) (5) Iterate steps (2)-(4) until all the clusters are

Fig. 14. Original stereo images of fruits (28B56); (a) left view, prope§sed, except for the one with the lowest

(b) right view. variation level cluster.

(6) Use interpolation techniques to process the area
of the cluster with the lowest variation level and

Although both results show ambiguous regions in the unmatched pixels.

smooth area, the disparity map obtained using the BP ~ The rationale behind step (6) is that a very low

matcher evidently shows higher accuracy than does thaariation area indicates a flat surface. If we continue

obtained using SSD. This simulation result clearlyto process the lowest variation cluster using the match-
indicates that the BP matcher can generate an acceptg algorithm, we could severely blur image details due
able disparity matching result. to the lack of significant features needed to obtain
In the following, we will demonstrate how the correct matches. The test image was the Renault stereo
proposed neural framework can be applied to achievienage, yet it is interesting to note that here we used
accurate disparity matching. The implementation inthe fruit images shown in Fig. 14 instead to train the
volves a matching process incorporated along with thBP network; afterwards, the Renault images were used

BP network and VC. Recall that in the matching

process, a matching pixB| in the left image is checked

against multiple candidates in the right image that havg
the same cluster label 8. In examining Fig. 6, one [&

may wonder if the ordering sequence of the cluster t

be processed can affect matching accuracy. Indee

which one next is a nontrivial task. That problem will
be addressed in our future work.

Since this is a subject that is beyond the scop
of this paper, we here will only give a practical exampl
to show the feasibility of our proposed neural framework*

In determining the sequence of clusters to be matched, (@) (b)
somea prior kn0W|edge_Can b?_used_- For_exampleFig. 15. Disparity map without any constraints or clustering results;
the human visual system is sensitive to intensity changes; (a) SSD, (b) the BP network with,,,=15.
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Constraints, such as epipolar lines, ordering, geometry
and continuity, are used to effectively reduce the search
space. Refining the disparity map is performed in a
cluster-by-cluster manner. The matching process con-
tinues until all the clusters are matched. As such, our
proposed system is more like a combination of the area-
based and feature-based methods. We have also shown
that the BP network trained using fruit images can be
used to match the Renault images. This verifies the
generalization capability of the BP network. It also

(b) implies that the knowledge extracted by the BP network
Fig. 16. (a) Disparity map of the stereo image, (b) after applying!S image-independent and useful f_or disparity matchl_ng.
interpolation and median filtering to (a). We have successfully applied the self-creating

VC network to learning image clustering. Analogous
to the feature-based methods, the VC network can
provide fast but good clustering performance by using
fairly simple features, i.e., [intensity, variation,
orientation x, y] for a single pixel, or [mean intensity,
mean variation, mean orientatioR,, y ] for an image
block. While we believe that two pixels belonging to
the same cluster have a good chance of being a match-
ing pair, there still exist other unknown factors or
outliers that can cause mismatches. One way to de-
crease the mismatch rate is to divide the image into
smaller clusters (cells), and to group these cells based
@ (®) on specific objects. This in a sense may be viewed
Fig. 17. (a) The 3-D mesh model reconstructed from the disparityaS segmentation of the image. An image can be viewed
map, (b) the reconstructed 3-D model with the left imageas a combination of several segments (objects), and
used as its texture. each segment may consist of many small clusters. Such
a course-to-fine approach or tree-structured represen-
tation of an image, we believe, can effectively reduce
to generate the primitive disparity map. As can be sedfie occurrence of mismatch.
in the final disparity map shown in Fig. 15, our match- In the future works, we note that a more general
ing algorithm can still work well, sufficiently verifying activevergence stereo vision system (Ahuja and Abbott,
that the BP network indeed has the capabilities 01993; Blakeet al,, 1993; Grosso and Tistarelli, 1995)
generalization and function approximation. Note thatan be used to overcome the disadvantages of ordinary
the “salt and pepper” area fg. 16(9 can be easily parallel stereo vision systems. Several cues (Ahuja and
removed by means of median filtering. The result isAbbott, 1993), such as the vergence angle and focus,
shown in Fig. 16(b). A 3D mesh reconstructed fromcan be used to obtain a more accurate range map of
the disparity map is shown iRig. 17(a) Figure 17 a scene. The internal parameters of the cameras from
(b) is the 3D model with the the left image used as it¢she stereo images also deserve investigation for use in
texture. improving the accuracy of the range map.
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WRSREB R M H BT HC—IE SR

BUEEEFABERTIESR
THIERERGBRAT

=

AR —EMSRIRRIBRAR R IIEREH R ITERRE - ZRBDRERA T MESLSHEE - ()5ESHhTE
VOMERE—FRRBEREDE | QFIEEMIE (Back-Propagation, BP) —FAIREBE¥FERAIITES - HohvciRIR 2 HRIEMIFR
BREAN—EERZREE (self-creating) RS o FEARAVCEIETIRALIEE (Entropy) FYHFIME » MO RARKE—E
IELREME2(LEE - BATIEE—BSEEE (Merging dlgorithm) FIFARIEDEELNERGIELRIERE S
8 o A ffk-means  SOFM » EALETRFIECRESEERMIBEE o SRCPHMIERIA T VCEBES UNCI AN BRI
BOHEFESR o BT » #EHSobe LBHBEIRRG RIS - U 1 BLEMH Y - BLFHW AR Rer RIS A —
ETfcss (EATERERRYEMFG RGP - AR EHIZLHVEES - tNtE ABICI AL B2 i AR
F8) Al ER o AREE—EMNERNREER - ELtSEEIN_EFyEEEQHVCGEIE 24 - merfEolFl
AP ERBNESRSKEER - HhERT —LMRENFGRE/ NMESZR - 40 - ZAIPRE] (geometry constraint) » —F{
#RIRH (epipolar line constrain) FIEFEPREI (ordering constraint) ; BYIMNEB{EFIEEPRHEI (continuity constraint) FI#IIRAYFE
EBEUKERENTES - ERGERETI—ESerEERANVARIE ZPLEREEREERER (Areabased) RIFE
EHt (Feature-based) MTEIEMRTEBE o
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