
International Journal of Algebra, Vol. 5, 2011, no. 16, 755 - 762

Subclass of Starlike Functions with Respect

to Symmetric Conjugate Points

Loo Chien Ping and Aini Janteng

School of Science and Technology

Universiti Malaysia Sabah

Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

toryloo@yahoo.com.my, aini−jg@ums.edu.my

Abstract

This paper consider S∗
sc(A,B) as a class of functions f which are

analytic in an open unit disc D = {z : |z| < 1} and satisfying the

condition 2zf ′(z)

f(z)−f(−z̄)
≺ 1+Az

1+Bz , −1 ≤ B < A ≤ 1, z ∈ D. We obtain

some properties of functions f ∈ S∗
sc(A,B) such as coefficient estimates,

distortion theorem, growth result and integral operator.
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1 Introduction

Let U be the class of functions which are analytic in the open unit disc D =

{z : |z| < 1} given by

w(z) =
∞∑

k=1

bkz
k

and satisfying the conditions

w(0) = 0, |w(z)| < 1, z ∈ D.
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Let S denote the class of functions f which are analytic and univalent in D of

the form

f(z) = z +
∞∑

n=2

anzn, z ∈ D. (1)

Also, let S∗
s be the subclass of S consisting of functions given by (1) satisfying

Re

{
zf ′(z)

f(z) − f(−z)

}
> 0, z ∈ D.

These functions are called starlike with respect to symmetric points and were

introduced by Sakaguchi in 1959. El-Ashwah and Thomas in [2], introduced

two other classes namely the class S∗
c consisting of functions starlike with

respect to conjugate points and S∗
sc consisting of functions starlike with respect

to symmetric conjugate points.

Further, let f, g ∈ U . Then we say that f is subordinate to g, and we write

f ≺ g, if there exists a function w ∈ U such that f(z) = g(w(z)) for all z ∈ D.

Specially, if g is univalent in D, then f ≺ g if and only if f(0) = g(0) and

f(D) ⊆ g(D).

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of

S∗
s denoted by S∗

s (A, B). Let S∗
s (A, B) denote the class of functions of the

form (1) and satisfying the condition

2zf ′(z)

f(z) − f(−z)
≺ 1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ D.

In this paper, let consider S∗
sc(A, B) be the class of functions of the form (1)

and satisfying the condition

2zf ′(z)

f(z) − f(−z̄)
≺ 1 + Az

1 + Bz
,−1 ≤ B < A ≤ 1, z ∈ D.

Obviously S∗
sc(A, B) is a subclass of the class S∗

sc = S∗
sc(1,−1).

By definition of subordination, it follows that f ∈ S∗
sc(A, B) if and only if

2zf ′(z)

f(z) − f(−z̄)
=

1 + Aw(z)

1 + Bw(z)
= P (z), w ∈ U (2)
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where

P (z) = 1 +
∞∑

n=1

pnzn. (3)

We study the class S∗
sc(A, B) and obtain coefficient estimates, distortion the-

orem, growth result and integral operator.

2 Preliminary Result

We need the following preliminary lemmas, required for proving our result.

Lemma 2.1 ([3]) If P (z) is given by (3) then

|pn| ≤ (A − B). (4)

Lemma 2.2 ([3]) Let N(z) be analytic and M(z) starlike in D and N(0) =

M(0) = 0. Then ∣∣∣(N ′(z)
M ′(z)

− 1
)∣∣∣∣∣∣(A − B N ′(z)

M ′(z)

)∣∣∣ < 1

implies ∣∣∣(N(z)
M(z)

− 1
)∣∣∣∣∣∣(A − B N(z)

M(z)

)∣∣∣ < 1, z ∈ D.

3 Main Result

We give the coefficient inequalities for the class S∗
sc(A, B).

Theorem 3.1 Let f ∈ S∗
sc(A, B), then for n ≥ 1,

|a2n| ≤ (A − B)

n!2n

n−1∏
j=1

(A − B + 2j), (5)

and

|a2n+1| ≤ (A − B)

n!2n

n−1∏
j=1

(A − B + 2j). (6)
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Proof.

For (2) and (3), we have

z + 2a2z
2 + 3a3z

3 + ... + 2na2nz2n + (2n + 1)a2n+1z
2n+1 + ...

= (z + a3z
3 + a5z

5 + ... + a2n−1z
2n−1 + a2n+1z

2n+1 + ...)

• (1 + p1z + p2z
2 + ... + p2nz2n + p2n+1z

2n+1 + ...)

Equating the coefficients of like powers of z, we have

2a2 = p1, 2a3 = p2 (7)

4a4 = p3 + a3p1, 4a5 = p4 + a3p2 (8)

(2n)a2n = p2n−1 + a3p2n−3 + a3p2n−5 + ... + a2n−1p1 (9)

(2n)a2n+1 = p2n + a3p2n−2 + a5p2n−4 + ... + a2n−1p2. (10)

Easily using Lemma 2.1 and (7), we get

|a2| ≤ (A − B)

2
, |a3| ≤ (A − B)

2
. (11)

Again by applying (11) and followed by Lemma 2.1, we get from (8)

|a4| ≤ (A − B)(A − B + 2)

2!22
, |a5| ≤ (A − B)(A − B + 2)

2!22
.

It follows that (5) and (6) hold for n=1,2. We now prove (5) using induction.

Equation (9) in conjuction with Lemma 2.1 yield

|a2n| ≤ (A − B)

2n

[
1 +

n−1∑
k=1

|a2k+1|.
]

(12)

We assume that (5) holds for k=3,4,...,(n-1). Then from (12), we obtain

|a2n| ≤ A − B

2n

⎡
⎣1 +

n−1∑
k=1

A − B

k!2k

k−1∏
j=1

(A − B + 2j)

⎤
⎦ . (13)
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In order to complete the proof, it is sufficient to show that

A − B

2m

⎡
⎣1 +

m−1∑
k=1

A − B

k!2k

k−1∏
j=1

(A − B + 2j)

⎤
⎦

=
A − B

m!2m

m−1∏
j=1

(A − B + 2j), (m = 3, 4, ..., n). (14)

(14) is valid for m = 3.

Let us suppose that (14) is true for all m, 3 < m ≤ (n − 1). Then from (13)

A − B

2n

⎡
⎣1 +

n−1∑
k=1

A − B

k!2k

k−1∏
j=1

(A − B + 2j)

⎤
⎦

=
(

n − 1

n

)⎛⎝ A − B

2(n − 1)

⎛
⎝1 +

n−2∑
k=1

A − B

k!2k

k−1∏
j=1

(A − B + 2j)

⎞
⎠
⎞
⎠

+
A − B

2n

A − B

(n − 1)!2n−1

n−2∏
j=1

(A − B + 2j)

=
n − 1

n

A − B

(n − 1)!2n−1

n−2∏
j=1

(A − B + 2j)

+
A − B

2n

A − B

(n − 1)!2n−1

n−2∏
j=1

(A − B + 2j)

=
A − B

(n − 1)!2n−1

n−2∏
j=1

(A − B + 2j)
(A − B + 2(n − 1))

2n

=
A − B

n!2n

n−1∏
j=1

(A − B + 2j)

Thus, (14) holds for m = n and hence (5) follows. Similarly, we can prove (6).

Next, we give distortion bound, growth result and preserving integral operator

for the class S∗
sc(A, B).

Theorem 3.2 Let f ∈ S∗
sc(A, B), then for |z| = r, 0 < r < 1,

1 − Ar

(1 − Br)(1 + r2)
≤ |f ′(z)| ≤ 1 + Ar

(1 + Br)(1 − r2)
(15)
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and

1

1 + B2

(
(A − B)ln

(
1 − Br√
1 + r2

)
+ (1 + AB) tan−1 r

)
≤ |f(z)|

1

1 − B2

⎛
⎝(A − B)ln

(
1 + Br√
1 − r2

)
+ (1 − AB)ln

(
1 + r

1 − r

) 1
2

⎞
⎠ . (16)

The bounds are sharp.

Proof.

Put h(z) = f(z)−f(−z̄)
2

. Then from (2), we obtain

|zf ′(z)| = |h(z)|
∣∣∣∣∣1 + Aw(z)

1 + Bw(z)

∣∣∣∣∣ . (17)

Since h is odd starlike, it follows that (see [1])

r

(1 + r2)
≤ |h(z)| ≤ r

(1 − r2)
. (18)

Furthermore, for w ∈ U , it can also be easily established that

1 − Ar

1 − Br
≤
∣∣∣∣∣1 + Aw(z)

1 + Bw(z)

∣∣∣∣∣ ≤ 1 + Ar

1 + Br
. (19)

Applying results (18) and (19) in (17) we obtain (15). Next, set |z| = r,

and upon elementary integration of (15) will give the results in (16). The

extremal functions corresponding to the left and right sides of (15) and (16)

are, respectively

f(z) =
∫ z

0

(1 − At)

(1 − Bt)(1 + t2)
dt

and

f(z) =
∫ z

0

(1 + At)

(1 + Bt)(1 − t2)
dt.

Theorem 3.3 If f ∈ S∗
sc(A, B) then F ∈ S∗

sc(A, B), where

F (z) =
2

z

∫ z

0
f(t) dt.
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Proof.

With the given F above, consider

2zF ′(z)

F (z) − F (−z̄)
=

zf(z) − ∫ z
0 f(t)dt

1
2

[∫ z
0 f(t)dt − ∫ z

0 f(−t̄)dt
] .

Suppose, we let N(z) and M(z) be the numerator and denominator functions

respectively. It can be shown that

M(z) =
1

2

[∫ z

0
f(t)dt −

∫ z

0
f(−t̄)dt

]

is starlike. Furthermore,

N ′(z)

M ′(z)
=

2zf ′(z)

f(z) − f(−t̄)
with f ∈ S∗

sc(A, B).

Thus
N ′(z)

M ′(z)
=

1 + Aw(z)

1 + Bw(z)
, w ∈ U .

This implies that ∣∣∣(N ′(z)
M ′(z)

− 1
)∣∣∣∣∣∣(A − B N ′(z)

M ′(z)

)∣∣∣ < 1.

Hence, by Lemma 2.2, we have

∣∣∣(N(z)
M(z)

− 1
)∣∣∣∣∣∣(A − B N(z)

M(z)

)∣∣∣ < 1, z ∈ D

or equivalently,
N(z)

M(z)
=

1 + Aw1(z)

1 + Bw1(z)
, w1 ∈ U .

Thus F ∈ S∗
sc(A, B).
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