Generic Accumulations for Program Calculation

Mauro Jaskelioff
Facultad de Cs. Exactas, Ingenieria y Agrimensura
Universidad Nacional de Rosario
Rosario - Argentina
mauro@fceia.unr.edu.ar

December 2004

Supervised by:

Alberto Pardo

Instituto de Computacién

Facultad de Ingenieria

Julio Herrera y Reissig 565 - Piso 5
11300 Montevideo

Uruguay

Abstract

Accumulations are recursive functions widely used in the context of functional pro-
gramming. They maintain intermediate results in additional parameters, called accumu-
lators, that may be used in later stages of computing. In a former work [Par02] a generic
recursion operator namexdold was presentedifold makes it possible to write accumu-
lations defined by structural recursion for a wide spectrum of datatypes (lists, trees, etc.).
Also, a number of algebraic laws were provided that served as a formal tool for reasoning
about programs with accumulations.

In this work, we present an extensionatold that allows a greater flexibility in the
kind of accumulations that may be represented. This extension, in essence, provides
the expressive power to allow accumulations to have more than one recursive call in each
subterm, with different accumulator values —something that was not previously possible.
The extension is conservative, in the sense that we obtain similar algebraic laws for the
extended operator. We also present a case study that illustrates the use of the algebraic
laws in a calculational setting and a technique for the improvement of fused programs
that do not eliminate all intermediate structures.

Contents

(1__Introduction| 1
[I.1 ThefoldRecursion Operatpr o e 2
[1.2 Accumulatofls e 3
[1.3 Conitributionls e 4
1.4 OverviewoftheThedis 4

[2__Preliminaries 7
2.1 Categorigs e e e e e 7

.11 Diagrams e e e e 8
[2.1.2" Iniialand Terminal Objedts 9
[2.2_Functors and Natural Transformations 10
2.2.1 Natural Transformations 11
23 Productand Sum 11
[2.4 Distributive Categores e e e e 14
[2.4.1 Conditional operator e 16
[2.5 Polynomialfunctors 17
2.6 Inductive Typas e 17
[2.6.1 Algebras e 17
[2.6.2 InitialAlgebrals 19
7 FQld 20
271 StandardlawsforFold 22
272 Mapo 23
[2.8 RegularFunctors 23

[3 Tntroducing afold| 25
3.1 TheafoldOperator e 26
BZ Examples 28
[3.3 Lawsforafold. 32

|4~ Improving Fusiong 37
4.1 An Example of Fusion Improvement oL 37

4.1.1 ThespexProblemp 37
412 AfoldforABlistS. e 38
4.1.3 Attempting Pure FUSIpn L 38
4.1.4 Helpingfusion 39
4.2 FOIdl e 41

Vi

5 Extending afold

6.1 The extendedfold operaior

[5.2 Taws for the extendeafold

6.1 _Specification

[6.2Program Derivatign

0.2.1 Anaccumulation fosubs|

6.2.2 Fusingfilter path) o asubs,|
6.2.3 Fusingdmaximum o list (length)) o fps|

0. ummary

[/__Conclusions

A~ Simple Properties

[B_Proofs

CONTENTS

Chapter 1

Introduction

The aim of this work is to present a theoretical framework and associated techniques that help in
the calculation of programs with accumulators. Program calculation includes the derivation and opti-
mization of programs as well as the verification of their properties. We will see programs as algebraic
structures that can be manipulated by algebraic laws, and focus on one kind of algebraic structure that
models recursion operators.

Recursion operators on datatypes are a common tool that functional programmers use to structure
programs. These operators abstract common patterns of recursion according to the data structure
they manipulate. By expressing a program with these encapsulated patterns of recursion, a number
of associated laws are obtained for free. Another benefit of using recursion operators is that they
can be parameterised by the structure of the datatype they use, making programs more general. This
approach, known as generic programming, consists of an algebraic model of datatypes and programs
that allows us to obtain an abstract description of datatypes and to define programs that operate on this
abstract description. Given an instance of the abstract datatype we will have an instance of the abstract
program for that specific datatype. This algebraic approach also serves as a formal basis to obtain
algebraic laws and a smooth proof framework suitable for the calculation of functional programs.

Functional programs are usually obtained by gluing together the solutions to subproblems by
means of functional composition [Hug89]. This compositional style is favored by programmers be-
cause it has the advantage of producing modular and easy to understand programs. Nevertheless,
it is often the case that programs written in this style are not efficient. In a functional composition
f o g, an intermediate data structure has to be generatghiy to be consumed immediately By
This source of inefficiency can often be removed by a technique cddifatestatiorfWad90], which
makes it possible, under certain conditions, to derive a program that does not build the intermediate
structures. One of the advantages of using recursion operators is that they provide a class of algebraic
laws that correspond to deforestation, cafiesionlaws.

Another technique frequently used by functional programmers is the generalization of functions
by the addition of an extra parameter that is used to pass intermediate results to recursive calls. These
functions that keep intermediate results in additional parameters are aatlathulations Accumu-
lations are usually introduced to gain expressiveness or to optimize an inefficient function.

This thesis provides an extension to a recursion operator for accumulationsafalig{Par02]
and its algebraic laws. A special emphasis has been put on the pragmatics of these laws for pro-
gram calculation. Accordingly, a case study is provided showing the use of these laws in a practical
situation.

The study of fusion in accumulations has a long history. In the seminal work |Bir84], the fusion of

1

2 1. INTRODUCTION

accumulations was introduced as an optimization technique. More recently, there has been a consid-
erable amount of research activity focused on the fusion of accumulations._In [HIT96], higher-order
folds are used to represent accumulations.[In [CDPR98, Cor99] the fusion of programs with accu-
mulating parameters is based on the descriptional composition of attribute grammars. _In [VK04] the
fusion of accumulations is obtained by means of macro tree transducers.

1.1 Thefold Recursion Operator

Thefold recursion operator encapsulates the pattern of recursion of functions that are structured ac-
cording to the data structure that they consume [Bir98, Hut99].
Folds over lists correspond to the well-knofahdr operator:

foldr t (=B B) =B o] - p
foldr @ e] =e
foldr @ e (z:xs) = =@ (foldr @ e xs)

Functions that are defined by structural recursion on lists can be expresséaldvitRor example,
sum, the function that sums all elements of a list of natural numbers, can be expressed as:

sum : [nat] — nat
sum = foldr (+) 0

One of thefusion lawsof foldr is:

fa®b)=a® fb = fofoldr @ e=foldr @ (fe)
Using thefoldr fusion law we can prove that

(n+) o foldr () 0 = foldr (+) n

where(n+): nat — nat is the function that adds to its argument.
Another law associated with fold is tmeap-fold fusion

foldr ® eomap f =foldr ® e wherez @ y = fr @y

Heremap: (o« — 3) — [a] — [f] is the function that applies a given functigrio every element
of a list:

mapf [mlv-“a'xn] = [fxlw"?fxn]
Consider the constant functi@ne:

one . a — nat
onea = 1

We can calculate the length of a list with tlegth function,
length = sum o map one

Using map-fold fusion we can obtain a definition of length that does not create an intermediate
structure.

length = foldr ® 0
wherex @y =1+y

1.2. ACCUMULATORS 3

1.2 Accumulators

Accumulationsare recursive functions that keep intermediate results in additional parameters, called
accumulating parametersThe use of accumulations in functional programming is widespread, and
the associated accumulation technique is well knawn [Bir84, Bir98]. To define an accumulation two
techniques may be used. One is by currying [Bif98, Tho99], a standard technigue based on the higher
order feature of modern functional programming languages. Using this technique one may think of
any function on multiple arguments as a function on one argument that returns another function as a
result. The relation between these two ways of representing functions on multiple arguments can be
expressed bt means of therry-uncurry isomorphism.

curry ((,B) =) = (a— B —7)
curry fzy = f(z,y)
uncurry f(la=B—=7) = (o,8) =)

uncurry f (z,y) = fay

This isomorphism means thét, 5) - v = a — 3 — 7.
Using currying an accumulation may be defined as a higher-order fold. Consider, for example, the
linear-time function that reverses a list,

reverse o o] — o]
reverse s = rev zs []

rev 2 o] = [a] — o]
rev [] ys = ys

rev (z : xs) ys = revas (x:ys)

The functionrev may be defined using a higher-order fold:
rev = foldr (A\x f ys.f (z :ys))id

The alternative to currying is tupling. Functions defined in this manner cannot be written in terms
of a fold, since fold cannot express functions with multiple arguments unless currying and higher-
order are used as it was shown before. This means that to expves#th tupling we need a new
operator that acts as a sortfofd with accumulators

A fold with accumulators, nameafold, was introduced iri [Par00]. This operator is able to express
functions with accumulations without resorting to higher-order. For example, let us consider the
expression for an afold on lists.

afold(hy, ha, ¥) ([],x) = hi(x)
afold(h1, ha,v) ((a: €),z) = ha(a,afold(hy, ha,¥)(¢, ¥(a,x)), x)

We can defineev in terms of afold:
rev = afold(id, snd, (%)) where snd(z,y,z) =y

The pattern of recursion of the fold operator follows the recursive structure of the input datatype,
i.e. each recursive call matches up with a recursive instance in the definition of the input datatype.

4 1. INTRODUCTION

In accumulations, the pattern of recursion is not only determined by the input datatype, but also by
the accumulating parameter. When defining a fold with accumulators, we have to make a choice of
whether we are going to allow a given recursive call to be made with different accumulating functions
or not. In the generic recursive operatdold, each recursive call may only have one accumulating
function. Consider the definition of th afold for lists given above. If we wanted to define a function
with two recursive calls o# with different accumulator values, we would not be able to express this
function as an afold. For example the following function cannot be expressed as an afold.

subs ([J,y) = [[vl]
subs ((z : £),y) = subs (¢,y) ++ map (y:) (subs (£, z))

In this thesis, we present an extension to the generic definition of accumulations provided by
afold which allows us to materialize the structure of the input datatype making it possible to express
functions such as the one above.

1.3 Contributions

This work proposes an extension to the existing recursion operator afold, and it shows that this exten-
sion is conservative, in the sense that algebraic laws for the extended operator are similar to the ones
for the existing operator. Also, a case study that illustrates the use of the newly presented operator
and its laws in a program derivation setting is presented.

Several results are provided that aid the calculation of programs by simplifying certain equations
that frequently appear when calculating with accumulations. Additionally, an example of the existing
operator for a regular datatype is given —previous examples were limited to datatypes whose signature
is captured by polynomial functors. Finally, a technique based on one of the obtained algebraic
laws is introduced. This technique is useful for the improvement of fusions that do not eliminate all
intermediate structures.

1.4 Overview of the Thesis

The remainder of the thesis is organized as follows:

e Chapter 2 introduces the mathematical framework the paper is based on. We review those
notions of category theory that are used throughout the work. Then, we describe the category-
theoretical modelling of datatypes and present the generic operator fold, along with its algebraic
laws.

e Chaptef B reviews the definition of the afold operator and algebraic laws preserited in [Par02].
We also present some new laws that help in the calculation of programs. This chapter serves as
preamble for the definition of the extended afold operator.

e Chapte[4 presents a technique for the optimization of functions that result from certain kinds of
fusions that do not eliminate all intermediate structures. We present two examples to illustrate
this technique.

e Chaptef b presents the motivation and definition of our extension to afold, along with a refor-
mulation of the laws in chaptéi 3 to cope with our proposed extension, as well as some new
laws.

1.4. OVERVIEW OF THE THESIS 5

e Chaptef b is a case study that shows the power of the extension applied to a well known accu-
mulation [Bir84, HIT96]. This case study also serves as a guide to the pragmatics of some laws
presented in the previous chapter.

e Chaptef ¥ summarizes this thesis.
o AppendiXA lists some simple properties that were used in the case study in ¢Hapter 6.

e Appendi{ B provides the proofs of all the results in chapter 5.

1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces the mathematical tools and notation that will be used throughout the thesis.

We want to be able to model programs that are abstract in the sense that they are parameterised by
one or more datatypes. We also want to be able to reason about programs. The category-theoretical
model of type and programs gives us a generic representation of datatypes and an appropiate frame-
work for reasoning algebraically about programs. This model is standard and has proved to be a
fruitful approach to genericity.

The aim of this chapter is to introduce the concepts of category theory that we will be using and
the use of these concepts in the construction of our generic representation of types and programs. In
particular, we will introduce the genericld operator, which is a generalisation of the classiokir
operator of functional languages and its associated algebraic laws.

Several introductions to this categorical approach are available (see e.g. [BJIM99,[Hin29, LS81,
MAS8G6, [JRI7]) as well as to its applications to program calculation [Mal90, MFP91, Fok92,lJeu93,
BdM97]. A brief introduction to category theory can be found(in [Ple91]. More complete introduc-
tions can be found in, for example, [BWS9, ALI91]. The standard reference in category theory is
[Lan71].

2.1 Categories
We will begin by defining the notion of category and presenting a variety of examples.
Definition 2.1 A categoryC comprises

1. a collectionObj(C') of objects;

2. a collection ofarrowsor morphisms

3. two total operations callexburceandtarget, which assign an object to an arrow. We shall write
f: A — Bto show thatsource f = A andtarget f = B; the collection of all arrows with
sourceA and target3 is writtenC(A, B);

4. a composition operator assigning to each pair of arrfvasd g with target f = source g a
composite arrowg o f: source f — target g, which is associativef o (go h) = (f o g) o h;

5. for each object, anidentityarrowid4: A — A satisfying thedentity law which is that for
any arrowf: A — B,idgo f = fandfoids = f.

7

8 2. PRELIMINARIES

O
The following examples should give a more concrete idea of what a category looks like.

Example 2.2 The categonysethas sets as objects and total functions between sets as arrows. Com-
position of arrows is set-theoretical function composition. Identity arrows are identity functions.

It should be noted that here the concept of function is strongly typed. What we know informally
as thesquarefunction —the function that takes every real numbéo >— may represent different
arrows inSet For examplesquare: R — R is a different arrow fromsquare: R — R*.

Example 2.3 A partial ordering<p on a setP is a reflexive, transitive, and antisymmetric relation
on the elements d@?. Anorder preservingunction from(P, <p) to (Q, <¢) is a functionf: P — Q
such thatifp <p p' thenf(p) <g f(¥').

The categoryPosethas partially-ordered sets as objects and order-preserving total functions as
arrows.

Categories corresponding to algebraic structures (monoids, groups, etc.) are common examples
of categories.

Example 2.4 A monoid (M, -, e) is an underlying sef\/ equipped with a binary operationfrom
pairs of elements af/ into M suchthatx-y)-z =z (y-z) forall z,y, z € M and a distinguished
element such that -z = x = z-eforall x € M. An homomorphism between two mondidis -, e)
and(M’', ®,¢€') is a functionf: M — M’ such thatf(x - y) = f(x) © f(y) and f(e) = €.

The categoryMon has monoids as objects and monoid homomorphisms as arrows.

In our model of types and programs, types are represented by objects and programs by arrows.
The underlying category may [&get or another category lik€po, the category that has complete
partial orders as objects and continuous functions as arrows.

Definition 2.5 Theproductof two categories andD, denoted by x D has as objects paifsi, B)
of aC-objectA and aD-objectB and as arrows pail, ¢g) of aC-arrow f and aD-arrowg. Composi-
tion and identity arrows are defined pairwigg; g) o (h, i) = (foh, goi) andid 4 gy = (ida,idp).0

The product of categories can be generalized ttomponents. We will writ&™ to denote the
n-ary productC x ... x C.

2.1.1 Diagrams

As it was pointed out before, each arrow has a unique target and source. Writing the source and target
of an arrow every time we refer to it may quickly become cumbersome. For this reason it is quite
common to refer to an arrof: A — B simply by the identiferf, when the type information is clear

from context. A useful device for recording type information idiagram In a diagram an arrow

f: A — Bisrepresented ad N B, and its composition with an arroj: C' — A is represented

asC —2+ 4 N B. For example, one can depict the type information in the equatipn f = f
as

A B

2.1. CATEGORIES 9

Since any two paths in the diagram between the same pairs of objects depicts the same arrow, the
diagram is said tcommute

Another example of a commuting diagram is the diagram that depicts the eghatipr= & o g.
Note that we are not giving the type of the arrows, the type information can be obtained from the
diagram.

2.1.2 Initial and Terminal Objects

Definition 2.6 An arrow f: A — B is anisomorphismif there is an arrowf~': B — A, called
theinverseof f, such thatf~! o f = id4 andf o f~! = idg. In that caseA and B are said to

be isomorphicand writtenA = B. When two objects are isomorphic it is often said that they are
identicalup to isomorphism O

In Setthe notion of isomorphism corresponds to the notion of bijection.

Definition 2.7 An object0 of a category is called amitial object if, for every objectA, there is
exactly one arrow frond to A. O

Definition 2.8 An object1 of a category is called germinal objectif, for every objectA, there is
exactly one arrow from to 1, denoted by 4: A — 1. O

Example 2.9 In Setthe empty se{} is the only initial object; for every sef, the empty function is
the unique function fronf} to S. Every singleton seftu }, for someu, happens to be a final object.

Many categorical notions, including initiality and terminality, are defined up to isomorphism. For
example, for initiality, this means that all initial objects in a category are isomorphic to each other.
Accordingly, we can choose any of them as a representative of the class as isomorphic objects are
indistinguishable.

The following law is a direct consequence of finality:

f 'B 'a

A -~ B -1 = A 1

In Set arrows from a singleton sét.} to the setA are in one-to-one correspondence with the
elements ofA. Because of this, arrows of the forin 1 — A are usually thought of aslements
of A. From this point of view, every applicatiof{a), for f: A — B anda € A, is in one-to-one
correspondence with a compositigro a: 1 — B. This correspondence expresses the relationship
between the pointwise and the point-free style for expressing functions. Whereas in the pointwise
style a function is described by its application to arguments, in the point-free style a function is
described exclusively in terms of functional composition. Reasoning about functions in point-free
style is essentially algebraic manipulation of functional composition.

We will underline expressions that denote constant functions. For example the c@ndterin
our categorical notation will bg: 1 — Int. An exception to this notation will be type constructors—
e.g.zero: 1 — nat.

10 2. RRELIMINARIES

Example 2.10 In a typical functional programming language the following diagram would commute:

Unit » Bool

wherezero andtrue are constants anzero is a predicate that tests for zero. Note thato andtrue
are not underlined since they are type constructors (ohtiteandbool datatypes, respectively).

Here, Unit is a terminal object. The isomorphism between a constamt and a constant arrow
a: Unit — A can be made explicit:

tof : [Unit— A] — A
tofa = al)

fromf : A— [Unit — A]
fromfa = a

2.2 Functors and Natural Transformations
Functors are structure-preserving maps between categories.

Definition 2.11 Given two categorie€ andD, afunctor F': C — D is a map taking eacli-object
A to aD-objectF'A and eaclC-arrow f: A — BtoaD-arrowF(f): FA — FB, such that for all
C-objectsA and composablé-arrows f andg the following conditions are satisfied:

1. F(ida) =idpa

2. F(gof)=FgoFf
O

Example 2.12 For each category there exists afdentity functor/: C — C that takes verg-object
and evenyC-arrow to itself.

Example 2.13 The constant functod: C — D maps allC-objects to theD-object A, and all C-
arrows to the identity or.

Example 2.14 The projection functor$l;: C x D — CandIly: C x D — D are defined as the first
projection and second projection respectively on both arrows and objects. TH&t(i€, D) = C,
IL(f,g) = f. I(C,D) = D andIL(f,g) = g.

Example 2.15 The composition of two functos: C — D andG: D — £ is written asGF and
defined byGFA = G(FA) andGF f = G(F'f).

A functor from a category to itself is called arendofunctor One with a product category as
source (like the projection functors) is calledidunctor(as opposed to unary functorsmonofunc-
tors). By fixing the first argument of a bifunctdr: C x D — £ on aC-objectC, one gets the unary
functor F(C, —), written Fo, such thattoD = F(C, D) andFo f = F(idc, f).

2.3. lRODUCT AND SUM 11

2.2.1 Natural Transformations
Natural transformations are structure-preserving maps between functors.
Definition 2.16 Let C andD be categories. Given two functofs C — D andG: C — D, anatural

transformationr: F' = G is a function that assigns to evafyobjectA aD-arrowr4: FA — GA
such that for anyg-arrow f: A — B the following diagram commutes iR.

FA—4 . GA
Ff Gf
FB GB
B

a

We will refer to this diagram as theaturality conditionof 7. The subscripts will often be omitted
when the objects involved are clear from the context.

Example 2.17 For any functorF', the components of the identity natural transformaiihn: F' = F
are the identity arrows of the objects in the imagdgthat is,id4 = idp4.

From the viewpoint of programming languages, we will use naturality as a synonym for paramet-
ric polymorphism. The relationship between natural transformations and polymorphic functions is
formally described in [Wad89] which in turn is derived from [Rey83].

Example 2.18 LetC andD be categories. Lek', G, and H be functors fron€ to D. Leto: F = G
and7: G = H be natural transformations. Then for eaCkarrow f: A — B we can draw the
following composite diagram:

JA TA

FA GA HA

Ef () Gf| 1) |Hf

FB GB

0B B

HB

By the naturality condition o& and, both (1) and (/1) commutes, so the outer rectangle also
commutes. This shows that the composite transformdtions): F = H defined by(r o 0)4 =
T4 © 0 4 IS a natural transformation.

2.3 Product and Sum

In most programming languages, new types can be built by tupling existing datatypes or by taking their
disjoint union. In this section, we present their categorical definition and some of their properties.

12 2. RRELIMINARIES

Definition 2.19 The productof two objectsA and B in a categonyC is given by an objecd x B
together with twaorojection arrowsr; : A x B — A andmy : A x B — B such that for any object
C and pair of arrows’ : C — A andg: C' — B there is exactly one arroyf, g): C — A x B that
makes the following diagram commute:

1 ™2

A

Example 2.20 The cartesian product
Ax B={(a,b)lac A,be B}
is a categorical product in a category likeet, for instance.
From the definition of product, thdentitylaw and thefusionlaw can be deduced:
(m1,m2) = id (frg)oh={foh,goh)

The product can be made into a bifunctor C x C — C by defining its action on arrows. For
f:A— A’andg: B — B/,

(fom,goms)

fxg=AxB - A'x B’
Being a functor, it has to satisfy the following conditions:
id x id = id (fxg)o(hxk)=(foh)x (gok)

Other standard properties of the product are:

mo(fxg)=fom m o (fxg)=gom (f xg)olhk)=(fohgok)

The first two laws state that; andm» are natural transformations. The third one is called the
absorptionlaw, and it represents a fusion between the product and the pairing of arrows.
Product associativity is defined by the following natural isomorphism:

<idA X 71,79 O7T2>

OzA7B7c:A><(B><C) ~(A><B)><C

Products can be generalisedit@components in an obvious way. If each pair of objects hmas a
product, one says thé@thasproducts

Let F,G: C — D be two functors. IfD has products, then we can define a fundiox G by
defining its action on objects 4$" x G)A = F'A x GA and its action on arrows g3 x G)f =
FfxGf.

Example 2.21 In a functional programming language we could define a datatype for pairs

2.3. lRODUCT AND SUM 13

data A x B = (A,B)

In our category-theoretical model we would represent this datatype with the furctor
Note that the constructor function is implicit, we do not bother naming it. Since we only care for
equality up to an isomorphism, datatypes that are isomorphic like

data A® B = Puair; (A, B)
and
data A X’ B = Pairy (A, B)

are the same to us and there is no need to distinguish them with different constructor's names.

Definition 2.22 A coproductor sumof two objectsA and B in a categoryC is an objectA + B,
together with two injection arrowial: A — A + B andinr: B — A + B such that for any objec?
and pair of arrows’': A — C andg: B — C there is exactly one arrof, g]: A+ B — C making
the following diagram commute:

inl inr

A A+B

[f, 9]

C
O

Example 2.23 In Set thedisjoint unionof two sets4 and B happens to be a coproduct. The disjoint
union of setsA and B is the set formed by obtaining a sétisomorphic toA and a setB” isomorphic
to B such thatd’ and B’ are disjoint. The usual way this is done is as follows: let

A ={(a,00ac A} and B ={(b1)|be B}

The sets are disjoint since the first is a set of ordered pairs each of whose second efiriekile
the second set is a set of ordered pairs each of whose second entri$is arrowinl: A — A'UB’
takesa to (a,0) andinr: B — A’ U B’ takesb to (b, 1). A case analysiff, ¢] is such that:

[f,9](a,0) = f(a) [, 9](b,1) = g(b)
Example 2.24 In a functional programming language the following could be defined:
data Either(A, B) = Left A | Right B

In our category-theoretical model we would represent this datatype with the fusctor

In a functional language, case analysis is usually written as:

[f,g](x) = casex of
inl(a) — f(a)
inr(b) — g(b)

14 2. RRELIMINARIES

We can make the sum a bifuncter. C x C — C by defining its action on arrows: Fgr. A — A’
andg: B — B/,

[inlo f,inro g]

f+9g=A+B - A+ B
The functoriality conditions in this case are:
id+id =id (f+g)o(h+k)=(foh)+(gok)

Some properties of coproducts are:

[inl,inr] =id
holf,gl=[hofihog]
(f+g)oinl=inlo f
[f:gle (h+ k) =[foh,gok]
(f+g)oinr=inrog

Coproducts can be generalizedri@omponents in the obvious way. LEtG: C — D be two
functors. Analogously to products, T has sums, we can define a funcfor+ G as(F + G)A =
FA+GAand(F+Q)f=Ff+Gf.

As an example of the use of the previous properties of products and coproducts we will provide
the proof of the followingexchange law

Example 2.25

[(f 1), (g, k)] = (> gl [, K])

Proof. To prove this property we will prove; o [(f, h), (g, k)] = [f,g] and 7y o [(f, h), (g, k)] =
[, k]

7T10[<f,h>,<g,k>] 7T20[<f7h>?<g7k>]
= { Coproducts } = { Coproducts }
[7T10<f,h>,71'10<g,]{:>] [7’['20<f,h>,7'('20<g,k‘>]
= { Products } = { Products }
£, 9] [h, K]

By definition of products our proposition is proved. Equivalently, we could have started from the
other side of the equation and prov€d, ¢|, [h, k]) o inl = (f, h) and{([f, g], [h, k]) o inr = (g, k).O

2.4 Distributive Categories

Along the thesis we will assume that the underlying categbiyg distributive. This means that
product distributes over coproduct in the following sense: For&ang andC, the arrow

[inl x idc,inr xide] : AxC+BxC — (A+B)xC

is a natural isomorphism with inverse:

2.4. DISTRIBUTIVE CATEGORIES 15

dA7B7c:(A+B)XC—>AXC+BXC

There are plenty of examples of distributive categories, since every cartesian closed category with
coproducts is a distributive category. Typical examples are the catBgomyf sets and total functions
as well as the catego§po of complete partial orders (not necessarily having a bottom element) and
continuous functions.

To manipulate equations wity a common technique is to use the fact tid an isomorphism
and reverse soméarrow and replace it by 1.

Example 2.26 We want to provér; +71) od = 1. The type information is depicted in the following
diagram:

(A+B)xC

Y
AxC+BxC

After reversingd the diagram is:

(A+B)x C

And now we calculate
mod !
= { Definition of d~' }
71 o [inl X id, inr x id]
= { Coproducts }
[r1 0 (inl x id), 7 o (inr x id)]
= { Products }
[inl o 7y, inr o mq]
= { Coproducts }

™ + T

16 2. RRELIMINARIES

Example 2.27 We are going to prove thay x f,h x f]od = [g,h] x f. If we post-multiply both
sides of the equation by ! we obtain
lg x f,hx flodod™! = ([g,h] x f)od—1
= { Isomorphisms }
[ng,th] :<[gvh} Xf)Od—l

Now we calculate
(lg,h] x f)od—1
= { Definition of d~! }
([g, h] x f) o [inl x id,inr x id]
= { Coproducts }
[([g,h] x f)o(inl xid),([g,h] x f) o (inr x id)]
= { Products }
[(lg, Al oinl) x f, ([g, h] o inr) x f]
= { Coproducts }

lg x f,hx f]

2.4.1 Conditional operator

In a distributive category it is possible to define a conditional operator. The object of boolean values
can be defined as a susnol = 1 + 1. The truth constants are the inclusions into this sum:

true false
b

ool «——— 1

1

In a distributive category, theonditional operator cond(p, f,g): A — C'is defined by:

cond(p, f, g)

A - C

(p,id) [f5 9]

A+ A

bool x A ——>1xA+1x A
d T + T2

wherep: A — bool is a predicate, and, g: A — C.
In pointwise style, the application of the conditional operator to a value is usually written as:

cond(p, f,g) (a) = if p(a) then f(a) else g(a)
The conditional operator satisfies the following laws:
hocond(p, f,g) = cond(p,ho f,hog)
cond(p, f,g)oh = cond(poh,foh,goh)
cond(p, f,f) = f

2.6. INDUCTIVE TYPES 17

2.5 Polynomial functors

Polynomial functorsare functors built from identities, constants, products and sums. They can be
inductively defined by the following grammar:

Fu=I|A|FxF|F+F

Example 2.28 The functorF' defined byf X = A+ X x AandF'h = ids + h x id 4 is a polynomial
functor because:
F=A+IxA

2.6 Inductive Types

We have showed how to construct certain datatypes using functors. Nevertheless, we have not been
able to define a recursively defined datatype yet. In this section we will describe the category-
theoretical modelling oinductive typessuch as finite lists or trees.

2.6.1 Algebras

We will now try to develop an intuition that will help to understand our modelling of datatypes.

Definition 2.29 An algebrais a set, called thearrier of the algebra, together with a number of
operations that return values in that set. O

Some concrete example of algebras are:

(N,0,+), with 0:1— N, +:NxN—N
(R, 1, x), with 1:1— R, x:RxR—R
(list (A), nil,), with nil: 1 — list (4), +:list(A) x list (A) — list (A)

A recursively defined datatype determines, in a natural way, an algebra. A simple example is the
datatypenat defined by

data nat = zero | succ nat
whose corresponding algebra is
(nat, zero, succ), with zero: 1 — nat, succ: nat — nat
Another example is:
data Natlist = nil | cons nat Natlist
whose corresponding algebra is
(Natlist, nil, cons), with nil: 1 — Natlist, cons: nat x Natlist — Natlist
These examples illustrate the general idea: An inductive datatype determines an algebra in which

o the carrier of the algebra is the datatype itself, and

18 2. RRELIMINARIES

e the operations of the algebra are the constructors of the datatype.

Definition 2.30 A homomorphisnbetween two algebras is a function between their carrier sets that
respect the structure of the algebras. O

For example, the functioaxp: N — R is a homomorphism witlsource algebraN, 0, +) and
target algebra(R, 1, x). Respecting the structure means:

exp 0 =1
exp (z+y) = (expx) X (expy)

Now, let’s consider the dataypet again.
data nat = zero | succ nat

Since constructors names are not important to us, we can give the following isomorphic definition
of the datatype:

data nat = inl 1 |inr nat
The choice here could be written as a sum:
data nat = iny (1 + nat)

in which there is only one constructor left, calledy. The process to obtain this formulation may
become clearer by looking at the following figure.

zero : 1 — nat
succ nat — nat
in : 1 + nat — nat

Now, let's consider a functoN = 1 4+ I whose action on objects 84 = 1 + A and whose
action on arrows iV f = id + f. Then, we have that

data nat = iny (NN nat).

Apparently, the functoN captures the pattern of inductive informatiomit.
If we consider the datatyp®atlist, and procceed in the same manner, we obtain

data Natlist = ing, (1 + nat x Natlist)

The functorL,,; = 1 + nat x I, whose action on objects 5,,:A = 1 + nat x A and whose
action on arrows i, f = id + idnat X f captures the pattern information Watlist.

data Natlist = iny, (Lnat Natlist)

So far, we have seen that an inductive datatype determines an algebra and a functor. We have also
seen that we can construct an arrow that packs all the operations in an algebra.

2.6. INDUCTIVE TYPES 19

2.6.2 Initial Algebras

We will now formalise the previous intuitions in our categorical framework.
In the following, letF': C — C be an endofunctor.

Definition 2.31 An F-algebrais a pair(A, h) such thatd is aC-object andh: FA — A, the object
A being the carrier of the algebra and the arfopwacking all the operations in the algebra. a

Example 2.32 The algebranat, +) of the natural numbers and addition is an algebra of the functor
FA=AxAandFh = h x h.

Definition 2.33 An F-homomorphisnbetween two algebrgs4, k) and(B, k') is an arrowf: A —
B between the carriers that commutes with the operations, thabis,= h' o F'f.

F
Fa—t1 . pp
h h
A B
f

|

Given an endofunctaF': C — C that captures the recursive shape of a datatype, the recursive type
will be understood as the least solution to the type equaticd F.X.

Example 2.34 For the datatype of natural numbers,
nat = zero | succ nat
the signature is captured by the functdr= 1 + I, that is,
NA=1+A Nf=idi+f

Every N-algebra is a case analysi&i, ha]: 1+ A — A, whereh;: 1 — Aandhy: A — A.

A homomorphism between twé-algebrash: NA — Aandk: NB — Bisanarrowf: A — B
such that:

idy

l——m—1 A

h1 k1 ha ko

A B A

f f

Example 2.35 For the datatype of lambda-expressions,

lam = var V' | app lam lam | abs V' lam

20 2. RRELIMINARIES

the signature is captured by the functtf =V + 7 x I + V x I, that s,
MA=V+AxA+V xA Mf=idy+fxf+idy x f

whereV is the type of variable identifiers.

EveryM-algebrais a case analysjé;, ho, h3]: V+ AXx A+V x A — A,whereh;: V — A,
ha: Ax A — Aandhs: V x A. A homomorphism between twd-algebrash: M A — A and
k: MB — Bisanarrowf: A — B such that:

id id
vV Ly AxA- 1 gy Vxd XS g
hl kil hg k?z hg k3
A B A B A . B
f f f

Definition 2.36 The category of F-algebras denoted byAlg(F’), is formed by the F-algebras as
objects and F-homomorphisms as arrows. Composition and identities are inheritgdl from O

Definition 2.37 An initial algebrais the initial object, if it exists, of a categoAlg(F). O

For many functors, including the polynomial functorsSt, this category has an initial object.
The initial algebra, if it exists, is the algebra that corresponds to the inductive type whose signature is
captured byF'. We shall denote the initial algebra by F, inr), where the arroving : F uF' — pF
encodes the constructors of the inductive type.

2.7 Fold

Initiality permits to associate an operator with each inductive type, which is used to represent functions
defined by structural recursion on that type. This operator, usually dalt:fBir98] or catamorphism
[MEP91], is originated by the unigue homomorphism that exists between the initial alggbeand

any otherF'-algebrah : FA — A. We shall denote it byold(h) : uF' — A. Fold is thus the unique
arrow that makes the following diagram commute:

Ffoldp(h
p Ffoldr(h)

Fu
inF h

F— .4
P fold g (h)

or equivalently the unique arrow that makes the following equation hold:

foldg(h) o inp = h o F foldp(h) (2.1)

2.7. FOLD 21

Example 2.38 For the natural numbers, the initial algebra is given by

iny = [zero,succ|: 1 + nat — nat

wherezero: 1 — nat andsucc: nat — nat; nat stands fopN. For each algebra = [hq, hs], fold is
the unique arrowf = foldx (k) : nat — A such that

f (zero) =M
[(suce(n)) = ha (f(n))

Example 2.39 For the lambda expressions, the initial algebra is given by

iny; = [var,app,abs]: V +lam x lam + V x lam — lam

wherevar: V' — lam, app: lam x lam — lam andabs: V' x lam — lam; lam stands foruM. For
each algebra = [hy, he, h3), fold is the unique arrowf = fold,;(h) : lam — A such that

f (varv) = hy (v)
f(app (t,u) = ha (f(1), f(w))
f (abs (v,t)) = hs (v, f(t))

|

Lists, trees as well as many other datatypes are usually parameterised. The signature of those
datatypes is captured by a bifunct®r: C x C — C. By fixing the first argument of a bifunctdr one
can get a unary functdr (A, —), to be writtenF'y, such thatt’y B = F(A, B) andF4 f = F(id4, f).
The functorF, induces a (polymorphic) inductive typ@ A = uF4, least solution of the equation
X = F(A, X), with constructors given by the initial algebiay, : F4(DA) — DA.

Example 2.40 (i) Lists with elements over can be declared by:
list (A) = nil | cons(A x list (A))
We will often write A* for list (4). The signature of lists is captured by the funclor =
1+ A x I. The initial algebra is given bnil, cons] : 1 + A x A* — A*. For each algebra
h = lhi,hs] : 1+ A x B — B, fold is the unique arrovf = fold,, (k) : A* — B such that
fnil) =My f(cons(a, £)) = ha(a, f({))

This instance ifold corresponds to the standdeddr operator used in functional programming
[Bir9g].

(i) Leaf-labelled binary trees can be declared by

btree (A) = leaf A | join (btree (A) x btree (A))

Their signature is captured by the funcBy = A + I x I. For each algebra = [hy, ho] :
A+ C x C — (C, fold is the unique arrowf = foldg, (k) : btree (A) — C such that

f(leaf(a)) = h1(a) floin(t, u)) = ha(f(2), f(u))

22 2. RRELIMINARIES

(iii) Binary trees with information in the nodes can be declared by
tree (A) = empty | node (tree (4) x A x tree (A))

Their signature is captured by the funcor = 1+ 7 x A x I. For each algebra = [hy, ha] :
1+C x AxC — C,fold is the unique arrowf = foldz, (h) : tree (A) — C such that

f(empty) = hy f(node(t, a,u)) = ha(f(t), a, f(u))

2.7.1 Standard Laws for Fold

Fold enjoys many algebraic laws that are useful for program transformation.
Theidentitylaw states that a fold applied to the constructors of the datatypes gives as a result the
identity function.

Theorem 2.41 (Fold Identity)

fO|C|F(ZnF) = id“F
The following law is thefusionlaw, a very important law for program calculation. In chapier 1,

we already saw an instance of this law for lists. Fold Fusion states that the composition of a fold with
an algebra homomorphism is again a fold.

Theorem 2.42 (Fold Fusion)

foh=goFf = fofoldr(h) = foldr(g)
Acid rain removes intermediate data structures that are produced by folds whose target algebra
is built out of the constructors of the data structure by the applicationt@sformer[Fok9€]. A
transformer is a polymorphic function: VA. (FA — A) — (GA — A) that convertsF-algebras
into G-algebras. Sinc& has to be polymorphic the following naturality condition has to hold:
Forf:A— B,h: FA— Aandh': FB — B,
foh=WoFf = foT(h)=T(h)oGf

Intuitively, a transformeil may be thought of as a polymorphic function that builds algebras of one
class out of algebras of another class.

Theorem 2.43 (Acid Rain: Fold-Fold Fusion)

T:VA. (FA— A) - (GA— A) = foldp(h)ofoldg(T(inF)) = foldg(T(h))

2.8. REGULAR FUNCTORS 23

2.7.2 Map

Let uF'4 be a solution (a fixed point) of the equatigh>~ F'X. Let DA = uF4 be a parameterised
inductive type induced by a bifunctdr. We have defined the action éf on objetcs.D is a type
constructor that can be made into a fundibr C — C, called a type functor, by defining its action on
arrows: Foreaclf: A — B,

Df = foldg, (ing, o F(f,idpp)): DA — DB

It can be proved that this definition makBsa functor.
ConsequentlyD f is the unique arrow that makes the following diagram commute:

Fa(DA) FalDf) | Fa(DB)
F(f,id)
ing, FB(bB)
ing,
DA 7 - DB

The action on arrows of the type functor corresponds to the well-kmasynfunction.
Example 2.44 For lists, the action on arrows is given by
list (f) = foldy, , ([nil,cons o (f x id)])

list (f)(nil) = nil
list (f)(cons(a,?)) = cons(f(a),list(f)(£))

The following is a standard property of type functors.
Theorem 2.45 (Map-Fold Fusion)For f : A — Bandh: Fg C — C,
foldp, (h) o Df = foldp, (ho F(f,idc))

2.8 Regular Functors

Definition 2.46 Regular functorsare functors built from identities, constants, products, sums and
type functors. They can be inductively defined by the following grammar:

Fu=I|A|FxF|F+F|D
O

Regular functors capture the signatureredular datatypeswhich are datatypes whose decla-
rations contain no function spaces and have recursive occurrences with the same arguments from
left-hand sides.

24 2. RRELIMINARIES

Example 2.47 Rose Treesre trees with multiple branches.
data rose (A) = fork (A x list (rose (A)))

Its signature is captured by the regular funct&ry = A x list. This means that its action on
objectsisR4B = A x list (B) and its action on arrows is2 4 f = id4 X list (f). R4-algebras are of
typeh: A x list(B) — B.

The initial algebra of rose trees is

ing, = fork: A x list (rose (A)) — rose (A)

For everyh: A x list(B) — B, fold is the unique arrowf = foldg,(h): rose (A) — B such
that:
[(fork(a, €)) = h (a, list (f)(€))

Chapter 3

Introducing afold

Accumulationsre recursive functions that keep intermediate results in additional parameters, known
asaccumulating parametermsr accumulatorswhich are eventually used in later stages of the com-
putation (see e.gl [Bir84, HIT96, BAM97, Gib00Q]). In this chapter we define a generic operator that
permits us to represent structural recursive accumulations on inductive types.

Let us start with an example of an accumulation. Consider the function that computes the sums of
the initial segments of a list of numbers:

initsums(¢) = isums(¥, zero)
where
isums(nil,e) = wrap(e) (3.1)
isums(cons(n,f),e) = cons(e,isums({,e+n)) (3.2)

wherewrap(z) = cons(z, nil).

To define a function of this kind by structural recursion we have two alternatives. One is to define
the function as a higher-order fold of typg” — [X — A], whereX now corresponds to the type
of accumulators (seé [HIT96]). The other alternative consists of tupling the arguments and defining
a function of typeuF' x X — A. For example, in the particular caseigfms this corresponds to a
definition of typenat™ x nat — nat* in the style of [(3.]l) and (3/2). Accumulations defined in this
manner cannot be written in terms of the standard fold operator, since fold lacks the possibility of
representing functions with multiple arguments.

To express accumulations we will use an operator, caifelt, which corresponds tofald with
accumulators This operator was first presented(in [Par01] as an application of the product comonad.
Nevertheless, this chapter is based on the presentation of the afold operator found dn [Par02], which
does not use the concept of comonad.

If we analyse this function we observe:

e It has as first argument the datatype whose structure we want to follow, in this case, a list. In
thenil case, there is no recursion, in thens case, the recursive call is made on the tail of the
input list, .i.e. the recursive instance in the definition of the datatype.

e As second argument it has the accumulator. In this case the accumulator holds the partial sum
of the elements that appeared previously in the list.

25

26 3. INTRODUCING afold
¢ Ineach recursive step the accumulator is updated, adding to it the value at the head of the current
list, and passed to the recursive call.
¢ It uses the value of the accumulator, in this case putting it at the head of the resulting list.

If we abstract from this particular function, we conclude that our generic recursion operator
should:

o follow the recursive structure of its first argument datatype;

e pass information to the recursive instances in the second argument, this information is obtained,
for each recursive call, as a result of

e calling an accumulation function whose result is the value of the new accumulator;
e possibly use the value of the accumulator.

In the next section this ideas are refined and formalised.

3.1 Theafold Operator

In the sequel let us fix an obje&t that now will be regarded as the type of accumulators.

The function that produces the new value of an accumulator will be modeled by anaren
though the form in which the parameters are modified is something that depends on each specific
case, it is possible to state general conditions that an afnowst satisfy to be considered proper for
accumulation.

Definition 3.1 An arrow7 : FA x X — F(A x X) is said to beproper for accumulation if the
following conditions hold:

Naturality 7 is natural inA: Foranyf : A — B,

TA

FAx X F(Ax X)
Ffxidx F(f xidx)

FBxX

F(B x X)

Shape and data preservation

3.1. THE afold OPERATOR 27

The first condition actually states a restriction to the amount of information that can be used for
modifying the accumulators. Indeed, thaits natural (polymorphic) iM makes accumulations inde-
pendent from the values in the functor’s variable positions —which correspond to the substructures.
This means that the only values that are available for accumulation are those contained in the nodes
of the data structure, and not the substructures. This is an immediate consequence of the naturality
condition. The second condition asserts thatnnot modify the shape of the structure of typd
nor the data contained in it.

A general form forr can be given in the following cases:

e WhenF is a constant functaf’ we have thaF =71 : C x X — C.
e WhenF =G+ H,
T=FT+7")od: (GA+ HA) x X - G(Ax X)+ H(A x X)
for some7 : GAx X — G(A x X)and7’ : HA x X — H(A x X). This means that

accumulations performed in the variants of a sum are independent from each other. This is a
consequence of the hypothesis about distributivity.

GivenT satisfying definitiof 3]1 we can define an extension of funéttinat works onX -actions.
Definition 3.2 For f: A x X — B, the extension for functoF, Ff: FA x X — FBis:

— TA Ff

Ff = FAxX F(A x X) FB

a

This extension represents the modification of the accumulators in each recursive call. An imme-
diate consequence of the condition of shape and data preservationifahat F' preserves iden-
tities, i.e. F m = m. F preserves compositions of -actions only if7 satisfies the equation
7o (T, ma) = F(id, my) o 7, something that we do not expect to hold in general.

Definition 3.3 ([Par01]) An initial algebraing is said to benitial with accumulators if for each
objectX,7: FA x X — F(A x X) proper for accumulation, and: FFA x X — A, there exists a
uniquef : uF x X — A that makes the following diagram commute:

F
FuFxx SR gy
inpxidX h
uk x X - A
f

We callafold the unique arrow that results from initiality with accumulators and denote it by

afoldp(h,7): uF x X — A.

Initiality with accumulators is guaranteed to exist in the presence of exponentials.

28 3. INTRODUCING afold

Proposition 3.4 If C is a cartesian closed category, then every initial algebra is initial with accumu-
lators.

Therefore, accumulations can be defined in categoriesSkiteor Cpo.

Most of the datatypes we deal with in practice are sums. The following propositions show us
how to simplify certain equations into simpler ones that only take into account one addend at a time.
Proofs of this propositions will not be given as they are the particular €ased of a more general
result (propositiof 5]6) whose proof can be found in appendix B.

Proposition 3.5 Let FF = F; + F» be a composite functok, = [h1,hs] o d, Ff = Ff o7, where
7= (T1+72) od, andk = [k, k2] o d. Then

B fohy=kio(Fif m)
foh=ko(Ff m) <& B
foh2 :/{720<F2f,7'('2>

whereF f = FfoTiandFaof = Ff o7y

Corollary 3.6 Let F = F| + F, be a composite functol, = [hy, hs], Ff = Ff o7, where
7 = (T1 + 72) od, andk = [ky, ko] o d. Then

B fo(hl XZdX) :klo<ﬁlfvﬂ-2>
fo(hxidx)=ko(Ff,m) < —
fo(he xidy) = ks o (Faf,ma)

whereF f = FforiandFyof = FfoTy
Corollary 3.7 LetF = F; + F» be a composite functal, = [hy, he] o d, andk = [k, ko] o d. Then

{ fohlzklo(Fleid)
foh=ko(Ffxid) <
thQZkQO(FQind)

3.2 Examples
In this section we present instances of the afold operator for some commonly used datatypes.
Example 3.8 For the natural numbers,

Ta=(m +¢)od

wherep =idg x 9 : Ax X - Ax X, forsomey : X — X.
Leth = [hi,ho]od: (1 4+ A) x X — Aandf = afoldy(h,7) : nat x X — A.
By definition[3.3, fis such that:

fol(iny xidx)=ho <Nf,7‘r2>.

3.2. EXAMPLES 29

Applying corollary[3.6 we obtain:

fo(zeroxidx)=hyo(lfom,ms)
fo(succ xidy) =hao (Ifo¢,m).
In pointwise notation,

f(zero, x) = hi(z)
flsuce(n),z) = ha(f(n, ¥(2)),)

For example, addition can be defined by
add = afold (h,7)
whereh; = w9, ho = w1 andy = succ. That is,

add(zero,n) =n add(succ(m),n) = add(m, succ(n))

Example 3.9 For lists with elements ovet,
Tp=(m+¢)od
where¢ : (A x B) x X — A x (B x X) is given by¢((a,b),z) = (a, (b,¢(a,z))), for some
Pv:Ax X — X.

Leth = [hi,ho]od: (1+ A x () x X — Candf = afoldg, (h,7) : A* x X — C.
By definition[3.3, f is such that:

fol(ing xidx) =ho (Laf,m).
Now we can use corollafy 3.6 to obtain:
fo(nil xidx) = hy o (Lf om,m)
fo(cons xidx) = hao ((Af x If)o¢,ma).
In pointwise notation,
f (nil,) = hu(x)
f (cons(a, t),z) = ha(a, f(£,¥(a,2)),z)
For example, the functioisums can be defined by

isums : nat* x nat — nat*

isums = afold(h,T)

whereh, (e) = wrap(e), ha(n, ¢, e) = cons(e,), andy) = add.

30 3. INTRODUCING afold

Example 3.10 For leaf-labelled binary trees,
7o =(m+d)od

where¢ : (C x C) x X — (C x X) x (C x X) is natural inC' and preserves shape and
data. This means that thés in the output appear in the same order as in the input. Therefore,
¢ = (m x 1, m x '), for somey, 1)’ : X — X (i.e. accumulation on left and right branches may
differ from each other).

Leth = [h1,he]od: (A+ D x D) x X — D andf = afoldp, (h,7) : btree (A) x X — D.

By definition[3.3, f is such that:

fol(ing xidx) =ho (Baf,m).
We use corollary 3]6 to obtain:
f o (leaf x idx) = hy o (Af o 7y, m2)
fo(join x idy) = ha o (If x If) 0 ¢, ma).
In pointwise notation,
f(leaf(a),z) = hi(a,x)
S Goin(t,u),x) = ha(f(t,¢(2)), f(u,¢'(x)),2)

For example, the functiordepth : btree (A) — btree (nat), which replaces the value at each leaf
of a tree by the depth of the leaf, can be defined by

rdepth(¢) = down(¢, zero)

where
down : btree(A) x nat — btree (nat)
down = afoldg, (h,T)
with hq(a,n) = leaf(n), ho(t,u,n) = join(t,u) andy = ¢’ = succ. That is,
down(leaf(a),n) = leaf(n)
down(join(t,u),n) = join(down(t,n + 1),down(u,n + 1))

Example 3.11 For binary trees with information in the nodes,
7o =(m+¢)od

whereg : (C x Ax C)x X — (C x X) x Ax (C x X)is natural inC and preserves shape
and data. Like in the previous case, iti® in the output must appear in the same order as in the
input. Thereforeg((c,a,), z) = ((¢,¥(a,x)),a, (,¢'(a,z))), for somey,)’ : A x X — X (i.e.
accumulation on left and right branches may differ from each other).

Leth = [hi,he]od: (1+D x Ax D) x X — D, f = afoldp, (h,T) : tree (A) x X — D.

By definition[3.3, f is such that:

f o (Z’I?,T X IdX) =ho <TAf> 7T2>'

3.2. EXAMPLES 31

We use corollary 3]6 to obtain:
fo(empty xidx) =hjo(1lfom,ms)
fo(node xidx) =hoo((If x Af X If)o¢,m).
In pointwise notation,
f (empty,) = hi(x)
f (node(t,a,u),z) = ha(f(t,¢(a,z)),a, f(u,?'(a,z)),x)

For example, the functiomsums : tree (nat) — tree (nat), which labels each node with the sum
of its ancestors, can be defined by

asums(t) = sdown(t, zero)

where

sdown : tree(nat) x nat — tree (nat)

sdown = afoldy,, (h,T)
such thath; (n) = empty, ha((t,m,u),n) = node(t,n,u) andy = ¢’ = add. That s,
sdown (empty, n) = empty

sdown (node(t, m,u),n) = node(sdown(t,m + n),n,sdown(u, m + n))

Example 3.12 For rose trees,

TR ((a,ﬁ),x) = (a’?list (671/}((173:)))

wherey: A x X — X, and7™t : list (B) x X — list (B x X) is natural inB and preserves
shape and data. Therefore,

7t (0,x) = list(g) ¢
wherega = (a, x)
As we can see in its definitioffst distributes the accumulator to each element of the list.

Leth = [h1,he]od: (A x list(C)) x X — C, f = afoldg,, (h,T) : rose (A) x X — C.
By definition[3.3, f is such that:

f o (inR X idx) =ho <RAf, 7T2>.
By definition[3.2 we obtain:
fo(fork xidx) =ho{(ida x list(I)f) o7, ma).

In pointwise notation,

f (fork (a,r),z) = h(a,list (f) (7L, ¢ (a,x))),z)

32 3. INTRODUCING afold

As an example, the functiordepth : rose (A) — rose (nat), which replaces the value at each
node of a tree by its depth, can be defined by

rdepth(¢) = down(¢, zero)

where

down : rose(A) x nat — rose (nat)

down = afoldg, (h,T)
with h((a,?),n) = fork(n,), v = succ. Thatis,

down(fork(a,¢),n) = fork(n, list (down) (7"t (£, n + 1)))

3.3 Laws for afold

The following are some laws for afold.
Theorem 3.13 For any7,

foldp(h) o my = afoldp(h o 71,7)
Theorem 3.14 (Afold Identity)
afoldp(ing o m1,7) = m
Theorem 3.15 (Afold Pure Fusion)
foh=No(Ffxid) = foafoldp(h,7)= afoldp(l/,7T)
Theorem 3.16 (Acid Rain: Afold-Fold Fusion)

T:VA. (FA— A) — (GAx X — A)

foldp(h) o afoldg(T(ing),7) = afoldg(T(h),T)
Theorem 3.17 (Fold-Afold Fusion)For every natural transformatior : G = F,
koT =T o(k xid)
afoldp(h,7) o (foldg(ing o k) x id) = afoldg(h o (k x id), 7)
Theorem 3.18 (Map-Afold Fusion)For f : A — Band DA = uF4,

F(f,id)oT =7 o (F(f,id) x id)

afoldp, (h, 7) o (Df x id) = afold, (h o (F(f,id) x id),)

3.3. Laws Forafold 33

Theorem 3.19 (Morph-Afold Fusion) For everyf : X — X',

F(id x f)o7a =740 (id x f)

afold(h,7) o (id x f) = afoldg(h o (id x f),7)

Morph-afold fusion is particularly interesting because it relates two accumulations whose accumulat-
ing parameters are of a different type. The premise of that law states a coherence condition that must
hold between the accumulators. A proof of these laws can be fouhd in [Par01].

Example 3.20 The height of a leaf-labelled binary tree can be calculated as the maximum of the
depths of the leaves in the tree:

height = maxbtree o rdepth

wheremaxbtree = foldp,, ([id, max]) : btree (nat) — nat returns the maximum value contained in a
tree:

maxbtree(leaf(n)) = n

maxbtree(join(t,u)) = max(maxbtree(t), maxbtree(u))

wheremax(m, n) returns the greater ofi andn. Sincerdepth(t) = down(t, zero), we can write that
height(t) = aheight(t, zero), where

aheight : btree (A) x nat — nat

aheight = maxbtree o down

This two-pass definition produces an intermediate tree which can be eliminated by fusing the parts.
To this end, we first observe thdbwn = afoldp, (T([leaf, join]),7), beingT : (BAC — C) —
(BaC x nat — C) the following transformer:

T(k) = [k1 o ma, ka0 mi]od
for k = [k1,ke] : A+ C x C — C. Therefore, by applying afold-fold fusion we obtain that:
aheight = afold g, (T([id, max]), 7)

That is,

aheight(leaf(a),n) = n

aheight(join(¢,u),n) = max(aheight(¢,n + 1), aheight(u,n + 1))
Now, suppose we want to prove the following law:

m + aheight(¢,n) = aheight(t, m + n)
In point-free style,
(m+) o aheight = aheight o (id x (m+))

The proof proceeds as follows:

34 3. INTRODUCING afold

aheight o (id x (m+))
= { morph-afold fusion; proof obligation }
afoldp,, (T([id, max]) o (id x (m+)),7)
= { definition of T }
afoldp, ([m2, max o m] o d o (id x (m+)),7)
= { naturality ofd }
afoldg , ([m2, max o m1] o (id x (m+) + id x (m+)) o d, T)
= { coproduct }
afoldg,, ([(m+) o w2, max o 7] o d, 7)
= { afold pure-fusion; proof obligation }
(m+) o aheight

The proof obligation for morph-afold fusion is:
7o (id x (m+)) = Ba(id x (m+)) o7

which can be checked by a simple calculation that relies on naturalitylafthe case of pure-fusion
the proof obligation is:

(m+) o [, maxom] od = [(m+)omy, maxom]odo (Ba(m+) x id)

which can be verified by a simple calculation that uses the propeitx o ((m+) x (m+)) =
(m+) o max. O

Example 3.21 A typical example of accumulation is the linear-time version of reverse:
areverse({) = rev(¢, nil)

where

rev : A* x A* — A*

rev. = afoldy, , ([m2, w2 0 m1] 0 d, 7™)
with 7 = (71 + ¢") o d and¢™((a, £), ') = (a, (¢, cons(a,?'))). That s,
rev(nil,¢') = ¢ rev(cons(a, £),¢") = rev({,cons(a, £'))
Consider also the accumulative version of the function that computes the length of a list:
alength(¢) = len(¥, zero)

where

len : A* x nat — nat

len = afoldy,, ([m2,m 0 m1] o d, Flen)

3.3. Laws Forafold 35

with 7" = (71 + ¢'*") o d and¢'*"((a, £),n) = (a, (¢,succ(n))). That s,
len(nil,n) =n len(cons(a, £),n) = len(¢,succ(n))
Now, suppose we want to prove the following law:
length o areverse = alength

wherelength = foldy, , ([zero, succ o m3]) is the usual definition of length in terms of fold. This is
reduced to proving that:

length(rev(Z, nil)) = len(¢, zero)
which in turn is a particular case of this more general property:

length o rev = len o (id x length)
The proof proceeds as follows.

length o rev

= { afold pure fusion; proof obligation }

afoldy, , ([length o 7y, m9 0 1] o d, 7")

= { algebraic manipulation }
afoldy, , ([m2, 2 o m1] o d o (id x length), 7"")
= { morph-afold fusion; proof obligation }
len o (id x length)
The proof obligation for pure fusion is:

length o [m2, 9 0 1] o d = [length o 79, 2 0 1] o d o (L 4 length x id)

which can be verified by a simple calculation. In the case of morph-afold fusion the proof obligation
is:

La(id x length) o 7 = 7" o (id x length)
which is reduced to proving that
(id x (id x length)) 0 ¢™ = ¢'*" o (id x length)
This can be verified by a simple calculation. O

Finally, we present a law that relates a fold with an accumulative version of it. This law is an
adaptation to our setting of a law in [HIT96] that relates a fold with a higher-order fold.

Proposition 3.22 Let f : A x X — A be a function with right identity, i.e. f(a, e) = a, for every
a. Then,

fo(hxidx)=ko(Ffm) = foldp(h)(t) = afoldp(k,7)(t,e)

whereF f = F f o 7, for 7 proper for accumulation.

36 3. INTRODUCING afold

The following corollary is a simpler formulation of the above theorem for the common case of
sum types.

Corollary 3.23

Let f : A x X — A be afunction with right identity, i.e. f(a,e) = a, for everya. Let F =
F + F» be a composite functoh, = [hy, hal, k = [k1, ko] od, F'f = F foT wherer = (T; +72)od
proper for accumulation. Then, for evenyr = [c1,co|: FuF — uF

Fo(h xidy) = k:lo<F1f,7r2>} {foldp(h)ocl = afoldp(k,7) o (c1, €)
=

f o (hg X idx) = kyo <F2f, 7T2> fO|dF(h) ocy = afoldp(k,?) o <CQ,§>

Chapter 4

Improving Fusions

In this chapter we present a technique that can be used to improve the resulting fusion in certain cases
where laws like pure fusion will not give a satisfactory result.
4.1 An Example of Fusion Improvement

We present an example problem that illustrates the shortcomings of relying on simple fusion for
certain fusion problems, and then we proceed to improve the fused function by the application of
Morph-Afold Fusion.

4.1.1 Thespex Problem

In [Moi03], the following problem was presented:
Given a datatype of lists &f’'s andB’s,

data ABlist = nil | A ABlist | B ABlist

a functionsplit: (ABlist x ABlist) — ABlist that orders ar\Blist so that allA’s come before th&'’s,
split (nil,z) = =z
split (A w),z) = A (split (u,x))
split (Bw),y) = split (u,B x)

and a functiorexch: ABlist — ABlist that exchanges ali’s for B's and viceversa,

exchnil = nil (exch.1)
exch (Au) = B (exchu) (exch.2)
exch (Bu) = A (exch u) (exch.3)

we want to calculate
main t = exch (split (¢, nil))

The functionmain is inefficient, since it generates an intermediate data structure. We want to
obtain an efficient prograrpex = exch o split. Sincesplit is an accumulation we want to express it
as an afold foABlists.

37

38 4. IMPROVING FUSIONS

4.1.2 Afold for ABlists

The signature oABlists is captured by the functof3 = 1 + I + I. The initial algebra is given by
nilbAB]: 1+ A+ A — A. Letuscallds: (A+B+C)xX - Ax X +BxX+C x X the
natural transformation analogousddor 3 addends. For each algelita= [h1, ha, h3] o ds, afold is
the unique arrowf = afold 45(h, 7) such that

f(nilbz) = hy(x)
f(A ’U,,JI) = h2(f(u7¢($))735)
f(Bu,z) = h3(f(u,y'(x)),2)

for7=m +id x ¢ +id x ¢'.

We can expressplit as an afold.

split = afold 5(h,T)

where hy = id
hy = Aom
hy = m
v = id
Y = B

4.1.3 Attempting Pure Fusion

Back to our problem, we will apply the pure fusion Iaw 3.15 to feislet with exch and obtairspex.
Atfter simplifying the antecedent [n 3.]L5 with corollary [3.7 we are left with the following equations:

exchohy = h) 4.1)
exchohy = hfo (exch x id) (4.2)
exchohy = hjo (exch x id) (4.3)

From[4.], sincé,; = id we obtaink; = exch. From[4.2, we calculate

exch o hy

= { Definition of hy }
excho Aomy

= { exch.2 }
B o exch o m

= { Products }
B o o (exch x id)

= { Defininghl,=Bom }
Rl o (exch x id)

and obtaim/, = B o 1. Making an analogous calculation

4.1. AN EXAMPLE OF FUSION IMPROVEMENT 39

= { Definition of h3 }
exch oy

= { Products }
71 o (exch x id)

= { Defininghf =m }
R o (exch x id)

we obtainh = 7.
We have obtained the accumulation:
spex = afold i (h',T)

where h] = exch

hIQ = Bo T

hé = 1

v = id

¢ = B

Inlining the accumulation gives as a result:

spex (nil,z) = exchx (spex.1)
spex (A l,xz) = B (spex (¢,x)) (spex.2)
spex (B¢, z) = spex (¢,Bx) (spex.3)

The fused functiorspex is more efficient tharxch o split, but it is not optimal. While all the
A’s are being exchanged as the list is being splitted (ggex.2)), all theB’s will be exchanged only
whenspex reaches the end of the list (e@pex.1) and(spex.3)).

We can do better.

4.1.4 Helping fusion

The key observation is that in order to improve the fusion in this function we need to mowecthe
in (spex.1) into the accumulation function. We want to obtaihand7 such that

afold g(h",7) = afold (', 7)

Looking at the algebraic laws provided by afold, we see that Morph-Afold Fusion| (3.19) may be
of help. For thigh/ itis easy to find ark” such that

h' = h" o (id x exch).

since none of the recursive cases in the algebra use the accumulator. The above equation can be easily
calculated separating it by cases:

exch = hf oexch = h! = id
Bom = hjo(id x exch) = hy = Bom
m = hf o (id x exch) “ hy = m

What remains is the calculation ®f. The condition in Morph-Afold is:
AB (id x exch) o7 = 7 o (id x exch) (4.4)

We calculate,

40 4. IMPROVING FUSIONS

M (id x exch) o 7
= { Functor 4B, 7 definition }

(id 4+ id x exch +id x exch) o (w1 +id x id +id x B)
= { Coproducts }

71 +id X (exch oiid) + id x (exch o B)
= { exch.3 }

71 +id x exch + id x (A o exch)
= { Products }

71 o (id X exch) +id o (id x exch) + (id x A) o (id x exch)
= { Coproducts }

(m +id +id x A) ods o (id x exch)
= { Defining7 = (m +id +id x A) ods }

7' o (id x exch)

We have obtained the accumulation
spex’ = afold g(h",7")

where hf = id
Ry = Bom
hy = m
Y = id
W= A
Inlining spex’, we obtain:
spex’ (nil,x) = x

/
spex’ (A4, z) = B (spex (¢, x))
spex' (B4, z) = spex ({,Ax)

where we can observe thatex’ is optimal in the sense described before.
We have obtained a functiapex’ such that

spex’ o (id x exch) = spex.
Now we calculate from the definition efiain
main ¢
= { Definition of main, Afold Pure Fusion }
spex (t, nil)
= { Morh-Afold Fusion (3.19) }
(spex’ o (id x exch)) (¢, nil)
= { (exch.1) }
spex’ (¢, nil)

The final program
main ¢t = spex/(t, nil)

does not generate any intermediate structures.

4.2. FOLDL 41

4.2 Foldl
Another example of the kind of functions where pure fusion does not give a satisfactory result is the

well-known operator on list&ldl. In this section we will derive an effective fusion law faldl by
simple calculation.

4.2.1 Foldl as an accumulation
The usual definition of théldl recursion operator in functional languages is:

foldl (f,e) nil =ce
foldl (f,e) (cons(a,f)) = foldl (f, f (a,e)) ¢

We can express this operator as an instance of the afold operator for lists:

foldl (f,e) ¢ = afoldy(h,T) (¢, ¢€)

where by = id
hy = mg9om
v o= f

whereh = [h1, ho] o d, andT = (71 + ¢) o d, for ¢((a,b), x) = (a, (b,¥(a, x))).
If we have a compositiop o foldI(f,e), and apply Afold Pure Fusiof (3]15), we obtain the fol-
lowing undesirable result

(gofoldl (f,e)) £ = afoldy(h',7) (¢, €)

where] = ¢
/2 = T20T
vo=f

where, as in the previous exampdewill only be applied when the whole input list is consumed.
Again we can solve this by the application of the Morph-Afold Fusion law. After some calcula-
tions we obtain:

(gofoldl (f,e)) £ = afold,(h',7) (¢,g€)
where h} = id
hfy = maom

which is afoldl. Here7 = (71 + ¢') o d, with ¢/((a,),) = (a, (b,¢'(a,x))). The sanity condition
on Morph-Afold Fusion for this case is

goy =1 o(idx g)

4.2.2 Fusion law forfoldl

From these results we can derive the following fusion lawféad!.

42

Proposition 4.1 (Foldl Fusion)

gofoldl (f,e) = foldl (h, ')

4. IMPROVING FUSIONS

Chapter 5

Extending afold

Afold, as it was defined in the previous chapter, only allows us to express accumulations where the
structure of recursion follows exactly the structure of the input datatype. In this section we define
an extension t@fold that is more flexible in the kind of structural recursive accumulations on in-
ductive types that it can express. This extended operator is obtained by relaxing the requirements on
accumulator arrows.

Consider the following example:

subs (nil,y) = (wrapowrap)y

subs (cons(x,£),y) = subs({,y) ++ list (y:) subs(¢, x)
We can see that the input structure is a list. The expression for an afold on lists is:
f (nil,) = hi(x)
f (COﬂS(a, g)a SU) = h?(a7 f(& w(a7 x))? .CC)
Now it should be clear thaubs cannot be defined using our previous formulation of afold. Being
the input structure a list we can only have one recursive call —exactly the same number as the number
of recursive instances in the list datatype. Howexgss has two recursive calls with different accu-
mulation functions. Nevertheless, if we could transform the input into a binary tree using a natural

transformatiory, we would be able to definaibs as the composition gf with an afold for binary
trees. Fortunately, there exists such transformation.

p (nil) = empty
p (cons(x,x5)) = node(p(xs), z, p(5))
The following diagram illustrates the effect pfon a sample list.

[w]

[w]

[w]

[w]

43

44 5. EXTENDING afold

5.1 The extendedafold operator

We extend afold in order to accomodate the transformation we have just mentioned into the operator.
To make the extension, we will relax the shape and data preservation condition on the accumulator
arrowr.

Definition 5.1 An arrow 7, : FA x X — G(A x X) is said to beproper for accumulation if
there exists an arrow : GA x X — G(A x X) which conforms to definitiop 3|1 and a natural
transformatiorv : F' = G such that, = 7o (o x idx). O

Since botlr ando are natural in4, we have that,; is also natural i, so the naturality condition
holds. Nevertheless, from the typemgfit should be obvious that it does not preserve shape and data.
Given 7, satisfying Definitior] 5.l we can define another extension of funGtdnat works onX-
actions.

Definition 5.2 Forf : A x X — B, letus defing7,f : FA x X — GB to be:

id 7 e
Gof = FAx X —Z470X | cax T4 Gax x) -9 ¢

This means that7, f = G f o 7,. In terms of our previous functor extension, we h&vef =
Go (U X idx). O

Definition 5.3 An initial algebraing is said to benitial with accumulators if for each objectX,
T, : FAx X — G(A x X) proper for accumulation, and: GA x X — A, there exists a unique
f:uF x X — Athat makes the following diagram commute:

<G0'f7 772>

FuF x X - GAx X
Z'nFXidX h
wF x X - A
f

We callafold the unique arrow that results from initiality with accumulators and we denote it by
afoldpg(h, 7o) : pF' x X — A.
O

Like our previous definition of initiality with accumulators, the extended definition is also guar-
anteed to exist in the presence of exponentials.

Proposition 5.4 If C is a cartesian closed category, then every initial algebra is initial with accumu-
lators.

Therefore, our extended accumulations can be defined in categori&tile Cpo.

5.1. THE EXTENDED afold OPERATOR 45

Proposition 5.5 This definition o&fold is an extension of the previous one.
Takery =To (id X idX) =T.

afoldp(h, 7) = afoIdF,F(h, 7'id)
Therefore our previous afold is a particular case of the extended one. We will continue using the
previous notation with only one functor in the subscript to refer to this particular case.
Most functors that we deal with in practice are sums. The following proposition shows us how to
simplify certain equations into simpler ones that only take into account one addend at a time.

Proposition 5.6 LetG = G; + Gy be a composite functoh, = [hy,he] o d, Gof = Gf o (T1 +
Tg)odo (o X idx), whereo = o1 + 09, andk = [k1, k2] o d. Then

f e} hl = kl o <Glo'1fa 7T2>
foh:kO<Gaf77T2> -
f o h2 = k?2 o <G202fa 7T2>
Corollary 5.7 LetG = G + G2 be a composite functol, = [hy, ha], G, f = Gf o (T1 +72) 0do
(0 x idx), whereo = o1 + 02, andk = [ky, k] o d. Then
f o (hl X ZdX) = kl o <Gla'1f’ 7T2>
fo(hxidx)=ko(Gyf,m) <
f e} (h2 X ZdX) = k2 o <G20'2f) 7T2>

Corollary 5.8 LetG = G + G2 be a composite functal, = [k, ho] od, andk = [k1, k2] od. Then
foh1 :klo(Gle Id)

foh=ko(Gf xid) < {
fthZkQO(Gngid)

Even though propositidn §.6 and its corollafied 5.7[anf 5.8 were formulated and proved for binary
sums, they could be easily extended to n-ary sums. The proofs of all the propositions in this section
and its corollaries can be found in apperid]x B.

Here are some examples:
() Natural numbers

Leto: 1+ A — 14+ A x A, be natural ind andr4 = (71 + ¢) od, whereg: (A x A) x X —
(A x X) x (A x X) is natural inA and preserves shape and data.

Thereforep = (m x ¢, m x '), for somey,y’: X — X.
Leth = [h1,he]lod: (1+BxB)x X — B,H=1+1xIandf = afoldy g (h,75).
By definition[5.3, fis such that:

f o (inN X idx) =ho <Hgf, 7T2>
Now we can use corollafy §.7 to obtain:

fo(zeroxidx) = hyo (1, f,m2)
fo(succ xidx) =hoo((I xI)s,f,m)

In pointwise notation,

46 5. EXTENDING afold

f (zero, x) = hi(x)
f(succ(n),z) = ho (f(n,9(x)), f(n,¢'(z)),)

For example, binomial coefficients can be defined using the addition law

()= () ()

and the two base cases

which can be expressed as
comb = afoldy z (h, 75)

whereh; = [succ o zero, zero] o o, ha(c1, ¢,) = ¢1 + ¢, ¥ = pred andy)’ = id. That is,

comb (zero,inl()) = succ o zero
comb (zero,inr(y)) = zero
comb (succ(n),z) = comb (n,pred x) + comb (n,).

(i) Lists
Leto: 1+ Ax B — 1+ B x Ax B =id+~ywithv(a,b) = (b,a,b).
Let7p = (71 + ¢) od, whereg: (B x Ax B) x X — (B x X) x Ax (B x X)isgiven by
o((b,a, V), z) = ((b,9¥(a,x)),a, (¥, (a,x))), forsomep,y': A x X — X.
Leth = [h1,he]od: (1+C x Ax C)x X — Candf = afoldy,, 7, (h, 7).
By definition[5.3, fis such that:

f o (inL X idx) =ho <T0f, 7T2>
Now we can use corollafy 5.7 to obtain:

fo(nil xidx) = hyo(lg, f,m2)
fo(cons xidx) =hao((I X AXI)g,f,m)

In pointwise notation,

f (nil,x) = hi(x)
f((),:L’) = h (f(f,w(a,x)),a,f(f,w’(a,a:)),z)

5.2 Laws for the extendedafold

We are now going to show some laws about afold. The proof of these theorems can be found in
appendix B. Most of these theorems are the extended counterpart of the afold laws stated ifi chapter 3.
In the sequel we take, = 7o (0 x idx) and7, =7 o (o x idx)

5.2. LAWS FOR THE EXTENDEDafold 47

Theorem 5.9 (Afold Factorization)
Let7 be proper for accumulation and : F' = G, then

afoIdF,G(h, 7o) = afoldg(h,T) o (foldp(ing o o) X idx)
wherer, =7 o (0 x idx).
Afold Factorization tell us that an extended afold can be factorized in the composition of a fold
and an afold.
Theorem 5.10 (Afold Transformation Shift)
For every natural transformatiorn : F' = G,0 : F' = F,

KoT, =Tho(k xid)

af0|dF7g(h,Téon) = afoIdEF(h o (KJ X id),TU)

Afold Transformation Shift tell us that under certain conditions we can move a natural transfor-
mation from the accumulation function to the algebra.

Theorem 5.11
For anyT,

foldp(h) o m = afoldp p(h o m1,7)

Theorem 5.12 (Afold Identity)

afoIdF7F(inF O7T1,7) =T

Theorem 5.13 (Afold Pure Fusion)
foh=Wo(Gf xid) = foafoldrg(h,7,) = afoldpq(h,15)

To simplify the condition on Afold Pure Fusion the coroll@ry]5.8 might come in handy.

Theorem 5.14 (Acid Rain: Afold-Fold Fusion)

T:YA. (HA— A) - (GAx X — A)

foldg (h) o afoldp (T (inm), 7o) = afoldpc(T(R), 75)

48 5. EXTENDING afold

Theorem 5.15 (Fold-Afold Transformation Fusion)
For every natural transformation : H = F,

afoldp g (h, 7.,) o (fold g (ing o k) x id) = afoldy g (h, Toox)

Corollary 5.16 (Fold-Afold Fusion)
fx:G=Fando: F = F,

KoT, =Tro(k xid)

afold g, p(h, 7,,) o (foldg(inp o k) x id) = afoldp, p(h o (k X id), 75)

When fusing a fold with an afold we may choose between the above theorem and its corollary,
depending on what we want to do. Theoflem b.15 fuses the fold into the accumulation function while
corollary[5.16 fuses it into the algebra.

Theorem 5.17 (Map-Afold Fusion)
For f: A— BandDA = uFy,

G(f,id) o7 =7 0o (G(f,id) x id)
afold g, oy (h, 72) o (Df x id) = afoldg, ¢, (ho (G(f,id) x id), 7o)

Theorem 5.18 (Morph-Afold Fusion)
Foreveryf : X — X/,

G(id x f)oT =7 o (id x f)

afoldp g (h, 7)o (id x f) = afoldpg(ho (id X f), 1)

The following law allows us to calculate an accumulation from a fold.

Proposition 5.19
Letf: A x X — A be afunction with right identity, i.e. f(a,e) = a, for everya. Then,

fo(hxidx)=ko(Gsf,m2) = foldp(h)(t) = afoldrq(k,7,)(t, €)

whereG, f = Gf o 1, for 7, proper for accumulation.

Corollary 5.20

Let f : A x X — A be afunction with right identity, i.e. f(a,e) = a, for everya. LetG =
G1+ Gy andF = F) + F, be composite functoré, = [h1, ha], Gof = Gfo(T1+T2)odo (o xidx),
whereo = o1 + 09, andk = [ki, k2] o d. Then, for everying = [c1, c2]: FuF — pF

f e} (hl X idx) = kl @) <G101f, 7T2> } { fOldF(h) oCp = af0|dp7g(k,7'g) o <cl,g>
=

f (e} (hg X idx) = kg @) <G202f, 7T2> fOldF<h) O Cy = afO|C|F7g(k',Tg> o <02,§>

Chapter 6

Case Study

In this chapter we will apply the results of chagtér 5 to calculate an efficient program for the Path
Sequence Problern [Bir84, HIT96], starting with a simple specification of the problem.

6.1 Specification

The problem is to determine the length of the longest subsequence of a given sequence of vertices that
forms a connected path in a given directed gréphFor simplicity we suppose thét is presented
through a predicaterc so thatarc a b is true just in the case thdu, b) is an arc ofG from vertexa
to vertexb.

As illustration, consider the graph of Figdre]6.1 and the sequenceC’ ABDACDEBE. The
length of the longest path sequence is 5, correspondinlel BE and ABC BE.

The specification of the problem is:

llp = maximum o list (length) o (filter path) o subs

wherepath is a predicate that is true if the given sequence is a path in the graph.

path (nil) = true (path.1)
path (cons(z, nil) = true (path.2)
path (cons(z1,cons(z2,xs))) = arc x; x2 A path(cons(za,xs)) (path.3)

andsubs is a function that generates all the subsequences of a given sequence.

()
G{Q\’ (&)

Figure 6.1: An example graph

49

50 6. CASE STUDY

subs (nil) = wrap o nil (subs.1)
subs (cons(x,xs)) = subs zs 4+ list (x:) (subs xs) (subs.2)

where(z:) denotes the function that putsat the head of a given list.

This means that the length of the longest path sequence is defined to be the maximum of the
lengths of all subsequences of the input that satisfythk predicate.

6.2 Program Derivation

The specification just given does describe an algorithm to solve the problem, though not an efficient
one. It requires us to generate the set of all subsequences of the input, of which th&tef ahe
length of the input is, test each one for the path property, compute the length of each subsequence
that passes the test, and finally extract the maximum. Clearly, the algorithm is exponential in the
length of the given sequence.

We will calculate an efficient algorithm from this specification by fusing all the parts. We will
start deriving an accumulation feubs in order to be able to fuse it witfilter path. Then, we will
manipulate the accumulation using the afold theorems.

6.2.1 An accumulation forsubs

To derive an accumulation faubs we express it as a fold:

subs = foldy([h1, ha))
where h; = wrap o nil
ho(z,p) = p +tlist (x:) p.

Now we can use Propositign 5]19. To obtain an afold we need toffirdand G, such that
fo(hxidx)=ko(G,f,m2). Applying corollary 5.7, we simplify this condition into the following
equations:

fo(hi xidx) = kio(Giforts,m) (6.1)
f o (hg X idx) = koo <G2f07'02,7r2> (62)

Now we have to think where and how we want to accumulate. We express this with the following
invariant.
asubs (zs,y) = list (y:) (subs xs)

whereasubs is the accumulative version efibs.

Looking at the equatiorfs 8.1 ahd 6.2 and the invariant suggestg theif (r, y) = list (y :) r.
Propositior] 5.19 requires us to have a right identitior f, but f has no such right identity. We
will solve this problem by liftingf to f., where foranyh : A x B — A, andd, : A x (B+C) —
Ax B+ AxC, the natural transformation that distributes to the right, we haveéithatl x (1+ B) —

A = (m + h) o d,, effectively creating airtual right identity. An analogous lifting can be used to
obtain a left identity for a functiop : B x A — A; we will use the same notation for both liftings.
The reader should be able to infer from the type of the function being lifted and the context which one
is meant.

The lifted invariant is

asubs, (xs,y) = list (y:¢) (subs xs)

6.2. lROGRAM DERIVATION 51

and the lifted equations now are
feo(h xidx) = kio(GifeoTs,ma) (6.3)
feo(hy xidx) = kao(Gafeo Ty, m2). (6.4)

The lifted version off, i.e. f., does have a right identiiyl().

fe(r,y) = list (y:e) v
We resume the derivation using the lifted equations. In equafign 6.3, we assumer; and
G1 = 1, and obtain:
(list (y:e) o (wraponil)) () = ki(y) = ki = [wrap o nil,wrap o wrap]
Analyzing the LHS of equation §.4,
f (hQ(fL',p),y)
= { Definition of f andhy }

list (y:e) (p ++ list(x:) p)
= { Naturality of + }

list (y:) p ++ list (y:e) (list (z:) p)
— { Definition of f }

fe(pyy) ++list (y:e) (fe(p,inrx))

we can observe that there are two occurrences of the recursive parameter with two different values of
the accumulating parameter. This suggestsdhiat natural transformation of typex7 = I'x AxI.
This means thaGGo = I x A x I, and7((c,a,c'),z) = ((¢,¥(a,x)),a, (', ¥ (a,z))). We take
o(z,p) = (p,z,p). After expanding these definitions in equation 6.4, we have:
fe(p,y) +Hlist (yze) (fe(p,inra)) = ka(fe(p,¥(2,9)), 2, fe(p, V' (z,9)),y)
Takingy = 79, 1)’ = inr o 71, we obtain
fe(p,y) +list (y:e) (felp,inrz)) =k (fe(p,y), =, fe(p,inr z),y)
<= { Generalisingf.(p,y) top, and f.(p, inr z) top, }
py ++ list (y:E) Pz = k2 (pyvxapxay)
Now that we have found; andk, propositior] 5.19 tells us that the accumulation we want is

asubs, s = afoldy, r([k1, k2] 0 d, 7o) (zs,¢€)

where ki = wrap o wrap,
ky((py, 2, p2),y) = py ++list(y:c) pe
Ta(xvpv y) = ((p, y),x, (p, Inr .Qf),y)

Inlining the above function gives as a result:

asubs, (nil,inl()) = (wraponil) ()

asubs, (nil,inr(2)) = (wrap o wrap) z

asubs, (cons (z,xs),inl()) = subs (zs,inl()) 4+ subs (zs,inr x)

asubs, (cons (z,xs),inr(z)) = subs (zs,inr(z)) ++ list(z:) (subs (xs,inr z)

52 6. CASE STUDY

6.2.2 Fusing(filter path) o asubs,

We will now use Theorern 5.13 to fu$iéter path with asubs.. According to Theorern 5.13, we have

to find &’ such thatf o k = k' o (T’ f x id) wheref = filter path. Putting corollary 5.8 into use gives
us the following equations:

(filter path) o ky = K} (6.5)
(filter path) o ko = K} o ((filter path x id x filter path) x idy) (6.6)

In equation 6.p, sinck; = wrap o wrap, andpath is true for singletons and empty lists, we have
thatk’l = k1.

Next, we will deriveks,. Let's recall thatks((py, z,pz),y) = py ++ list (y:e) pe. The LHS of
equatior) 6.6 is:
((filter path) o k) ((py, %, pz), y)
= { Definition of ko }
(filter path) (py, ++ list (y:e) p2)
= { PropositionA2 }
(filter path) p, -+ (filter path) (list (y:c) p)

We would like to expressfilter path) (list (y:.) p.) —the expression to the right of the append
operation— in terms ofilter path p,.

(filter path) o (list (y:¢))

= { Proposition[A.] }
list (y:e) (filter (path o (y:¢))

= { Property[6.7, see figuie §.2 }
list (y:e) o filter (A o (arc’ y, path))

= { PropositioMA3 }
list (y:e) o filter (arc’ y) o (filter path)

We continue this derivation using pointwise notation.

(list (y:e) o filter (arc’ y)) (filter path p,)
= { ps=list(z:)pl }

(list (y:.) o filter (arc’ y)) (filter path (list (x:) pl,))
= { Proposition[A.] }

(list (y:e) o filter (arc’ y) o list (z:)) (filter (path o (z:)) pl)
= { Proposition[A.], Type Functor }

(list (y:ex:) ofilter (arc’ y o (z:))) (filter (path o (x:)) pl,)

Looking at the second equationat’, we observe that
arc’ yo (x:) = M.case y of inl() — true; inr(z) — arcz x

To make the notation lighter and the calculations easier we are now going to consider the two
cases ofy separately.

6.2. lROGRAM DERIVATION 53

We need a new predicasec’ such that the following property holds:

(path o (y:c)) p = (arc’y p) A path p (6.7)

We calculate:
true /
{ th.1 andpath.2 } (arC Yy .Z') A path COﬂS(.Z'7 (L‘S)
= path. path. _ (Propers(&T 1
(path o (y:¢)) nil (path o (y:¢)) cons(z, xs)

= { Propey{6.T } — { path.3and Definition of(~). }
(arc’ y nil) A path nil

case y of
= { path.l } inl() — path cons(z, xs)
arc’ y nil inr(z)— arc z x A path cons(z, xs)
Hence, the predicatec’ we are after is:
arc’ y nil = true (arc’.1)
arc’ y cons(z,zs) = casey of (arc’.2)

inl() — true
inr(z)— arczx

Figure 6.2: Derivation oérc’

Casey = inl()
(list (y:ex:) ofilter (arc’ y o (z:))) (filter (path o (x:)) pl,)
— { Definition of (—). lifting }
(list (z:) o filter (Al.true)) (filter (path o (x:)) pl,)
- { Corollary[A75 }
list (z:) (filter (patho (x:)) pl)
- { PropositionfA] }
filter path (list (x:) pl,)
= { po=list(z:)p} }
filter path p,

Casey = inr(z)
(list (y:ex:) o filter (arc’ y o (z:))) (filter (path o (z:)) pl)
= { Definition of (—). lifting }
(list (y:2:) o filter (M.arc z x)) (filter (path o (z:)) p..)
— { PropositionfA3 }

list (y:x:) (if arc z = then filter (path o (z:)) p’,
else nil ())

54 6. CASE STUDY

= { Conditional }

if arc z x then list (y:2:) (filter (path o (z:)) pl,)
else nil ()
= { Functors, proposition AJ1 }
if arc z x then (list (y:) o filter path o list (x:)) pl;
else nil ()
= { pr=list(z:)pl }
if arc z = then list (y:) (filter path p,)
else nil ()

Putting both cases together,

(filter path) (list (y:c) pz) = case y of
inl() — filter path p,
inr(z)— if arc z x then list (y:) (filter path) p,)
else nil ()

Returning to the main derivation,

((filter path) o k2) ((py, Z,Pz),y)
= { Previous calculations }
(filter path) p, ++ casey of
inl() — filter path p,
inr(z)— if arc z = then list (y:) (filter path p,)

else nil ()
By equatior 6.6
k5 ((filter path py, z, filter path p,),y) = filter path p, ++
case y of
inl() — filter path p,
inr(z)— ifarc z
then list (y:) (filter path p,)
else nil ()
= { Generalising(filter path p,) to ¢, and(filter path p,) tog, }
k5((gy, , 4z),y) = gy ++ case y of
inl) — gz
inr(z)— if arc z z then list (2:) ¢

else nil ()
= { Coproducts }

k5((qy,,q2),y) = casey of
|n|() — qy "H'q;r
inr(z)— gy +if arc z z then list (2:) ¢,
else nil ()

We have obtained] andk). So, the fusion ofilter path andasubs,, functionfps, is

6.2. lROGRAM DERIVATION 55

fps xs = afoldy, 1 ([k], k5] o d,75) (xs,inl())
where ¥/ (y) = casey of

inl() — (wrap o nil) ()
inr(z)— (wrap o wrap) z

k5((qy, 7, 42),y) = caseyof
inl() — gy +ax
inr(z)— g, +if arc z x then list (2:) ¢,

else nil ()
To(x,28,9) = ((xs,y),z, (xzs,inrx),y)

Inlining the above function gives the following result:

fps(nil,inl()) (wrap o nil) ()

fps(nil,inr(2)) = (wrap owrap) 2

fps(cons(z, xs),inl()) = fps (zs,inl()) +fps (zs,inr x)

fps(cons(z, xs),inr(z)) = fps (zs,inr(z)) ++if arc z z then list (z:) (fps (zs, inr x))

else nil ()

6.2.3 Fusing(maximum o list (length)) o fps

So far, we have obtainefps, which is the fusion offilter path and asubs.. Now we will fuse
(maximum o list (length)) o fps to obtain our final result, functiolp. Herelength is the function
that gives the length of a list:

length nil =0 (length.1)
length (cons(z,xs)) = 1+ length zs (length.2)

andmaximum gives the maximum of a list of positive integers.

maximum nil =0 (maximum.1)
maximum (cons(x,zs)) = max (x, maximum zs) (maximum.2)

wheremax gives the maximum of a pair of integers.

Let us callmll = maximum o list (length).
According to the Afold Pure Fusioh (5]13), we have to fificsuch thainllok’ = k" o(T'mllxid).
Applying corollary[5.8 to this equation we obtain:

mlloky = Kk (6.8)
mlloky = ko ((mll xidxmil) xidx) (6.9)

From equation 68, after a few calculations we obfgirfy) = case y of .
inl() —0
inr(z)— 1
Calculating from the LHS of equati¢n 6.9,

6. CASE STUDY

(mil o ks) ((gy: %, 4z), y)
= { Definition of £}, }
mll (case y of
inl() — Qy T4z
inr(z)— qy +Hif arc z z then list (2:) ¢,
else nil ())
= { Coproducts }
case y of
inl() — mll (¢y ++¢z)
inr(z)— mll (qy +if arc z z then list (2:) ¢,
else nil ())
= { Naturality of -+, propositiorj A.6 }
case y of
inl() — max (mll g, mll qz)
inr(z)— max (mll g,, mll (if arc z x then list (2:) ¢,
else nil ())
= { Conditional }

case y of
inl() — max (mll g, mll q)
inr(z)— max (mil gy, if arc z x then mlil (list (2:) ¢)
else mll (nil ())
= { mil (list (z:) ¢z) = 1+ mll gz, mll (nil ()) = 0 — proof obligations }

case y of
inl() — max (mll g, mll qz)
inr(z)— max (mll gy, if arc z z then 1 + mll g,
else 0)

The first proof obligations is

mll (list (2:) gz)
= { Definition of mll }
(maximum o list (length) o list (2:)) ¢
= { Functors, propositiop AJ7 }
(maximum o list (1+) o list (length)) ¢,
= { PropositiofA.8 }
((1+) o maximum o list (length)) ¢,
= { Definition of mll }
1+ mll q,

And the second one is

6.3. YMMARY

mll (nil ())

= { Definition of mli }
(maximum o list (length)) (nil ())

= { Type Functor }
maximum (nil ())

= { maximum.1 }

0

We have obtained

k5 ((mll gy, z,mll q;),y) = case y of
inl() — max (mll g, mll q)
inr(z)— max (mll gy, if arc z =
then 1+ mllq,
else 0)
= { Generalisingmll g, tor, andmll g, tor, }

ké, ((Tya%?“x),y) = casey of
inl() — max (Tyarac)
inr(z)— max (ry, if arc z x then 1 4 r,
else 0)

The result of the fusion dfp, fllp is

fllp xs = afoldy, r([k], k5] o d, 75) (xs,€)

where k7 (y) = casey of
inl() — 0
inr(z)— 1

ky ((ry,xz,72),y) = caseyof

inl() — max (ry,72)
inr(z)— max (ry, if arc z x then 1 4 r,,

else 0)
7o(z,1,y) = ((Ly), =, (Linrz),y)
Inlining the above function gives as a result:
fllp (nil, inl()) =0
fllp (nil, inr(2)) =1
fllp (cons(z, xs),inl()) = max (flip (zs,inl()), fllp (xs,inr z))
fllp (cons(z, xs),inr(z)) = max (fllp (zs,inr(z)), if arc z x then 1 + fllp (xs, inr x))

else 0)

Our final program is

llp" xs = flpp (s, inl())

57

58 6. CASE STUDY

6.3 Summary

We have started from a simple but inefficient specification of the path sequence problem and by means
of program calculation —and a heavy use of fusion laws— we have obtained an efficient program.
We had to derive an accumulation farbs since the fusion witHilter path could not be performed
otherwise.

Chapter 7

Conclusions

In this thesis several aspects of the problem of calculating programs in the presence of accumulators
were considered. The motivation for this interest is that accumulations are in widespread use in
functional programs but they are difficult to reason with when using standard recursion operators
since they require the use of currying and higher order.

The standard category-theoretical modelling of types and programs was used as foundation. The
main reason for choosing this representation is its ability to abstract from the details of specific
datatypes and to serve as a streamlined proof framework. A presentation of this model was made
in chapter 2, which introduced the concepts and tools that would be needed in later chapters. As
such, it is by no means intended to be exhaustive; other sources of information are [BdAM97, BJIJM99,
Fok92] JRI7].

In chapter B the afold generic recursive operator on inductive datatypes is presénted! [Par01]
introduced afold, along with a collection of algebraic laws. A simpler presentation of this operator
and its laws can be found ih_[Pai02], on which our presentation is based. In these previous works
only polynomial datatypes were considered. One of the contributions of this thesis is the study of the
structure of afold in the presence of regular datatypes, showed by the instance of afold for rose trees.
The rest of the contributions are located from chapter 4 onwards.

The structure of some accumulations, in particular tail recursive accumulations, yield as a result
that fusion is not completely effective, as it does not eliminate all the intermediate structures. In
chaptef # a technique was introduced that improves the fusion of such accumulations. This technique
is illustrated by two examples. This first example was taken fiom [Voi03], where the problem of sub-
optimal fusions was pointed out. The second example is the classic futickibntypical example
of a tail recursive function. Although its fusion law is already known [Bir98], here it is derived in
calculational form from its expression as an accumulation.

The afold operator, as it was defined, was unable to express certain kinds of functions where
accumulations have more than one recursive call in each subterm, with different accumulator values.
In chaptef b an extension to afold that copes with this limitation is proposed. This extension has
proved to be conservative: laws for the extended operator are similar to those of the original afold.
Additionally, it has been found that this extended operator can be factorised in the composition of
a fold whose algebra is a natural transformation, with the original afold. This fact proved to be
extremely useful when proving the extended operator laws, as can be seen in the simplicity of the
proofs in Appendix B.

Finally, in chaptef 6, we present a case study for the path sequence problem. This problem was
originally solved with the use of accumulators|(in [Bir84], and was taken up agélin in [HIT96]. In this

59

60 . CONCLUSIONS

work, a program is derived from an specification of the problem using the extended operator and its
associated laws introduced in chapter 5.

Appendix A

Simple Properties

In this appendix we list simple propositions that were used in the case study. We will not provide
proofs of these propositions, but references will be provided when known.

Proposition A.1 [BAM97,[TRo99]list (f) o filter (h o f) = filter h o list (f).
Proposition A.2 (filter p) (zs ++ys) = filter p zs ++filter p ys

Proposition A.3 [Bir98] filter p xs = (filter f o filter g) s
wherepx = frxAgx

Proposition A.4 = does not occur free ih = filter (Az.b) xs = if bthen zs
else nil()

Corollary A.5 filter (Az.true) xs = s
Proposition A.6 maximum (xs ++ys) = max (maximum zs, maximum ys)
Proposition A.7 length o (z:) = 1 + length

Proposition A.8 maximum o list (1+) = (1+) o maximum

61

62

A. SMPLE PROPERTIES

Appendix B

Proofs

Proposition[5.4
If C is a cartesian closed category, then every initial algebra is initial with accumulators.

Proof. Leting be initial. Consider atX -actionh: FA x X — A. With it construct thef-algebra

k =curry(k): F[X — A] — [X — A]

where
k= ho(Gyapply,m): F[X — Al x X — A

Now consider the following composite diagram:

Ffoldp (k) x idx (G ,apply, m2)

FuF x idy FIX — A x X GAx X

mindX (I)]{ZXidX (II) h
F xid CX = A . A
pE Ay — ey A apply

() commutes by definition of fold, whereas (II) commutes by the universal property of the expo-
nential. i.e.

apply o curry(k x idx) = k
Therefore, the outer rectangle commutes. By the bijection between the curried and uncurried
version of an arrow, we have that there is a unigue.F' x X — A such thatpply o (foldr(k) x
idx) = f. Since
(Gapply, ma) o (Ffoldp(k) x idx)
= { Products }
(Ggapply o (Ffoldp(k) x idx), m2)
= { Definition5.2 }
(Gapply o 7, o (Ffoldp(k) x idx), m2)
= { Natural transformatiorr,, Functors }
(G, (apply o (foldp (k) x idx)), m2)

63

64 B. PROOFs

it follows that f is the unique arrow such that
f o (an X idx) =ho <Ggf, 7T2>

and thereforénr is initial with accumulators. O

In the sequel we take, = 7o (0 X idx) andr, =7 o (0 x idx)

Theorem B.1 (Lemma)LetG = G1 + G2, 7, = (T1 + T2) o d o (o X idx), Whereo = o1 + 09,
then
do <G0f7 7T2> = ((Glalfa 7T2> + <G202f7 7T2>) od

Proof.
do(Gyf,m)
= { Definition of G, definition[5.2 }
do ((G1 +G2)fo(T1+T2)odo (o Xidx),ms)
= { Naturality of d }
do ((G1f + Gaf) o (T1 +T2) o (01 X idx + 03 X idx) o d, 72)
= { Definition5.2 }
do((Gio, f + G20, [) 0 d,T2)
= { Proof obligation }
((Groy frym2) + (Gagy fym2)) 0 d

The proof obligationiglo ((h+ k) o d, ma) = ((h,m2) + (k,m2)) o d. Sinced is an isomorphism,
this is the same as proving

(h+k)od,m)od =d ' o((h,m) + (k,ma))
The proof goes like this

(h+k)od,m)od!
= { Products }

((h+ k), [, m])
= { Coproducts }

{[inl o h,inr o k], [ma, m2])
= { Exchange Law }

[(inl o h,ma), (inr o k, m2)]
= { Products }

[(inl x id) o (h,m2), (inr X id) o (k, m2)]
= { Coproducts }

[inl x id,inr x id] o ((h, m2) + (k,m2))
= { Definition of d=! }

d=1o ((h,ms) + (k,m2))

B. PROOFS 65

Proposition[5.6
LetG = G + G4 be a composite functal, = [h1, ha]od, Gof = Gfo(T1+T2)odo (o xidx),
wheres = o1 + 02, andk = [k1, k2] o d. Then

fohi=kio(Gi, f,m2)
foh=ko(Gsf,m) <
fohy =kyo (G, f,m2)

Proof. Considerk = [k1,ks]od: GA x X — A, withk; : GiA — Aandk, : GoA — A. Then,

foh=ko(G,f, 7o)
{ h=[hi,ho]od k= [ki,ko]od }
folhi,ho)od=[ki, k] odo{(Gyf,m2)
= { LemmalB.]1 }
folhi,he)od=[ki,ka] o ((Gis, f,m2) + (Gog, f,m2)) 0 d
{ Post-composing byl~! }
folhi ho] = [k, ko] o ({Gioy f, m2) + (G20, [72))
{ Coproducts }
[f o h1, foho]=[kio(Gis f,m2), koo (Ga, f,m2)]

By case analysis, we have the desired result. O

Corolary B.7|
LetG = G1 + G2 be a composite functol = [, h}], Gof = Gf o (T1 +T2) odo (0 x idx),
wheres = o1 + 02, andk = [ki, k2] o d. Then

{ f) (hll X ZdX) = kl o <G10'1f> 7T2>
fo(h/XidX):]fo<GUf77TZ> <
f o (h/2 X ZdX) = k2 o <G20'2f7 7T2>

Proof. Take propositiof 5]6, and let’s consider thig particular:

h = [k} x id, h x id] o d

= { Definition of h }
[} xid, hb x id] o d

= { lgx fLhx flod=g,h] x f(see example 2.27) }
[}, Ky] x id

66 B. PROOFS

O
Corolary 5.8
LetG = G; + G2 be a composite functol, = [h1, ho] o d, andk = [k1, ko] o d. Then
foh1 :kjlo(Gle Id)
foh=ko(Gf xid) <
fthZkQO(GQfX Id)
Proof. Take propositiof 516, also take= id and7 = 7, T = 7.
<Gafa 7r2>
= { Definition of G, }
(Gfo((m +m1)od),m)
= { (m +m)od=m (see example 2.26) }
<Gf o, 7T2>
= { Products }
(Gf xid) o (71, m2)
= { Product identity }
Gf xid
The proofs thatG,, f, m2) = G1 f x id and(G2,, f, m2) = G2 f x id are analogous. O

Theorem[5.9 (Afold Factorization)
Let7 be proper for accumulation and : F' = G, then

afoIdF,G(h, To) = af0|dg(h,F) o (fO|dF(inG o O') X de)
wherer, =7 o (o x idx).
Proof. Let us consider the following diagram:

Fold (i id
Fup x x Lfoldrling o o) xidx oy ‘“

inr X id I GuG G
F X (1) H (Gafoldg (h,T), m2)
ng X X (11) h
o " foldr(ingoo) xidy G e afold;; (h, 7) oA

afoldr (R, 7o)

The triangle in the diagram commutes:

B. PROOFS 67

Ffoldp(inp o o) x idx

FulF x X - FuG x X
TouF To,uG
G(pF x X) > G(uG x X)

G(foldp(lnp o U) X idX)

Figure B.1: Using the naturality of;

(Gafoldg (h,7), m2) o (o x idx)
- { Definition of G }
(Gafoldg(h,T) o T, ma) o (0 x idx)
= { Products }
(Gafoldg(h,7) o7 o (0 x idx), m2)
- { 7o =To(oxidx) }
(Gafoldg(h,T) o 74, m2)

(1) and (Il) commute by definition of fold (2} 1) and afold (B.3) respectively.
Since

(Gafoldg(h,T) o 74, m2) o (Ffoldp(ing o o) x idx)
= { Products }
(Gafoldg(h,T) o 7, o (Ffoldp(inp o o) X idx), m2)
= { 7o is a natural transformation (see Figiire|B.1) }
(Gafoldg(h,T) o G(foldp(ing o o) X idx) o T4, m2)
= { Functors }
(G(afoldg(h,T) o (foldp(inp o o) X idx)) o 7o, m2)

we have that the following diagram commutes.

<Gg(af0|dg(h,?) o (fO|dF(inF o O’) X idx)),ﬂ'2>

FuF x X » GAx X
inF X idX h
WF x X afoldg(h,?) o (fOldF(ZTLF o U) X idx) A

By initiality with accumulators|(5]3), the theorem is proved.

Theorem([5.10 (Afold Transformation Shift)

68

For every natural transformatior : F = G,0 : F = F,

KkoTy =Tso0 (kX id)

afoldp,(h, 7.,,.) = afoldp p(h o (k x id), 7o)

Proof. The diagram for the afold on the left hand side is

GO’OK/)
Fup x x — Goonfm) oy
Z'nFXidX h
wF x X - A
f

If we take the arrow on the top of the diagram, and make some calculations,

(Goorfim2)
= { Definition of G, }
(Gf o7 o (0o ok xid),ms)
= { Products }
(Gfortlo(kxid),ms)
= { Hypothesis }
(Gf okoT,,ma)
= { Natural Transformation: }
(ko Ffor,,ma)
= { Products }
(k xid) o (F'f o 75, 72)

we have the following diagram:

Fs f,
Fupxx Fehmlpa sk
(KXidx)
Y
inp % idy GAx X
h
Y Y
kb x X - A
/

B. PROOFS

B. PROOFS 69

Theorem[5.11
For anyT,

foldp(h) o m = afoldp p(h o 71, 7)
Proof.
foldp(h) o mp
= { Afold Lifting (8.13) }

afoldp(h o m1,7)

= { Proposition5.5 }

af0|dF7F(h o 71'1,7)

Theorem[5.12 (Afold Identity)
afoIdEF(inF o Wl,?) =

Proof.
afoldp p(ing o m1,7)
— { Proposition5.5 }
afoldp (inp o m1,7)
— { Afold Identity (3-14) }

1

Theorem[5.13 (Afold Pure Fusion)
foh=Nho(Gf xid) = foafoldrg(h,7,) = afoldrpq(l,7,)

Proof.

f o afoldra(h, 75)

= { Afold Factorization [5.9) }
f oafoldg(h,T) o (foldp(ing o o) x id)

= { Afold Pure Fusion[(3.15) }
afoldg (K, 7) o (foldp(ing o o) X id)

= { Afold Factorization [5.9) }
afoldp (R, 75)

Theorem[5.14 (Acid Rain: Afold-Fold)

T:VA.(HA— A) - (GAx X — A)

foldg (h) o afoldp.(T(iny), 7,) = afoldpg(T(h), 7o)

70 B. PROOFs

Proof.
foldgr (h) o afoldp (T (inm), 75)
= { Afold Factorization [5.9) }
foldgr (h) o afoldg(T(ing),T) o (foldp(ing o o) x id)
= { Acid Rain: Afold-Fold Fusion[(3.16) }
afoldg(T(h),T) o (foldp(ing o o) x id)
= { Afold Factorization [5.9) }
afoldp (T (R), 7o)

Theorem[5.1% (Fold-Afold Transformation Fusion)
For every natural transformation : H = F,

afO|dF70(h, 7'(/7) o (fO|dH(inF o I'i) X id) = af0|dH,G*(h, To’o,{)

Proof.
afoldp (h, 7.) o (foldg (inp o k) x id)
= { Afold Factorization [5.9) }
afoldg(h, 7) o (foldp(ing o o) x id) o (foldg (ing o k) X id)
= { Products }
afoldg(h, 7) o (foldp (ing o o) o foldg (ing o k)) X id
= { Acid Rain: Fold-Fold Fusion[(2.43) }
afoldg(h, 7) o (foldg (ing o 0 o k) X id)
= { Afold Factorization [5.9) }
afoldy,¢ (R, Toor)

Corollary p.16] (Fold-Afold Fusion)
fx:G=Fando: F = F,

KoTy=Tro0 (K xid)

afoldp g (h, 7.,) o (foldg(ing o k) x id) = afoldp p(h o (k x id), 7o)

Proof.
afoldg p(h, 7)) o (foldg(ing o k) x id)
= { Fold-Afold Transformation Fusiorj (5.15) }
afoldg r(h, Toox)
= { Afold Transformation Shift[(5.10) }
afoldp p(h o (k x id), 7,)

B. PROOFS 71

O
Theorem([5.17 (Map-Afold Fusion)
For f: A— BandDA = uFy,
G(f,id) o7 =7 0o (G(f,id) x id)
=
afoldp, ¢ (B, 75) o (Df x id) = afoldp, ¢, (h o (G(f,id) x id), 75)
Proof.
afoldp, g (h, 72) o (Df x id)
{ Afold Factorization [5.9) }
afoldg (h,7") o (foldp, (ing 0 o) x id) o (Df x id)
{ Products }
afoldg (h,7") o (foldp, (ing 0 o) o D f x id)
{ Map-Fold Fusion|[(2.45) }
afoldg (h,7") o (foldp, (ing o o o F(f,id)) x id)
{ Afold Factorization),F(f, id) is natural on it2"¢ argument }
afoldp, ¢, (h,7 o (o 0 F(f,id) x id))
{ Natural Transformatiorr }
afoldp, ¢, (h, 7 o (G(f,id) o o x id))
{ Hypothesis }
afoldp, ¢, (h,G(f,id) o 75)
{ Functors }
afoldp, ¢, (ho (G(f,id) x id), 75)
Where in the last step, we use the fact that
(G(id, g) o G(f,id) o 75, m2) = (G(f,id) x id) o (G(id, g) 0 7, 72)
O

Theorem([5.18 (Morph-Afold Fusion)
Foreveryf: X — X/,

Proof.

G(id x f)o7 =7 o (id x f)

afoldp,g(h,7,) o (id x f) = afoldp,c(ho (id x f),7,)

afoldp (h, 7)o (id x f)
= { Afold Factorization [5.9) }

afoldg(h,7") o (foldp(ing o o) x id) o (id x f)
= { Products }

afoldg(h,7) o (id x f) o (foldp(ing o o) x id)
= { Morph-Afold Fusion [3.19) }

afoldg(h o (id x f),7T) o (foldp(ing o o) x id)
= { Afold Factorization [5.9) }

afoldp(ho (id X f),72)

Proposition[5.19
Letf: A x X — A be afunction with right identity, i.e. f(a,e) = a, for everya. Then,
fo(hxidx)=ko(Gsf,m2) = foldp(h)(t) = afoldrq(k,7,)(t,€)
whereG, f = Gf o 1, for 7, proper for accumulation.

Proof. First, let us consider the following composite diagram:

Ffoldp(h) x idx (G f,m2)

» FAXx X GAx X

FuF x X

inp x idy (I) hxidy (1) k

uwk x X - - Ax X - A
fOldF(h) X IdX f

(1) commutes by definition of fold, whilél I) commutes by hypothesis. Since,
(Gof,ma) o (F foldp(h) x idx) = (Gs(f o (foldp(h) X idx)), m2)
by initiality with accumulators we obtain that:
[o (foldp(h) x idx) = afoldpc(k, 75)

Therefore,

foldp(h)(t) = f(foldp(h)(t),e) = afoldra(k, 75)(t, €)
as desired. O

Corollary p.20)

Letf : A x X — A be a function with right identity, i.e. f(a,e) = a, for everya. LetG =
G1+Gq andF = F + F; be composite functors, = [h, ha|, Gof = Gfo(T1+T2)odo(o xidx),
whereo = o1 + 09, andk = [k1, k2] o d. Then, for everynp = [c1, c2]: FuF — uF

fo(hi xidx) = kio(Gig, [f,m2) } { foldp(h) oy = afoldpg(k,7,) 0 (c1,¢€)
=

f o (hg X idx) = kz 9] <G202f, 7T2> fO|dF(h) oCy = afO|dF7g(l€,TU) ©) <CQ,Q>

Proof. This corollary is simply the application of proposition]5.7 to proposifion|5.19. O

72

Bibliography

[AL91]

[BAM97]

[Bir84]

[Bir9g]

[BJIMO9]

[BW99]

A. Asperti and G. Longo. Categories, Types and Structures: An Introduction to Cate-
gory Theory for the Working Computer Scientisbundations of Computing. MIT Press,
Cambridge, Massachusetts, 1991.

R.S. Bird and O. de MooAlgebra of ProgrammingPrentice Hall, UK, 1997.

R.S. Bird. The Promotion and Accumulation Strategies in Transformational Program-
ming. ACM Transactions on Programming Languages and Systé@}y October 1984.

R. Bird. Introduction to Functional Programming using Haskefrentice-Hall, UK, 2nd
edition, 1998.

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Programming - An Intro-
duction -. InAdvanced Functional ProgrammingNCS 1608. Springer-Verlag, 1999.

M. Barr and C. Wells.Category Theory for Computing Sciendees Publications CRM,
Montréal, 3rd edition, 1999.

[CDPR98] Loic Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. How to deforest in

[Cor99]

[Fok92]

[Fok96]

[Gib00]

[Hin99]

[HIT96]

accumulative parameters? Technical report, INRIA Rocquencourt, 1998.

Loic Correnson. Equational Semantics. In D. Parigot and M. Mernik, edBexsond
Workshop on Attribute Grammars and their Applications, WAGA®R@es 205-222, Am-
sterdam, The Netherlands, 1999. INRIA Rocquencourt.

Maarten M. Fokkingal.aw and Order in AlgorithmicsPhD thesis, University of Twente,
7500 AE Enschede, Netherlands, February 1992.

M.M. Fokkinga. Datatype Laws without Signaturddathematical Structures in Com-
puter Science6:1-32, 1996.

J. Gibbons. Generic Downwards Accumulatior&cience of Computer Programming
37(1-3):37-65, 2000.

R. Hinze. Polytypic Programming with Ease. 4th Fuji International Symposium on
Functional and Logic Programming (FLOPS’99), Tsukuba, Japamcture Notes in
Computer Science Vol. 1722, pages 21-36. Springer-Verlag, 1999.

Z. Hu, H. lwasaki, and M. Takeichi. Calculating Accumulations. Technical Report METR
96-03, Faculty of Engineering, University of Tokyo, March 1996.

73

[Hug89] J. Hughes. Why Functional Programming Matte@omputer Journal 32(2):98-107,
1989.

[Hut99] Graham Hutton. A Tutorial on the Universality and Expressiveness of Raldtnal of
Functional Programming9(4):355—-372, July 1999.

[Jeu93] J. JeuringTheories for Algorithm CalculatianPhD thesis, Utrecht University, 1993.

[JRI7] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induBlidlietin of EATCS
62:222-259, 1997.

[Lan71] S. Mac LaneCategories for the Working MathematiciaBpringer Verlag, 1971.

[LS81] D.J. Lehmann and M.B. Smith. Algebraic specification of data typdsthematical
Systems Theoyt4:97-139, 1981.

[MA86] E.G. Manes and M.A. Arbib.Algebraic Approaches to Program Semanticiexts and
Monographs in Computer Science. Springer-Verlag, 1986.

[Mal90] G. Malcolm. Data Structures and Program TransformatiSnience of Computer Pro-
gramming 14:255-279, 1990.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. Rroceedings of Functional Programming Languages and
Computer Architecture’91L.NCS 523. Springer-Verlag, August 1991.

[Par00] A. Pardo. Towards Merging Recursion and Comonada/folkshop on Generic Program-
ming Ponte de Lima, Portugal, July 2000. Technical Report UU-CS-2000-19, Utrecht
University.

[Par01] A. Pardo. A Calculational Approach to Recursive Programs with Effed&hD thesis,
Technische Universitat Darmstadt, October 2001.

[Par02] A. Pardo. Generic Accumulations. IFIP WG2.1 Working Conference on Generic Pro-
gramming Dagstuhl, Germany, July 2002.

[Pie9l] B.C. PierceBasic Category Theory for Computer Scientistsundations of Computing.
MIT Press, Cambridge, Massachusetts, 1991.

[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphidnfotmation Process-
ing'83, 1983.

[Tho99] S. ThompsonHaskell: The Craft of Functional Programmingddison-Wesley, 1999.

[VKO4] Janis Voigtlander and Armin Kihnemann. Composition of functions with accumulating
parametersJournal of Functional Programmind.4:317-363, 2004.

[Voi03] Janis Voigtlander. Elimination of intermediate results in functional programs. Colloquium
at TU Miinchen, November 2003.

[Wad89] P. Wadler. Theorems for free! Trhe 4th International Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA,'®8pes 347-359, London,
September 1989. Imperial College, ACM Press.

74

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trélesoretical Com-
puter Sciencer3(2):231-248, 1990.

75

	Introduction
	The fold Recursion Operator
	Accumulators
	Contributions
	Overview of the Thesis

	Preliminaries
	Categories
	Diagrams
	Initial and Terminal Objects

	Functors and Natural Transformations
	Natural Transformations

	Product and Sum
	Distributive Categories
	Conditional operator

	Polynomial functors
	Inductive Types
	Algebras
	Initial Algebras

	Fold
	Standard Laws for Fold
	Map

	Regular Functors

	Introducing afold
	The afold Operator
	Examples
	Laws for afold

	Improving Fusions
	An Example of Fusion Improvement
	The spex Problem
	 Afold for ABlists
	Attempting Pure Fusion
	Helping fusion

	Foldl
	Foldl as an accumulation
	Fusion law for foldl

	Extending afold
	The extended afold operator
	Laws for the extended afold

	Case Study
	Specification
	Program Derivation
	An accumulation for subs
	Fusing (filterpath)asubse
	Fusing (maximumlist(length))fps

	Summary

	Conclusions
	Simple Properties
	Proofs

