International Journal of Algebra, Vol. 5, 2011, no. 16, 755-762

Subclass of Starlike Functions with Respect to Symmetric Conjugate Points

Loo Chien Ping and Aini Janteng

School of Science and Technology
Universiti Malaysia Sabah
Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
toryloo@yahoo.com.my, aini_jg@ums.edu.my

Abstract

This paper consider $S_{s c}^{*}(A, B)$ as a class of functions f which are analytic in an open unit disc $\mathcal{D}=\{z:|z|<1\}$ and satisfying the condition $\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{z})}} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathcal{D}$. We obtain some properties of functions $f \in S_{s c}^{*}(A, B)$ such as coefficient estimates, distortion theorem, growth result and integral operator.

Mathematics Subject Classification: 30C45

Keywords: starlike with respect to symmetric conjugate points, coefficient estimates

1 Introduction

Let \mathcal{U} be the class of functions which are analytic in the open unit disc $\mathcal{D}=$ $\{z:|z|<1\}$ given by

$$
w(z)=\sum_{k=1}^{\infty} b_{k} z^{k}
$$

and satisfying the conditions

$$
w(0)=0,|w(z)|<1, z \in \mathcal{D}
$$

Let \mathcal{S} denote the class of functions f which are analytic and univalent in \mathcal{D} of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathcal{D} \tag{1}
\end{equation*}
$$

Also, let \mathcal{S}_{s}^{*} be the subclass of \mathcal{S} consisting of functions given by (1) satisfying

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in \mathcal{D}
$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi in 1959. El-Ashwah and Thomas in [2], introduced two other classes namely the class \mathcal{S}_{c}^{*} consisting of functions starlike with respect to conjugate points and $\mathcal{S}_{s c}^{*}$ consisting of functions starlike with respect to symmetric conjugate points.

Further, let $f, g \in \mathcal{U}$. Then we say that f is subordinate to g, and we write $f \prec g$, if there exists a function $w \in \mathcal{U}$ such that $f(z)=g(w(z))$ for all $z \in \mathcal{D}$. Specially, if g is univalent in \mathcal{D}, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathcal{D}) \subseteq g(\mathcal{D})$.

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of \mathcal{S}_{s}^{*} denoted by $\mathcal{S}_{s}^{*}(A, B)$. Let $\mathcal{S}_{s}^{*}(A, B)$ denote the class of functions of the form (1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in \mathcal{D} .
$$

In this paper, let consider $\mathcal{S}_{s c}^{*}(A, B)$ be the class of functions of the form (1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{z})}} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, \quad z \in \mathcal{D} .
$$

Obviously $\mathcal{S}_{s c}^{*}(A, B)$ is a subclass of the class $\mathcal{S}_{s c}^{*}=\mathcal{S}_{s c}^{*}(1,-1)$.

By definition of subordination, it follows that $f \in \mathcal{S}_{s c}^{*}(A, B)$ if and only if

$$
\begin{equation*}
\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{z})}}=\frac{1+A w(z)}{1+B w(z)}=P(z), \quad w \in \mathcal{U} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{3}
\end{equation*}
$$

We study the class $\mathcal{S}_{s c}^{*}(A, B)$ and obtain coefficient estimates, distortion theorem, growth result and integral operator.

2 Preliminary Result

We need the following preliminary lemmas, required for proving our result.

Lemma 2.1 ([3]) If $P(z)$ is given by (3) then

$$
\begin{equation*}
\left|p_{n}\right| \leq(A-B) \tag{4}
\end{equation*}
$$

Lemma 2.2 ([3]) Let $N(z)$ be analytic and $M(z)$ starlike in D and $N(0)=$ $M(0)=0$. Then

$$
\frac{\left|\left(\frac{N^{\prime}(z)}{M^{\prime}(z)}-1\right)\right|}{\left|\left(A-B \frac{N^{\prime}(z)}{M^{\prime}(z)}\right)\right|}<1
$$

implies

$$
\frac{\left|\left(\frac{N(z)}{M(z)}-1\right)\right|}{\left|\left(A-B \frac{N(z)}{M(z)}\right)\right|}<1, \quad z \in \mathcal{D}
$$

3 Main Result

We give the coefficient inequalities for the class $S_{s c}^{*}(A, B)$.

Theorem 3.1 Let $f \in S_{s c}^{*}(A, B)$, then for $n \geq 1$,

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{(A-B)}{n!2^{n}} \prod_{j=1}^{n-1}(A-B+2 j) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 n+1}\right| \leq \frac{(A-B)}{n!2^{n}} \prod_{j=1}^{n-1}(A-B+2 j) \tag{6}
\end{equation*}
$$

Proof.

For (2) and (3), we have

$$
\begin{aligned}
& z+ 2 a_{2} z^{2}+3 a_{3} z^{3}+\ldots+2 n a_{2 n} z^{2 n}+(2 n+1) a_{2 n+1} z^{2 n+1}+\ldots \\
&=\left(z+a_{3} z^{3}+a_{5} z^{5}+\ldots+a_{2 n-1} z^{2 n-1}+a_{2 n+1} z^{2 n+1}+\ldots\right) \\
& \bullet\left(1+p_{1} z+p_{2} z^{2}+\ldots+p_{2 n} z^{2 n}+p_{2 n+1} z^{2 n+1}+\ldots\right)
\end{aligned}
$$

Equating the coefficients of like powers of z, we have

$$
\begin{gather*}
2 a_{2}=p_{1}, \quad 2 a_{3}=p_{2} \tag{7}\\
4 a_{4}=p_{3}+a_{3} p_{1}, \quad 4 a_{5}=p_{4}+a_{3} p_{2} \tag{8}\\
(2 n) a_{2 n}=p_{2 n-1}+a_{3} p_{2 n-3}+a_{3} p_{2 n-5}+\ldots+a_{2 n-1} p_{1} \tag{9}\\
(2 n) a_{2 n+1}=p_{2 n}+a_{3} p_{2 n-2}+a_{5} p_{2 n-4}+\ldots+a_{2 n-1} p_{2} . \tag{10}
\end{gather*}
$$

Easily using Lemma 2.1 and (7), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(A-B)}{2}, \quad\left|a_{3}\right| \leq \frac{(A-B)}{2} \tag{11}
\end{equation*}
$$

Again by applying (11) and followed by Lemma 2.1, we get from (8)

$$
\left|a_{4}\right| \leq \frac{(A-B)(A-B+2)}{2!2^{2}}, \quad\left|a_{5}\right| \leq \frac{(A-B)(A-B+2)}{2!2^{2}} .
$$

It follows that (5) and (6) hold for $\mathrm{n}=1,2$. We now prove (5) using induction. Equation (9) in conjuction with Lemma 2.1 yield

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{(A-B)}{2 n}\left[1+\sum_{k=1}^{n-1}\left|a_{2 k+1}\right| \cdot\right] \tag{12}
\end{equation*}
$$

We assume that (5) holds for $\mathrm{k}=3,4, \ldots,(\mathrm{n}-1)$. Then from (12), we obtain

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{A-B}{2 n}\left[1+\sum_{k=1}^{n-1} \frac{A-B}{k!2^{k}} \prod_{j=1}^{k-1}(A-B+2 j)\right] \tag{13}
\end{equation*}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{align*}
& \frac{A-B}{2 m}\left[1+\sum_{k=1}^{m-1} \frac{A-B}{k!2^{k}} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
= & \frac{A-B}{m!2^{m}} \prod_{j=1}^{m-1}(A-B+2 j), \quad(m=3,4, \ldots, n) \tag{14}
\end{align*}
$$

(14) is valid for $m=3$.

Let us suppose that (14) is true for all $m, 3<m \leq(n-1)$. Then from (13)

$$
\begin{aligned}
& \frac{A-B}{2 n}\left[1+\sum_{k=1}^{n-1} \frac{A-B}{k!2^{k}} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
= & \left(\frac{n-1}{n}\right)\left(\frac{A-B}{2(n-1)}\left(1+\sum_{k=1}^{n-2} \frac{A-B}{k!2^{k}} \prod_{j=1}^{k-1}(A-B+2 j)\right)\right) \\
& +\frac{A-B}{2 n} \frac{A-B}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \\
= & \frac{n-1}{n} \frac{A-B}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \\
& +\frac{A-B}{2 n} \frac{A-B}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \\
= & \frac{A-B}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \frac{(A-B+2(n-1))}{2 n} \\
= & \frac{A-B}{n!2^{n}} \prod_{j=1}^{n-1}(A-B+2 j)
\end{aligned}
$$

Thus, (14) holds for $m=n$ and hence (5) follows. Similarly, we can prove (6).

Next, we give distortion bound, growth result and preserving integral operator for the class $S_{s c}^{*}(A, B)$.

Theorem 3.2 Let $f \in S_{s c}^{*}(A, B)$, then for $|z|=r, 0<r<1$,

$$
\begin{equation*}
\frac{1-A r}{(1-B r)\left(1+r^{2}\right)} \leq\left|f^{\prime}(z)\right| \leq \frac{1+A r}{(1+B r)\left(1-r^{2}\right)} \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{1}{1+B^{2}}\left((A-B) \ln \left(\frac{1-B r}{\sqrt{1+r^{2}}}\right)+(1+A B) \tan ^{-1} r\right) \leq|f(z)| \\
& \frac{1}{1-B^{2}}\left((A-B) \ln \left(\frac{1+B r}{\sqrt{1-r^{2}}}\right)+(1-A B) \ln \left(\frac{1+r}{1-r}\right)^{\frac{1}{2}}\right) \tag{16}
\end{align*}
$$

The bounds are sharp.

Proof.

Put $h(z)=\frac{f(z)-\overline{f(-\bar{z})}}{2}$. Then from (2), we obtain

$$
\begin{equation*}
\left|z f^{\prime}(z)\right|=|h(z)|\left|\frac{1+A w(z)}{1+B w(z)}\right| \tag{17}
\end{equation*}
$$

Since h is odd starlike, it follows that (see [1])

$$
\begin{equation*}
\frac{r}{\left(1+r^{2}\right)} \leq|h(z)| \leq \frac{r}{\left(1-r^{2}\right)} . \tag{18}
\end{equation*}
$$

Furthermore, for $w \in \mathcal{U}$, it can also be easily established that

$$
\begin{equation*}
\frac{1-A r}{1-B r} \leq\left|\frac{1+A w(z)}{1+B w(z)}\right| \leq \frac{1+A r}{1+B r} \tag{19}
\end{equation*}
$$

Applying results (18) and (19) in (17) we obtain (15). Next, set $|z|=r$, and upon elementary integration of (15) will give the results in (16). The extremal functions corresponding to the left and right sides of (15) and (16) are, respectively

$$
f(z)=\int_{0}^{z} \frac{(1-A t)}{(1-B t)\left(1+t^{2}\right)} d t
$$

and

$$
f(z)=\int_{0}^{z} \frac{(1+A t)}{(1+B t)\left(1-t^{2}\right)} d t
$$

Theorem 3.3 If $f \in S_{s c}^{*}(A, B)$ then $F \in S_{s c}^{*}(A, B)$, where

$$
F(z)=\frac{2}{z} \int_{0}^{z} f(t) d t
$$

Proof.

With the given F above, consider

$$
\frac{2 z F^{\prime}(z)}{F(z)-\overline{F(-\bar{z})}}=\frac{z f(z)-\int_{0}^{z} f(t) d t}{\frac{1}{2}\left[\int_{0}^{z} f(t) d t-\int_{0}^{z} \overline{f(-\bar{t})} d t\right]}
$$

Suppose, we let $N(z)$ and $M(z)$ be the numerator and denominator functions respectively. It can be shown that

$$
M(z)=\frac{1}{2}\left[\int_{0}^{z} f(t) d t-\int_{0}^{z} \overline{f(-\bar{t})} d t\right]
$$

is starlike. Furthermore,

$$
\frac{N^{\prime}(z)}{M^{\prime}(z)}=\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{t})}} \text { with } f \in S_{s c}^{*}(A, B)
$$

Thus

$$
\frac{N^{\prime}(z)}{M^{\prime}(z)}=\frac{1+A w(z)}{1+B w(z)}, \quad w \in \mathcal{U}
$$

This implies that

$$
\frac{\left|\left(\frac{N^{\prime}(z)}{M^{\prime}(z)}-1\right)\right|}{\left|\left(A-B \frac{N^{\prime}(z)}{M^{\prime}(z)}\right)\right|}<1
$$

Hence, by Lemma 2.2, we have

$$
\frac{\left|\left(\frac{N(z)}{M(z)}-1\right)\right|}{\left|\left(A-B \frac{N(z)}{M(z)}\right)\right|}<1, \quad z \in \mathcal{D}
$$

or equivalently,

$$
\frac{N(z)}{M(z)}=\frac{1+A w_{1}(z)}{1+B w_{1}(z)}, \quad w_{1} \in \mathcal{U}
$$

Thus $F \in S_{s c}^{*}(A, B)$.

Acknowledgement

The author Aini Janteng is partially supported by FRG0268-ST-2/2010 Grant, Malaysia.

References

[1] Duren, P.L., Univalent functions, Springer Verlag, New York (1983).
[2] El-Ashwah, R.M. and Thomas, D.K. : Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1987): 86-100.
[3] Goel, R.M. and Mehrok, B.C. : A subclass of starlike functions with respect to symmetric points, Tamkang J. Math., 13(1)(1982): 11-24.
[4] Sakaguchi, K. : On a certain univalent mapping, J. Math. Soc. Japan, 11(1959): 72-75.

Received: February, 2010

