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Abstract

Predicting stock data with traditional time series analysis has proven to be dif-
ficult. An artificial neural network may be more suitable for the task. Primarily
because no assumption about a suitable mathematical model has to be made
prior to forecasting. Furthermore, a neural network has the ability to extract
useful information from large sets of data, which often is required for a satisfying
description of a financial time series.

This thesis begins with a review of the theoretical background of neural net-
works. Subsequently an Error Correction Neural Network (ECNN) is defined
and implemented for an empirical study. Technical as well as fundamental data
are used as input to the network. One-step returns of the Swedish stock index
and two major stocks of the Swedish stock exchange are predicted using two
separate network structures. Daily predictions are performed on a standard
ECNN whereas an extension of the ECNN is used for weekly predictions.

In benchmark comparisons, the index prediction proves to be successful. The
results on the stocks are less convincing, nevertheless the network outperforms
the naive strategy.



Sammanfattning

Att prediktera börsdata med traditionell tidsserieanalys har visat sig vara sv̊art.
Ett artificiellt neuralt nätverk kan vara mer passande för uppgiften. Främst
därför att inga antaganden om en passande matematisk modell m̊aste göras
innan prediktering. Vidare har ett neuralt nätverk förm̊agan att extrahera
användbar information fr̊an stora datamängder, vilket ofta är nödvändigt för
en tillfredsställande beskrivning av en finansiell tidsserie.

Det här examensarbetet börjar med en genomg̊ang av teorin bakom neurala
nätverk. Därefter definieras och implementeras ett felkorrigerande neuralt
nätverk (ECNN) för en empirisk studie. B̊ade tekniska- och fundamentala data
används som indata till nätverket. Enstegsavkastningar för Generalindex samt
tv̊a stora aktier p̊a Stockholmsbörsen predikteras med tv̊a separata nätverks-
strukturer. Dagliga prediktioner utförs p̊a en standard ECNN medan en utökad
variant av ECNN används för veckoprediktioner.

Vid jämförelser med andra strategier visar sig prediktionen av index vara
framg̊angsrik. Resultaten för aktierna är mindre övertygande, likväl presterar
nätverket bättre än den naiva strategin.
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Chapter 1

Introduction

Predicting the stock market is not a simple task. Mainly as a consequence of
the close to random-walk behaviour of a stock time series. Different techniques
are being used in the trading community for prediction tasks. In recent years
the concept of neural networks has emerged as one of them.

A neural network is able to work parallel with input variables and consequently
handle large sets of data swiftly. The principal strength with the network is its
ability to find patterns and irregularities as well as detecting multi-dimensional
non-linear connections in data. The latter quality is extremely useful for mod-
elling dynamical systems, e.g. the stock market. Apart from that, neural net-
works are frequently used for pattern recognition tasks and non-linear regression.

This thesis gives an introduction to the theory of neural networks and a cor-
responding mathematical description. An Error Correction Neural Network
(ECNN) is built and implemented for an empirical study. Standard bench-
marks are used to evaluate the network’s ability to make forecasts.

The objective of this study is to conclude whether an ECNN could be success-
fully used as decision support in a real trading situation. The matters of buy-sell
signals, transaction costs and other trading issues are not considered.
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Chapter 2

Neural Networks

The foundation of neural networks in a scientific sense begins with biology. The
human brain consists of an estimated 10 billion neurons (nerve cells) and 6000
times as many synapses (connections) between them [Hay94]. All information
taken in by a human is processed and assessed in this particular part of the
body. A neuron in itself is relatively slow compared to a silicon logic gate.
However, this amazing amount of neurons and synapses suites as compensation.
Thus the brain operates as nothing less than a complex, non-linear and parallel
computer [Gro02]. With this notion present we are ready to describe a neural
network mathematically.

2.1 The Single Neuron

Let us begin with a fundamental description of the human brain. A process be-
gins when stimulus is received from the environment. The receptors transform
this information to electrical impulses and transmit them to the neural network
(neurons and synapses) (Fig. 2.1). After evaluation inside the network, actions
are decided and impulses are being sent out to the effectors.

Both biological and artificial neurons are elementary information processing
units. Therefore also fundamental building blocks of a neural network [Gro02].
The artificial neuron is best illustrated by analogy with the biological neuron.
Fig. 2.2 depicts the artificial neuron. We see that the connections (synapses)
wi transfer the signals (stimulus) ui into the neuron. wi can be interpreted
as a weight representing the “importance” of that specific input ui. Inside the
neuron the sum of the weighted inputs wiui is taken. Given that this sum u
is greater than an externally applied threshold θ, the neuron emits an output
z. z is either continuous or binary valued, depending on the activation function
(or squashing function). In most cases one choose an activation function that
limits the range of the neuron’s output to the interval [0, 1] or [−1, 1].
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Figure 2.1: The biological neuron.

Figure 2.2: The artificial neuron with a threshold function.
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In mathematical terms the following equations gives a dense description of the
neuron:

y =
n∑

i=1

wiui − θ (2.1)

and

z = ψ(y) (2.2)

where y is the net input and ψ(·) the activation function.

2.1.1 Activation Functions

In neural computing almost exclusively three different types of activation func-
tions are being used:

(i) the threshold function

ψ(x) =
{

1 x ≥ 0
0 x < 0, (2.3)

(ii) the piecewise linear function

ψ(x) =

 1 x ≥ 1
2

x − 1
2 < x < 1

2
0 x ≤ −1

2

(2.4)

and

(iii) sigmoid functions.

An example of a sigmoid is the logistic function

ψ(x) =
1

1 + e−a(x)
(2.5)

where a controls the slope.

Eq. 2.3 describes the “true-or-false” property and is often referred to as the
McCulloch-Pitts model (see Sec. 2.3). The piecewise linear function is similar
to the threshold function with an additional linear region. The most popular
activation function though is the sigmoid which shows both a linear and non-
linear behaviour. This function is continuous and differentiable which is worth
noticing. Fig. 2.3 shows all three activation functions mentioned above.

In the empirical study (Sec. 5) we used another sigmoid, the hyperbolic tangent
function.
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Figure 2.3: From left to right: the threshold function, the piecewise linear
function and the logistic function (a=3).

2.2 Network Structures

The importance of the network design (arrangement between neurons and
synapses) is not to be underestimated. There is a tight relationship between
the learning algorithm and network structure which makes the design central
[Hay94, p. 18].

Two different types of neural networks can be distinguished, feed-forward and
recurrent networks. The ECNN, described in Section 3, may be viewed as a
recurrent architecture.

2.2.1 Feed-forward Networks

A typical neural network consists of layers. In a single layered network there is
an input layer of source nodes and an output layer of neurons. A multi-layer
network has in addition one or more hidden layers of hidden neurons. Both
types of networks are displayed in Fig. 2.4. Extra hidden neurons raise the
network’s ability to extract higher-order statistics from (input) data. This is a
crucial quality, especially if there is a large input layer.

Furthermore a network is said to be fully connected if every node in each layer
of the network is connected to every other node in the adjacent forward layer.
In a partially connected structure at least one synaptic connection is missing.
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Figure 2.4: A feed-forward network with a single output layer of neurons (a) and
a fully connected feed-forward network with one hidden layer and one output
layer (b).

Figure 2.5: A recurrent network with hidden neurons.

2.2.2 Recurrent Networks

As the name suggests, a recurrent network supplies feedback to the network,
i.e. at least one feedback loop exists. Fig. 2.5 offers a visualisation.

2.3 Brief History

A complete and satisfying review of historical developments in the research area
of neural networks is beyond the scope of this thesis. Instead we have focused
on a few important breakthroughs throughout history. For a thorough survey
[Hay94] is recommended.

McCulloch and Pitts work on neural networks, published in 1943, still is a cor-
nerstone in the theory of neural networks. They made an attempt to understand
and describe the brain functions by mathematical means. McCulloch and Pitts
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used their neural networks to model logical operators. Contemporary develop-
ments in the field of computer science were closely related.

In 1949 Hebb proposed that the synaptic connections inside the brain are con-
stantly changing as a person gains experience. In other words, synapses are
either strengthened or weakened depending on whether neurons on either side
of the synapse are activated simultaneously or not. Among psychologists Hebb
made an instant impact but network modellers have generally shown little in-
terest in his work.

In the late fifties Rosenblatt introduced the concept of the perceptron. Basically,
the perceptron, which works as a pattern-classifier, is a more sophisticated model
of the neuron developed by McCulloch and Pitts. Depending on the amount of
neurons incorporated, the perceptron can solve classification problems with var-
ious number of classes. For a correct classification the classes have to be linearly
separable which is a major setback. This was shown by Minsky and Papert in
1969. Minsky and Papert also raised the issue of the credit-assignment problem
(see Sec. 2.5) related to the multi-layer perceptron.

During the next decade the general interest in neural networks dampened,
mainly as a direct consequence of the results reported in the late sixties. Cer-
tainly the lack of powerful experimental equipment (computers, work stations
etc.) also had an influence on the decline.

The interest in neural networks was to be renewed though. In 1982 Kohonen
introduced the Self-Organising Map (SOM). SOM:s use an unsupervised learn-
ing algorithm for applications in specifically data mining, image processing and
visualisation. As a basic description one can say that high-dimensional data is
transformed and organised in a low-dimensional output space. The same year
Hopfield built a bridge between neural computing and physics. A Hopfield net-
work (consists of symmetric synaptic connections and multiple feedback loops)
which is initialised with random weights eventually reaches a final state of sta-
bility. From a physicists point of view a Hopfield network corresponds to a
dynamical system falling into a state of minimal energy.

Two years later the Boltzmann machine was invented. As the name suggests,
the work of Ludwig Boltzmann in thermodynamics was a source of inspiration.
This neural network utilises a stochastic learning algorithm based on properties
of the Boltzmann distribution.

The discovery of the backpropagation algorithm (see Sec. 3.2.1) in 1986 proved
crucial for the revival of neural networks. Rummelhart, Hinton and Williams
got the credit but it showed that Werbos already in 1974 had introduced the er-
ror backpropagation in his PhD thesis. This learning algorithm is unchallenged
as the most influential learning algorithm for training of multi-layer perceptrons.
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We conclude this section with the Radial-Basis Function (RBF) network, which
was brought forward by Broomhead and Lowe in 1988. The RBF network
emerged as an alternative to the multi-layer perceptron in the search of a so-
lution to the multivariate interpolation problem. By using a set of symmetric
non-linear functions1 in the hidden units of a neural network new properties
could be explored. Work by Moody and Darken (presented in 1989) on how to
estimate parameters in the basis functions has contributed significantly to the
theory.

2.4 Traditional Time Series Analysis

In conventional time series analysis instructions and rules are central. A math-
ematical formula defines the dynamics. One pick a model that is assumed to
be applicable for the present task, e.g. the well known Auto Regressive Moving
Average (ARMA) model [BD02].

Contrarily neural networks do not perform according to preset rules. When
displayed to data the network gains experience, learns from regularities in the
past and sets its own rules. Data are not described explicitly in mathematical
terms. Neural networks are unique in that sense.

2.5 Benefits with Neural Networks

Neural networks have several advantages. Most important is the ability to learn
from data and thus potential to generalise, i.e. produce an acceptable output for
previously unseen input data (important in prediction tasks). This even holds
(to a certain extent) when input series contain low-quality or missing data. An-
other valuable quality is the non-linear nature of a neural network. Potentially
a vast amount of problems may be solved (see Sec. 2.6). Furthermore no expert
system (typically a programmer coding rules in a computer program) is needed
which makes the network extremely flexible to changes in the environment. One
only has to retrain the system.

Regarding downsides, the black-box-property first springs to mind. Relating one
single outcome of a network to a specific internal decision (known as the credit-
assignment problem [Gro02, Hay94]) is very difficult. Noisy data also reinforce
the negative implications of establishing incorrect causalities, overtraining (or
overfitting), which will harm generalisation. Finally, a certain degree of knowl-
edge in current subject is required as it is not trivial to asses the relevance of
chosen input series.

1A frequently used function is the Gaussian bump.
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A short summary of benefits and drawbacks:

+ generalisation ability and robustness

+ mapping of input/output

+ no assumptions of model has to be made

+ flexibility

− black-box property

− overfitting

− expertise for choice of input

− training takes a lot of time

2.6 Applications Outside Finance

Neural networks are being used in widespread areas. Our intention is to give a
few examples of how neural networks can be used in practice.

The Newton Message Pad (a portable pen-based computer) introduced by Apple
in the mid 90’s implemented an artificial neural network for character recogni-
tion. The message pad is widely regarded as the world’s first truly useable
handwriting recognition system. Black and white pixels representing handwrit-
ten characters are transformed to its corresponding digital character. A large
multi-layer perceptron is able to accomplish this task [Hay94]. See [PG02] for
a practical application of character recognition. Related techniques are speech
recognition and speech production. The former one was successfully developed in
the NETtalk-system [Fau94]. The system converts English texts into phonetic
and stress data, eventually used to produce synthetic speech.

In medicine neural networks are used to diagnose heart failures. For this complex
disease a neural network’s potential to detect multi-dimensional relationships in
EKG data is of great advantage [Ati00].

Signal processing is another interesting area for neural networks. Very early
nets were used to reduce noise on telephone lines by applying an adaptive filter
at the end of a long-distance line [Fau94].

The last example is taken from the world of physics. An Optimal Linear Asso-
ciative Memory (OLAM) neural network can be used to identify radioisotopes
from their gamma-ray spectra. The OLAM determines the composition of a
sample when the unknown spectrum is a linear superposition of known spec-
tra. One feature of this technique is that the whole spectrum is used in the
identification process instead of individual peaks only [KK94].

12



2.7 Neural Networks in Finance

Neural networks can be applied to all sorts of financial problems, not only stock
prediction tasks. Forecasts of yield curves 2, exchange rates, bond rates etc. are
common. See [ZGN00] for a report of a successful prediction of the semi-annual
development of the German yield curve.

Issues highlighted in Section 2.7.1 and 2.7.2 applies to stock prediction. Bare in
mind other financial problems show similar characteristics.

2.7.1 Motivation

The principal motivation for the neural network approach in stock prediction is
twofold:

· stock data is highly complex and hard to model, therefore a non-linear
model is beneficial

· a large set of interacting input series is often required to explain a
specific stock, which suites neural networks

It is also possible to approach the prediction task from the angle of economics.
Grothmann (2002) [Gro02, p. 46] suggests the following viewpoint: Each sin-
gle neuron represents a market participant’s decision process. Hence a neural
network represents interacting decisions among all participants in the market.
Thus a neural network is a complete description of the financial market in itself.

This viewpoint gives an attractive mixture of the mathematical theory of neural
networks and economics.

2.7.2 Data

Stock forecasting have some central aspects. Almost exclusively one wishes to
predict returns rather than actual stock prices. Primarily, because the evalu-
ation phase (see Sec. 4) becomes easier. Another reason is that it facilitates
stabilisation of the model over a long period of time [Hel98, p. 19]. In practice,
data are transformed prior to modelling (see Sec. 5.2).

Regarding actual data, the sometimes poor quality is well documented. Fre-
quently one has to handle missing data points or even discontinuous time series.
A convenient way to work around these difficulties is by letting the network
accept missing data. Many times a significant part of the underlying dynamics
can be learned anyway.

2A yield curve shows the relationship between yields and maturity dates for a set of similar
bonds at a given point in time.
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Chapter 3

Error Correction Neural
Networks

Most dynamical systems contain both an autonomous part and a part governed
by external forces. Many times relevant external forces may be hard to identify
or data could be noisy. As a consequence a correct description of the dynamics
may be impossible to get. A remedy for a better model description is to use the
previous model error as additional information to the system. This is the very
idea behind the Error Correction Neural Network (ECNN).

3.1 Mathematical Description

A basic dynamical recurrent system depicted in Fig. 3.1 can at time t be ex-
pressed as follows:

st = f(st−1, ut) state transition (3.1)

yt = g(st) output equation (3.2)

Functions f and g are not specified. yt is the computed output and st describes
the state. Note that Eq. 3.1 and 3.2 without external inputs ut would represent
an autonomous system. Let the observed model error at the previous time t−1
act as an additional input to the system. We get (yd

· denotes observed data)

st = f(st−1, ut, yt−1 − yd
t−1) (3.3)

yt = g(st) (3.4)

The search for an optimised solution of Eq. 3.3 and 3.4 with respect to functions
f and g can be stated as

min
f,g

1
T

T∑
t=1

(yt − yd
t )2 (3.5)
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Figure 3.1: A dynamical system with input u, output y and internal state s.

where T is the number of patterns1. Implemented as a neural network (denoted
ℵ) Eq. 3.3 and 3.4 become

st = ℵ(st−1, ut, yt−1 − yd
t−1; v) (3.6)

yt = ℵ(st;w) (3.7)

Functions f and g have been specified as neural networks with parameter vectors
v and w respectively. Naturally the optimisation problem of Eq. 3.5 transforms
to

min
v,w

1
T

T∑
t=1

(yt − yd
t )2. (3.8)

Our next step is to apply an activation function, e.g. tanh(·), and formulate
the system of Eq. 3.6 and 3.7 more explicitly [Gro02]. We get

st = tanh(Ast−1 +But +D(Cst−1 − yd
t−1)) (3.9)

yt = C(st) (3.10)

with weights v = {A,B,D} and w = {C}. Note that a numerical ambiguity
arises. Both matrix A and DC could code the autoregressive structure of the
system. Adding a non-linearity is a measure to avoid this problem [Gro02, p.
83]. This yields

st = tanh(Ast−1 +But +D tanh(Cst−1 − yd
t−1)) (3.11)

1Patterns are data points in a time series.
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Figure 3.2: The error correction neural network.

yt = C(st) (3.12)

The parameter optimisation task (cf. Eq. 3.8) with respect to matrices A,B,C
and D becomes

min
A,B,C,D

1
T

T∑
t=1

(yt − yd
t )2 (3.13)

At this point we can visualise the architecture of the ECNN (Fig. 3.2) from our
mathematical description in Eq 3.11 and 3.12. Distinguishing external inputs
ut affecting the state transition st from target inputs yd

t is important. Note
that I denotes the fixed identity matrix. As a consequence the target values of
output clusters zt−τ , τ = 0, 1, 2, are zero. Only the difference between yt and
yd

t influences st.

The ECNN offers forecasts based on the modelling of the recursive structure
(matrix A), the external forces (matrix B) and the error correcting part (ma-
trices C and D). The error correcting part can also be viewed as an external
input similar to ut.

3.1.1 Variants and Invariants

Predicting a high-dimensional dynamical system is difficult. A way of reducing
the complexity of the task is to separate the dynamics into time variant and
invariant structures. One let the system forecast the variants and eventually
combine this forecast with the unchanged invariants. This can be done by con-
necting the standard ECNN (Fig. 3.2) to a compression-decompression network
shown in Fig. 3.3. Matrix E separates variants from invariants while matrix
F reconstructs the dynamics. The actual forecasting is coded in G. Refer to
[ZIM03] for a detailed description.
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Figure 3.3: Separation of variants and invariants

3.2 Training

3.2.1 Backpropagation

With a description of the network structure at hand, training matters have to be
settled. As previously mentioned the overall objective in training is to minimise
the discrepancy between real data and the output of the network. This prin-
ciple is referred to as supervised learning2. In a step-by-step manner the error
guides the network in the direction towards the target data. The backpropaga-
tion algorithm belongs to this class and can be described as “an efficient way
to calculate the partial derivatives of the network error function with respect
to the weights” [Gro02, p.116]. In Appendix A the algorithm is derived in detail.

3.2.2 Learning Algorithm

The backpropagation algorithm supplies information about the gradients. How-
ever, a learning rule that uses this information to update the weights efficiently
is also needed.

A weight update from iteration k to k + 1 may look like

wk+1 = wk + η · dk (3.14)

where dk describes the search direction and η the learning rate (or step length).
Issues that have to be addressed are how to determine (i) the search direction,
(ii) the learning rate and (iii) which patterns to include.

2 The other basic class of learning paradigms is unsupervised or self-organised learning.
One well known learning method in this class is the Self Organising Map (SOM).
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A familiar way of determining the search direction dk is to apply the gradient
descent which is a relatively simple rule (see [Hea97]). The major drawback
though is that learning easily is caught in a local minima. To avoid this hazard
the vario-eta algorithm can be chosen as learning rule [NZ98, Sie02]. Basically
it is a stochastic approximation of a Quasi-Newton method. In the vario-eta
algorithm a weight-specific factor, β·, is related to each weight. For an arbitrary
weight, e.g. the j:th, β· is defined according to Eq. 3.15.

βj =
1√∑N

t=1(
∂Et

∂wj − Ē)2
(3.15)

where

Ē =
1
N

N∑
t=1

∂Et

∂wj
.

Let us assume there are p weights in the network. The search direction is
determined by multiplying each component of the negative gradient with its
weight-specific factor, see Eq. 3.16.

dk = −

 β1 0 0
0 · 0
0 0 βP

 · ∇E (3.16)

Above E denotes the error function and N the number of patterns. A benefit
with the vario-eta rule is that weight increments η · dk become non-static. This
property implies a potentially fast learning phase. See [Gro02] for further dis-
cussion.

Concerning a reasonable value of the learning rate η, there is no simple answer.
The learning rate is many times determined on an ad hoc basis.

Regarding pattern selection, a stochastic procedure can be used. This simply
means that the gradient ∇EM of a subset M of all patterns at hand are used
as an approximation of the true gradient ∇E according to

∇EM =
1
|M |

∑
t∈M

∇Et (3.17)

where |M | denotes the number of elements of M .

M can be composed in several ways. In our empirical study we picked, with
equal probability, a predefined number of patterns (less than 10 percent of the
training data) to represent M . The gradient ∇EM of Eq. 3.17 was computed
and used as input to Eq 3.16. Once all weights were updated, out of the re-
maining training patterns a new subset was picked for the next iteration. (If
recent patterns are considered more significant one may prefer a non-uniform
probability distribution where it is more likely to chose a recent pattern [Sie02].)
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3.2.3 Cleaning

The dilemma of overfitting is deeply rooted in neural networks. One way to
suppress overfitting is to assume input data not to be exact (which certainly is
the case in the field of financial analysis). The total error of pattern t can be
split into two components associated with the weights and the erroneous input
respectively. The corrected input data, x̃t, can be expressed as

x̃t = xt + ∆xt (3.18)

where xt is the original data and ∆xt a correction vector. During training
the correction vector must be updated in parallel with the weights. To this
end, the output target difference i.e. the difference in output from using orig-
inal and corrected input data has to be known which is only true for training
data. Accordingly, the model might be optimised for training data but not for
generalisation data because the latter has a different noise distribution and an
unknown output target difference. To work around this disadvantage the model
x̃t is composed according to

x̃t = xt + ∆xt − δ. (3.19)

δ is exactly one element drawn at random from {∆xi, i = 1, . . . , T} (memorised
correction vectors from training data). A composition with an additional noise
term (Eq. 3.19) benefits from distribution properties which is desirable for gen-
eralisation. A detailed motivation is given in [NZ98].

The input modification “cleaning with noise” described above helps the network
to concentrate on broader structures in data. To some extent the model is
prevented from establishing false causalities.

3.2.4 Stopping Criteria

For how many epochs3 should a network be trained? Mainly two paradigms
exist, late and early stopping. Late stopping means that the network is trained
until a minimum error on the training set is reached, i.e. the network is clearly
overfitted. Then different techniques are used to exterminate nodes in the net-
work (known as pruning). By doing so eventually a good generalisation ability
is reached.

The concept of early stopping is a way of avoiding overfitting. During learning
the progression is monitored and training is terminated as soon as signs of
overfitting appear. A clear advantage with early stopping is that the time of
training is relatively short. On the downside it is hard to know when to stop.

3An epoch is completed when all training patterns have been read in exactly once.

19



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.4: The lncosh error function of Eq. 3.20, a = 3.

3.2.5 Error Function

When modelling one also has to be aware of outliers in data. Outliers typically
appear when the economic or political climate is unstable or unexpected infor-
mation enter the market. By picking an appropriate error function the impact
of outliers can be restrained.

The ln cosh(·) error function

1
a

ln cosh(a(oi − ti)) (3.20)

is a smooth approximation of the absolute error function |oi − ti|. oi denotes
the response from output neuron i and ti the corresponding target. a ∈ [3, 4]
has proven to be suitable for financial applications [NZ98].

Compared to a quadratic error function the ln cosh error function has a reminis-
cent behaviour in the region around zero but not for large positive or negative
values as we see in Fig. 3.4. The advantage with this function when modelling
financial data is that a large difference in output and target yields a limited and
more reasonable error.
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Chapter 4

Evaluation

A crucial part of financial forecasting is the evaluation of the prediction algo-
rithm. Several performance measures are widely used, but a performance mea-
sure in itself is not sufficient for a satisfying evaluation. Relevant benchmarks
are also needed. A benchmark is basically a different prediction algorithm used
for comparison.

Our intention is to give a few examples of how to judge the quality of a prediction
algorithm.

4.1 Benchmarks

Any prediction algorithm claiming to be successful should outperform the naive
predictor defined as

ŷt+1 = yt (4.1)

where yt is the current value of the stock and ŷt+1 the predicted value one
time-step into the future. Eq. 4.1 states that the most intelligent suggestion of
tomorrow’s price is today’s price which is a direct consequence of the Efficient
Market Hypothesis (EMH)1. In the empirical study a comparison to the naive
prediction of returns was made. The definition is

R̂t+1 = Rt (4.2)

where Rt is the last known return and R̂t+1 the predicted one-step return.

For a prediction algorithm with incorporated buy and sell signals it could be
useful to do a comparison with the buy-and-hold return Rb. This strategy

1The EMH states that the current market price reflects the assimilation of all information
available. Therefore no prediction of future changes in the price can be made given this
information [Hel98].
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expresses the profit made when making an investment at the start of a time
period and selling n time-steps into the future, i.e.

Rb = 100 · yt+n − yt

yt
. (4.3)

A comparison to the buy-and-hold strategy simply gives an indication of the
quality of the signals. Is it more profitable to be a “passive” investor?

4.2 Performance Measures

Three frequently used measures, namely hit rate, return on investment and
realised potential, are defined below. Let us begin with the hit rate HR.

HR =
|{t|Rk

t R̂
k
t > 0, t = 1, . . . , N}|

|{t|Rk
t R̂

k
t 6= 0, t = 1, . . . , N}|

(4.4)

where Rk
t (R̂k

t ) is the actual (predicted) k-step return2 at time t. The norm
simply is the number of elements in the series. Eq. 4.4 indicates how often the
algorithm produces a correct prediction. In this context a prediction is correct
when the direction of the stock k time-steps into the future is successfully pre-
dicted.

The return on investment ROI takes into account not only the correctness of
the sign, but also the quantity of the actual return. The definition is

ROI =
T∑

t=1

Rt · sign(R̂t). (4.5)

Finally, in Eq. 4.6 the definition of realised potential RP is given.

RP =
∑T

t=1Rt · sign(R̂t)∑T
t=1 |Rt|

(4.6)

The realised potential states how large part of the total movement (upwards an
downwards) the prediction algorithm successfully identifies.

2According to the definition the k-step return Rk
t =

yt−yt−k

yt−k
.
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Chapter 5

Empirical Study

In the empirical study well traded stocks with a reasonable spread1 were con-
sidered. Mainly because a large spread may be fatal if one wishes to incorporate
the predictions in real trading. We decided to make one-day predictions (using
daily data) of the Swedish stock index (SXGE), Ericsson B and Volvo B with
a standard ECNN. Also one-week predictions (using weekly data) of Ericsson
B and Volvo B were performed on an ECNN separating variants and invariants
(see Sec. 3.1.1). Basically, one assumes that certain time invariant structures
can be identified and learned quickly. This means that the latter part of the
training is performed with some weights frozen. The occurrence of invariant
structures could prove to be more evident in a weekly compared to a daily
model, because patterns originate from the same day of the week in a weekly
model.

5.1 Data Series

For all predictions the following four time series were used as raw input:

− Closing price y (price of the last fulfilled trade during the day)

− Highest price paid during the day, yH

− Lowest price paid during the day, yL

− Volume V (total amount of traded stocks during the day)

Additionally, external time series served as input. Tab. 5.1 gives a summary
of time series considered to have a significant impact on the behaviour of the
Ericsson B and Volvo B.

1The spread is the difference between highest and lowest price paid for the stock during
the day.
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Regarding the SXGE prediction, another set of external inputs was used.
Tab. 5.2 gives the full list.

All data used in the modelling was acquired by Tomlab Optimization AB from
the daily service provider Human Securities AB
(http://www.humansecurities.se).

Table 5.1: External time series used predicting Ericsson B and Volvo B.

Stock Model Inputs
Dow Jones Stock Index Swedish Stock Index
3-month interest rate Sweden 5-year interest rate Sweden
Swedish SEK / USD FX-rate Swedish SEK / DEM FX-rate

Table 5.2: External time series used predicting the Swedish stock index SXGE.

Index Model Inputs
S&P 500 SX 16
Nikkei 225 Gold Price [$/oz]
3-month interest rate Sweden 5-year interest rate Sweden
Dow Jones Stock Index German DAX
Swedish SEK / USD FX-rate Swedish SEK / DEM FX-rate

5.2 Technical Considerations

Prior to each training session relevant data series were transformed and prepro-
cesed in different ways. For all external time series (Tab. 5.1 and 5.2) we calcu-
lated the normalised one-step return Rt. The Gaussian volume was computed
in a running window of 30 days and 12 weeks for daily and weekly predictions
respectively. Details are found in Appendix B.

On inputs y, yH and yL, we applied the log-return. The definition is given in
Eq. 5.1. For small changes the log-return is similar to the one-step return Rt.

Rlog
t = log

yt

yt−1
. (5.1)

Data were also divided into three subsets: a training set, a validation set and a
generalisation set. Roughly, half of all patterns available were used for training
and one-quarter each for validation and generalisation. The generalisation pe-
riod ran over 12 months for both the daily and the weekly model.2

2In the daily model some training sessions were performed on a shorter generalisation set
due to missing data.
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As error function we used the lncosh function of Eq. 3.20 with a=3. The stan-
dard tanh(·) function served as activation function.

5.3 Training Procedure

Weights were initialised randomly (uniformly distributed in the interval [−1, 1]).
The ECNN was trained (on the training set) for 5000 and 10000 epochs in the
daily model and weekly model respectively. We could see that this was enough
for the cleaning error (correction to the net inputs) to stabilise.

After training, weights associated with the best performance (in terms of hit
rate) on the validation set were selected and applied to the generalisation set to
get the final results.

5.4 Implementation

Siemens provide a software for neural computing, SENN (Simulation Environ-
ment for Neural Networks). SENN is designed to build artificial neural networks
based on forecasting and classification models. Prior to running the program,
network architecture and details of data (technical indicators, set of patterns
etc.) have to be specified in text files. Once these files are loaded into the
software it is possible to start training. The graphical interface provides a pos-
sibility to monitor this process closely. Continuously data are written to files
for post-processing.
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Chapter 6

Results

In the following two sections, results from the empirical study are presented.
Tables and figures are based on generalisation data. The naive prediction of
returns constitute benchmark for each prediction model. The prediction of the
SXGE is also compared to a similar study of the German DAX-index.

Values of hit rate (HR) and realised potential (RP) using the ECNN and the
naive strategy are given in tables below. Graphs of the return on investment
(RoI) are also presented (accumulated return over the generalisation set).

6.1 Daily Predictions

Table 6.1: Daily predictions of SXGE. Hit rate and realised potential using the
ECNN and the naive predictor.

1-day forecast (%)
Period HRECNN RPECNN HRnaive RPnaive

1, Jan. 93 to Dec. 93 52.4 10.8 54.7 22.3
2, Jan. 94 to Dec. 94 56.3 17.8 52.0 15.2
3, Jan. 95 to Dec. 95 54.5 11.0 51.4 8.9
4, Jan. 96 to Dec. 96 57.9 24.5 50.0 1.7
5, Jan. 97 to Dec. 97 59.1 32.4 52.8 12.5
6, Jan. 98 to Dec. 98 57.9 24.4 53.5 18.3
7, Jan. 99 to Dec. 99 60.1 26.1 53.9 12.0
8, Jan. 00 to June 00 56.2 21.0 48.5 4.3

mean 56.8 21.0 52.1 11.9
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Figure 6.1: Daily predictions of SXGE. Return on investment using the ECNN
and the naive strategy, solid and dashed line respectively. Period 1 to 8 are
equivalent to the ones presented in Tab. 6.1.

Table 6.2: Daily predictions of Ericsson B. Hit rate and realised potential using
the ECNN and the naive predictor.

1-day forecast (%)
Period HRECNN RPECNN HRnaive RPnaive

1, Jan. 93 to Dec. 93 47.6 10.1 48.0 22.6
2, Jan. 94 to Dec. 94 51.2 9.3 41.7 2.1
3, Jan. 95 to Dec. 95 55.7 17.8 48.2 4.5
4, Jan. 96 to Dec. 96 51.2 15.2 39.8 -6.4
5, Jan. 97 to Dec. 97 56.3 30.8 43.3 -7.3
6, Jan. 98 to Dec. 98 48.0 0.0 46.5 -0.4
7, Jan. 99 to Dec. 99 53.5 3.7 40.7 -0.5
8, Jan. 00 to Oct. 00 50.7 5.1 42.4 -5.8

mean 51.8 11.5 43.8 1.1
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Figure 6.2: Daily predictions of Ericsson B. Return on investment using the
ECNN and the naive strategy, solid and dashed line respectively. Period 1 to 8
are equivalent to the ones presented in Tab. 6.2.

Table 6.3: Daily predictions of Volvo B. Hit rate and realised potential using
the ECNN and the naive predictor.

1-day forecast (%)
Period HRECNN RPECNN HRnaive RPnaive

1, Jan. 93 to Dec. 93 44.9 9.7 41.3 12.8
2, Jan. 94 to Dec. 94 52.4 21.0 45.7 22.3
3, Jan. 95 to Dec. 95 40.3 -2.5 37.9 1.5
4, Jan. 96 to Dec. 96 46.5 13.8 39.0 5.4
5, Jan. 97 to Dec. 97 44.5 1.3 42.5 5.4
6, Jan. 98 to Dec. 98 44.1 -2.5 47.6 18.4
7, Jan. 99 to Dec. 99 44.9 7.8 42.9 10.6
8, Jan. 00 to Oct. 00 47.8 15.0 45.8 12.2

mean 45.7 8.0 42.8 11.1
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Figure 6.3: Daily predictions of Volvo B. Return on investment for using ECNN
and the naive strategy, solid and dashed line respectively. Period 1 to 8 are
equivalent to the ones presented in Tab. 6.3.

6.2 Weekly Predictions

Table 6.4: Weekly predictions of Ericsson B. Hit rate and realised potential
using the ECNN and the naive predictor.

1-week forecast (%)
Period HRECNN RPECNN HRnaive RPnaive

1, Jan. 93 to Dec. 93 42.2 -12.9 42.2 -34.1
2, Jan. 94 to Dec. 94 48.9 22.1 44.4 0.3
3, Jan. 95 to Dec. 95 47.8 -8.0 50.0 18.9
4, Jan. 96 to Dec. 96 62.2 25.7 55.6 -19.0
5, Jan. 97 to Dec. 97 51.1 -0.9 60.0 2.9
6, Jan. 98 to Dec. 98 57.8 -6.5 55.6 -1.0
7, Jan. 99 to Dec. 99 60.0 25.9 44.4 -18.8

mean 52.9 6.5 50.3 -7.3
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Figure 6.4: Weekly predictions of Ericsson B. Return on investment using the
ECNN and the naive strategy, solid and dashed line respectively. Period 1 to 7
are equivalent to the ones presented in Tab. 6.4.

Table 6.5: Weekly predictions of Volvo B. Hit rate and realised potential using
the ECNN and the naive predictor.

1-week forecast (%)
Period HRECNN RPECNN HRnaive RPnaive

1, Jan. 93 to Dec. 93 57.8 33.4 42.4 -17.8
2, Jan. 94 to Dec. 94 55.6 15.7 60.0 12.5
3, Jan. 95 to Dec. 95 51.1 21.3 40.0 -9.7
4, Jan. 96 to Dec. 96 45.7 13.3 45.7 -17.8
5, Jan. 97 to Dec. 97 66.7 47.7 46.7 12.7
6, Jan. 98 to Dec. 98 60.0 18.0 48.9 -0.5
7, Jan. 99 to Dec. 99 60.0 32.2 44.4 -33.0

mean 56.7 25.9 46.8 -7.7
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Figure 6.5: Weekly predictions of Volvo B. Return on investment using the
ECNN and the naive strategy, solid and dashed line respectively. Period 1 to 7
are equivalent to the ones presented in Tab. 6.5.

6.3 Comparison to Benchmarks

As a first observation we see that the ECNN across all performance measures,
with some exceptions, is superior to the naive strategy. However, it is worth
noticing that the reverse naive strategy (i.e. R̂t+1 = −Rt) could be useful in
some cases. Regarding daily data, not surprisingly the prediction of SXGE gave
the best results. Looking at Volvo B, the weekly model produces significantly
better results compared to the daily model.

In order to get a deeper understanding of the results we made a statistical
analysis. Tab. 6.6 and Tab. 6.7 shows the sample standard deviation of the hit
rate and realised potential based on data from Sec. 6.1 and Sec. 6.2 respectively.
It appears that the ECNN and the naive strategy show similar characteristics
in terms of stability.
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Table 6.6: The standard deviation of the ECNN and the naive predictor based
on daily predictions.

Standard deviation daily predictions (%)
Stock HRECNN RPECNN HRnaive RPnaive

SXGE 2.5 7.5 2.1 6.9
Ericsson B 3.2 9.8 3.3 9.7
Volvo B 3.5 8.6 3.4 7.0
mean 3.1 8.6 2.9 7.9

Table 6.7: The standard deviation of the ECNN and the naive predictor based
on weekly predictions.

Standard deviation weekly predictions (%)
Stock HRECNN RPECNN HRnaive RPnaive

Ericsson B 7.3 17.3 6.9 17.7
Volvo B 6.8 12.4 6.5 17.0
mean 7.1 14.9 6.7 17.4

To evaluate the results of the SXGE further, we made a comparison to a forecast
of the German DAX-index by Zimmermann and Weigend (1997) [ZW97]. The
prediction task is similar to the one presented in this thesis with the exception
that it was performed on a 6-layer feed-forward network. The authors report hit
rates in the region of 55 % for predictions one day ahead. The corresponding
result in this thesis of 56.8 % is slightly higher. The deviation is too small for
any conclusions to be drawn, but the difference in network design certainly plays
part.
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Chapter 7

Discussion

Maybe the most crucial issue of stock prediction is how to get stability over
time. In this respect neither the daily nor the weekly model is not optimised
and refinements have to be made. Nevertheless, there is no doubt about neural
networks potential in a trading environment. As we have seen in the previous
section, the ECNN occasionally shows good results.

Intuitively, one may think that the weight initialisation phase is decisive for the
outcome of the predictions. Theoretically, this should not be the case though due
to the stochastisity in the selection of patterns during training (see Sec. 3.2.2).
To confirm this notion we set up a training scheme where the net was initialised
with the “best” (in terms of hit rate) generalisation weights from the previous
training period. The results gave indications of an even negative impact (on the
hit rate) using a biased initialisation compared to a random one.

This phenomena typically illustrates the challenge we face when trying to val-
idate a dynamical system for a longer period of time. Previously gained infor-
mation about the system may be hard to utilise successfully in a future time
perspective.

7.1 Possible Improvements

Let us conclude this thesis with some thoughts on how the work presented may
be extended.

To this point the network has been tested on a few different stocks only. Obvi-
ously, the ECNN should be validated on several more stocks over different time
periods on both daily and weekly data.

Regarding performance measures some refinements might be fruitful. For exam-
ple, a prediction may be considered a hit only if the sign is correctly predicted
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and a certain threshold level is reached. In this case it is more unlikely that
noise itself triggers a hit. Naturally the credibility of the indicator is strength-
ened. In the same manner the realised potential can be redefined.

A further development is to combine one-day predictions with multi-day pre-
dictions. To estimate the relevance of a possible detected trend a weighted sum
could be calculated, where weights are associated with the one-day forecast, two-
day forecast and so on in descending order. Eventually, the aggregate is used to
make an assessment of whether the trend id likely to turn out as predicted or not

Moreover, the forecasts of a committee of models could be averaged. This will
bring about a reduction of the forecast variance, thus a more reliable output,
also suggested in [Moo98].

For trading purposes, a ranking system among different stocks may be thought.
With a reliable model at hand several stocks can be trained simultaneously. At
the end of a training session the results are assessed to performance measures,
general status etc. Eventually, the stock(s) with the highest rank will be consid-
ered for trading. On a regular basis the network is retrained and a new ranking
list is compiled.

In a larger perspective, several different models and stocks might be utilised
in parallel. As for the ranking list, the aim is to identify the currently most
suitable stock. Stating and solving an optimisation task where all conceivable
factors are taken into account will produce the final output. Ultimately, com-
putational costs have to be put in relation to potential improvements.

A different angle of improving the ECNN is to focus on the characteristics of
stocks predicted. By associating trends, volumes, volatility etc. to the perfor-
mance of the network, valuable information might be learned. Maybe it would
be possible to distinguish a group of stocks (in terms of technical data) that the
ECNN forecasts well.
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Appendix A

The Error Backpropagation
Algorithm

The derivation of the error backpropagation algorithm is performed on a feed-
forward network. The extension to more complex networks is straightforward.
Refer to [Gro02] for a deeper review.

Assume a 3-layer feed-forward network (fully connected) with l neurons in the
input layer, m neurons in the hidden layer and n neurons in the output layer.
Let wij denote a connection between the input layer and the hidden layer. Anal-
ogous wjk represents a connection between the hidden layer and the output layer
(see Fig. A.1).

T patterns are available for training. After presentation to pattern t the accu-

Figure A.1: Information flow in the forward path of a 3-layer neural network.
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mulated error signal of the output neurons is

E(t) =
1
2

n∑
k=1

(yk(t)− yd
k(t))2 (A.1)

where yk and yd
k denotes actual and target output respectively. A factor 0.5

is included for computational reasons. Consequently, the average error of an
arbitrary pattern is

Eav =
1
T

T∑
t=1

E(t). (A.2)

The overall objective is to minimise Eav by adjusting the free parameters wij

and wjk. To achieve this, first we have to calculate the partial derivatives of
Eq. A.2 with respect to the weights wjk. We get

∂Eav

∂wjk
=

1
T

T∑
t=1

(yk − yd
k)
∂yk

∂xk

∂xk

∂wjk

=
1
T

T∑
t=1

(yk − yd
k)f ′(xk)yj . (A.3)

In Eq. A.3 the chain-rule1 was used to compute the partial derivatives. Let

δk = (yk − yd
k)f ′(xk). (A.4)

The substitution of δk in Eq. A.3 yields

∂Eav

∂wjk
=

1
T

T∑
t=1

δkyj . (A.5)

Since the network is assumed to be fully connected a set of k · j partial deriva-
tives exists. These derivatives (Eq. A.5) constitute the cumulative gradient of
the second level in the network (see Fig. A.1).

In similar fashion the partial derivatives of Eq. A.2 with respect to wij are
calculated (the first level of the network). Using the chain-rule twice leads to

∂Eav

∂wij
=

1
T

T∑
t=1

n∑
k=1

(yk − yd
k)
∂yk

∂xk

∂xk

∂yj

∂yj

∂xj

∂xj

∂wij

=
1
T

T∑
t=1

n∑
k=1

(yk − yd
k)f ′(xk)wjkf

′(xj)yi. (A.6)

1If y = f(g(x)) then dy
dx

= dy
dg

dg
dx

.

38



Figure A.2: Error backpropagation of a single training pattern. Error ek, ej

and ei induce the actual error flow.

Substituting the auxiliary term δk in Eq. A.6 yields

∂Eav

∂wij
=

1
T

T∑
t=1

n∑
k=1

δkwjkf
′(xj)yi. (A.7)

For simplicity an additional auxiliary term is defined according to

δj = f ′(xj)
n∑

k=1

wjkδk. (A.8)

By substituting δj in Eq. A.7 the cumulative gradient of the first network level
can be written

∂Eav

∂wij
=

1
T

T∑
t=1

δjyi. (A.9)

To summarise the backpropagation algorithm let us consider a single training
pattern. On the forward path the outputs yi and yj are calculated (see Fig. A.2).
On the backward path the partial derivatives on level one and two appear as
the products δjyi and δkyj respectively. In other words, the error information is
implicitly carried through the network by the auxiliary terms δj and δk (Eq. A.4
and A.8).
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Appendix B

Preprocessing

The one-step return Rt is defined as the relative increase in price since the
previous point in the time series, i.e.

Rt =
yt − yt−1

yt−1
. (B.1)

Rn
t gives the normalised one-step return:

Rn
t =

Rt − R̄

σ
(B.2)

where R̄ is the mean and σ the standard deviation of the (return) time series.

The definition of the Gaussian volume V G
n (t) is

V G
n (t) =

V (t)−mv(t)
σv(t)

(B.3)

where

mv(t) =
1
n

n∑
i=1

Vt−i (B.4)

and

σv(t) =

√√√√ 1
n− 1

n∑
i=1

(V (t− i)−mv(t))2. (B.5)

n is the length of the running window.
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