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1 Introduction

One of the potential advantages of data-driven approaches to natural language pro-
cessing is that they can be ported to new languages, providedthat the necessary
linguistic data resources are available. In practice, thisadvantage can be hard to
realize if models are overfitted to a particular language or linguistic annotation
scheme. Thus, using two state-of-the-art statistical parsers developed for English
to parse Italian, Corazza et al. [6] report an increase in error rate of 15–18%, and
similar results have been reported for other languages [5, 1, 9, 14]. To overcome
this kind of problem, systems for data-driven processing need to be designed for
flexible reconfiguration, not only with respect to the selection of linguistic features
but also with respect to algorithms and learning methods.

In this paper, we present a data-driven approach to dependency parsing that
has been applied to several languages, consistently givinga dependency accuracy
of 80–90% without any language-specific enhancements and with fairly modest
data resources. The methodology is based on three essentialcomponents:

1. Deterministic parsing algorithms for building dependency graphs [26, 17]

2. History-based feature models for predicting the next parser action [2]

3. Discriminative machine learning to map histories to parser actions [26, 20]

Given the restrictions imposed by these components, we propose an architecture
with a strict modularization of parsing algorithms, feature models and learning
methods. This architecture has been realized in the MaltParser system, which can



be applied to a labeled dependency treebank in order to induce a labeled depen-
dency parser for the language represented by the treebank.1 In order to demonstrate
the generality of the approach, we present an experimental evaluation of parsers
trained on treebank data from five different languages, eachwith a different an-
notation scheme. But first we introduce the framework ofinductive dependency
parsing[19] and its realization in the MaltParser system.

2 Inductive Dependency Parsing

Given a setR of dependency types, we define adependency graphfor a sentence
x = (w1, . . . , wn) to be a labeled directed graphG = (V, E, L), whereV is the set
of input tokensw1, . . . , wn, extended with a special root nodew0 and ordered by a
linear precedence relation<; E ⊆ V × V is a set of directed arcs; andL : E → R

is a function that labels arcs with dependency types. A dependency graphG is
well-formediff (i) the nodew0 is a root ofG, (ii) G is connected, (iii) every node
in G has an indegree of at most 1, and (iv)G is acyclic. Dependency parsing is the
task of mapping sentences to well-formed dependency graphs.

Inductive approaches to natural language parsing can in general be defined in
terms of three essential components:

1. A formal modelM defining permissible representations for sentences (such
as the model of dependency graphs defined above).

2. A parameterized stochastic modelMΘ, defining a scoreS(x, y) for every
sentencex and well-formed representationy.

3. An inductive learning algorithmL for estimating the parametersΘ from a
representative sampleTt = (x1 : y1, . . . , xn : yn) of sentences with their
correct representations (normally a treebank sample).

Inductive dependency parsing is compatible with a variety of different models, but
we focus here onhistory-basedmodels, which can be defined in three steps:

1. Define a one-to-one mapping between syntactic representationsy and deci-
sion sequencesD = (d1, . . . , dm) such thatD uniquely determinesy.

2. Define the scoreS(x, y) in terms of each decisiondi in the decision sequence
D = (d1, . . . , dm), conditioned on the historyH = (d1, . . . , di−1).

3. Define a functionΦ that groups histories into equivalence classes, thereby
reducing the number of parameters inΘ.

1MaltParser is freely available for research and educational purposes and can be downloaded
from http://www.msi.vxu.se/users/nivre/research/MaltParser.html.



In a conditional history-based model, the scoreS(x, y) defined by the model is
the conditional probabilityP (y |x) of the analysisy given the sentencex, which
means that the input sentence is a conditioning variable foreach decision in the
decision sequence:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di |Φ(d1, . . . , di−1, x)) (1)

The parameters of this model are the conditional probabilitiesP (d |Φ(H, x)), for
all possible decisionsd and non-equivalent conditionsΦ(H, x).

Given a conditional history-based model, the conditional probabilityP (yj |x)
of analysisyj given inputx can be used to rank a set of alternative analyses
{y1, . . . , yk} of the input sentencex, derived by a nondeterministic parser. If the
model allows a complete search of the analysis space, we can in this way be sure
to find the analysisyj that maximizes the probabilityP (yj |x) according to the
model. With a deterministic parsing strategy, we instead try to find the most prob-
able analysisyj without exploring more than one decision sequence, based onthe
following approximation:

max
j

P (yj |x) ≈
m∏

i=1

max
i

P (di |Φ(d1, . . . , di−1, x)) (2)

A deterministic parsing strategy is in this context agreedy algorithm, making a
locally optimal choice in the hope that this will lead to a globally optimal solution.
The main advantage of the greedy strategy is that it improvesparsing efficiency by
avoiding an exhaustive search of the analysis space, but an additional advantage is
that it reduces the effective number of parameters of the stochastic model, since
only the mode of the distributionP (di |Φ(H, x)) needs to be estimated for each
distinct conditionΦ(H, x). This also means that a larger class of learning methods
can be used, including purely discriminative methods.

With a discriminative learning method we can reduce the learning problem to
a pure classification problem, where aninput instanceis a parameterized history
Φ(H, x) and anoutput classis a decisiond. Using a supervised learning method,
our task is then to induce a classifierC given a set of training instancesDt, derived
from a treebank sample:

Dt = {(Φ(H, x), d) |O(H, x) = d, x ∈ Tt} (3)

whereO is an oracle function that predicts the correct decision given the gold
standard treebank.

In order to construct a specific instance of the inductive dependency parser, we
therefore need to specify three things:



1. A deterministicparsing algorithmused to derive dependency graphs, which
defines the setD of permissible decisions, as well as the oracle function
O that determines the correct decision given a certain history H and input
sentencex. Moreover, we require that every history can be characterized by
a stackσ of partially processed tokens, a listτ of remaining input tokens,
and a partially built dependency graphG.

2. A parameterization functionΦ used to define equivalence classes of histories
and sentences in terms of a feature vectorΦ(1,p) = (φ1, . . . , φp), where each
featureφi is a function that maps a token to its part-of-speech, lexical form
or dependency type (in the partially built dependency graph). We callΦ(1,p)

a feature model.

3. A discriminativelearning algorithmused to approximate the mode function
f(Φ(H, x)) = arg maxd P (d |Φ(H, x)) given a setDt of training instances.

We will now turn to the description of a system that allows theuser to construct
such an instance in an efficient and flexible manner, given a suitable sample of a
dependency treebank.

3 MaltParser

The architecture of the MaltParser system has been designedwith two goals in
mind. The first is to make it possible to flexibly combine different parsing algo-
rithms, feature models and learning algorithms, given the constraints outlined in
the preceding section. The second is to maximize the reuse ofcomponents across
the learning phaseand theparsing phase. In the learning phase a treebank is used
to instantiate the parameters of the feature model; in the parsing phase the instan-
tiated model is used to parse new data. Although these two phases have a different
structure, they involve very similar or even identical subphases, which means that
the same basic components can be reused across phases. The architecture therefore
consists of three modularized components (in addition to input/output modules and
overall control structure):Parser, GuideandLearner.

3.1 Parser

The Parser is responsible for the derivation of a dependencygraphG, using a deter-
ministic parsing algorithm that can be broken down into a sequence of decisions
D. The learning phase requires that each parsing algorithm provides an implemen-
tation of the oracle functionO, used for learning the correct sequence of decisions



for a given input. During the parsing phase the Parser only implements the deci-
sions provided by the Learner (via the Guide), but the implementation is performed
in exactly the same way during both learning and parsing. In this way, the parsing
algorithm only defines what the permissible decisions are, not what the relevant
linguistic features are, nor which learning method should be used. In the current
version of MaltParser, the user can choose between several deterministic parsing
algorithms, including the algorithms described by Nivre [18] and two variants of
the incremental parsing algorithms described by Covington[7].

3.2 Guide

The Guide is responsible for constructing a set of training instancesDt for the
Learner during the learning phase, and for passing the Learner’s predictions to the
Parser during the parsing phase. At learning time, the Guideconstructs one training
instance(Φ(H, x), d) for each decisiond passed from the Parser, whereΦ(H, x) is
the current vector of feature values (given the parameterization functionΦ and the
current state of the system), and passes this on to the Learner. At parsing time, the
trainer constructs a feature vectorΦ(H, x) for each request from the Parser, sends
it to the Learner and passes on the predicted decisiond from the Learner to the
Parser. In this way, the feature model is completely separated from the Parser, and
the Learner only has to learn a mapping from feature vectors to decisions, without
knowing either how the features are extracted or how the decisions are to be used.

The feature extraction uses the parameterization functionΦ, which is defined
in terms of a feature vectorΦ(1,p), where each featureφi is a function, defined in
terms of two simpler functions: anaddress functionaφi

, which identifies a specific
token in a given parser configuration, and anattribute functionfφi

, which picks
out a specific attribute of the token:

1. For everyi, i ≥ 0, σ[i] andτ [i] are address functions identifying thei+1th
token from the top of the stackσ and the start of the input listτ , respectively.
(Hence,σ[0] is the top of the stack andτ [0] is the next input token.)

2. If α is an address function, thenh(α), lc(α) andrc(α) are address functions,
identifying the head (h), the leftmost child (lc) and the rightmost child (rc),
respectively, of the token identified byα.

3. If α is an address function, thenp(α), w(α) andd(α) are feature functions,
identifying the part-of-speech (p), word form (w) and dependency type (d)
of the token identified byα. We callp, w andd attribute functions.

The MaltParser system comes with a formal specification language for feature
functions, which enables the user to define arbitrarily complex feature models in
terms of address functions and attribute functions.



3.3 Learner

The Learner, finally, is responsible for inducing a model from the set of training
instancesDt created by the Guide during the learning phase, and for usingthis
model to predict parser decisions during the parsing phase.In practice, the Learner
will normally be an interface to a standard machine learningpackage. The inter-
face prepares the set of training instances for the specific package and invokes the
appropriate functions to learn a model or predict a decision. Currently, MaltParser
supports memory-based learning, using TIMBL [8], and support vector machines,
using the LIBSVM tools for multiclass classification [25].

4 Treebank Parsing

In this section, we summarize experiments with the MaltParser system on data from
five languages: Swedish, English, Czech, Danish, and Bulgarian.2 Although these
languages are all Indo-European, they nevertheless represent fairly different lan-
guage types, ranging from English, with very reduced morphology and relatively
inflexible word order, to the Slavic languages Czech and Bulgarian, with rich mor-
phology and flexible word order, with the Scandinavian languages Swedish and
Danish somewhere in the middle. In addition, the treebank annotation schemes
used to analyze these languages differ considerably. Whereas the treebanks for
Czech and Danish are proper dependency treebanks, albeit couched in different
theoretical frameworks, the annotation schemes for the remaining treebanks are
based on constituency in combination with grammatical functions, which neces-
sitates a conversion from constituency trees to dependencystructures. Below we
first describe the five treebanks used in the experiments, including necessary con-
versions. We then describe the experimental setup, report the results for different
languages, and relate the results to the state of the art for languages where such
comparisons are possible.

4.1 Treebank Data

The Swedish data come from Talbanken [10], a manually annotated corpus of both
written and spoken Swedish, created at Lund University in the 1970s. We use the
professional prose section, consisting of about 100K wordsof text taken from text-
books, newspapers and information brochures. Although theoriginal annotation

2Results have been published previously for Swedish [20, 19], English [22, 19] and Czech [21],
but not for Danish and Bulgarian. (The results for Bulgarianare also published in a separate paper in
this volume [15].) There is also ongoing work applying the system to Chinese, German, Italian and
Turkish.



scheme is an eclectic combination of constituent structure, dependency structure,
and topological fields [24], it has proven possible to convert the annotated sen-
tences to dependency graphs with very high accuracy. In the conversion process,
we have reduced the original fine-grained classification of grammatical functions
to a more restricted set of 17 dependency types, mainly corresponding to traditional
grammatical functions such assubject, objectandadverbial.

The data set used for English is the standard data set from the1M word Wall
Street Journal section of the Penn Treebank, with sections 2–21 used for training
and section 23 for testing. The data has been converted to dependency trees using
the head percolation table of Yamada and Matsumoto [26], anddependency type
labels have been inferred using a variation of the scheme employed by Collins [4],
which makes use of the nonterminal labels on the head daughter, non-head daughter
and parent corresponding to a given dependency relation. However, instead of
simply concatenating these labels, as in the Collins scheme, we use a set of rules to
map these complex categories onto a set of 10 dependency types, again including
traditional grammatical functions such assubject, object, etc. More details about
the conversion can be found in Nivre [19].

The Prague Dependency Treebank (PDT) consists of 1.5M wordsof newspaper
text, annotated on three levels, the morphological, analytical and tectogrammatical
levels [11]. Our experiments all concern the analytical annotation, which uses a set
of 28 surface-oriented grammatical functions [3]. Unlike the treebanks of Swedish
and English, PDT is a genuine dependency treebank also including non-projective
dependencies.

The Danish Dependency Treebank (DDT) comprises about 100K words of text
selected from the Danish PAROLE corpus, with annotation of primary and sec-
ondary dependencies [13]. Our experiments only concern primary dependencies,
which are annotated using a fine-grained set of 48 dependencytypes. Like PDT,
DDT is a proper dependency treebank and includes non-projective dependencies.

The BulTreeBank [23] contains about 70K words of Bulgarian text from dif-
ferent sources, annotated with constituency structure. Although the annotation
scheme is meant to be compatible with the framework of HPSG, syntactic heads
are not explicitly annotated, which means that the treebankmust be converted to
dependency structures using the same kind of head percolation tables and inference
rules used for the English data. The set of dependency types used for Bulgarian
is modeled after the Swedish set and includes 14 distinct grammatical functions.
More details about the conversion can be found in Marinov andNivre [15].

Table 1 gives an overview of the data sets for the five languages, in terms
of annotation scheme, projectivity, tagset size for dependency types and parts-of-
speech, and number of words and sentences. The latter figuresrefer in each case
to the complete treebank, of which at most 90% has been used for training and at



Table 1: Data sets. AS = Annotation scheme (C = Constituency,D = Dependency,
G = Grammatical functions); Pro = Projective; #D = Number of dependency types;
#P = Number of PoS tags; #W = Number of words; #S = Number of sentences;
W/S = Mean sentence length; MS = Model selection (DTS = Development test set,
CVn = N-fold cross-validation); MA = Model assessment on independent test set

Language AS Pro #D #P #W #S W/S MS MA
Swedish C+G yes 17 46 97623 6316 15.46 CV9 yes
English C+G yes 10 48 1173766 49208 23.85 DTS yes
Czech D no 26 28 1507333 87914 17.15 DTS yes
Danish D no 54 33 100238 5512 18.19 DTS no
Bulgarian C yes 14 51 71703 5080 14.11 CV8 no

least 10% for testing. It should also be pointed out that the tagset size for parts-
of-speech refers to the tagset actually used in parsing, which (except in the case of
English) is a reduced version of the complete tagset used in the annotation.

4.2 Experimental Setup

All the experiments reported in this paper were performed with the parsing algo-
rithm described in Nivre [17, 18, 19] and with memory-based learning and classi-
fication as implemented in the TIMBL software package by Daelemans and Van
den Bosch [8]. A variety of feature models were tested, but weonly report results
for the optimal model, averaged over all languages, which combines part-of-speech
features, dependency features and lexical features in the way depicted in Figure 1.3

Optimal parameter settings for the TIMBL learner involved setting the numberk

of nearest distances to 5 and using the Modified Value Difference Metric (MVDM)
together with Inverse Distance (ID) weighted class voting.(For more information
about these parameters, see Daelemans and Van den Bosch [8].)

Model selection was performed using a single development test set for larger
data sets and cross-validation for smaller ones, as summarized in Table 1. For all
languages except Danish and Bulgarian, the final results reported were obtained
using a separate test set for model assessment after completing the model selection
(cf. Table 1). The part-of-speech tagger used for preprocessing is a standard HMM
tagger with suffix smoothing developed by Hall [12], normally trained on the train-
ing part of the treebank used in the experiment,4 except for Czech where we use

3For Bulgarian, full word forms were replaced by suffixes of six characters as values for lexical
features in order to counter the sparse data problem.

4For Danish, the tagger was trained on a larger corpus containing the training set as a subset,



Stack(σ)
︷ ︸︸ ︷

p(σ[1]) p(σ[0])
w(σ[0])

w(h(σ[0]))
d(σ[0])

d(lc(σ[0]))
d(rc(σ[0]))

Input (τ)
︷ ︸︸ ︷

p(τ [0]) p(τ [1]) p(τ [2]) p(τ [3])
w(τ [0]) w(τ [1])

d(lc(τ [0]))

Figure 1: Optimal feature model.w = word form;p = part-of-speech;h = head;
d = dependency type;lc = leftmost child;rc = rightmost child.

the HMM tagging provided with the distribution of the treebank [11]. The tagging
accuracy is included in the presentation of results below.

For the datasets that include non-projective dependencies(Czech and Danish),
training data were projectivized prior to training using the procedure described
in Nivre and Nilsson [21]. The output of the parser was then deprojectivized by
an inverse graph transformation also described in Nivre andNilsson [21]. The
software needed for these transformations is not included in the MaltParser system
as such but is freely available from the same location.

4.3 Results and Discussion

Table 2 reports the parsing accuracy obtained when applyingMaltParser to each
of the five languages under the conditions described in previous sections, sorted in
order of decreasing accuracy. Unlabeled attachment score (UAS) is the proportion
of words that are assigned the correct head (but possibly an incorrect dependency
type), while labeled attachment score (LAS) is the proportion of words that are
assigned both the correct head and the correct dependency type. Tagging accuracy
(TA) is the proportion of words that are assigned the correctpart-of-speech tag in
preprocessing. Punctuation tokens are excluded in parsingaccuracy results (LAS,
UAS) but included in tagging accuracy results (TA).

Although MaltParser achieves an unlabeled attachment score above 80% for all
languages, there is also a considerable range of variation,which seems to correlate
fairly well with the linguistic dimensions morphological richness and word order
flexibility, with the highest accuracy for English, the lowest accuracy for Bulgarian
and Czech, and with Swedish and Danish in an intermediate position. The influ-
ence of these typological factors is discernible also in thetagging accuracy, which
is lower for Bulgarian and Czech than for the other languages, a circumstance that

while for Swedish the tagger was trained on a completely separate corpus.



Table 2: Parsing accuracy. UAS = unlabeled attachment score; LAS = labeled
attachment score; TA = tagging accuracy

Language UAS LAS TA
English 88.1 86.3 96.1
Swedish 86.3 82.0 95.6
Danish 85.6 79.8 96.3
Bulgarian 80.4 72.9 93.5
Czech 80.1 72.8 94.1

in itself may lead to lower parsing accuracy.
The results for labeled attachment score reflect the same overall tendency but

are also influenced by the complexity of the dependency type classification. By
and large, the gap between labeled and unlabeled accuracy grows with the number
of distinct dependency types. For example, while the unlabeled attachment score
is roughly equivalent for Swedish and Danish, the higher labeled attachment score
for Swedish can probably be explained by the smaller number of dependency types
distinguished. The only exception to this generalization is Bulgarian, which has the
widest gap between labeled and unlabeled accuracy despite arelatively small set
of dependency types. This is probably due to the limited amount of data available
for Bulgarian.

In comparison to structural properties of the languages involved, the size of the
training set seems to be a very weak predictor of parsing accuracy, given that the
two languages with the largest treebanks are ranked first (English) and last (Czech)
and given that the two structurally similar languages Bulgarian and Czech have
very similar results despite the large difference in available data resources. It is
likely that the labeled parsing accuracy is more sensitive to sparse data, as indi-
cated both by the very high labeled attachment score of English and the rather low
score for Bulgarian, but on the whole it seems that the approach implemented in
the MaltParser system is relatively robust in the face of sparse data, giving reason-
able performance for a wide range of languages with datasetsin the order of 100K
words or less. Needless to say, a more detailed error analysis will be needed be-
fore we can draw any reliable conclusions about the influenceof different factors,
so the tentative conclusions advanced here are best regarded as conjectures to be
corroborated or refuted by future research.

For English and Czech, the unlabeled attachment scores obtained are within
a 5% increase in error rate compared to the state of the art, which is about 92%
for English and 84% for Czech [16]. For Swedish, Danish and Bulgarian there



are no comparable results in the literature, which makes it difficult to assess the
accuracy in absolute terms. However, given the fact that unlabeled attachment
score is consistently above 80%, it seems that the parsing methodology is relatively
robust to differences in language typology as well as in annotation schemes.

5 Conclusion

We have presented a data-driven system for dependency parsing that appears to
give good parsing accuracy for a wide range of languages without language-specific
enhancements and with relatively modest requirements on the quantity of data
available. Unlabeled dependency accuracy is consistentlyabove 80%, regardless of
annotation scheme and training set size, and parsing accuracy remains within a 5%
margin from the best performing parsers where comparative results are available.
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