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Abstract

Accumulations are recursive functions widely used in the context of functional pro-
gramming. They maintain intermediate results in additional parameters, called accumu-
lators, that may be used in later stages of computing. In a former work [Par02] a generic
recursion operator namedafold was presented.Afold makes it possible to write accumu-
lations defined by structural recursion for a wide spectrum of datatypes (lists, trees, etc.).
Also, a number of algebraic laws were provided that served as a formal tool for reasoning
about programs with accumulations.

In this work, we present an extension toafold that allows a greater flexibility in the
kind of accumulations that may be represented. This extension, in essence, provides
the expressive power to allow accumulations to have more than one recursive call in each
subterm, with different accumulator values —something that was not previously possible.
The extension is conservative, in the sense that we obtain similar algebraic laws for the
extended operator. We also present a case study that illustrates the use of the algebraic
laws in a calculational setting and a technique for the improvement of fused programs
that do not eliminate all intermediate structures.
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Chapter 1

Introduction

The aim of this work is to present a theoretical framework and associated techniques that help in
the calculation of programs with accumulators. Program calculation includes the derivation and opti-
mization of programs as well as the verification of their properties. We will see programs as algebraic
structures that can be manipulated by algebraic laws, and focus on one kind of algebraic structure that
models recursion operators.

Recursion operators on datatypes are a common tool that functional programmers use to structure
programs. These operators abstract common patterns of recursion according to the data structure
they manipulate. By expressing a program with these encapsulated patterns of recursion, a number
of associated laws are obtained for free. Another benefit of using recursion operators is that they
can be parameterised by the structure of the datatype they use, making programs more general. This
approach, known as generic programming, consists of an algebraic model of datatypes and programs
that allows us to obtain an abstract description of datatypes and to define programs that operate on this
abstract description. Given an instance of the abstract datatype we will have an instance of the abstract
program for that specific datatype. This algebraic approach also serves as a formal basis to obtain
algebraic laws and a smooth proof framework suitable for the calculation of functional programs.

Functional programs are usually obtained by gluing together the solutions to subproblems by
means of functional composition [Hug89]. This compositional style is favored by programmers be-
cause it has the advantage of producing modular and easy to understand programs. Nevertheless,
it is often the case that programs written in this style are not efficient. In a functional composition
f ◦ g, an intermediate data structure has to be generated byg only to be consumed immediately byf .
This source of inefficiency can often be removed by a technique calleddeforestation[Wad90], which
makes it possible, under certain conditions, to derive a program that does not build the intermediate
structures. One of the advantages of using recursion operators is that they provide a class of algebraic
laws that correspond to deforestation, calledfusionlaws.

Another technique frequently used by functional programmers is the generalization of functions
by the addition of an extra parameter that is used to pass intermediate results to recursive calls. These
functions that keep intermediate results in additional parameters are calledaccumulations. Accumu-
lations are usually introduced to gain expressiveness or to optimize an inefficient function.

This thesis provides an extension to a recursion operator for accumulations calledafold [Par02]
and its algebraic laws. A special emphasis has been put on the pragmatics of these laws for pro-
gram calculation. Accordingly, a case study is provided showing the use of these laws in a practical
situation.

The study of fusion in accumulations has a long history. In the seminal work [Bir84], the fusion of
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2 1. INTRODUCTION

accumulations was introduced as an optimization technique. More recently, there has been a consid-
erable amount of research activity focused on the fusion of accumulations. In [HIT96], higher-order
folds are used to represent accumulations. In [CDPR98, Cor99] the fusion of programs with accu-
mulating parameters is based on the descriptional composition of attribute grammars. In [VK04] the
fusion of accumulations is obtained by means of macro tree transducers.

1.1 Thefold Recursion Operator

The fold recursion operator encapsulates the pattern of recursion of functions that are structured ac-
cording to the data structure that they consume [Bir98, Hut99].

Folds over lists correspond to the well-knownfoldr operator:

foldr : (α→ β → β) → β → [α] → β
foldr ⊕ e [ ] = e
foldr ⊕ e (x : xs) = x⊕ (foldr ⊕ e xs)

Functions that are defined by structural recursion on lists can be expressed withfoldr. For example,
sum, the function that sums all elements of a list of natural numbers, can be expressed as:

sum : [nat] → nat
sum = foldr (+) 0

One of thefusion lawsof foldr is:

f (a⊕ b) = a⊗ f b ⇒ f ◦ foldr ⊕ e = foldr ⊗ (f e)

Using thefoldr fusion law we can prove that

(n+) ◦ foldr (+) 0 = foldr (+) n

where(n+): nat → nat is the function that addsn to its argument.
Another law associated with fold is themap-fold fusion:

foldr ⊕ e ◦map f = foldr ⊗ e wherex⊗ y = fx⊕ y

Heremap : (α→ β) → [α] → [β] is the function that applies a given functionf to every element
of a list:

map f [x1, . . . , xn] = [f x1, . . . , f xn]

Consider the constant functionone:

one : α→ nat
one a = 1

We can calculate the length of a list with thelength function,

length = sum ◦map one

Using map-fold fusion we can obtain a definition of length that does not create an intermediate
structure.

length = foldr ⊗ 0
wherex⊗ y = 1 + y
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1.2 Accumulators

Accumulationsare recursive functions that keep intermediate results in additional parameters, called
accumulating parameters. The use of accumulations in functional programming is widespread, and
the associated accumulation technique is well known [Bir84, Bir98]. To define an accumulation two
techniques may be used. One is by currying [Bir98, Tho99], a standard technique based on the higher
order feature of modern functional programming languages. Using this technique one may think of
any function on multiple arguments as a function on one argument that returns another function as a
result. The relation between these two ways of representing functions on multiple arguments can be
expressed bt means of thecurry-uncurry isomorphism.

curry : ((α, β)) → γ) → (α→ β → γ)
curry f x y = f (x, y)

uncurry : (α→ β → γ) → ((α, β) → γ)
uncurry f (x, y) = f x y

This isomorphism means that(α, β) → γ ∼= α→ β → γ.
Using currying an accumulation may be defined as a higher-order fold. Consider, for example, the

linear-time function that reverses a list,

reverse : [α] → [α]
reverse xs = rev xs [ ]

rev : [α] → [α] → [α]
rev [ ] ys = ys
rev (x : xs) ys = rev xs (x : ys)

The functionrev may be defined using a higher-order fold:

rev = foldr (λx f ys.f (x : ys)) id

The alternative to currying is tupling. Functions defined in this manner cannot be written in terms
of a fold, since fold cannot express functions with multiple arguments unless currying and higher-
order are used as it was shown before. This means that to expressrev with tupling we need a new
operator that acts as a sort offold with accumulators.

A fold with accumulators, namedafold, was introduced in [Par00]. This operator is able to express
functions with accumulations without resorting to higher-order. For example, let us consider the
expression for an afold on lists.

afold(h1, h2, ψ) ([ ], x) = h1(x)

afold(h1, h2, ψ) ((a : `), x) = h2(a, afold(h1, h2, ψ)(`, ψ(a, x)), x)

We can definerev in terms of afold:

rev = afold(id, snd, (:)) where snd(x, y, z) = y

The pattern of recursion of the fold operator follows the recursive structure of the input datatype,
i.e. each recursive call matches up with a recursive instance in the definition of the input datatype.
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In accumulations, the pattern of recursion is not only determined by the input datatype, but also by
the accumulating parameter. When defining a fold with accumulators, we have to make a choice of
whether we are going to allow a given recursive call to be made with different accumulating functions
or not. In the generic recursive operatorafold, each recursive call may only have one accumulating
function. Consider the definition of th afold for lists given above. If we wanted to define a function
with two recursive calls oǹ with different accumulator values, we would not be able to express this
function as an afold. For example the following function cannot be expressed as an afold.

subs ([ ], y) = [[y]]

subs ((x : `), y) = subs (`, y) ++ map (y :) (subs (`, x))

In this thesis, we present an extension to the generic definition of accumulations provided by
afold which allows us to materialize the structure of the input datatype making it possible to express
functions such as the one above.

1.3 Contributions

This work proposes an extension to the existing recursion operator afold, and it shows that this exten-
sion is conservative, in the sense that algebraic laws for the extended operator are similar to the ones
for the existing operator. Also, a case study that illustrates the use of the newly presented operator
and its laws in a program derivation setting is presented.

Several results are provided that aid the calculation of programs by simplifying certain equations
that frequently appear when calculating with accumulations. Additionally, an example of the existing
operator for a regular datatype is given —previous examples were limited to datatypes whose signature
is captured by polynomial functors. Finally, a technique based on one of the obtained algebraic
laws is introduced. This technique is useful for the improvement of fusions that do not eliminate all
intermediate structures.

1.4 Overview of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 introduces the mathematical framework the paper is based on. We review those
notions of category theory that are used throughout the work. Then, we describe the category-
theoretical modelling of datatypes and present the generic operator fold, along with its algebraic
laws.

• Chapter 3 reviews the definition of the afold operator and algebraic laws presented in [Par02].
We also present some new laws that help in the calculation of programs. This chapter serves as
preamble for the definition of the extended afold operator.

• Chapter 4 presents a technique for the optimization of functions that result from certain kinds of
fusions that do not eliminate all intermediate structures. We present two examples to illustrate
this technique.

• Chapter 5 presents the motivation and definition of our extension to afold, along with a refor-
mulation of the laws in chapter 3 to cope with our proposed extension, as well as some new
laws.
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• Chapter 6 is a case study that shows the power of the extension applied to a well known accu-
mulation [Bir84, HIT96]. This case study also serves as a guide to the pragmatics of some laws
presented in the previous chapter.

• Chapter 7 summarizes this thesis.

• Appendix A lists some simple properties that were used in the case study in chapter 6.

• Appendix B provides the proofs of all the results in chapter 5.
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Chapter 2

Preliminaries

This chapter introduces the mathematical tools and notation that will be used throughout the thesis.
We want to be able to model programs that are abstract in the sense that they are parameterised by

one or more datatypes. We also want to be able to reason about programs. The category-theoretical
model of type and programs gives us a generic representation of datatypes and an appropiate frame-
work for reasoning algebraically about programs. This model is standard and has proved to be a
fruitful approach to genericity.

The aim of this chapter is to introduce the concepts of category theory that we will be using and
the use of these concepts in the construction of our generic representation of types and programs. In
particular, we will introduce the genericfold operator, which is a generalisation of the classicalfoldr
operator of functional languages and its associated algebraic laws.

Several introductions to this categorical approach are available (see e.g. [BJJM99, Hin99, LS81,
MA86, JR97]) as well as to its applications to program calculation [Mal90, MFP91, Fok92, Jeu93,
BdM97]. A brief introduction to category theory can be found in [Pie91]. More complete introduc-
tions can be found in, for example, [BW99, AL91]. The standard reference in category theory is
[Lan71].

2.1 Categories

We will begin by defining the notion of category and presenting a variety of examples.

Definition 2.1 A categoryC comprises

1. a collectionObj (C) of objects;

2. a collection ofarrowsor morphisms;

3. two total operations calledsourceandtarget, which assign an object to an arrow. We shall write
f : A → B to show thatsource f = A andtarget f = B; the collection of all arrows with
sourceA and targetB is writtenC(A,B);

4. a composition operator assigning to each pair of arrowsf andg with target f = source g a
composite arrowg ◦ f : source f → target g, which is associative:f ◦ (g ◦ h) = (f ◦ g) ◦ h;

5. for each objectA, an identityarrow idA : A → A satisfying theidentity law, which is that for
any arrowf : A→ B, idB ◦ f = f andf ◦ idA = f .

7
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2

The following examples should give a more concrete idea of what a category looks like.

Example 2.2 The categorySethas sets as objects and total functions between sets as arrows. Com-
position of arrows is set-theoretical function composition. Identity arrows are identity functions.

It should be noted that here the concept of function is strongly typed. What we know informally
as thesquarefunction —the function that takes every real numberr to r2— may represent different
arrows inSet. For examplesquare : R → R is a different arrow fromsquare : R → R+.

Example 2.3 A partial ordering≤P on a setP is a reflexive, transitive, and antisymmetric relation
on the elements ofP . Anorder preservingfunction from(P,≤P ) to (Q,≤Q) is a functionf : P → Q
such that ifp ≤P p′ thenf(p) ≤Q f(p′).

The categoryPosethas partially-ordered sets as objects and order-preserving total functions as
arrows.

Categories corresponding to algebraic structures (monoids, groups, etc.) are common examples
of categories.

Example 2.4 A monoid (M, ·, e) is an underlying setM equipped with a binary operation· from
pairs of elements ofM intoM such that(x · y) · z = x · (y · z) for all x, y, z ∈M and a distinguished
elemente such thate ·x = x = x ·e for all x ∈M . An homomorphism between two monoids(M, ·, e)
and(M ′,�, e′) is a functionf : M →M ′ such thatf(x · y) = f(x)� f(y) andf(e) = e′.

The categoryMon has monoids as objects and monoid homomorphisms as arrows.

In our model of types and programs, types are represented by objects and programs by arrows.
The underlying category may beSet or another category likeCpo, the category that has complete
partial orders as objects and continuous functions as arrows.

Definition 2.5 Theproductof two categories,C andD, denoted byC ×D has as objects pairs(A,B)
of aC-objectA and aD-objectB and as arrows pairs(f, g) of aC-arrowf and aD-arrowg. Composi-
tion and identity arrows are defined pairwise:(f, g)◦(h, i) = (f ◦h, g◦ i) andid(A,B) = (idA, idB).2

The product of categories can be generalized ton components. We will writeCn to denote the
n-ary productC × . . .× C.

2.1.1 Diagrams

As it was pointed out before, each arrow has a unique target and source. Writing the source and target
of an arrow every time we refer to it may quickly become cumbersome. For this reason it is quite
common to refer to an arrowf : A→ B simply by the identiferf , when the type information is clear
from context. A useful device for recording type information is adiagram. In a diagram an arrow

f : A→ B is represented asA
f- B, and its composition with an arrowg : C → A is represented

asC
g- A

f- B. For example, one can depict the type information in the equationidB ◦ f = f
as

A
f

- B

B

idB

-
f

-
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Since any two paths in the diagram between the same pairs of objects depicts the same arrow, the
diagram is said tocommute.

Another example of a commuting diagram is the diagram that depicts the equationh ◦ f = k ◦ g.
Note that we are not giving the type of the arrows, the type information can be obtained from the
diagram.

A
g

- B

C

f

? h
- D

k

?

2.1.2 Initial and Terminal Objects

Definition 2.6 An arrow f : A → B is an isomorphismif there is an arrowf−1 : B → A, called
the inverseof f , such thatf−1 ◦ f = idA andf ◦ f−1 = idB. In that case,A andB are said to
be isomorphicand writtenA ∼= B. When two objects are isomorphic it is often said that they are
identicalup to isomorphism. 2

In Setthe notion of isomorphism corresponds to the notion of bijection.

Definition 2.7 An object0 of a category is called aninitial object if, for every objectA, there is
exactly one arrow from0 toA. 2

Definition 2.8 An object1 of a category is called aterminal objectif, for every objectA, there is
exactly one arrow fromA to 1, denoted by!A : A→ 1. 2

Example 2.9 In Set the empty set{} is the only initial object; for every setS, the empty function is
the unique function from{} to S. Every singleton set{u}, for someu, happens to be a final object.

Many categorical notions, including initiality and terminality, are defined up to isomorphism. For
example, for initiality, this means that all initial objects in a category are isomorphic to each other.
Accordingly, we can choose any of them as a representative of the class as isomorphic objects are
indistinguishable.

The following law is a direct consequence of finality:

A
f

- B
!B - 1 = A

!A - 1

In Set, arrows from a singleton set{u} to the setA are in one-to-one correspondence with the
elements ofA. Because of this, arrows of the forma : 1 → A are usually thought of aselements
of A. From this point of view, every applicationf(a), for f : A → B anda ∈ A, is in one-to-one
correspondence with a compositionf ◦ a : 1 → B. This correspondence expresses the relationship
between the pointwise and the point-free style for expressing functions. Whereas in the pointwise
style a function is described by its application to arguments, in the point-free style a function is
described exclusively in terms of functional composition. Reasoning about functions in point-free
style is essentially algebraic manipulation of functional composition.

We will underline expressions that denote constant functions. For example the constant7: Int in
our categorical notation will be7: 1 → Int. An exception to this notation will be type constructors—
e.g.zero : 1 → nat.
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Example 2.10 In a typical functional programming language the following diagram would commute:

Unit
true

- Bool

Nat

isz
er
o

-zero

-

wherezero andtrue are constants andiszero is a predicate that tests for zero. Note thatzero andtrue
are not underlined since they are type constructors (of thenat andbool datatypes, respectively).

Here,Unit is a terminal object. The isomorphism between a constanta : A and a constant arrow
a : Unit → A can be made explicit:

tof : [Unit → A] → A
tof a = a ()
fromf : A→ [Unit → A]
fromf a = a

2.2 Functors and Natural Transformations

Functors are structure-preserving maps between categories.

Definition 2.11 Given two categoriesC andD, a functorF : C → D is a map taking eachC-object
A to aD-objectFA and eachC-arrowf : A → B to aD-arrowF (f) : FA → FB, such that for all
C-objectsA and composableC-arrowsf andg the following conditions are satisfied:

1. F (idA) = idFA

2. F (g ◦ f) = Fg ◦ Ff
2

Example 2.12 For each categoryC there exists anidentity functorI : C → C that takes veryC-object
and everyC-arrow to itself.

Example 2.13 The constant functorA : C → D maps allC-objects to theD-objectA, and all C-
arrows to the identity onA.

Example 2.14 The projection functorsΠ1 : C × D → C andΠ2 : C × D → D are defined as the first
projection and second projection respectively on both arrows and objects. That is,Π1(C,D) = C,
Π1(f, g) = f , Π2(C,D) = D andΠ2(f, g) = g.

Example 2.15 The composition of two functorsF : C → D andG : D → E is written asGF and
defined byGFA = G(FA) andGFf = G(Ff).

A functor from a categoryC to itself is called anendofunctor. One with a product category as
source (like the projection functors) is called abifunctor(as opposed to unary functors ormonofunc-
tors). By fixing the first argument of a bifunctorF : C × D → E on aC-objectC, one gets the unary
functorF (C,−), writtenFC , such thatFCD = F (C,D) andFCf = F (idC , f).
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2.2.1 Natural Transformations

Natural transformations are structure-preserving maps between functors.

Definition 2.16 Let C andD be categories. Given two functorsF : C → D andG : C → D, anatural
transformationτ : F ⇒ G is a function that assigns to everyC-objectA aD-arrowτA : FA → GA
such that for anyC-arrowf : A→ B the following diagram commutes inD.

FA
τA - GA

FB

Ff

?

τB
- GB

Gf

?

2

We will refer to this diagram as thenaturality conditionof τ . The subscripts will often be omitted
when the objects involved are clear from the context.

Example 2.17 For any functorF , the components of the identity natural transformationidF : F ⇒ F
are the identity arrows of the objects in the image ofF , that is,idA = idFA.

From the viewpoint of programming languages, we will use naturality as a synonym for paramet-
ric polymorphism. The relationship between natural transformations and polymorphic functions is
formally described in [Wad89] which in turn is derived from [Rey83].

Example 2.18 LetC andD be categories. LetF ,G, andH be functors fromC toD. Letσ : F ⇒ G
and τ : G ⇒ H be natural transformations. Then for eachC-arrow f : A → B we can draw the
following composite diagram:

FA
σA - GA

τA - HA

(I) (II)

FB

Ff

?

σB

- GB

Gf

?

τB
- HB

Hf

?

By the naturality condition ofσ andτ , both(I) and(II) commutes, so the outer rectangle also
commutes. This shows that the composite transformation(τ ◦ σ) : F ⇒ H defined by(τ ◦ σ)A =
τA ◦ σA is a natural transformation.

2.3 Product and Sum

In most programming languages, new types can be built by tupling existing datatypes or by taking their
disjoint union. In this section, we present their categorical definition and some of their properties.
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Definition 2.19 The productof two objectsA andB in a categoryC is given by an objectA × B
together with twoprojection arrowsπ1 : A× B → A andπ2 : A× B → B such that for any object
C and pair of arrowsf : C → A andg : C → B there is exactly one arrow〈f, g〉 : C → A × B that
makes the following diagram commute:

A �
π1

A×B
π2 - B

C

〈f, g〉
6

g

-
�

f

2

Example 2.20 The cartesian product

A×B = {(a, b)|a ∈ A, b ∈ B}

is a categorical product in a category likeSet, for instance.

From the definition of product, theidentity law and thefusionlaw can be deduced:

〈π1, π2〉 = id 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉

The product can be made into a bifunctor× : C × C → C by defining its action on arrows. For
f : A→ A′ andg : B → B′,

f × g = A×B
〈f ◦ π1, g ◦ π2〉 - A′ ×B′

Being a functor, it has to satisfy the following conditions:

id× id = id (f × g) ◦ (h× k) = (f ◦ h)× (g ◦ k)

Other standard properties of the product are:

π1 ◦ (f × g) = f ◦ π1 π2 ◦ (f × g) = g ◦ π2 (f × g) ◦ 〈h, k〉 = 〈f ◦ h, g ◦ k〉

The first two laws state thatπ1 andπ2 are natural transformations. The third one is called the
absorptionlaw, and it represents a fusion between the product and the pairing of arrows.

Product associativity is defined by the following natural isomorphism:

αA,B,C = A× (B × C)
〈idA × π1, π2 ◦ π2〉 - (A×B)× C

Products can be generalised ton components in an obvious way. If each pair of objects inC has a
product, one says thatC hasproducts.

Let F,G : C → D be two functors. IfD has products, then we can define a functorF × G by
defining its action on objects as(F × G)A = FA × GA and its action on arrows as(F × G)f =
Ff ×Gf .

Example 2.21 In a functional programming language we could define a datatype for pairs
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data A×B = (A,B)

In our category-theoretical model we would represent this datatype with the functor×.
Note that the constructor function is implicit, we do not bother naming it. Since we only care for

equality up to an isomorphism, datatypes that are isomorphic like

data A⊗B = Pair1 (A,B)
and

data A×′ B = Pair2 (A,B)

are the same to us and there is no need to distinguish them with different constructor’s names.

Definition 2.22 A coproductor sumof two objectsA andB in a categoryC is an objectA + B,
together with two injection arrowsinl : A→ A+B andinr : B → A+B such that for any objectC
and pair of arrowsf : A→ C andg : B → C there is exactly one arrow[f, g] : A+ B → C making
the following diagram commute:

A
inl

- A+B �
inr

B

C

[f, g]

?�

gf
-

2

Example 2.23 In Set, thedisjoint unionof two setsA andB happens to be a coproduct. The disjoint
union of setsA andB is the set formed by obtaining a setA′ isomorphic toA and a setB′ isomorphic
toB such thatA′ andB′ are disjoint. The usual way this is done is as follows: let

A′ = {(a, 0)|a ∈ A} and B′ = {(b, 1)|b ∈ B}

The sets are disjoint since the first is a set of ordered pairs each of whose second entries is0, while
the second set is a set of ordered pairs each of whose second entries is1. The arrowinl : A→ A′∪B′

takesa to (a, 0) and inr : B → A′ ∪B′ takesb to (b, 1). A case analysis[f, g] is such that:

[f, g](a, 0) = f(a) [f, g](b, 1) = g(b)

Example 2.24 In a functional programming language the following could be defined:

data Either(A,B) = Left A | Right B

In our category-theoretical model we would represent this datatype with the functor+.

In a functional language, case analysis is usually written as:

[f, g](x) = case x of
inl(a)→ f(a)
inr(b)→ g(b)
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We can make the sum a bifunctor+: C ×C → C by defining its action on arrows: Forf : A→ A′

andg : B → B′,

f + g = A+B
[inl ◦ f, inr ◦ g]

- A′ +B′

The functoriality conditions in this case are:

id + id = id (f + g) ◦ (h+ k) = (f ◦ h) + (g ◦ k)

Some properties of coproducts are:

[inl, inr] = id
h ◦ [f, g] = [h ◦ f, h ◦ g]

(f + g) ◦ inl = inl ◦ f
[f, g] ◦ (h+ k) = [f ◦ h, g ◦ k]

(f + g) ◦ inr = inr ◦ g

Coproducts can be generalized ton components in the obvious way. LetF,G : C → D be two
functors. Analogously to products, ifD has sums, we can define a functorF + G as(F + G)A =
FA+GA and(F +G)f = Ff +Gf .

As an example of the use of the previous properties of products and coproducts we will provide
the proof of the followingexchange law:

Example 2.25
[〈f, h〉, 〈g, k〉] = 〈[f, g], [h, k]〉

Proof. To prove this property we will proveπ1 ◦ [〈f, h〉, 〈g, k〉] = [f, g] andπ2 ◦ [〈f, h〉, 〈g, k〉] =
[h, k].

π1 ◦ [〈f, h〉, 〈g, k〉]
= { Coproducts }

[π1 ◦ 〈f, h〉, π1 ◦ 〈g, k〉]
= { Products }

[f, g]

π2 ◦ [〈f, h〉, 〈g, k〉]
= { Coproducts }

[π2 ◦ 〈f, h〉, π2 ◦ 〈g, k〉]
= { Products }

[h, k]

By definition of products our proposition is proved. Equivalently, we could have started from the
other side of the equation and proved〈[f, g], [h, k]〉 ◦ inl = 〈f, h〉 and〈[f, g], [h, k]〉 ◦ inr = 〈g, k〉.2

2.4 Distributive Categories

Along the thesis we will assume that the underlying categoryC is distributive . This means that
product distributes over coproduct in the following sense: For anyA,B andC, the arrow

[inl× idC , inr × idC ] : A× C +B × C → (A+B)× C

is a natural isomorphism with inverse:
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dA,B,C : (A+B)× C → A× C +B × C

There are plenty of examples of distributive categories, since every cartesian closed category with
coproducts is a distributive category. Typical examples are the categorySet of sets and total functions
as well as the categoryCpo of complete partial orders (not necessarily having a bottom element) and
continuous functions.

To manipulate equations withd, a common technique is to use the fact thatd is an isomorphism
and reverse somed arrow and replace it byd−1.

Example 2.26 We want to prove(π1 +π1)◦d = π1. The type information is depicted in the following
diagram:

(A+B)× C

A×B

π
1

-

A× C +B × C

d

?

π 1
+
π 1

-

After reversingd the diagram is:

(A+B)× C

A×B

π
1

-

A× C +B × C

d−1

6

π 1
+
π 1

-

And now we calculate

π1 ◦ d−1

= { Definition of d−1 }

π1 ◦ [inl× id, inr × id]

= { Coproducts }

[π1 ◦ (inl× id), π1 ◦ (inr × id)]

= { Products }

[inl ◦ π1, inr ◦ π1]

= { Coproducts }

π1 + π1
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Example 2.27 We are going to prove that[g × f, h × f ] ◦ d = [g, h] × f . If we post-multiply both
sides of the equation byd−1 we obtain

[g × f, h× f ] ◦ d ◦ d−1 = ([g, h]× f) ◦ d− 1

= { Isomorphisms }

[g × f, h× f ] = ([g, h]× f) ◦ d− 1

Now we calculate

([g, h]× f) ◦ d− 1

= { Definition of d−1 }

([g, h]× f) ◦ [inl× id, inr × id]

= { Coproducts }

[([g, h]× f) ◦ (inl× id), ([g, h]× f) ◦ (inr × id)]

= { Products }

[([g, h] ◦ inl)× f, ([g, h] ◦ inr)× f ]

= { Coproducts }

[g × f, h× f ]

2.4.1 Conditional operator

In a distributive category it is possible to define a conditional operator. The object of boolean values
can be defined as a sumbool = 1 + 1. The truth constants are the inclusions into this sum:

1
true

- bool �
false

1

In a distributive category, theconditional operator cond(p, f, g) : A→ C is defined by:

A
cond(p, f, g)

- C

bool×A

〈p, id〉
?

d
- 1×A+ 1×A

π2 + π2

- A+A

[f, g]
6

wherep : A→ bool is a predicate, andf, g : A→ C.
In pointwise style, the application of the conditional operator to a value is usually written as:

cond(p, f, g) (a) = if p(a) then f(a) else g(a)

The conditional operator satisfies the following laws:

h ◦ cond(p, f, g) = cond(p, h ◦ f, h ◦ g)
cond(p, f, g) ◦ h = cond(p ◦ h, f ◦ h, g ◦ h)

cond(p, f, f) = f
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2.5 Polynomial functors

Polynomial functorsare functors built from identities, constants, products and sums. They can be
inductively defined by the following grammar:

F ::= I | A | F × F | F + F

Example 2.28 The functorF defined byFX = A+X×A andFh = idA +h× idA is a polynomial
functor because:

F = A+ I ×A

2.6 Inductive Types

We have showed how to construct certain datatypes using functors. Nevertheless, we have not been
able to define a recursively defined datatype yet. In this section we will describe the category-
theoretical modelling ofinductive types, such as finite lists or trees.

2.6.1 Algebras

We will now try to develop an intuition that will help to understand our modelling of datatypes.

Definition 2.29 An algebra is a set, called thecarrier of the algebra, together with a number of
operations that return values in that set. 2

Some concrete example of algebras are:

(N, 0,+), with 0: 1 → N, +: N× N → N
(R, 1,×), with 1: 1 → R, × : R× R → R
(list (A), nil,++), with nil : 1 → list (A), ++: list (A)× list (A) → list (A)

A recursively defined datatype determines, in a natural way, an algebra. A simple example is the
datatypenat defined by

data nat = zero | succ nat

whose corresponding algebra is

(nat, zero, succ), with zero : 1 → nat, succ : nat → nat

Another example is:

data Natlist = nil | cons nat Natlist

whose corresponding algebra is

(Natlist, nil, cons), with nil : 1 → Natlist, cons : nat× Natlist → Natlist

These examples illustrate the general idea: An inductive datatype determines an algebra in which

• the carrier of the algebra is the datatype itself, and
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• the operations of the algebra are the constructors of the datatype.

Definition 2.30 A homomorphismbetween two algebras is a function between their carrier sets that
respect the structure of the algebras. 2

For example, the functionexp : N → R is a homomorphism withsource algebra(N, 0,+) and
target algebra(R, 1,×). Respecting the structure means:

exp 0 = 1
exp (x+ y) = (exp x)× (exp y)

Now, let’s consider the dataypenat again.

data nat = zero | succ nat

Since constructors names are not important to us, we can give the following isomorphic definition
of the datatype:

data nat = inl 1 | inr nat

The choice here could be written as a sum:

data nat = inN (1 + nat)

in which there is only one constructor left, calledinN . The process to obtain this formulation may
become clearer by looking at the following figure.

zero : 1 → nat
succ : nat → nat

in : 1 + nat → nat

Now, let’s consider a functorN = 1 + I whose action on objects isNA = 1 + A and whose
action on arrows isNf = id+ f . Then, we have that

data nat = inN (N nat).

Apparently, the functorN captures the pattern of inductive information innat.
If we consider the datatypeNatlist, and procceed in the same manner, we obtain

data Natlist = inL (1 + nat× Natlist)

The functorLnat = 1 + nat × I, whose action on objects isLnatA = 1 + nat × A and whose
action on arrows isLnatf = id + idnat × f captures the pattern information inNatlist.

data Natlist = inL (Lnat Natlist)

So far, we have seen that an inductive datatype determines an algebra and a functor. We have also
seen that we can construct an arrow that packs all the operations in an algebra.
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2.6.2 Initial Algebras

We will now formalise the previous intuitions in our categorical framework.
In the following, letF : C → C be an endofunctor.

Definition 2.31 An F -algebrais a pair(A, h) such thatA is aC-object andh : FA → A, the object
A being the carrier of the algebra and the arrowh packing all the operations in the algebra. 2

Example 2.32 The algebra(nat,+) of the natural numbers and addition is an algebra of the functor
FA = A×A andFh = h× h.

Definition 2.33 An F -homomorphismbetween two algebras(A, h) and(B, h′) is an arrowf : A→
B between the carriers that commutes with the operations, that is,f ◦ h = h′ ◦ Ff .

FA
Ff

- FB

A

h

?

f
- B

h′

?

2

Given an endofunctorF : C → C that captures the recursive shape of a datatype, the recursive type
will be understood as the least solution to the type equationX ∼= FX.

Example 2.34 For the datatype of natural numbers,

nat = zero | succ nat

the signature is captured by the functorN = 1 + I, that is,

N A = 1 +A N f = id1 + f

EveryN -algebra is a case analysis[h1, h2] : 1 + A → A, whereh1 : 1 → A andh2 : A → A.
A homomorphism between twoN -algebrash : NA → A andk : NB → B is an arrowf : A → B
such that:

1
id1 - 1

A

h1

?

f
- B

k1

?

A
f

- B

A

h2

?

f
- B

k2

?

Example 2.35 For the datatype of lambda-expressions,

lam = var V | app lam lam | abs V lam
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the signature is captured by the functorM = V + I × I + V × I, that is,

M A = V +A×A+ V ×A M f = idV + f × f + idV × f

whereV is the type of variable identifiers.
EveryM -algebra is a case analysis[h1, h2, h3] : V +A×A+ V ×A→ A, whereh1 : V → A,

h2 : A × A → A andh3 : V × A. A homomorphism between twoM -algebrash : MA → A and
k : MB → B is an arrowf : A→ B such that:

V
idV - V

A

h1

?

f
- B

k1

?

A×A
f × f

- B ×B

A

h2

?

f
- B

k2

?

V ×A
idV × f

- V ×B

A

h3

?

f
- B

k3

?

Definition 2.36 The category ofF -algebras, denoted byAlg(F ), is formed by the F-algebras as
objects and F-homomorphisms as arrows. Composition and identities are inherited fromC. 2

Definition 2.37 An initial algebra is the initial object, if it exists, of a categoryAlg(F ). 2

For many functors, including the polynomial functors ofSet, this category has an initial object.
The initial algebra, if it exists, is the algebra that corresponds to the inductive type whose signature is
captured byF . We shall denote the initial algebra by(µF, inF ), where the arrowinF : F µF → µF
encodes the constructors of the inductive type.

2.7 Fold

Initiality permits to associate an operator with each inductive type, which is used to represent functions
defined by structural recursion on that type. This operator, usually calledfold [Bir98] or catamorphism
[MFP91], is originated by the unique homomorphism that exists between the initial algebrainF and
any otherF -algebrah : FA→ A. We shall denote it byfoldF (h) : µF → A. Fold is thus the unique
arrow that makes the following diagram commute:

FµF
F foldF (h)

- FA

µF

inF

?

foldF (h)
- A

h

?

or equivalently the unique arrow that makes the following equation hold:

foldF (h) ◦ inF = h ◦ F foldF (h) (2.1)
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Example 2.38 For the natural numbers, the initial algebra is given by

inN = [zero, succ] : 1 + nat → nat

wherezero : 1 → nat andsucc : nat → nat; nat stands forµN . For each algebrah = [h1, h2], fold is
the unique arrowf = foldN (h) : nat → A such that

f (zero) = h1

f (succ(n)) = h2 (f(n))
2

Example 2.39 For the lambda expressions, the initial algebra is given by

inM = [var, app, abs] : V + lam× lam + V × lam → lam

wherevar : V → lam, app : lam × lam → lam andabs : V × lam → lam; lam stands forµM . For
each algebrah = [h1, h2, h3], fold is the unique arrowf = foldM (h) : lam → A such that

f (var v) = h1 (v)
f (app (t, u)) = h2 (f(t), f(u))
f (abs (v, t)) = h3 (v, f(t))

2

Lists, trees as well as many other datatypes are usually parameterised. The signature of those
datatypes is captured by a bifunctorF : C × C → C. By fixing the first argument of a bifunctorF one
can get a unary functorF (A,−), to be writtenFA, such thatFAB = F (A,B) andFA f = F (idA, f).
The functorFA induces a (polymorphic) inductive typeDA = µFA, least solution of the equation
X ∼= F (A,X), with constructors given by the initial algebrainFA

: FA(DA) → DA.

Example 2.40 (i) Lists with elements overA can be declared by:

list (A) = nil | cons(A× list (A))

We will often writeA∗ for list (A). The signature of lists is captured by the functorLA =
1 + A × I. The initial algebra is given by[nil, cons] : 1 + A × A∗ → A∗. For each algebra
h = [h1, h2] : 1 +A×B → B, fold is the unique arrowf = foldLA

(h) : A∗ → B such that

f(nil) = h1 f(cons(a, `)) = h2(a, f(`))

This instance iffold corresponds to the standardfoldr operator used in functional programming
[Bir98].

(ii) Leaf-labelled binary trees can be declared by

btree (A) = leaf A | join (btree (A)× btree (A))

Their signature is captured by the functorBA = A + I × I. For each algebrah = [h1, h2] :
A+ C × C → C, fold is the unique arrowf = foldBA

(h) : btree (A) → C such that

f(leaf(a)) = h1(a) f(join(t, u)) = h2(f(t), f(u))
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(iii) Binary trees with information in the nodes can be declared by

tree (A) = empty | node (tree (A)×A× tree (A))

Their signature is captured by the functorTA = 1 + I ×A× I. For each algebrah = [h1, h2] :
1 + C ×A× C → C, fold is the unique arrowf = foldTA

(h) : tree (A) → C such that

f(empty) = h1 f(node(t, a, u)) = h2(f(t), a, f(u))

2

2.7.1 Standard Laws for Fold

Fold enjoys many algebraic laws that are useful for program transformation.
The identity law states that a fold applied to the constructors of the datatypes gives as a result the

identity function.

Theorem 2.41 (Fold Identity)

foldF (inF ) = idµF

The following law is thefusion law, a very important law for program calculation. In chapter 1,
we already saw an instance of this law for lists. Fold Fusion states that the composition of a fold with
an algebra homomorphism is again a fold.

Theorem 2.42 (Fold Fusion)

f ◦ h = g ◦ Ff ⇒ f ◦ foldF (h) = foldF (g)

Acid rain removes intermediate data structures that are produced by folds whose target algebra
is built out of the constructors of the data structure by the application of atransformer[Fok96]. A
transformer is a polymorphic functionT : ∀A. (FA → A) → (GA → A) that convertsF -algebras
intoG-algebras. SinceT has to be polymorphic the following naturality condition has to hold:

Forf : A→ B, h : FA→ A andh′ : FB → B,

f ◦ h = h′ ◦ Ff ⇒ f ◦ T(h) = T(h′) ◦Gf

Intuitively, a transformerT may be thought of as a polymorphic function that builds algebras of one
class out of algebras of another class.

Theorem 2.43 (Acid Rain: Fold-Fold Fusion)

T : ∀A. (FA→ A) → (GA→ A) ⇒ foldF (h) ◦ foldG(T(inF )) = foldG(T(h))
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2.7.2 Map

Let µFA be a solution (a fixed point) of the equationX ∼= FX. LetDA = µFA be a parameterised
inductive type induced by a bifunctorF . We have defined the action ofD on objetcs.D is a type
constructor that can be made into a functorD : C → C, called a type functor, by defining its action on
arrows: For eachf : A→ B,

Df = foldFA
(inFB

◦ F (f, idDB)) : DA→ DB

It can be proved that this definition makesD a functor.
Consequently,Df is the unique arrow that makes the following diagram commute:

FA(DA)
FA(Df)

- FA(DB)

FB(DB)

F (f, id)
?

DA

inFA

?

Df
- DB

inFB

?

The action on arrows of the type functor corresponds to the well-knownmap function.

Example 2.44 For lists, the action on arrows is given by

list (f) = foldLA
([nil, cons ◦ (f × id)])

list (f)(nil) = nil
list (f)(cons(a, `)) = cons(f(a), list (f)(`))

The following is a standard property of type functors.

Theorem 2.45 (Map-Fold Fusion)For f : A→ B andh : FB C → C,

foldFB
(h) ◦Df = foldFA

(h ◦ F (f, idC))

2.8 Regular Functors

Definition 2.46 Regular functorsare functors built from identities, constants, products, sums and
type functors. They can be inductively defined by the following grammar:

F ::= I | A | F × F | F + F | D

2

Regular functors capture the signature ofregular datatypes, which are datatypes whose decla-
rations contain no function spaces and have recursive occurrences with the same arguments from
left-hand sides.
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Example 2.47 Rose Treesare trees with multiple branches.

data rose (A) = fork (A× list (rose (A)))

Its signature is captured by the regular functorRA = A × list. This means that its action on
objects isRAB = A× list (B) and its action on arrows isRAf = idA × list (f). RA-algebras are of
typeh : A× list (B) → B.

The initial algebra of rose trees is

inRA
= fork : A× list (rose (A)) → rose (A)

For everyh : A × list (B) → B, fold is the unique arrowf = foldRA
(h) : rose (A) → B such

that:
f (fork(a, `)) = h (a, list (f)(`))



Chapter 3

Introducing afold

Accumulationsare recursive functions that keep intermediate results in additional parameters, known
asaccumulating parametersor accumulators, which are eventually used in later stages of the com-
putation (see e.g. [Bir84, HIT96, BdM97, Gib00]). In this chapter we define a generic operator that
permits us to represent structural recursive accumulations on inductive types.

Let us start with an example of an accumulation. Consider the function that computes the sums of
the initial segments of a list of numbers:

initsums(`) = isums(`, zero)

where

isums(nil, e) = wrap(e) (3.1)

isums(cons(n, `), e) = cons(e, isums(`, e+ n)) (3.2)

wherewrap(x) = cons(x, nil).

To define a function of this kind by structural recursion we have two alternatives. One is to define
the function as a higher-order fold of typeµF → [X → A], whereX now corresponds to the type
of accumulators (see [HIT96]). The other alternative consists of tupling the arguments and defining
a function of typeµF ×X → A. For example, in the particular case ofisums this corresponds to a
definition of typenat∗ × nat → nat∗ in the style of (3.1) and (3.2). Accumulations defined in this
manner cannot be written in terms of the standard fold operator, since fold lacks the possibility of
representing functions with multiple arguments.

To express accumulations we will use an operator, calledafold, which corresponds to afold with
accumulators. This operator was first presented in [Par01] as an application of the product comonad.
Nevertheless, this chapter is based on the presentation of the afold operator found on [Par02], which
does not use the concept of comonad.

If we analyse this function we observe:

• It has as first argument the datatype whose structure we want to follow, in this case, a list. In
thenil case, there is no recursion, in thecons case, the recursive call is made on the tail of the
input list, .i.e. the recursive instance in the definition of the datatype.

• As second argument it has the accumulator. In this case the accumulator holds the partial sum
of the elements that appeared previously in the list.

25
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• In each recursive step the accumulator is updated, adding to it the value at the head of the current
list, and passed to the recursive call.

• It uses the value of the accumulator, in this case putting it at the head of the resulting list.

If we abstract from this particular function, we conclude that our generic recursion operator
should:

• follow the recursive structure of its first argument datatype;

• pass information to the recursive instances in the second argument, this information is obtained,
for each recursive call, as a result of

• calling an accumulation function whose result is the value of the new accumulator;

• possibly use the value of the accumulator.

In the next section this ideas are refined and formalised.

3.1 Theafold Operator

In the sequel let us fix an objectX that now will be regarded as the type of accumulators.
The function that produces the new value of an accumulator will be modeled by an arrowτ . Even

though the form in which the parameters are modified is something that depends on each specific
case, it is possible to state general conditions that an arrowτ must satisfy to be considered proper for
accumulation.

Definition 3.1 An arrow τ : FA × X → F (A × X) is said to beproper for accumulation if the
following conditions hold:

Naturality τ is natural inA: For anyf : A→ B,

FA×X
τA - F (A×X)

FB ×X

Ff × idX

?

τB

- F (B ×X)

F (f × idX)
?

Shape and data preservation

F (A×X)

FA×X

τ A
-

FA

F π1

?
π
1 -

2
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The first condition actually states a restriction to the amount of information that can be used for
modifying the accumulators. Indeed, thatτ is natural (polymorphic) inA makes accumulations inde-
pendent from the values in the functor’s variable positions —which correspond to the substructures.
This means that the only values that are available for accumulation are those contained in the nodes
of the data structure, and not the substructures. This is an immediate consequence of the naturality
condition. The second condition asserts thatτ cannot modify the shape of the structure of typeFA
nor the data contained in it.

A general form forτ can be given in the following cases:

• WhenF is a constant functorC we have thatτ = π1 : C ×X → C.

• WhenF = G+H,

τ = (τ ′ + τ ′′) ◦ d : (GA+HA)×X → G(A×X) +H(A×X)

for someτ ′ : GA × X → G(A × X) andτ ′′ : HA × X → H(A × X). This means that
accumulations performed in the variants of a sum are independent from each other. This is a
consequence of the hypothesis about distributivity.

Givenτ satisfying definition 3.1 we can define an extension of functorF that works onX-actions.

Definition 3.2 Forf : A×X → B, the extension for functorF , Ff : FA×X → FB is:

Ff = FA×X
τA - F (A×X)

Ff
- FB

2

This extension represents the modification of the accumulators in each recursive call. An imme-
diate consequence of the condition of shape and data preservation forτ is thatF preserves iden-
tities, i.e. F π1 = π1. F preserves compositions ofX-actions only ifτ satisfies the equation
τ ◦ 〈τ , π2〉 = F 〈id, π2〉 ◦ τ , something that we do not expect to hold in general.

Definition 3.3 ([Par01]) An initial algebrainF is said to beinitial with accumulators if for each
objectX, τ : FA×X → F (A×X) proper for accumulation, andh : FA×X → A, there exists a
uniquef : µF ×X → A that makes the following diagram commute:

FµF ×X
〈Ff, π2〉 - FA×X

µF ×X

inF × idX

?

f
- A

h

?

We callafold the unique arrow that results from initiality with accumulators and denote it by

afoldF (h, τ) : µF ×X → A.

2

Initiality with accumulators is guaranteed to exist in the presence of exponentials.
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Proposition 3.4 If C is a cartesian closed category, then every initial algebra is initial with accumu-
lators.

Therefore, accumulations can be defined in categories likeSet or Cpo.

Most of the datatypes we deal with in practice are sums. The following propositions show us
how to simplify certain equations into simpler ones that only take into account one addend at a time.
Proofs of this propositions will not be given as they are the particular caseσ = id of a more general
result (proposition 5.6) whose proof can be found in appendix B.

Proposition 3.5 LetF = F1 + F2 be a composite functor,h = [h1, h2] ◦ d, Ff = Ff ◦ τ , where
τ = (τ1 + τ2) ◦ d, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ 〈Ff, π2〉 ⇔


f ◦ h1 = k1 ◦ 〈F 1f, π2〉

f ◦ h2 = k2 ◦ 〈F 2f, π2〉

whereF 1f = Ff ◦ τ1 andF 2f = Ff ◦ τ2

Corollary 3.6 Let F = F1 + F2 be a composite functor,h = [h1, h2], Ff = Ff ◦ τ , where
τ = (τ1 + τ2) ◦ d, andk = [k1, k2] ◦ d. Then

f ◦ (h× idX) = k ◦ 〈Ff, π2〉 ⇔


f ◦ (h1 × idX) = k1 ◦ 〈F 1f, π2〉

f ◦ (h2 × idX) = k2 ◦ 〈F 2f, π2〉

whereF 1f = Ff ◦ τ1 andF 2f = Ff ◦ τ2

Corollary 3.7 LetF = F1 + F2 be a composite functor,h = [h1, h2] ◦ d, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ (Ff × id) ⇔


f ◦ h1 = k1 ◦ (F1f × id)

f ◦ h2 = k2 ◦ (F2f × id)

3.2 Examples

In this section we present instances of the afold operator for some commonly used datatypes.

Example 3.8 For the natural numbers,

τA = (π1 + φ) ◦ d

whereφ = idA × ψ : A×X → A×X, for someψ : X → X.
Let h = [h1, h2] ◦ d : (1 +A)×X → A andf = afoldN (h, τ) : nat×X → A.
By definition 3.3, f is such that:

f ◦ (inN × idX) = h ◦ 〈Nf, π2〉.

.
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Applying corollary 3.6 we obtain:

f ◦ (zero× idX) = h1 ◦ 〈1f ◦ π1, π2〉

f ◦ (succ× idX) = h2 ◦ 〈If ◦ φ, π2〉.

In pointwise notation,

f(zero, x) = h1(x)
f(succ(n), x) = h2(f(n, ψ(x)), x)

For example, addition can be defined by

add = afoldN (h, τ)

whereh1 = π2, h2 = π1 andψ = succ. That is,

add(zero, n) = n add(succ(m), n) = add(m, succ(n))

2

Example 3.9 For lists with elements overA,

τB = (π1 + φ) ◦ d

whereφ : (A × B) ×X → A × (B ×X) is given byφ((a, b), x) = (a, (b, ψ(a, x))), for some
ψ : A×X → X.

Let h = [h1, h2] ◦ d : (1 +A× C)×X → C andf = afoldLA
(h, τ) : A∗ ×X → C.

By definition 3.3, f is such that:

f ◦ (inL × idX) = h ◦ 〈LAf, π2〉.

Now we can use corollary 3.6 to obtain:

f ◦ (nil× idX) = h1 ◦ 〈1f ◦ π1, π2〉

f ◦ (cons× idX) = h2 ◦ 〈(Af × If) ◦ φ, π2〉.

In pointwise notation,

f (nil, x) = h1(x)

f (cons(a, `), x) = h2(a, f(`, ψ(a, x)), x)

For example, the functionisums can be defined by

isums : nat∗ × nat → nat∗

isums = afold(h, τ)

whereh1(e) = wrap(e), h2(n, `, e) = cons(e, `), andψ = add.
2



30 3. INTRODUCING afold

Example 3.10 For leaf-labelled binary trees,

τC = (π1 + φ) ◦ d

whereφ : (C × C) × X → (C × X) × (C × X) is natural inC and preserves shape and
data. This means that thec’s in the output appear in the same order as in the input. Therefore,
φ = 〈π1 × ψ, π2 × ψ′〉, for someψ,ψ′ : X → X (i.e. accumulation on left and right branches may
differ from each other).

Let h = [h1, h2] ◦ d : (A+D ×D)×X → D andf = afoldBA
(h, τ) : btree (A)×X → D.

By definition 3.3, f is such that:

f ◦ (inB × idX) = h ◦ 〈BAf, π2〉.

We use corollary 3.6 to obtain:

f ◦ (leaf × idX) = h1 ◦ 〈Af ◦ π1, π2〉

f ◦ (join× idX) = h2 ◦ 〈(If × If) ◦ φ, π2〉.

In pointwise notation,

f (leaf(a), x) = h1(a, x)

f (join(t, u), x) = h2(f(t, ψ(x)), f(u, ψ′(x)), x)

For example, the functionrdepth : btree (A) → btree (nat), which replaces the value at each leaf
of a tree by the depth of the leaf, can be defined by

rdepth(t) = down(t, zero)

where

down : btree (A)× nat → btree (nat)
down = afoldBA

(h, τ)

with h1(a, n) = leaf(n), h2(t, u, n) = join(t, u) andψ = ψ′ = succ. That is,

down(leaf(a), n) = leaf(n)

down(join(t, u), n) = join(down(t, n+ 1), down(u, n+ 1))
2

Example 3.11 For binary trees with information in the nodes,

τC = (π1 + φ) ◦ d

whereφ : (C × A × C) ×X → (C ×X) × A × (C ×X) is natural inC and preserves shape
and data. Like in the previous case, thec’s in the output must appear in the same order as in the
input. Therefore,φ((c, a, c′), x) = ((c, ψ(a, x)), a, (c′, ψ′(a, x))), for someψ,ψ′ : A×X → X (i.e.
accumulation on left and right branches may differ from each other).

Let h = [h1, h2] ◦ d : (1 +D ×A×D)×X → D, f = afoldTA
(h, τ) : tree (A)×X → D.

By definition 3.3, f is such that:

f ◦ (inT × idX) = h ◦ 〈TAf, π2〉.
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We use corollary 3.6 to obtain:

f ◦ (empty × idX) = h1 ◦ 〈1f ◦ π1, π2〉

f ◦ (node× idX) = h2 ◦ 〈(If ×Af × If) ◦ φ, π2〉.

In pointwise notation,

f (empty, x) = h1(x)

f (node(t, a, u), x) = h2(f(t, ψ(a, x)), a, f(u, ψ′(a, x)), x)

For example, the functionasums : tree (nat) → tree (nat), which labels each node with the sum
of its ancestors, can be defined by

asums(t) = sdown(t, zero)

where

sdown : tree (nat)× nat → tree (nat)
sdown = afoldTnat(h, τ)

such thath1(n) = empty, h2((t,m, u), n) = node(t, n, u) andψ = ψ′ = add. That is,

sdown (empty, n) = empty

sdown (node(t,m, u), n) = node(sdown(t,m+ n), n, sdown(u,m+ n))
2

Example 3.12 For rose trees,

τR ((a, `), x) = (a, τ list (`, ψ(a, x)))

whereψ : A × X → X, andτ list : list (B) × X → list (B × X) is natural inB and preserves
shape and data. Therefore,

τ list (`, x) = list (g) `
whereg a = (a, x)

As we can see in its definition,τ list distributes the accumulator to each element of the list.
Let h = [h1, h2] ◦ d : (A× list (C))×X → C, f = afoldRA

(h, τ) : rose (A)×X → C.
By definition 3.3, f is such that:

f ◦ (inR × idX) = h ◦ 〈RAf, π2〉.

By definition 3.2 we obtain:

f ◦ (fork× idX) = h ◦ 〈(idA × list (I)f) ◦ τ , π2〉.

In pointwise notation,

f (fork (a, r), x) = h (a, list (f) (τ list(`, ψ(a, x))), x)
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As an example, the functionrdepth : rose (A) → rose (nat), which replaces the value at each
node of a tree by its depth, can be defined by

rdepth(t) = down(t, zero)

where

down : rose (A)× nat → rose (nat)
down = afoldRA

(h, τ)

with h((a, `), n) = fork(n, `), ψ = succ. That is,

down(fork(a, `), n) = fork(n, list (down)(τ list (`, n+ 1)))
2

3.3 Laws for afold

The following are some laws for afold.

Theorem 3.13 For anyτ ,

foldF (h) ◦ π1 = afoldF (h ◦ π1, τ)

Theorem 3.14 (Afold Identity)

afoldF (inF ◦ π1, τ) = π1

Theorem 3.15 (Afold Pure Fusion)

f ◦ h = h′ ◦ (Ff × id) ⇒ f ◦ afoldF (h, τ) = afoldF (h′, τ)

Theorem 3.16 (Acid Rain: Afold-Fold Fusion)

T : ∀A. (FA→ A) → (GA×X → A)
⇒

foldF (h) ◦ afoldG(T(inF ), τ) = afoldG(T(h), τ)

Theorem 3.17 (Fold-Afold Fusion)For every natural transformationκ : G⇒ F ,

κ ◦ τ = τ ′ ◦ (κ× id)
⇒

afoldF (h, τ ′) ◦ (foldG(inF ◦ κ)× id) = afoldG(h ◦ (κ× id), τ)

Theorem 3.18 (Map-Afold Fusion)For f : A→ B andDA = µFA,

F (f, id) ◦ τ = τ ′ ◦ (F (f, id)× id)
⇒

afoldFB
(h, τ ′) ◦ (Df × id) = afoldFA

(h ◦ (F (f, id)× id), τ)
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Theorem 3.19 (Morph-Afold Fusion)For everyf : X → X ′,

F (id× f) ◦ τA = τ ′A ◦ (id× f)
⇒

afoldF (h, τ ′) ◦ (id× f) = afoldF (h ◦ (id× f), τ)

Morph-afold fusion is particularly interesting because it relates two accumulations whose accumulat-
ing parameters are of a different type. The premise of that law states a coherence condition that must
hold between the accumulators. A proof of these laws can be found in [Par01].

Example 3.20 The height of a leaf-labelled binary tree can be calculated as the maximum of the
depths of the leaves in the tree:

height = maxbtree ◦ rdepth

wheremaxbtree = foldBnat([id,max]) : btree (nat) → nat returns the maximum value contained in a
tree:

maxbtree(leaf(n)) = n

maxbtree(join(t, u)) = max(maxbtree(t),maxbtree(u))

wheremax(m,n) returns the greater ofm andn. Sincerdepth(t) = down(t, zero), we can write that
height(t) = aheight(t, zero), where

aheight : btree (A)× nat → nat

aheight = maxbtree ◦ down

This two-pass definition produces an intermediate tree which can be eliminated by fusing the parts.
To this end, we first observe thatdown = afoldBA

(T([leaf, join]), τ), beingT : (BAC → C) →
(BAC × nat → C) the following transformer:

T(k) = [k1 ◦ π2, k2 ◦ π1] ◦ d

for k = [k1, k2] : A+ C × C → C. Therefore, by applying afold-fold fusion we obtain that:

aheight = afoldBA
(T([id,max]), τ)

That is,

aheight(leaf(a), n) = n

aheight(join(t, u), n) = max(aheight(t, n+ 1), aheight(u, n+ 1))

Now, suppose we want to prove the following law:

m+ aheight(t, n) = aheight(t,m+ n)

In point-free style,

(m+) ◦ aheight = aheight ◦ (id× (m+))

The proof proceeds as follows:
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aheight ◦ (id× (m+))

= { morph-afold fusion; proof obligation }

afoldBA
(T([id,max]) ◦ (id× (m+)), τ)

= { definition of T }

afoldBA
([π2,max ◦ π1] ◦ d ◦ (id× (m+)), τ)

= { naturality of d }

afoldBA
([π2,max ◦ π1] ◦ (id× (m+) + id× (m+)) ◦ d, τ)

= { coproduct }

afoldBA
([(m+) ◦ π2,max ◦ π1] ◦ d, τ)

= { afold pure-fusion; proof obligation }

(m+) ◦ aheight

The proof obligation for morph-afold fusion is:

τ ◦ (id× (m+)) = BA(id× (m+)) ◦ τ

which can be checked by a simple calculation that relies on naturality ofd. In the case of pure-fusion
the proof obligation is:

(m+) ◦ [π2,max ◦ π1] ◦ d = [(m+) ◦ π2,max ◦ π1] ◦ d ◦ (BA(m+)× id)

which can be verified by a simple calculation that uses the property:max ◦ ((m+) × (m+)) =
(m+) ◦max. 2

Example 3.21 A typical example of accumulation is the linear-time version of reverse:

areverse(`) = rev(`, nil)

where

rev : A∗ ×A∗ → A∗

rev = afoldLA
([π2, π2 ◦ π1] ◦ d, τ rev)

with τ rev = (π1 + φrev) ◦ d andφrev((a, `), `′) = (a, (`, cons(a, `′))). That is,

rev(nil, `′) = `′ rev(cons(a, `), `′) = rev(`, cons(a, `′))

Consider also the accumulative version of the function that computes the length of a list:

alength(`) = len(`, zero)

where

len : A∗ × nat → nat

len = afoldLA
([π2, π2 ◦ π1] ◦ d, τ len)
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with τ len = (π1 + φlen) ◦ d andφlen((a, `), n) = (a, (`, succ(n))). That is,

len(nil, n) = n len(cons(a, `), n) = len(`, succ(n))

Now, suppose we want to prove the following law:

length ◦ areverse = alength

wherelength = foldLA
([zero, succ ◦ π2]) is the usual definition of length in terms of fold. This is

reduced to proving that:

length(rev(`, nil)) = len(`, zero)

which in turn is a particular case of this more general property:

length ◦ rev = len ◦ (id× length)

The proof proceeds as follows.

length ◦ rev

= { afold pure fusion; proof obligation }

afoldLA
([length ◦ π2, π2 ◦ π1] ◦ d, τ rev)

= { algebraic manipulation }

afoldLA
([π2, π2 ◦ π1] ◦ d ◦ (id× length), τ rev)

= { morph-afold fusion; proof obligation }

len ◦ (id× length)

The proof obligation for pure fusion is:

length ◦ [π2, π2 ◦ π1] ◦ d = [length ◦ π2, π2 ◦ π1] ◦ d ◦ (LA length× id)

which can be verified by a simple calculation. In the case of morph-afold fusion the proof obligation
is:

LA(id× length) ◦ τ rev = τ len ◦ (id× length)

which is reduced to proving that

(id× (id× length)) ◦ φrev = φlen ◦ (id× length)

This can be verified by a simple calculation. 2

Finally, we present a law that relates a fold with an accumulative version of it. This law is an
adaptation to our setting of a law in [HIT96] that relates a fold with a higher-order fold.

Proposition 3.22 Let f : A ×X → A be a function with right identitye, i.e. f(a, e) = a, for every
a. Then,

f ◦ (h× idX) = k ◦ 〈Ff, π2〉 ⇒ foldF (h)(t) = afoldF (k, τ)(t, e)

whereFf = Ff ◦ τ , for τ proper for accumulation.
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The following corollary is a simpler formulation of the above theorem for the common case of
sum types.

Corollary 3.23
Let f : A × X → A be a function with right identitye, i.e. f(a, e) = a, for everya. Let F =

F1 +F2 be a composite functor,h = [h1, h2], k = [k1, k2] ◦d, Ff = Ff ◦ τ whereτ = (τ1 + τ2) ◦d
proper for accumulation. Then, for everyinF = [c1, c2] : FµF → µF

f ◦ (h1 × idX) = k1 ◦ 〈F 1f, π2〉

f ◦ (h2 × idX) = k2 ◦ 〈F 2f, π2〉

 ⇒


foldF (h) ◦ c1 = afoldF (k, τ) ◦ 〈c1, e〉

foldF (h) ◦ c2 = afoldF (k, τ) ◦ 〈c2, e〉



Chapter 4

Improving Fusions

In this chapter we present a technique that can be used to improve the resulting fusion in certain cases
where laws like pure fusion will not give a satisfactory result.

4.1 An Example of Fusion Improvement

We present an example problem that illustrates the shortcomings of relying on simple fusion for
certain fusion problems, and then we proceed to improve the fused function by the application of
Morph-Afold Fusion.

4.1.1 Thespex Problem

In [Voi03], the following problem was presented:
Given a datatype of lists ofA’s andB’s,

data ABlist = nil | A ABlist | B ABlist

a functionsplit : (ABlist×ABlist) → ABlist that orders anABlist so that allA’s come before theB’s,

split (nil, x) = x
split ((A u), x) = A (split (u, x))
split ((B u), y) = split (u,B x)

and a functionexch : ABlist → ABlist that exchanges allA’s for B’s and viceversa,

exch nil = nil (exch.1)
exch (A u) = B (exch u) (exch.2)
exch (B u) = A (exch u) (exch.3)

we want to calculate
main t = exch (split (t, nil))

The functionmain is inefficient, since it generates an intermediate data structure. We want to
obtain an efficient programspex = exch ◦ split. Sincesplit is an accumulation we want to express it
as an afold forABlists.

37
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4.1.2 Afold for ABlists

The signature ofABlists is captured by the functorAB = 1 + I + I. The initial algebra is given by
[nil,A,B] : 1 + A + A → A. Let us calld3 : (A + B + C) ×X → A ×X + B ×X + C ×X the
natural transformation analogous tod for 3 addends. For each algebrah = [h1, h2, h3] ◦ d3, afold is
the unique arrowf = afoldAB(h, τ) such that

f (nil, x) = h1(x)
f (A u, x) = h2(f(u, ψ(x)), x)
f (B u, x) = h3(f(u, ψ′(x)), x)

for τ = π1 + id× ψ + id× ψ′.

We can expresssplit as an afold.

split = afoldAB(h, τ)
where h1 = id

h2 = A ◦ π1

h3 = π1

ψ = id
ψ′ = B

4.1.3 Attempting Pure Fusion

Back to our problem, we will apply the pure fusion law 3.15 to fusesplit with exch and obtainspex.
After simplifying the antecedent in 3.15 with corollary 3.7 we are left with the following equations:

exch ◦ h1 = h′1 (4.1)

exch ◦ h2 = h′2 ◦ (exch× id) (4.2)

exch ◦ h3 = h′3 ◦ (exch× id) (4.3)

From 4.1, sinceh1 = id we obtainh′1 = exch. From 4.2, we calculate

exch ◦ h2

= { Definition of h2 }

exch ◦ A ◦ π1

= { exch.2 }

B ◦ exch ◦ π1

= { Products }

B ◦ π1 ◦ (exch× id)

= { Defining h′2 = B ◦ π1 }

h′2 ◦ (exch× id)

and obtainh′2 = B ◦ π1. Making an analogous calculation
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= { Definition of h3 }

exch ◦ π1

= { Products }

π1 ◦ (exch× id)

= { Defining h′3 = π1 }

h′3 ◦ (exch× id)

we obtainh′3 = π1.
We have obtained the accumulation:

spex = afoldAB(h′, τ)
where h′1 = exch

h′2 = B ◦ π1

h′3 = π1

ψ = id
ψ′ = B

Inlining the accumulation gives as a result:

spex (nil, x) = exch x (spex.1)
spex (A `, x) = B (spex (`, x)) (spex.2)
spex (B `, x) = spex (`,B x) (spex.3)

The fused functionspex is more efficient thanexch ◦ split, but it is not optimal. While all the
A’s are being exchanged as the list is being splitted (eq.(spex.2)), all theB’s will be exchanged only
whenspex reaches the end of the list (eq.(spex.1) and(spex.3)).

We can do better.

4.1.4 Helping fusion

The key observation is that in order to improve the fusion in this function we need to move theexch
in (spex.1) into the accumulation function. We want to obtainh′′ andτ ′ such that

afoldAB(h′′, τ ′) = afoldAB(h′, τ)

Looking at the algebraic laws provided by afold, we see that Morph-Afold Fusion (3.19) may be
of help. For thish′ it is easy to find anh′′ such that

h′ = h′′ ◦ (id× exch).

since none of the recursive cases in the algebra use the accumulator. The above equation can be easily
calculated separating it by cases:

exch = h′′1 ◦ exch ⇐ h′′1 = id
B ◦ π1 = h′′2 ◦ (id× exch) ⇐ h′′2 = B ◦ π1

π1 = h′′3 ◦ (id× exch) ⇐ h′′3 = π1

What remains is the calculation ofτ ′. The condition in Morph-Afold is:

AB (id× exch) ◦ τ = τ ′ ◦ (id× exch) (4.4)

We calculate,
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AB (id× exch) ◦ τ
= { FunctorAB, τ definition }

(id + id× exch + id× exch) ◦ (π1 + id× id + id× B)

= { Coproducts }

π1 + id× (exch ◦ id) + id× (exch ◦ B)

= { exch.3 }

π1 + id× exch + id× (A ◦ exch)

= { Products }

π1 ◦ (id× exch) + id ◦ (id× exch) + (id× A) ◦ (id× exch)

= { Coproducts }

(π1 + id + id× A) ◦ d3 ◦ (id× exch)

= { Defining τ ′ = (π1 + id + id× A) ◦ d3 }

τ ′ ◦ (id× exch)

We have obtained the accumulation

spex′ = afoldAB(h′′, τ ′)
where h′′1 = id

h′′2 = B ◦ π1

h′′3 = π1

ψ = id
ψ′ = A

Inlining spex′, we obtain:

spex′ (nil, x) = x
spex′ (A `, x) = B (spex (`, x))
spex′ (B `, x) = spex (`,A x)

where we can observe thatspex′ is optimal in the sense described before.
We have obtained a functionspex′ such that

spex′ ◦ (id× exch) = spex.

Now we calculate from the definition ofmain

main t

= { Definition of main, Afold Pure Fusion }

spex (t, nil)

= { Morh-Afold Fusion (3.19) }

(spex′ ◦ (id× exch)) (t, nil)

= { ( exch.1) }

spex′ (t, nil)

The final program
main t = spex′(t, nil)

does not generate any intermediate structures.



4.2. FOLDL 41

4.2 Foldl

Another example of the kind of functions where pure fusion does not give a satisfactory result is the
well-known operator on listsfoldl. In this section we will derive an effective fusion law forfoldl by
simple calculation.

4.2.1 Foldl as an accumulation

The usual definition of thefoldl recursion operator in functional languages is:

foldl (f, e) nil = e
foldl (f, e) (cons(a, `)) = foldl (f, f (a, e)) `

We can express this operator as an instance of the afold operator for lists:

foldl (f, e) ` = afoldL(h, τ) (`, e)
where h1 = id

h2 = π2 ◦ π1

ψ = f

whereh = [h1, h2] ◦ d, andτ = (π1 + φ) ◦ d, for φ((a, b), x) = (a, (b, ψ(a, x))).
If we have a compositiong ◦ foldl(f, e), and apply Afold Pure Fusion (3.15), we obtain the fol-

lowing undesirable result

(g ◦ foldl (f, e)) ` = afoldL(h′, τ) (`, e)
where h′1 = g

h′2 = π2 ◦ π1

ψ = f

where, as in the previous example,g will only be applied when the whole input list is consumed.
Again we can solve this by the application of the Morph-Afold Fusion law. After some calcula-

tions we obtain:

(g ◦ foldl (f, e)) ` = afoldL(h′, τ ′) (`, g e)
where h′1 = id

h′2 = π2 ◦ π1

which is afoldl. Hereτ ′ = (π1 + φ′) ◦ d, with φ′((a, b), x) = (a, (b, ψ′(a, x))). The sanity condition
on Morph-Afold Fusion for this case is

g ◦ ψ = ψ′ ◦ (id× g)

4.2.2 Fusion law forfoldl

From these results we can derive the following fusion law forfoldl.
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Proposition 4.1 (Foldl Fusion)

g ◦ f = h ◦ (id× g)

∧
g e = e′

⇒
g ◦ foldl (f, e) = foldl (h, e′)



Chapter 5

Extending afold

Afold, as it was defined in the previous chapter, only allows us to express accumulations where the
structure of recursion follows exactly the structure of the input datatype. In this section we define
an extension toafold that is more flexible in the kind of structural recursive accumulations on in-
ductive types that it can express. This extended operator is obtained by relaxing the requirements on
accumulator arrows.

Consider the following example:

subs (nil, y) = (wrap ◦ wrap) y

subs (cons(x, `), y) = subs(`, y) ++ list (y :) subs(`, x)

We can see that the input structure is a list. The expression for an afold on lists is:

f (nil, x) = h1(x)

f (cons(a, `), x) = h2(a, f(`, ψ(a, x)), x)

Now it should be clear thatsubs cannot be defined using our previous formulation of afold. Being
the input structure a list we can only have one recursive call —exactly the same number as the number
of recursive instances in the list datatype. Howeversubs has two recursive calls with different accu-
mulation functions. Nevertheless, if we could transform the input into a binary tree using a natural
transformationρ, we would be able to definesubs as the composition ofρ with an afold for binary
trees. Fortunately, there exists such transformation.

ρ (nil) = empty
ρ (cons(x, xs)) = node(ρ(xs), x, ρ(xs))

The following diagram illustrates the effect ofρ on a sample list.

1 - 2 - 3
ρ

=⇒

3

2

-

3
-

1

-

3

2
-

-

3
-
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5.1 The extendedafold operator

We extend afold in order to accomodate the transformation we have just mentioned into the operator.
To make the extension, we will relax the shape and data preservation condition on the accumulator
arrowτ .

Definition 5.1 An arrow τσ : FA × X → G(A × X) is said to beproper for accumulation if
there exists an arrowτ : GA × X → G(A × X) which conforms to definition 3.1 and a natural
transformationσ : F ⇒ G such thatτσ = τ ◦ (σ × idX). 2

Since bothτ andσ are natural inA, we have thatτσ is also natural inA, so the naturality condition
holds. Nevertheless, from the type ofτσ it should be obvious that it does not preserve shape and data.
Given τσ satisfying Definition 5.1 we can define another extension of functorG that works onX-
actions.

Definition 5.2 Forf : A×X → B, let us defineGσf : FA×X → GB to be:

Gσf = FA×X
σA × idX- GA×X

τA- G(A×X)
Gf

- GB

This means thatGσf = Gf ◦ τσ. In terms of our previous functor extension, we haveGσf =
G ◦ (σ × idX). 2

Definition 5.3 An initial algebrainF is said to beinitial with accumulators if for each objectX,
τσ : FA ×X → G(A ×X) proper for accumulation, andh : GA ×X → A, there exists a unique
f : µF ×X → A that makes the following diagram commute:

FµF ×X
〈Gσf, π2〉 - GA×X

µF ×X

inF × idX

?

f
- A

h

?

We callafold the unique arrow that results from initiality with accumulators and we denote it by

afoldF,G(h, τσ) : µF ×X → A.

2

Like our previous definition of initiality with accumulators, the extended definition is also guar-
anteed to exist in the presence of exponentials.

Proposition 5.4 If C is a cartesian closed category, then every initial algebra is initial with accumu-
lators.

Therefore, our extended accumulations can be defined in categories likeSet or Cpo.
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Proposition 5.5 This definition ofafold is an extension of the previous one.
Takeτid = τ ◦ (id× idX) = τ .

afoldF (h, τ) = afoldF,F (h, τid)

Therefore our previous afold is a particular case of the extended one. We will continue using the
previous notation with only one functor in the subscript to refer to this particular case.

Most functors that we deal with in practice are sums. The following proposition shows us how to
simplify certain equations into simpler ones that only take into account one addend at a time.

Proposition 5.6 LetG = G1 + G2 be a composite functor,h = [h1, h2] ◦ d, Gσf = Gf ◦ (τ1 +
τ2) ◦ d ◦ (σ × idX), whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ 〈Gσf, π2〉 ⇔


f ◦ h1 = k1 ◦ 〈G1σ1

f, π2〉

f ◦ h2 = k2 ◦ 〈G2σ2
f, π2〉

Corollary 5.7 LetG = G1 +G2 be a composite functor,h = [h1, h2],Gσf = Gf ◦ (τ1 + τ2) ◦ d ◦
(σ × idX), whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then

f ◦ (h× idX) = k ◦ 〈Gσf, π2〉 ⇔


f ◦ (h1 × idX) = k1 ◦ 〈G1σ1

f, π2〉

f ◦ (h2 × idX) = k2 ◦ 〈G2σ2
f, π2〉

Corollary 5.8 LetG = G1 +G2 be a composite functor,h = [h1, h2] ◦ d, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ (Gf × id) ⇔


f ◦ h1 = k1 ◦ (G1f × id)

f ◦ h2 = k2 ◦ (G2f × id)

Even though proposition 5.6 and its corollaries 5.7 and 5.8 were formulated and proved for binary
sums, they could be easily extended to n-ary sums. The proofs of all the propositions in this section
and its corollaries can be found in appendix B.

Here are some examples:

(i) Natural numbers

Let σ : 1 +A→ 1 +A×A, be natural inA andτA = (π1 +φ) ◦ d, whereφ : (A×A)×X →
(A×X)× (A×X) is natural inA and preserves shape and data.

Therefore,φ = 〈π1 × ψ, π2 × ψ′〉, for someψ,ψ′ : X → X.

Let h = [h1, h2] ◦ d : (1 +B ×B)×X → B,H = 1 + I × I andf = afoldN,H(h, τσ).

By definition 5.3, f is such that:

f ◦ (inN × idX) = h ◦ 〈Hσf, π2〉

Now we can use corollary 5.7 to obtain:

f ◦ (zero× idX) = h1 ◦ 〈1σ1f, π2〉
f ◦ (succ× idX) = h2 ◦ 〈(I × I)σ2f, π2〉

In pointwise notation,
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f (zero, x) = h1(x)
f (succ(n), x) = h2 (f(n, ψ(x)), f(n, ψ′(x)), x)

For example, binomial coefficients can be defined using the addition law(
n+ 1
m

)
=

(
n

m− 1

)
+

(
n

m

)
and the two base cases (

0
0

)
= 1

(
0
1

)
= 0

which can be expressed as
comb = afoldN,H(h, τσ)

whereh1 = [succ ◦ zero, zero] ◦ π2, h2(c1, c2, x) = c1 + c2, ψ = pred andψ′ = id. That is,

comb (zero, inl()) = succ ◦ zero
comb (zero, inr(y)) = zero
comb (succ(n), x) = comb (n, pred x) + comb (n, x).

(ii) Lists

Let σ : 1 +A×B → 1 +B ×A×B = id + γ with γ(a, b) = (b, a, b).

Let τB = (π1 + φ) ◦ d, whereφ : (B ×A×B)×X → (B ×X)×A× (B ×X) is given by
φ((b, a, b′), x) = ((b, ψ(a, x)), a, (b′, ψ′(a, x))), for someψ,ψ′ : A×X → X.

Let h = [h1, h2] ◦ d : (1 + C ×A× C)×X → C andf = afoldLA,TA
(h, τσ).

By definition 5.3, f is such that:

f ◦ (inL × idX) = h ◦ 〈Tσf, π2〉

Now we can use corollary 5.7 to obtain:

f ◦ (nil× idX) = h1 ◦ 〈1σ1f, π2〉
f ◦ (cons× idX) = h2 ◦ 〈(I ×A× I)σ2f, π2〉

In pointwise notation,

f (nil, x) = h1(x)
f (cons(a, `), x) = h2 (f(`, ψ(a, x)), a, f(`, ψ′(a, x)), x)

5.2 Laws for the extendedafold

We are now going to show some laws about afold. The proof of these theorems can be found in
appendix B. Most of these theorems are the extended counterpart of the afold laws stated in chapter 3.

In the sequel we takeτσ = τ ◦ (σ × idX) andτ ′σ = τ ′ ◦ (σ × idX)
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Theorem 5.9 (Afold Factorization)
Let τ be proper for accumulation andσ : F ⇒ G, then

afoldF,G(h, τσ) = afoldG(h, τ) ◦ (foldF (inG ◦ σ)× idX)

whereτσ = τ ◦ (σ × idX).

Afold Factorization tell us that an extended afold can be factorized in the composition of a fold
and an afold.

Theorem 5.10 (Afold Transformation Shift)
For every natural transformationκ : F ⇒ G, σ : F ⇒ F ,

κ ◦ τσ = τ ′σ ◦ (κ× id)
⇒

afoldF,G(h, τ ′σ◦κ) = afoldF,F (h ◦ (κ× id), τσ)

Afold Transformation Shift tell us that under certain conditions we can move a natural transfor-
mation from the accumulation function to the algebra.

Theorem 5.11
For anyτ ,

foldF (h) ◦ π1 = afoldF,F (h ◦ π1, τ)

Theorem 5.12 (Afold Identity)

afoldF,F (inF ◦ π1, τ) = π1

Theorem 5.13 (Afold Pure Fusion)

f ◦ h = h′ ◦ (Gf × id) ⇒ f ◦ afoldF,G(h, τσ) = afoldF,G(h′, τσ)

To simplify the condition on Afold Pure Fusion the corollary 5.8 might come in handy.

Theorem 5.14 (Acid Rain: Afold-Fold Fusion)

T : ∀A. (HA→ A) → (GA×X → A)
⇒

foldH(h) ◦ afoldF,G(T(inH), τσ) = afoldF,G(T(h), τσ)
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Theorem 5.15 (Fold-Afold Transformation Fusion)
For every natural transformationκ : H ⇒ F ,

afoldF,G(h, τ ′σ) ◦ (foldH(inF ◦ κ)× id) = afoldH,G(h, τσ◦κ)

Corollary 5.16 (Fold-Afold Fusion)
If κ : G⇒ F andσ : F ⇒ F ,

κ ◦ τσ = τ ′σ ◦ (κ× id)
⇒

afoldF,F (h, τ ′σ) ◦ (foldG(inF ◦ κ)× id) = afoldF,F (h ◦ (κ× id), τσ)

When fusing a fold with an afold we may choose between the above theorem and its corollary,
depending on what we want to do. Theorem 5.15 fuses the fold into the accumulation function while
corollary 5.16 fuses it into the algebra.

Theorem 5.17 (Map-Afold Fusion)
For f : A→ B andDA = µFA,

G(f, id) ◦ τ = τ ′ ◦ (G(f, id)× id)
⇒

afoldFB ,GB
(h, τ ′σ) ◦ (Df × id) = afoldFA,GA

(h ◦ (G(f, id)× id), τσ)

Theorem 5.18 (Morph-Afold Fusion)
For everyf : X → X ′,

G(id× f) ◦ τ = τ ′ ◦ (id× f)
⇒

afoldF,G(h, τ ′σ) ◦ (id× f) = afoldF,G(h ◦ (id× f), τσ)

The following law allows us to calculate an accumulation from a fold.

Proposition 5.19
Letf : A×X → A be a function with right identitye, i.e. f(a, e) = a, for everya. Then,

f ◦ (h× idX) = k ◦ 〈Gσf, π2〉 ⇒ foldF (h)(t) = afoldF,G(k, τσ)(t, e)

whereGσf = Gf ◦ τσ, for τσ proper for accumulation.

Corollary 5.20
Let f : A × X → A be a function with right identitye, i.e. f(a, e) = a, for everya. LetG =

G1+G2 andF = F1+F2 be composite functors,h = [h1, h2],Gσf = Gf ◦(τ1+τ2)◦d◦(σ×idX),
whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then, for everyinF = [c1, c2] : FµF → µF

f ◦ (h1 × idX) = k1 ◦ 〈G1σ1
f, π2〉

f ◦ (h2 × idX) = k2 ◦ 〈G2σ2
f, π2〉

 ⇒


foldF (h) ◦ c1 = afoldF,G(k, τσ) ◦ 〈c1, e〉

foldF (h) ◦ c2 = afoldF,G(k, τσ) ◦ 〈c2, e〉



Chapter 6

Case Study

In this chapter we will apply the results of chapter 5 to calculate an efficient program for the Path
Sequence Problem [Bir84, HIT96], starting with a simple specification of the problem.

6.1 Specification

The problem is to determine the length of the longest subsequence of a given sequence of vertices that
forms a connected path in a given directed graphG. For simplicity we suppose thatG is presented
through a predicatearc so thatarc a b is true just in the case that(a, b) is an arc ofG from vertexa
to vertexb.

As illustration, consider the graph of Figure 6.1 and the sequencex = CABDACDEBE. The
length of the longest path sequence is 5, corresponding toCDABE andABCBE.

The specification of the problem is:

llp = maximum ◦ list (length) ◦ (filter path) ◦ subs

wherepath is a predicate that is true if the given sequence is a path in the graph.

path (nil) = true (path.1)
path (cons(x, nil) = true (path.2)
path (cons(x1, cons(x2, xs))) = arc x1 x2 ∧ path(cons(x2, xs)) (path.3)

andsubs is a function that generates all the subsequences of a given sequence.

A

E B

C

D

Figure 6.1: An example graph
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subs (nil) = wrap ◦ nil (subs.1)
subs (cons(x, xs)) = subs xs ++ list (x :) (subs xs) (subs.2)

where(x :) denotes the function that putsx at the head of a given list.

This means that the length of the longest path sequence is defined to be the maximum of the
lengths of all subsequences of the input that satisfy thepath predicate.

6.2 Program Derivation

The specification just given does describe an algorithm to solve the problem, though not an efficient
one. It requires us to generate the set of all subsequences of the input, of which there are2n if the
length of the input isn, test each one for the path property, compute the length of each subsequence
that passes the test, and finally extract the maximum. Clearly, the algorithm is exponential in the
length of the given sequence.

We will calculate an efficient algorithm from this specification by fusing all the parts. We will
start deriving an accumulation forsubs in order to be able to fuse it withfilter path. Then, we will
manipulate the accumulation using the afold theorems.

6.2.1 An accumulation forsubs

To derive an accumulation forsubs we express it as a fold:

subs = foldL([h1, h2])
where h1 = wrap ◦ nil

h2(x, p) = p++list (x :) p.

Now we can use Proposition 5.19. To obtain an afold we need to findf , k andGσ such that
f ◦ (h× idX) = k ◦ 〈Gσf, π2〉. Applying corollary 5.7, we simplify this condition into the following
equations:

f ◦ (h1 × idX) = k1 ◦ 〈G1f ◦ τσ1 , π2〉 (6.1)

f ◦ (h2 × idX) = k2 ◦ 〈G2f ◦ τσ2 , π2〉 (6.2)

Now we have to think where and how we want to accumulate. We express this with the following
invariant.

asubs (xs, y) = list (y :) (subs xs)

whereasubs is the accumulative version ofsubs.
Looking at the equations 6.1 and 6.2 and the invariant suggests thatf be f(r, y) = list (y :) r.

Proposition 5.19 requires us to have a right identitye for f , but f has no such right identity. We
will solve this problem by liftingf to fe, where for anyh : A × B → A, anddr : A × (B + C) →
A×B+A×C, the natural transformation that distributes to the right, we have thathe : A×(1+B) →
A = (π1 + h) ◦ dr, effectively creating avirtual right identity. An analogous lifting can be used to
obtain a left identity for a functiong : B × A → A; we will use the same notation for both liftings.
The reader should be able to infer from the type of the function being lifted and the context which one
is meant.

The lifted invariant is
asubse (xs, y) = list (y :e) (subs xs)
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and the lifted equations now are

fe ◦ (h1 × idX) = k1 ◦ 〈G1fe ◦ τσ1 , π2〉 (6.3)

fe ◦ (h2 × idX) = k2 ◦ 〈G2fe ◦ τσ2 , π2〉. (6.4)

The lifted version off , i.e. fe, does have a right identityinl().

fe(r, y) = list (y :e) r

We resume the derivation using the lifted equations. In equation 6.3, we assumeτσ1 = π1 and
G1 = 1, and obtain:

(list (y :e) ◦ (wrap ◦ nil)) () = k1(y) ⇒ k1 = [wrap ◦ nil,wrap ◦ wrap]

Analyzing the LHS of equation 6.4,

f (h2(x, p), y)

= { Definition of f andh2 }

list (y :e) (p ++ list (x :) p)

= { Naturality of ++ }

list (y :e) p ++ list (y :e) (list (x :) p)

= { Definition of f }

fe(p, y) ++ list (y :e) (fe(p, inr x))

we can observe that there are two occurrences of the recursive parameter with two different values of
the accumulating parameter. This suggests thatσ is a natural transformation of typeA×I ⇒ I×A×I.
This means thatG2 = I × A × I, andτ((c, a, c′), x) = ((c, ψ(a, x)), a, (c′, ψ′(a, x))). We take
σ(x, p) = (p, x, p). After expanding these definitions in equation 6.4, we have:

fe(p, y) ++ list (y :e) (fe(p, inr x)) = k2(fe(p, ψ(x, y)), x, fe(p, ψ′(x, y)), y)

Takingψ = π2, ψ′ = inr ◦ π1, we obtain

fe(p, y) ++ list (y :e) (fe(p, inr x)) = k2 (fe(p, y), x, fe(p, inr x), y)

⇐ { Generalisingfe(p, y) to py andfe(p, inr x) to px }

py ++ list (y :e) px = k2 (py, x, px, y)

Now that we have foundk1 andk2, proposition 5.19 tells us that the accumulation we want is

asubse xs = afoldL,T ([k1, k2] ◦ d, τσ) (xs, e)
where k1 = wrap ◦ wrape

k2((py, x, px), y) = py ++ list (y :e) px

τσ(x, p, y) = ((p, y), x, (p, inr x), y)

Inlining the above function gives as a result:

asubse (nil, inl()) = (wrap ◦ nil) ()
asubse (nil, inr(z)) = (wrap ◦ wrap) z
asubse (cons (x, xs), inl()) = subs (xs, inl()) ++ subs (xs, inr x)
asubse (cons (x, xs), inr(z)) = subs (xs, inr(z)) ++ list (z :) (subs (xs, inr x)
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6.2.2 Fusing(filter path) ◦ asubse

We will now use Theorem 5.13 to fusefilter path with asubse. According to Theorem 5.13, we have
to findk′ such thatf ◦ k = k′ ◦ (T f × id) wheref = filter path. Putting corollary 5.8 into use gives
us the following equations:

(filter path) ◦ k1 = k′1 (6.5)

(filter path) ◦ k2 = k′2 ◦ ((filter path× id× filter path)× idX) (6.6)

In equation 6.5, sincek1 = wrap ◦ wrape andpath is true for singletons and empty lists, we have
thatk′1 = k1.

Next, we will derivek′2. Let’s recall thatk2((py, x, px), y) = py ++ list (y :e) px. The LHS of
equation 6.6 is:

((filter path) ◦ k2) ((py, x, px), y)

= { Definition of k2 }

(filter path) (py ++ list (y :e) px)

= { Proposition A.2 }

(filter path) py ++ (filter path) (list (y :e) px)

We would like to express(filter path) (list (y :e) px) —the expression to the right of the append
operation— in terms offilter path px.

(filter path) ◦ (list (y :e))

= { Proposition A.1 }

list (y :e) (filter (path ◦ (y :e))

= { Property 6.7, see figure 6.2 }

list (y :e) ◦ filter (∧ ◦ 〈arc′ y, path〉)
= { Proposition A.3 }

list (y :e) ◦ filter (arc′ y) ◦ (filter path)

We continue this derivation using pointwise notation.

(list (y :e) ◦ filter (arc′ y)) (filter path px)

= { px = list (x :) p′x }

(list (y :e) ◦ filter (arc′ y)) (filter path (list (x :) p′x))

= { Proposition A.1 }

(list (y :e) ◦ filter (arc′ y) ◦ list (x :)) (filter (path ◦ (x :)) p′x)

= { Proposition A.1, Type Functor }

(list (y :ex :) ◦ filter (arc′ y ◦ (x :))) (filter (path ◦ (x :)) p′x)

Looking at the second equation ofarc′, we observe that

arc′ y ◦ (x :) = λl.case y of inl() → true; inr(z) → arc z x

To make the notation lighter and the calculations easier we are now going to consider the two
cases ofy separately.
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We need a new predicatearc′ such that the following property holds:

(path ◦ (y :e)) p = (arc′ y p) ∧ path p (6.7)

We calculate:
true

= { path.1 andpath.2 }

(path ◦ (y :e)) nil

= { Property 6.7 }

(arc′ y nil) ∧ path nil

= { path.1 }

arc′ y nil

(arc′ y x) ∧ path cons(x, xs)

= { Property 6.7 }

(path ◦ (y :e)) cons(x, xs)

= { path.3 and Definition of(−)e }

case y of
inl() → path cons(x, xs)
inr(z)→ arc z x ∧ path cons(x, xs)

Hence, the predicatearc′ we are after is:

arc′ y nil = true (arc′.1)
arc′ y cons(x, xs) = case y of

inl() → true
inr(z)→ arc z x

(arc′.2)

Figure 6.2: Derivation ofarc′

Casey = inl()

(list (y :ex :) ◦ filter (arc′ y ◦ (x :))) (filter (path ◦ (x :)) p′x)

= { Definition of (−)e lifting }

(list (x :) ◦ filter (λl.true)) (filter (path ◦ (x :)) p′x)

= { Corollary A.5 }

list (x :) (filter (path ◦ (x :)) p′x)

= { Proposition A.1 }

filter path (list (x :) p′x)

= { px = list (x :) p′x }

filter path px

Casey = inr(z)

(list (y :ex :) ◦ filter (arc′ y ◦ (x :))) (filter (path ◦ (x :)) p′x)

= { Definition of (−)e lifting }

(list (y :x :) ◦ filter (λl.arc z x)) (filter (path ◦ (x :)) p′x)

= { Proposition A.4 }

list (y :x :) ( if arc z x then filter (path ◦ (x :)) p′x
else nil ())
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= { Conditional }

if arc z x then list (y :x :) (filter (path ◦ (x :)) p′x)
else nil ()

= { Functors, proposition A.1 }

if arc z x then (list (y :) ◦ filter path ◦ list (x :)) p′x
else nil ()

= { px = list (x :) p′x }

if arc z x then list (y :) (filter path px)
else nil ()

Putting both cases together,

(filter path) (list (y :e) px) = case y of
inl() → filter path px

inr(z)→ if arc z x then list (y :) (filter path) px)
else nil ()

Returning to the main derivation,

((filter path) ◦ k2) ((py, x, px), y)

= { Previous calculations }

(filter path) py ++ case y of
inl() → filter path px

inr(z)→ if arc z x then list (y :) (filter path px)
else nil ()

By equation 6.6

k′2((filter path px, x, filter path py), y) = filter path py ++
case y of

inl() → filter path px

inr(z)→ if arc z x
then list (y :) (filter path px)
else nil ()

⇐ { Generalising(filter path px) to qx and(filter path py) to qy }

k′2((qy, x, qx), y) = qy ++ case y of
inl() → qx
inr(z)→ if arc z x then list (z :) qx

else nil ()
= { Coproducts }

k′2((qy, x, qx), y) = case y of
inl() → qy ++qx
inr(z)→ qy ++ if arc z x then list (z :) qx

else nil ()

We have obtainedk′1 andk′2. So, the fusion offilter path andasubse, functionfps, is
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fps xs = afoldL,T ([k′1, k
′
2] ◦ d, τσ) (xs, inl())

where k′1(y) = case y of
inl() → (wrap ◦ nil) ()
inr(z)→ (wrap ◦ wrap) z

k′2((qy, x, qx), y) = case y of
inl() → qy ++qx
inr(z)→ qy ++ if arc z x then list (z :) qx

else nil ()
τσ(x, xs, y) = ((xs, y), x, (xs, inr x), y)

Inlining the above function gives the following result:

fps(nil, inl()) = (wrap ◦ nil) ()
fps(nil, inr(z)) = (wrap ◦ wrap) z
fps(cons(x, xs), inl()) = fps (xs, inl()) ++fps (xs, inr x)
fps(cons(x, xs), inr(z)) = fps (xs, inr(z)) ++ if arc z x then list (z :) (fps (xs, inr x))

else nil ()

6.2.3 Fusing(maximum ◦ list (length)) ◦ fps

So far, we have obtainedfps, which is the fusion offilter path and asubse. Now we will fuse
(maximum ◦ list (length)) ◦ fps to obtain our final result, functionllp. Here length is the function
that gives the length of a list:

length nil = 0 (length.1)
length (cons(x, xs)) = 1 + length xs (length.2)

andmaximum gives the maximum of a list of positive integers.

maximum nil = 0 (maximum.1)
maximum (cons(x, xs)) = max (x,maximum xs) (maximum.2)

wheremax gives the maximum of a pair of integers.

Let us callmll = maximum ◦ list (length).
According to the Afold Pure Fusion (5.13), we have to findk′′ such thatmll◦k′ = k′′◦(Tmll×id).

Applying corollary 5.8 to this equation we obtain:

mll ◦ k′1 = k′′1 (6.8)

mll ◦ k′2 = k′′2 ◦ ((mll × id×mll)× idX) (6.9)

From equation 6.8, after a few calculations we obtaink′′1 (y) = case y of
inl() → 0
inr(z)→ 1

.

Calculating from the LHS of equation 6.9,
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(mll ◦ k′2) ((qy, x, qx), y)

= { Definition of k′2 }

mll ( case y of
inl() → qy ++qx
inr(z)→ qy ++ if arc z x then list (z :) qx

else nil ())
= { Coproducts }

case y of
inl() → mll (qy ++qx)
inr(z)→ mll (qy ++ if arc z x then list (z :) qx

else nil ())
= { Naturality of ++, proposition A.6 }

case y of
inl() → max (mll qy,mll qx)
inr(z)→ max (mll qy,mll ( if arc z x then list (z :) qx

else nil ()))
= { Conditional }

case y of
inl() → max (mll qy,mll qx)
inr(z)→ max (mll qy, if arc z x thenmll (list (z :) qx)

elsemll (nil ()))
= { mll (list (z :) qx) = 1 +mll qx,mll (nil ()) = 0 — proof obligations }

case y of
inl() → max (mll qy,mll qx)
inr(z)→ max (mll qy, if arc z x then 1 +mll qx

else 0)

The first proof obligations is

mll (list (z :) qx)

= { Definition of mll }

(maximum ◦ list (length) ◦ list (z :)) qx
= { Functors, proposition A.7 }

(maximum ◦ list (1+) ◦ list (length)) qx
= { Proposition A.8 }

((1+) ◦maximum ◦ list (length)) qx
= { Definition of mll }

1 +mll qx

And the second one is
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mll (nil ())

= { Definition of mll }

(maximum ◦ list (length)) (nil ())

= { Type Functor }

maximum (nil ())

= { maximum.1 }

0

We have obtained

k′′2 ((mll qy, x,mll qx), y) = case y of
inl() → max (mll qy,mll qx)
inr(z)→ max (mll qy, if arc z x

then 1 +mll qx
else 0)

⇐ { Generalisingmll qx to rx andmll qy to ry }

k′′2 ((ry, x, rx), y) = case y of
inl() → max (ry, rx)
inr(z)→ max (ry, if arc z x then 1 + rx

else 0)

The result of the fusion ofllp, fllp is

fllp xs = afoldL,T ([k′′1 , k
′′
2 ] ◦ d, τσ) (xs, e)

where k′′1 (y) = case y of
inl() → 0
inr(z)→ 1

k′′2 ((ry, x, rx), y) = case y of
inl() → max (ry, rx)
inr(z)→ max (ry, if arc z x then 1 + rx

else 0)
τσ(x, l, y) = ((l, y), x, (l, inr x), y)

Inlining the above function gives as a result:

fllp (nil, inl()) = 0
fllp (nil, inr(z)) = 1
fllp (cons(x, xs), inl()) = max (fllp (xs, inl()), fllp (xs, inr x))
fllp (cons(x, xs), inr(z)) = max (fllp (xs, inr(z)), if arc z x then 1 + fllp (xs, inr x))

else 0)

Our final program is

llp′ xs = flpp (xs, inl())
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6.3 Summary

We have started from a simple but inefficient specification of the path sequence problem and by means
of program calculation —and a heavy use of fusion laws— we have obtained an efficient program.
We had to derive an accumulation forsubs since the fusion withfilter path could not be performed
otherwise.



Chapter 7

Conclusions

In this thesis several aspects of the problem of calculating programs in the presence of accumulators
were considered. The motivation for this interest is that accumulations are in widespread use in
functional programs but they are difficult to reason with when using standard recursion operators
since they require the use of currying and higher order.

The standard category-theoretical modelling of types and programs was used as foundation. The
main reason for choosing this representation is its ability to abstract from the details of specific
datatypes and to serve as a streamlined proof framework. A presentation of this model was made
in chapter 2, which introduced the concepts and tools that would be needed in later chapters. As
such, it is by no means intended to be exhaustive; other sources of information are [BdM97, BJJM99,
Fok92, JR97].

In chapter 3 the afold generic recursive operator on inductive datatypes is presented. [Par01]
introduced afold, along with a collection of algebraic laws. A simpler presentation of this operator
and its laws can be found in [Par02], on which our presentation is based. In these previous works
only polynomial datatypes were considered. One of the contributions of this thesis is the study of the
structure of afold in the presence of regular datatypes, showed by the instance of afold for rose trees.
The rest of the contributions are located from chapter 4 onwards.

The structure of some accumulations, in particular tail recursive accumulations, yield as a result
that fusion is not completely effective, as it does not eliminate all the intermediate structures. In
chapter 4 a technique was introduced that improves the fusion of such accumulations. This technique
is illustrated by two examples. This first example was taken from [Voi03], where the problem of sub-
optimal fusions was pointed out. The second example is the classic functionfoldl, typical example
of a tail recursive function. Although its fusion law is already known [Bir98], here it is derived in
calculational form from its expression as an accumulation.

The afold operator, as it was defined, was unable to express certain kinds of functions where
accumulations have more than one recursive call in each subterm, with different accumulator values.
In chapter 5 an extension to afold that copes with this limitation is proposed. This extension has
proved to be conservative: laws for the extended operator are similar to those of the original afold.
Additionally, it has been found that this extended operator can be factorised in the composition of
a fold whose algebra is a natural transformation, with the original afold. This fact proved to be
extremely useful when proving the extended operator laws, as can be seen in the simplicity of the
proofs in Appendix B.

Finally, in chapter 6, we present a case study for the path sequence problem. This problem was
originally solved with the use of accumulators in [Bir84], and was taken up again in [HIT96]. In this
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work, a program is derived from an specification of the problem using the extended operator and its
associated laws introduced in chapter 5.



Appendix A

Simple Properties

In this appendix we list simple propositions that were used in the case study. We will not provide
proofs of these propositions, but references will be provided when known.

Proposition A.1 [BdM97, Tho99]list (f) ◦ filter (h ◦ f) = filter h ◦ list (f).

Proposition A.2 (filter p) (xs++ys) = filter p xs++filter p ys

Proposition A.3 [Bir98] filter p xs = (filter f ◦ filter g) xs
wherep x = f x ∧ g x

Proposition A.4 x does not occur free inb⇒ filter (λx.b) xs = if b then xs
else nil()

Corollary A.5 filter (λx.true) xs = xs

Proposition A.6 maximum (xs++ys) = max (maximum xs,maximum ys)

Proposition A.7 length ◦ (z :) = 1 + length

Proposition A.8 maximum ◦ list (1+) = (1+) ◦maximum
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Appendix B

Proofs

Proposition 5.4
If C is a cartesian closed category, then every initial algebra is initial with accumulators.

Proof. Let inF be initial. Consider anX-actionh : FA×X → A. With it construct theF -algebra

k = curry(k) : F [X → A] → [X → A]

where
k = h ◦ 〈Gσapply, π2〉 : F [X → A]×X → A

Now consider the following composite diagram:

FµF × idX
F foldF (k)× idX- F [X → A]×X

〈Gσapply, π2〉- GA×X

(I) (II)

µF × idX

inF × idX

?

foldF (k)× idX

- [X → A]

k × idX

?

apply
- A

h

?

(I) commutes by definition of fold, whereas (II) commutes by the universal property of the expo-
nential. i.e.

apply ◦ curry(k × idX) = k

Therefore, the outer rectangle commutes. By the bijection between the curried and uncurried
version of an arrow, we have that there is a uniquef : µF × X → A such thatapply ◦ (foldF (k) ×
idX) = f . Since

〈Gσapply, π2〉 ◦ (F foldF (k)× idX)

= { Products }

〈Gσapply ◦ (F foldF (k)× idX), π2〉
= { Definition 5.2 }

〈Gapply ◦ τσ ◦ (F foldF (k)× idX), π2〉
= { Natural transformationτσ, Functors }

〈Gσ(apply ◦ (foldF (k)× idX)), π2〉
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it follows thatf is the unique arrow such that

f ◦ (inF × idX) = h ◦ 〈Gσf, π2〉

and thereforeinF is initial with accumulators. 2

In the sequel we takeτσ = τ ◦ (σ × idX) andτ ′σ = τ ′ ◦ (σ × idX)

Theorem B.1 (Lemma )LetG = G1 + G2, τσ = (τ1 + τ2) ◦ d ◦ (σ × idX), whereσ = σ1 + σ2,
then

d ◦ 〈Gσf, π2〉 = (〈G1σ1f, π2〉+ 〈G2σ2f, π2〉) ◦ d

Proof.

d ◦ 〈Gσf, π2〉
= { Definition of G, definition 5.2 }

d ◦ 〈(G1 +G2)f ◦ (τ1 + τ2) ◦ d ◦ (σ × idX), π2〉
= { Naturality of d }

d ◦ 〈(G1f +G2f) ◦ (τ1 + τ2) ◦ (σ1 × idX + σ2 × idX) ◦ d, π2〉
= { Definition 5.2 }

d ◦ 〈(G1σ1f +G2σ2f) ◦ d, π2〉
= { Proof obligation }

(〈G1σ1f, π2〉+ 〈G2σ2f, π2〉) ◦ d

The proof obligation isd ◦ 〈(h+ k) ◦ d, π2〉 = (〈h, π2〉+ 〈k, π2〉) ◦ d. Sinced is an isomorphism,
this is the same as proving

〈(h+ k) ◦ d, π2〉 ◦ d−1 = d−1 ◦ (〈h, π2〉+ 〈k, π2〉)

The proof goes like this

〈(h+ k) ◦ d, π2〉 ◦ d−1

= { Products }

〈(h+ k), [π2, π2]〉
= { Coproducts }

〈[inl ◦ h, inr ◦ k], [π2, π2]〉
= { Exchange Law }

[〈inl ◦ h, π2〉, 〈inr ◦ k, π2〉]
= { Products }

[(inl× id) ◦ 〈h, π2〉, (inr × id) ◦ 〈k, π2〉]
= { Coproducts }

[inl× id, inr × id] ◦ (〈h, π2〉+ 〈k, π2〉)
= { Definition of d−1 }

d−1 ◦ (〈h, π2〉+ 〈k, π2〉)
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2

Proposition 5.6
LetG = G1 +G2 be a composite functor,h = [h1, h2]◦d,Gσf = Gf ◦ (τ1 +τ2)◦d◦ (σ× idX),

whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ 〈Gσf, π2〉 ⇔


f ◦ h1 = k1 ◦ 〈G1σ1

f, π2〉

f ◦ h2 = k2 ◦ 〈G2σ2
f, π2〉

Proof. Considerk = [k1, k2] ◦ d : GA×X → A, with k1 : G1A→ A andk2 : G2A→ A. Then,

f ◦ h = k ◦ 〈Gσf, π2〉
≡ { h = [h1, h2] ◦ d, k = [k1, k2] ◦ d }

f ◦ [h1, h2] ◦ d = [k1, k2] ◦ d ◦ 〈Gσf, π2〉
≡ { Lemma B.1 }

f ◦ [h1, h2] ◦ d = [k1, k2] ◦ (〈G1σ1f, π2〉+ 〈G2σ2f, π2〉) ◦ d
≡ { Post-composing byd−1 }

f ◦ [h1, h2] = [k1, k2] ◦ (〈G1σ1f, π2〉+ 〈G2σ2f, π2〉)
≡ { Coproducts }

[f ◦ h1, f ◦ h2] = [k1 ◦ 〈G1σ1f, π2〉, k2 ◦ 〈G2σ2f, π2〉]

By case analysis, we have the desired result. 2

Corolary 5.7
LetG = G1 +G2 be a composite functor,h′ = [h′1, h

′
2],Gσf = Gf ◦ (τ1 + τ2) ◦ d ◦ (σ × idX),

whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then

f ◦ (h′ × idX) = k ◦ 〈Gσf, π2〉 ⇔


f ◦ (h′1 × idX) = k1 ◦ 〈G1σ1

f, π2〉

f ◦ (h′2 × idX) = k2 ◦ 〈G2σ2
f, π2〉

Proof. Take proposition 5.6, and let’s consider thish in particular:

h = [h′1 × id, h′2 × id] ◦ d

h

= { Definition of h }

[h′1 × id, h′2 × id] ◦ d
= { [g × f, h× f ] ◦ d = [g, h]× f (see example 2.27) }

[h′1, h
′
2]× id
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2

Corolary 5.8
LetG = G1 +G2 be a composite functor,h = [h1, h2] ◦ d, andk = [k1, k2] ◦ d. Then

f ◦ h = k ◦ (Gf × id) ⇔


f ◦ h1 = k1 ◦ (G1f × id)

f ◦ h2 = k2 ◦ (G2f × id)

Proof. Take proposition 5.6, also takeσ = id andτ1 = π1, τ2 = π1.

〈Gσf, π2〉
= { Definition of Gσ }

〈Gf ◦ ((π1 + π1) ◦ d), π2〉
= { (π1 + π1) ◦ d = π1 (see example 2.26) }

〈Gf ◦ π1, π2〉
= { Products }

(Gf × id) ◦ 〈π1, π2〉
= { Product identity }

Gf × id

The proofs that〈G1σ1
f, π2〉 = G1f × id and〈G2σ2

f, π2〉 = G2f × id are analogous. 2

Theorem 5.9 (Afold Factorization)
Let τ be proper for accumulation andσ : F ⇒ G, then

afoldF,G(h, τσ) = afoldG(h, τ) ◦ (foldF (inG ◦ σ)× idX)

whereτσ = τ ◦ (σ × idX).

Proof. Let us consider the following diagram:

FµF ×X
F foldF (inG ◦ σ)× idX- FµG×X

(I) GµG×X

σ × idX

?

〈GafoldG(h, τ), π2〉
- GA×X

〈GafoldG(h, τ) ◦ τσ , π2〉
-

(II)

µF ×X

inF × idX

? foldF (inG ◦ σ)× idX - µG×X

inG ×X

? afoldG(h, τ)
- A

h

?

afoldF,G(h, τσ)
-

The triangle in the diagram commutes:
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FµF ×X
F foldF (inF ◦ σ)× idX- FµG×X

G(µF ×X)

τσ,µF

?

G(foldF (inF ◦ σ)× idX)
- G(µG×X)

τσ,µG

?

Figure B.1: Using the naturality ofτσ

〈GafoldG(h, τ), π2〉 ◦ (σ × idX)

= { Definition of G }

〈GafoldG(h, τ) ◦ τ , π2〉 ◦ (σ × idX)

= { Products }

〈GafoldG(h, τ) ◦ τ ◦ (σ × idX), π2〉
= { τσ = τ ◦ (σ × idX) }

〈GafoldG(h, τ) ◦ τσ, π2〉

(I) and (II) commute by definition of fold (2.1) and afold (3.3) respectively.
Since

〈GafoldG(h, τ) ◦ τσ, π2〉 ◦ (F foldF (inF ◦ σ)× idX)

= { Products }

〈GafoldG(h, τ) ◦ τσ ◦ (F foldF (inF ◦ σ)× idX), π2〉
= { τσ is a natural transformation (see Figure B.1) }

〈GafoldG(h, τ) ◦G(foldF (inF ◦ σ)× idX) ◦ τσ, π2〉
= { Functors }

〈G(afoldG(h, τ) ◦ (foldF (inF ◦ σ)× idX)) ◦ τσ, π2〉

we have that the following diagram commutes.

FµF ×X
〈Gσ(afoldG(h, τ) ◦ (foldF (inF ◦ σ)× idX)), π2〉- GA×X

µF ×X

inF × idX

? afoldG(h, τ) ◦ (foldF (inF ◦ σ)× idX)
- A

h

?

By initiality with accumulators (5.3), the theorem is proved.
2

Theorem 5.10 (Afold Transformation Shift)
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For every natural transformationκ : F ⇒ G, σ : F ⇒ F ,

κ ◦ τσ = τ ′σ ◦ (κ× id)
⇒

afoldF,G(h, τ ′σ◦κ) = afoldF,F (h ◦ (κ× id), τσ)

Proof. The diagram for the afold on the left hand side is

FµF ×X
〈Gσ◦κf, π2〉 - GA×X

µF ×X

inF × idX

?

f
- A

h

?

If we take the arrow on the top of the diagram, and make some calculations,

〈Gσ◦κf, π2〉
= { Definition of Gσ }

〈Gf ◦ τ ′ ◦ (σ ◦ κ× id), π2〉
= { Products }

〈Gf ◦ τ ′σ ◦ (κ× id), π2〉
= { Hypothesis }

〈Gf ◦ κ ◦ τσ, π2〉
= { Natural Transformationκ }

〈κ ◦ Ff ◦ τσ, π2〉
= { Products }

(κ× id) ◦ 〈Ff ◦ τσ, π2〉

we have the following diagram:

FµF ×X
〈Fσf, π2〉 - FA×X

GA×X

(κ× idX

?

)

µF ×X

inF × idX

?

f
- A

h

?

2
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Theorem 5.11
For anyτ ,

foldF (h) ◦ π1 = afoldF,F (h ◦ π1, τ)

Proof.

foldF (h) ◦ π1

= { Afold Lifting (3.13) }

afoldF (h ◦ π1, τ)

= { Proposition 5.5 }

afoldF,F (h ◦ π1, τ)
2

Theorem 5.12 (Afold Identity)

afoldF,F (inF ◦ π1, τ) = π1

Proof.

afoldF,F (inF ◦ π1, τ)

= { Proposition 5.5 }

afoldF (inF ◦ π1, τ)

= { Afold Identity (3.14) }

π1
2

Theorem 5.13 (Afold Pure Fusion)

f ◦ h = h′ ◦ (Gf × id) ⇒ f ◦ afoldF,G(h, τσ) = afoldF,G(h′, τσ)

Proof.

f ◦ afoldF,G(h, τσ)

= { Afold Factorization (5.9) }

f ◦ afoldG(h, τ) ◦ (foldF (inG ◦ σ)× id)

= { Afold Pure Fusion (3.15) }

afoldG(h′, τ) ◦ (foldF (inG ◦ σ)× id)

= { Afold Factorization (5.9) }

afoldF,G(h′, τσ)
2

Theorem 5.14 (Acid Rain: Afold-Fold)

T : ∀A. (HA→ A) → (GA×X → A)
⇒

foldH(h) ◦ afoldF,G(T(inH), τσ) = afoldF,G(T(h), τσ)
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Proof.
foldH(h) ◦ afoldF,G(T(inH), τσ)

= { Afold Factorization (5.9) }

foldH(h) ◦ afoldG(T(inH), τ) ◦ (foldF (inG ◦ σ)× id)

= { Acid Rain: Afold-Fold Fusion (3.16) }

afoldG(T(h), τ) ◦ (foldF (inG ◦ σ)× id)

= { Afold Factorization (5.9) }

afoldF,G(T(h), τσ)
2

Theorem 5.15 (Fold-Afold Transformation Fusion)
For every natural transformationκ : H ⇒ F ,

afoldF,G(h, τ ′σ) ◦ (foldH(inF ◦ κ)× id) = afoldH,G(h, τσ◦κ)

Proof.
afoldF,G(h, τ ′σ) ◦ (foldH(inF ◦ κ)× id)

= { Afold Factorization (5.9) }

afoldG(h, τ) ◦ (foldF (inG ◦ σ)× id) ◦ (foldH(inF ◦ κ)× id)

= { Products }

afoldG(h, τ) ◦ (foldF (inG ◦ σ) ◦ foldH(inF ◦ κ))× id

= { Acid Rain: Fold-Fold Fusion (2.43) }

afoldG(h, τ) ◦ (foldH(inG ◦ σ ◦ κ)× id)

= { Afold Factorization (5.9) }

afoldH,G(h, τσ◦κ)
2

Corollary 5.16 (Fold-Afold Fusion)
If κ : G⇒ F andσ : F ⇒ F ,

κ ◦ τσ = τ ′σ ◦ (κ× id)
⇒

afoldF,F (h, τ ′σ) ◦ (foldG(inF ◦ κ)× id) = afoldF,F (h ◦ (κ× id), τσ)

Proof.
afoldF,F (h, τ ′σ) ◦ (foldG(inF ◦ κ)× id)

= { Fold-Afold Transformation Fusion (5.15) }

afoldG,F (h, τσ◦κ)

= { Afold Transformation Shift (5.10) }

afoldF,F (h ◦ (κ× id), τσ)
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2

Theorem 5.17 (Map-Afold Fusion)
For f : A→ B andDA = µFA,

G(f, id) ◦ τ = τ ′ ◦ (G(f, id)× id)
⇒

afoldFB ,GB
(h, τ ′σ) ◦ (Df × id) = afoldFA,GA

(h ◦ (G(f, id)× id), τσ)

Proof.

afoldFB ,GB
(h, τ ′σ) ◦ (Df × id)

= { Afold Factorization (5.9) }

afoldG(h, τ ′) ◦ (foldFB
(inG ◦ σ)× id) ◦ (Df × id)

= { Products }

afoldG(h, τ ′) ◦ (foldFB
(inG ◦ σ) ◦Df × id)

= { Map-Fold Fusion (2.45) }

afoldG(h, τ ′) ◦ (foldFA
(inG ◦ σ ◦ F (f, id))× id)

= { Afold Factorization (5.9),F (f, id) is natural on its2nd argument }

afoldFA,GA
(h, τ ′ ◦ (σ ◦ F (f, id)× id))

= { Natural Transformationσ }

afoldFA,GA
(h, τ ′ ◦ (G(f, id) ◦ σ × id))

= { Hypothesis }

afoldFA,GA
(h,G(f, id) ◦ τσ)

= { Functors }

afoldFA,GA
(h ◦ (G(f, id)× id), τσ)

Where in the last step, we use the fact that

〈G(id, g) ◦G(f, id) ◦ τσ, π2〉 = (G(f, id)× id) ◦ 〈G(id, g) ◦ τσ, π2〉

2

Theorem 5.18 (Morph-Afold Fusion)
For everyf : X → X ′,

G(id× f) ◦ τ = τ ′ ◦ (id× f)
⇒

afoldF,G(h, τ ′σ) ◦ (id× f) = afoldF,G(h ◦ (id× f), τσ)

Proof.



afoldF,G(h, τ ′σ) ◦ (id× f)

= { Afold Factorization (5.9) }

afoldG(h, τ ′) ◦ (foldF (inG ◦ σ)× id) ◦ (id× f)

= { Products }

afoldG(h, τ ′) ◦ (id× f) ◦ (foldF (inG ◦ σ)× id)

= { Morph-Afold Fusion (3.19) }

afoldG(h ◦ (id× f), τ) ◦ (foldF (inG ◦ σ)× id)

= { Afold Factorization (5.9) }

afoldF,G(h ◦ (id× f), τ ′σ)
2

Proposition 5.19

Letf : A×X → A be a function with right identitye, i.e. f(a, e) = a, for everya. Then,

f ◦ (h× idX) = k ◦ 〈Gσf, π2〉 ⇒ foldF (h)(t) = afoldF,G(k, τσ)(t, e)

whereGσf = Gf ◦ τσ, for τσ proper for accumulation.

Proof. First, let us consider the following composite diagram:

FµF ×X
F foldF (h)× idX- FA×X

〈Gσf, π2〉- GA×X

(I) (II)

µF ×X

inF × idX

?

foldF (h)× idX

- A×X

h× idX

?

f
- A

k

?

(I) commutes by definition of fold, while(II) commutes by hypothesis. Since,

〈Gσf, π2〉 ◦ (F foldF (h)× idX) = 〈Gσ(f ◦ (foldF (h)× idX)), π2〉

by initiality with accumulators we obtain that:

f ◦ (foldF (h)× idX) = afoldF,G(k, τσ)

Therefore,

foldF (h)(t) = f(foldF (h)(t), e) = afoldF,G(k, τσ)(t, e)

as desired. 2

Corollary 5.20
Let f : A × X → A be a function with right identitye, i.e. f(a, e) = a, for everya. LetG =

G1+G2 andF = F1+F2 be composite functors,h = [h1, h2],Gσf = Gf ◦(τ1+τ2)◦d◦(σ×idX),
whereσ = σ1 + σ2, andk = [k1, k2] ◦ d. Then, for everyinF = [c1, c2] : FµF → µF

f ◦ (h1 × idX) = k1 ◦ 〈G1σ1
f, π2〉

f ◦ (h2 × idX) = k2 ◦ 〈G2σ2
f, π2〉

 ⇒


foldF (h) ◦ c1 = afoldF,G(k, τσ) ◦ 〈c1, e〉

foldF (h) ◦ c2 = afoldF,G(k, τσ) ◦ 〈c2, e〉

Proof. This corollary is simply the application of proposition 5.7 to proposition 5.19. 2
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