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1 Introduction

One of the potential advantages of data-driven approachesttiral language pro-
cessing is that they can be ported to new languages, protfidedhe necessary
linguistic data resources are available. In practice, @digantage can be hard to
realize if models are overfitted to a particular languageirgguistic annotation
scheme. Thus, using two state-of-the-art statisticalgrardeveloped for English
to parse Italian, Corazza et al. [6] report an increase ioreate of 15-18%, and
similar results have been reported for other languages, [8, 14]. To overcome
this kind of problem, systems for data-driven processingdrie be designed for
flexible reconfiguration, not only with respect to the satacof linguistic features
but also with respect to algorithms and learning methods.

In this paper, we present a data-driven approach to depepgemsing that
has been applied to several languages, consistently gavilgpendency accuracy
of 80-90% without any language-specific enhancements atidfairly modest
data resources. The methodology is based on three essamtipbnents:

1. Deterministic parsing algorithms for building depenciegraphs [26, 17]
2. History-based feature models for predicting the nexsgraaction [2]

3. Discriminative machine learning to map histories to paestions [26, 20]

Given the restrictions imposed by these components, weopsopn architecture
with a strict modularization of parsing algorithms, fe&umodels and learning
methods. This architecture has been realized in the Mai@Palstem, which can



be applied to a labeled dependency treebank in order to induabeled depen-
dency parser for the language represented by the treébardeder to demonstrate
the generality of the approach, we present an experimevdliation of parsers
trained on treebank data from five different languages, &attha different an-
notation scheme. But first we introduce the frameworknaluctive dependency
parsing[19] and its realization in the MaltParser system.

2 Inductive Dependency Parsing

Given a setk of dependency types, we definel@pendency grapfor a sentence
x = (wy,...,wy,)to be alabeled directed gragh= (V, £, L), whereV is the set
of input tokenswy, . . ., wy,, extended with a special root nodg and ordered by a
linear precedence relation; £ C V x V is a set of directed arcs; add: £ — R
is a function that labels arcs with dependency types. A dégeecy graphG is
well-formediff (i) the nodewy is a root ofG, (ii) G is connected, (iii) every node
in G has an indegree of at most 1, and (i¥)s acyclic. Dependency parsing is the
task of mapping sentences to well-formed dependency graphs

Inductive approaches to natural language parsing can iargebe defined in
terms of three essential components:

1. Aformal modelM defining permissible representations for sentences (such
as the model of dependency graphs defined above).

2. A parameterized stochastic moddl, defining a scoreS(x,y) for every
sentence: and well-formed representatign

3. An inductive learning algorithni for estimating the paramete€ from a
representative samplg = (z1 : y1,...,x, : y,) Of sentences with their
correct representations (normally a treebank sample).

Inductive dependency parsing is compatible with a variégifferent models, but
we focus here ohistory-basednodels, which can be defined in three steps:

1. Define a one-to-one mapping between syntactic repregsrgg and deci-
sion sequence® = (di,...,d,,) such thatD uniquely determines.

2. Define the scor8(z, y) in terms of each decisiaf} in the decision sequence
D = (dy,...,dy), conditioned on the historyf = (di,...,d;—1).

3. Define a functionb that groups histories into equivalence classes, thereby
reducing the number of parametersdn

IMaltParser is freely available for research and educatipngposes and can be downloaded
from http://www.msi.vxu.se/users/nivre/research/Malser.html.



In a conditional history-based model, the scéier, y) defined by the model is
the conditional probability?(y | z) of the analysig given the sentence, which
means that the input sentence is a conditioning variabled&ch decision in the
decision sequence:

P(yla) = P(dy,...,dm|2) = [[ P(di| ®(dy,. .., di—1,2)) (1)
=1

The parameters of this model are the conditional probasli®(d | ®(H, x)), for
all possible decisiong and non-equivalent conditiods( H, x).

Given a conditional history-based model, the conditiomabpbility P(y; | x)
of analysisy; given inputz can be used to rank a set of alternative analyses
{y1,...,yx} of the input sentence, derived by a nondeterministic parser. If the
model allows a complete search of the analysis space, wendhisiway be sure
to find the analysig; that maximizes the probability’(y; | ) according to the
model. With a deterministic parsing strategy, we instepdaifind the most prob-
able analysig; without exploring more than one decision sequence, basdieon
following approximation:

max P(y; | z) = HmaxP | ®(dy, ..., di1, 7)) (2)
J

A deterministic parsing strategy is in this contexgreedy algorithm making a
locally optimal choice in the hope that this will lead to alggdly optimal solution.
The main advantage of the greedy strategy is that it imprpaesing efficiency by
avoiding an exhaustive search of the analysis space, butditicmal advantage is
that it reduces the effective number of parameters of thehaftic model, since
only the mode of the distributio®(d; | ®(H, x)) needs to be estimated for each
distinct condition®( H, x). This also means that a larger class of learning methods
can be used, including purely discriminative methods.

With a discriminative learning method we can reduce theniegrproblem to
a pure classification problem, where imput instancds a parameterized history
®(H, z) and anoutput clasds a decisiord. Using a supervised learning method,
our task is then to induce a classif@mgiven a set of training instancéy, derived
from a treebank sample:

Dt:{(Q)(H,l‘),d)‘O(H,:L‘):d,xETt} ()

where O is an oracle function that predicts the correct decisiorergithe gold
standard treebank.

In order to construct a specific instance of the inductiveedelency parser, we
therefore need to specify three things:



1. A deterministigparsing algorithmused to derive dependency graphs, which
defines the seD of permissible decisions, as well as the oracle function
O that determines the correct decision given a certain histbrand input
sentencer. Moreover, we require that every history can be charaadriwy
a stacko of partially processed tokens, a listof remaining input tokens,
and a partially built dependency gragh

2. A parameterization functiob used to define equivalence classes of histories
and sentences in terms of a feature vedtgr,) = (¢1,...,¢p), Where each
featureg; is a function that maps a token to its part-of-speech, léXaran
or dependency type (in the partially built dependency graple call®; ;)
afeature model

3. Adiscriminativelearning algorithmused to approximate the mode function
f(®(H,z)) =argmaxy P(d| ®(H,x)) given a setD, of training instances.

We will now turn to the description of a system that allows tiser to construct
such an instance in an efficient and flexible manner, giventalda sample of a
dependency treebank.

3 MaltParser

The architecture of the MaltParser system has been desigitedwo goals in
mind. The first is to make it possible to flexibly combine diffet parsing algo-
rithms, feature models and learning algorithms, given thestraints outlined in
the preceding section. The second is to maximize the reusengponents across
thelearning phasend theparsing phaseln the learning phase a treebank is used
to instantiate the parameters of the feature model; in th&p@phase the instan-
tiated model is used to parse new data. Although these tweeghzave a different
structure, they involve very similar or even identical shidges, which means that
the same basic components can be reused across phasehiteetire therefore
consists of three modularized components (in additionpgatifoutput modules and
overall control structure)Parser, GuideandLearner.

3.1 Parser

The Parser is responsible for the derivation of a dependgraphG, using a deter-
ministic parsing algorithm that can be broken down into ausege of decisions
D. The learning phase requires that each parsing algoritbridges an implemen-
tation of the oracle functioty, used for learning the correct sequence of decisions



for a given input. During the parsing phase the Parser onplédments the deci-
sions provided by the Learner (via the Guide), but the imgletation is performed
in exactly the same way during both learning and parsinghisway, the parsing
algorithm only defines what the permissible decisions aoéwhat the relevant
linguistic features are, nor which learning method showdibed. In the current
version of MaltParser, the user can choose between sewvashunistic parsing
algorithms, including the algorithms described by Nivr8][&nd two variants of
the incremental parsing algorithms described by Covingtpn

3.2 Guide

The Guide is responsible for constructing a set of trainimggancesD; for the
Learner during the learning phase, and for passing the k€anredictions to the
Parser during the parsing phase. At learning time, the Gugdstructs one training
instancg®(H, x), d) for each decisiod passed from the Parser, whdréH, x) is
the current vector of feature values (given the paramettioiz function® and the
current state of the system), and passes this on to the Lre&trgarsing time, the
trainer constructs a feature vectb(H, x) for each request from the Parser, sends
it to the Learner and passes on the predicted decigifsom the Learner to the
Parser. In this way, the feature model is completely sepdriabm the Parser, and
the Learner only has to learn a mapping from feature vectodetisions, without
knowing either how the features are extracted or how thestets are to be used.

The feature extraction uses the parameterization fund@iowhich is defined
in terms of a feature vectab; ), where each featurg; is a function, defined in
terms of two simpler functions: aaddress functiom,, which identifies a specific
token in a given parser configuration, andaitribute functionf,,, which picks
out a specific attribute of the token:

1. For everyi, i > 0, o[i] and[i] are address functions identifying the 1th
token from the top of the stackand the start of the input list, respectively.
(Henceg[0] is the top of the stack and0] is the next input token.)

2. If ais an address function, thér«), lc(«) andrc(a) are address functions,
identifying the head/(), the leftmost child ic) and the rightmost childr¢),
respectively, of the token identified lay

3. If ais an address function, theii«), w(a) andd(«) are feature functions,
identifying the part-of-speechy), word form () and dependency type)
of the token identified byr. We callp, w andd attribute functions.

The MaltParser system comes with a formal specificationdagg for feature
functions, which enables the user to define arbitrarily dempeature models in
terms of address functions and attribute functions.



3.3 Learner

The Learner, finally, is responsible for inducing a modehfrthe set of training
instancesD; created by the Guide during the learning phase, and for ukisg
model to predict parser decisions during the parsing pHageactice, the Learner
will normally be an interface to a standard machine learpiagkage. The inter-
face prepares the set of training instances for the specifikgge and invokes the
appropriate functions to learn a model or predict a decigtnrently, MaltParser
supports memory-based learning, using/BL [8], and support vector machines,
using the LIBSVM tools for multiclass classification [25].

4  Treebank Parsing

In this section, we summarize experiments with the Malt®agstem on data from
five languages: Swedish, English, Czech, Danish, and Balgarlthough these
languages are all Indo-European, they nevertheless mapr&srly different lan-
guage types, ranging from English, with very reduced moigryoand relatively
inflexible word order, to the Slavic languages Czech and &idg, with rich mor-
phology and flexible word order, with the Scandinavian laggs Swedish and
Danish somewhere in the middle. In addition, the treebamotation schemes
used to analyze these languages differ considerably. \@kdehe treebanks for
Czech and Danish are proper dependency treebanks, alletexd in different
theoretical frameworks, the annotation schemes for thair@ng treebanks are
based on constituency in combination with grammatical fiens, which neces-
sitates a conversion from constituency trees to depend&negtures. Below we
first describe the five treebanks used in the experimentsidimg) necessary con-
versions. We then describe the experimental setup, rdporesults for different
languages, and relate the results to the state of the arafiguages where such
comparisons are possible.

4.1 Treebank Data

The Swedish data come from Talbanken [10], a manually atewtaorpus of both
written and spoken Swedish, created at Lund University én1th70s. We use the
professional prose section, consisting of about 100K wofdsxt taken from text-
books, newspapers and information brochures. Althouglotiggnal annotation

2Results have been published previously for Swedish [2Q,B9glish [22, 19] and Czech [21],
but not for Danish and Bulgarian. (The results for Bulgaaamalso published in a separate paper in
this volume [15].) There is also ongoing work applying theteyn to Chinese, German, Italian and
Turkish.



scheme is an eclectic combination of constituent structlependency structure,
and topological fields [24], it has proven possible to cohtlee annotated sen-
tences to dependency graphs with very high accuracy. Indheecsion process,
we have reduced the original fine-grained classificationrafrgnatical functions

to amore restricted set of 17 dependency types, mainly spporaling to traditional

grammatical functions such asbject objectandadverbial

The data set used for English is the standard data set frohMh&ord Wall
Street Journal section of the Penn Treebank, with sectieB% Bsed for training
and section 23 for testing. The data has been converted endepcy trees using
the head percolation table of Yamada and Matsumoto [26],d@p&ndency type
labels have been inferred using a variation of the scheméogegbby Collins [4],
which makes use of the nonterminal labels on the head daygbtehead daughter
and parent corresponding to a given dependency relatiorwetrr, instead of
simply concatenating these labels, as in the Collins schemese a set of rules to
map these complex categories onto a set of 10 dependency; Bgen including
traditional grammatical functions such ssbject object etc. More details about
the conversion can be found in Nivre [19].

The Prague Dependency Treebank (PDT) consists of 1.5M vedrosvspaper
text, annotated on three levels, the morphological, aralydnd tectogrammatical
levels [11]. Our experiments all concern the analyticalsation, which uses a set
of 28 surface-oriented grammatical functions [3]. Unlike treebanks of Swedish
and English, PDT is a genuine dependency treebank alsalingmon-projective
dependencies.

The Danish Dependency Treebank (DDT) comprises about 10&Ksof text
selected from the Danish PAROLE corpus, with annotationrohary and sec-
ondary dependencies [13]. Our experiments only concemamyi dependencies,
which are annotated using a fine-grained set of 48 dependgpes. Like PDT,
DDT is a proper dependency treebank and includes non-prgetependencies.

The BulTreeBank [23] contains about 70K words of Bulgariext from dif-
ferent sources, annotated with constituency structureghofigh the annotation
scheme is meant to be compatible with the framework of HP$@tastic heads
are not explicitly annotated, which means that the treelmangt be converted to
dependency structures using the same kind of head peotatiles and inference
rules used for the English data. The set of dependency tysmss for Bulgarian
is modeled after the Swedish set and includes 14 distinchigpaical functions.
More details about the conversion can be found in Marinovidince [15].

Table 1 gives an overview of the data sets for the five langajaigeterms
of annotation scheme, projectivity, tagset size for depeny types and parts-of-
speech, and number of words and sentences. The latter figriesn each case
to the complete treebank, of which at most 90% has been uséxhiioing and at



Table 1: Data sets. AS = Annotation scheme (C = ConstitudheyPependency,
G = Grammatical functions); Pro = Projective; #D = Number ependency types;
#P = Number of PoS tags; #W = Number of words; #S = Number ofesees;
W/S = Mean sentence length; MS = Model selection (DTS = Deraknt test set,
CV,, = N-fold cross-validation); MA = Model assessment on indejant test set

Language | AS | Pro | #D | #P #W #S| W/S| MS | MA
Swedish | C+G | yes | 17| 46 97623| 6316| 15.46| CVy | yes
English C+G | yes| 10| 48| 1173766| 49208| 23.85| DTS | yes
Czech D no | 26 | 28| 1507333| 87914 | 17.15| DTS | yes
Danish D no | 54| 33| 100238| 5512| 18.19| DTS | no
Bulgarian | C | yes| 14| 51 71703| 5080| 14.11| CVg | no

least 10% for testing. It should also be pointed out that fgset size for parts-
of-speech refers to the tagset actually used in parsingshw(eixcept in the case of
English) is a reduced version of the complete tagset usdiarnotation.

4.2 Experimental Setup

All the experiments reported in this paper were performetth Wie parsing algo-
rithm described in Nivre [17, 18, 19] and with memory-bassahing and classi-
fication as implemented in theitMBL software package by Daelemans and Van
den Bosch [8]. A variety of feature models were tested, bubwnlg report results
for the optimal model, averaged over all languages, whichlines part-of-speech
features, dependency features and lexical features inagelepicted in Figure 1.
Optimal parameter settings for theMBL learner involved setting the numbér
of nearest distances to 5 and using the Modified Value DiffegéMetric (MVDM)
together with Inverse Distance (ID) weighted class votifipr more information
about these parameters, see Daelemans and Van den Bo3jch [8].

Model selection was performed using a single developmeises for larger
data sets and cross-validation for smaller ones, as sumedain Table 1. For all
languages except Danish and Bulgarian, the final resultsrtegp were obtained
using a separate test set for model assessment after corgplet model selection
(cf. Table 1). The part-of-speech tagger used for prepsiegss a standard HMM
tagger with suffix smoothing developed by Hall [12], normathined on the train-
ing part of the treebank used in the experinfeakcept for Czech where we use

3For Bulgarian, full word forms were replaced by suffixes of eharacters as values for lexical
features in order to counter the sparse data problem.

4For Danish, the tagger was trained on a larger corpus cangathe training set as a subset,



Figure 1: Optimal feature modelv = word form; p = part-of-speechh = head,;
d = dependency typd¢ = leftmost child;rc = rightmost child.

the HMM tagging provided with the distribution of the treekd11]. The tagging
accuracy is included in the presentation of results below.

For the datasets that include non-projective depende(Ciz=ch and Danish),
training data were projectivized prior to training using tbrocedure described
in Nivre and Nilsson [21]. The output of the parser was theprdjectivized by
an inverse graph transformation also described in Nivre Mdigbon [21]. The
software needed for these transformations is not incluadduk MaltParser system
as such but is freely available from the same location.

4.3 Resultsand Discussion

Table 2 reports the parsing accuracy obtained when appMiagParser to each
of the five languages under the conditions described in pusvéections, sorted in
order of decreasing accuracy. Unlabeled attachment sdé®)(is the proportion
of words that are assigned the correct head (but possiblgamriect dependency
type), while labeled attachment score (LAS) is the proportf words that are
assigned both the correct head and the correct dependgreyTggging accuracy
(TA) is the proportion of words that are assigned the conpect-of-speech tag in
preprocessing. Punctuation tokens are excluded in paasioigracy results (LAS,
UAS) but included in tagging accuracy results (TA).

Although MaltParser achieves an unlabeled attachmeng sdxmve 80% for all
languages, there is also a considerable range of variatiuioh seems to correlate
fairly well with the linguistic dimensions morphologicathness and word order
flexibility, with the highest accuracy for English, the lost@ccuracy for Bulgarian
and Czech, and with Swedish and Danish in an intermediatéigpasThe influ-
ence of these typological factors is discernible also int&gging accuracy, which
is lower for Bulgarian and Czech than for the other languagegcumstance that

while for Swedish the tagger was trained on a completelyrs¢paorpus.



Table 2: Parsing accuracy. UAS = unlabeled attachment s¢#® = labeled
attachment score; TA = tagging accuracy

Language UAS LAS TA

English 88.1 86.3 96.1
Swedish 86.3 82.0 956
Danish 85.6 79.8 96.3
Bulgarian 80.4 729 935
Czech 80.1 728 94.1

in itself may lead to lower parsing accuracy.

The results for labeled attachment score reflect the sanralbtendency but
are also influenced by the complexity of the dependency tjassification. By
and large, the gap between labeled and unlabeled accuraeg giith the number
of distinct dependency types. For example, while the umégbattachment score
is roughly equivalent for Swedish and Danish, the higheeled attachment score
for Swedish can probably be explained by the smaller numbdemendency types
distinguished. The only exception to this generalizatioBRulgarian, which has the
widest gap between labeled and unlabeled accuracy despatately small set
of dependency types. This is probably due to the limited arhofidata available
for Bulgarian.

In comparison to structural properties of the languagesived, the size of the
training set seems to be a very weak predictor of parsingracgugiven that the
two languages with the largest treebanks are ranked firgllidn and last (Czech)
and given that the two structurally similar languages Britgaand Czech have
very similar results despite the large difference in alddadata resources. It is
likely that the labeled parsing accuracy is more sensitiveparse data, as indi-
cated both by the very high labeled attachment score of Emglnd the rather low
score for Bulgarian, but on the whole it seems that the agbradaplemented in
the MaltParser system is relatively robust in the face ofspdata, giving reason-
able performance for a wide range of languages with datas#ie order of 100K
words or less. Needless to say, a more detailed error asaljisibe needed be-
fore we can draw any reliable conclusions about the influefckfferent factors,
so the tentative conclusions advanced here are best regasdeonjectures to be
corroborated or refuted by future research.

For English and Czech, the unlabeled attachment scoregetitare within
a 5% increase in error rate compared to the state of the aithvidhabout 92%
for English and 84% for Czech [16]. For Swedish, Danish anth&uan there



are no comparable results in the literature, which make#fitult to assess the
accuracy in absolute terms. However, given the fact thaaheiéd attachment
score is consistently above 80%, it seems that the parsitigpah@ogy is relatively

robust to differences in language typology as well as in &atin schemes.

5 Conclusion

We have presented a data-driven system for dependencyhgdbhsit appears to
give good parsing accuracy for a wide range of language®witanguage-specific
enhancements and with relatively modest requirements ergtiantity of data
available. Unlabeled dependency accuracy is consistabtlye 80%, regardless of
annotation scheme and training set size, and parsing agcugaains within a 5%
margin from the best performing parsers where comparagselts are available.
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