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Chapter 1

Motivation

This chapter shows why a coroutine implementation in a Java Virtual

Machine is useful and who will benefit from it. It also introduces two

advanced concepts, namely thread-to-thread migration and serializa-

tion/deserialization.

Coroutines are a programming language concept that allows for explicit, coop-

erative and stateful switching between subroutines. They are a powerful and

versatile concept that provides a natural control abstraction for many problems.

For example, producer/consumer problems can often be implemented elegantly

with coroutines [6].

Within a thread, coroutines do not need to be synchronized because the points

of control transfer can be chosen such that no race condition can occur.

Coroutines also provide an easy way to inverse recursive algorithms into iterative

ones. For an example of this see Figure 4.6 on page 23.
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Coroutines can be simulated by putting the state of a method execution into

an object, similar to how closures [15] are usually implemented. In this scheme

local variables are stored in heap objects while the task is suspended, so that they

can be restored later on. Only coroutines allow the compiler to fully optimize

local variables, e.g., put them into processor registers or stack slots. They can

thus benefit from the fact that their state is not accessible from the outside,

while heap-allocated objects lead to code that is compiled as if such access was

possible.

Because of this versatility many new programming languages, such as Ruby [10],

Go [12] and Lua [14], incorporate coroutines as essential language or runtime

environment features. Language implementations that rely on an underlying

virtual machine (VM), such as a Java Virtual Machine (JVM), need to emulate

coroutines if they are not available. The most common ways to do so are us-

ing synchronized threads and compile-time transformations, both of which have

significant drawbacks.

Thus it can be expected that a native coroutine implementation for a production-

quality JVM, such as the HotSpotTM Virtual Machine, will provide significant

value to language implementation, framework and application developers.

1.1 Advanced Features

Simple coroutines, which are constrained to one thread, are useful for many use

cases, but sometimes even more functionality is required:

Thread-to-Thread Migration

For server applications that use coroutines to manage user sessions it might

be beneficial to resume a coroutine in a different thread than the one in

which it was created.

Serialization/Deserialization

In other situations it might even be necessary to move a coroutine into

permanent storage, like a database. This is useful for use cases like long-

lasting transactions, checkpointing or agents that move between VMs.

A coroutine system that includes these concepts provides enough functionality

for a large number of use cases.
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Chapter 2

Coroutines

This chapter introduces the basic concepts of coroutines, along with

a short history of coroutines. It ends with an overview of common

coroutine implementation techniques.

Coroutines [18] are a concept has been used since the early days of electronic

data processing. The term “Coroutine” was coined in 1963 by Conway [6] as

“each module . . . may be coded as an autonomous program that communicates

with adjacent modules as if they were input and output subroutines”. They

are present in numerous programming languages, such as Go, Icon, Lua, Perl,

Prolog, Ruby, Tcl, Simula, Python, Modula-2, and many others. However, none

of the top five languages of the TIOBE programming languages index [27] (Java,

C, C++, PHP and Basic) supports coroutines without additional libraries.

From a language design perspective, coroutines are a generalization of subrou-

tines. When they are invoked, they start execution at their first statement. A
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Coroutine BCoroutine A

Figure 2.1: Interlocked execution of coroutines

coroutine can transfer control to some other coroutine (typically using a yield

statement). Coroutines can transfer control back and forth, as shown in Fig-

ure 2.1.

The state of the local variables at the transfer point is preserved. When control

is transferred back, the coroutine resumes the preserved state and continues to

run from the point of the transfer. At its end or at the encounter of a return

statement a coroutine dies, i.e., passes control back to its caller or some other

coroutine as defined by the semantics of the coroutine system.

Coroutines have often been seen as inferior alternatives to full-blown threads,

because of the manual context switching. However, there are situations in which

manual context switching makes sense or is even desired (e.g., producer/con-

sumer problems, discrete event simulation, and non-blocking server implemen-

tations).

Figure 2.2 shows a simple comparison between subroutine and coroutine execu-

tion1. The task that the methods in this example should achieve is to return

"Alpher" the first time the method next() is called and "Bethe" the second

time. While the subroutine needs to explicitly implement an ad hoc state ma-

chine, the coroutine can simple yield a value to the caller without destroying the

method’s execution frame. Thus, when the coroutine is called the second time it

will resume immediately after the yield statement and return the second value.

1Note that this example uses pseudo-code, the actual coroutine API is introduced in Section 4.
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1 // Subroutine
2 class Container {
3 boolean first = false;
4 public String next() {
5 if (first) {
6 first = false;
7 return "Alpher";
8 } else {
9 first = true;

10 return "Bethe";
11 }
12 }
13 }

1 // Coroutine
2 class Container {
3 public String next() {
4 yield "Alpher";
5 return "Bethe";
6 }
7 }

Figure 2.2: Comparison of subroutine (left) and coroutine execution (right)

If a third value were to be returned by the coroutine version, it would simply

need to be changed to yield "Bethe" and return "Gamow".

2.1 Coroutine Characteristics

The fact that coroutines automatically preserve their execution context is some-

times called automatic stack management [2]. Any algorithm that uses corou-

tines can be re-implemented with state machines, which is considered to be

manual stack management.

In contrast to other programming language concepts (e.g., continuations), the

semantics of coroutines have no strict definition. Coroutines may not even be

recognizable as such, and depending on their semantics and expressiveness they

are called generators [13, 18], coexpressions [13], fibers [23], iterators [18], green

threads [24], greenlets [22], or cooperative threads.
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This section presents the most common attributes used to describe coroutine

variants.

2.1.1 Stackful vs. Stackless

Coroutines that can only yield from within their main method are called stack-

less. They can be implemented by compile-time transformations, but are only

useful for a limited range of applications. An example of this is C#’s implemen-

tation of iterator methods using the yield keyword, which causes the compiler

to perform a transformation that turns the method into a state machine that

implements the IEnumberable interface.

If coroutines can yield from subsequently called methods, they are called stackful.

2.1.2 First-class Coroutines

Only coroutines that are not tied to a specific language construct (like for-each

loops) and that are programmer-accessible objects are considered to be first-class

coroutines. Programming languages that limit the usage of coroutines to certain

situations usually do so to allow the compiler to transform the coroutine code

into ordinary sequential code.

2.1.3 Symmetric vs. Asymmetric Coroutines

Asymmetric coroutines are bound to a specific caller and can only transfer control

back to this caller. The coroutine in Figure 2.2 is an asymmetric coroutine. The

asymmetry lies in the fact that there are distinct and complementary operations

for transferring control to and from a coroutine (call and yield/return). This

also means that an asymmetric coroutine is bound to return to its original caller.

Symmetric coroutines, on the other hand, are not bound to return to their

predecessor coroutine [18]. There is only one operation, typically also called

yield, which is used to transfer control to another coroutine. Depending on the

coroutine implementation the target coroutine can either be specified explicitly
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(yieldTo) and/or implicitly (yield). Using yield, without specifying a target

coroutine, usually involves some kind of scheduler that selects a coroutine to run.

2.2 History

At the assembly language level coroutine techniques have been employed for a

long time, although the name “Coroutine” was not used.

The name“Coroutine”was first mentioned in 1963 by Conway [6]. His coroutines

were a tool for efficiently implementing multi-pass processes, like compilers. His

usage of coroutines is similar to UNIX pipes, where the output of one process is

used as the input of another process.

In Simula I and its successor Simula 67 [8], Ole-Johan Dahl and Kristen Nygaard

introduced coroutines as a fundamental operation. They had a specific interest in

using coroutines for simulation purposes, because the semantics of coroutines are

more adequate for simulation than the semantics of subroutines. Thus, Simula I

includes a concept similar to coroutines, called simulation. Simula 67 introduced

the keywords call, detach and resume, which provide a more generic imple-

mentation of coroutines. They realized and exploited the fact that coroutines

can be used for implementing other language features.

Implementations of Smalltalk [11], which first appeared in 1972, implement the

execution stack as a first-class citizen, which allows for a trivial coroutine imple-

mentation.

Scheme [1], created in 1975, is one of the first languages that implemented first-

class continuations. They are an even more powerful concept than coroutines

and can be used as an implementation vehicle for coroutines.

Modula-2 [29], designed and developed between 1977 and 1980 by Niklaus Wirth,

also includes coroutines as lightweight, quasi-concurrent processes. They are con-

trolled by the low-level procedures NEWPROCESS and TRANSFER. The coroutines

in Modula-2 are intended primarily for producer/consumer problems, similar to

Conway’s original design.

The standard C library includes functions named setjmp and longjmp, which

can theoretically be used to implement coroutine-like features, but these rarely-
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used functions are highly platform dependent and awkward to use. The

setcontext family of functions, available in POSIX C libraries, is suited for

coroutine implementations. But implementations containing these functions are

rare and the setcontext functions also have significant shortcomings, for ex-

ample with stack overflow detection.

With the advent of languages like C# and Java, coroutines went out of fashion.

Recently, however, there is again a growing interest, and an increasing number

of languages provide coroutines. Modern languages with coroutines include Icon,

Go [12], Lua [14], Perl, Python and Ruby [10].

2.3 Implementation techniques

Coroutines have been incorporated into many different languages. Depending

on the architecture of the underlying runtime system different implementation

techniques have been chosen. The most common techniques for languages that

use the CPU-supported stack management are:

Separate coroutine stacks A separate stack area is allocated for each coroutine.

This was very simple in older operating systems (like DOS), but the intro-

duction of exception management, the need for correctly handling stack

overflows, and other stack-specific algorithms have made allocating mem-

ory that can function as stack space more difficult. Because of this, stacks

also consume considerable amounts of memory, which prevents applications

from using large numbers of coroutines.

Copying the stack The stack data of every coroutine is copied to and from the

stack as needed. While this approach is simple to implement, it also has

two main disadvantages: Firstly, the coroutine transfer becomes much more

expensive (and its costs depend on the current number of stack frames).

Secondly, in garbage-collected environments the data that has been copied

from the stack can contain root pointers that need to be visited during

garbage collection, which means that the garbage collector needs to be

aware of them.

Continuations Every system that provides continuations can easily provide

coroutines, by simply capturing and resuming continuations. The following
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example (syntax taken from [26]) shows how an implementation of sym-

metric coroutines could look like:

1 public class Coroutine {
2 private Continuation continuation = new Continuation();
3

4 // returns the next scheduled coroutine
5 private Coroutine next() {
6 return ...;
7 }
8

9 public void yield() {
10 if (continuation.capture() == Continuation.CAPTURED) {
11 next().continuation.resume(null);
12 }
13 }
14 }

In programming languages that represent stack frames as heap objects and a

stack as a linked list of stack frames, it is trivial to implement coroutines by

storing the pointer to the topmost frame of the coroutine. Such systems, however,

need special garbage collection algorithms to free obsolete frames.

Within the constraints of the Java programming language and a JVM it is not

possible to use any of these implementation techniques, because it is not possible

to gain arbitrary access to the structure of the stack. JVMs also do not provide

continuation support, apart from research projects like [9] and [26]. There are,

however, other techniques that can be used:

Threads as coroutines If multiple threads are synchronized in a way that allows

only one of them to run at a time, and that provides explicit switching

between the threads, they will appear as if they were coroutines running

within one thread2. The drawback of this approach is that threads consume

a lot of memory and that the synchronized switching between threads is an

expensive operation.

Compile-time transformations A special compilation step that turns methods

into state machines can be used to make methods appear like coroutines at

the source level. C#’s implementation of iterator methods performs this

transformation for individual methods (stackless), while frameworks like

javaflow [3] perform this transformation in a way that simulates stackful

coroutines. This approach leads to a significantly larger compiled code size,

2Only with limitations. Thread local variables, for example, will not work as expected.
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and the more complicated methods leave the just in time compiler with less

opportunities for optimization.

An example of the transformation of a simple C# iterator method is shown

in Figure 2.3.

1 using System;
2 using System.Collections;
3

4 class Test {
5

6 // The returned iterator will
7 // generate 0 as the first
8 // element, 1 as the second,
9 // ..., and 9 as the last

10 // element.
11 // Then it will signal that
12 // is has no more elements
13 // to offer.
14 static IEnumerator GetCounter() {
15 for (int c = 0; c < 10; c++) {
16 yield return c;
17 }
18 }
19 }

1 private class GetCounter {
2 private int state = −1;
3 private int count = 0;
4 public int current;
5

6 public bool MoveNext() {
7 switch (state) {
8 case 0:
9 while (count < 10) {

10 current = count;
11 state = 1;
12 return true;
13 resume_label1:
14 state = −1;
15 count++;
16 }
17 break;
18 case 1:
19 goto resume_label1;
20 }
21 return false;
22 }
23 }

Figure 2.3: A simple C# iterator method (left) and an equivalent state machine
(right). Note that the simplified state machine shown here is only a
pseudocode approximation. The actual result of the transformation
has a length of two pages and is not representable by valid C# code.
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Chapter 3

Coroutines in Java

TM

This chapter explains the basic concepts a programmer needs to know

in order to use the coroutine implementation presented in this docu-

ment.

The introduction of a new programming language concept raises a number of

questions that need to be answered before the new feature can be implemented:

Should new language constructs be created?

Coroutines could be implemented more elegantly by introducing new key-

words like yield into the Java language. The implementation presented

in this document does not do so, because this would lead to problems

with backward-compatibility and would require changes to the java source

compiler (javac), thus making the implementation more complex. Not

introducing a new keyword follows the general effort of the Java language

to avoid special-purpose syntax where possible.
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How does the programmer access the new features’ primitives?

Symmetric and asymmetric coroutines are the basic primitives of a corou-

tine implementation. The implementation shown here presents coroutines

as instances of the Coroutine and AsymCoroutine classes. These classes

contain all methods needed to perform the basic operations upon corou-

tines.

3.1 Thread Affinity

Operations on coroutines implicitly always operate on the current thread. In fact,

it is not possible to perform any operations on the coroutines of another thread,

other than thread-to-thread migration and read-only operations like querying a

coroutine’s status.

This allows the system to assume that only a minimal amount of synchronization

is necessary, which is important in order to achieve high performance.

3.2 Stacks allocated directly from the Operating

System

Most garbage collection algorithms used in JVMs perform a compaction step that

moves objects in memory. Stack memory cannot be moved to another address

because of locking and native stack frames, so it is not possible to allocate it

from the ordinary Java heap.

Additionally, stack memory needs to be aligned on page boundaries and guarded

by protected memory pages, in order to detect stack overflows. These guarantees

and properties can only be acquired directly from the operating system.

The fact that the memory needs to be allocated outside of the normal Java heap

makes controlling the resources of an application harder, but on the other hand

this is no different than the allocation of threads - most of the memory used by

a thread also lies outside of the Java memory subsystem.
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3.3 Scheduling of Symmetric Coroutines

For symmetric coroutines there needs to be a scheduling strategy. In the system

presented in this document symmetric coroutines are scheduled on a first come,

first served basis. Each time a coroutine is executed it is moved to the end of

the queue of coroutines that will be executed, and it is thus only executed again

after all other coroutines have been scheduled.

While the specification of coroutines should be careful about requiring a partic-

ular behavior, this scheduling strategy seems to be a reasonable choice that can

be implemented very efficiently using a doubly-linked ring of coroutines. Ad-

vancing to the next coroutines is achieved by simply moving a pointer to the

next coroutine. The current coroutine will then automatically be at the end of

the queue.

3.4 Input and Output Values of Asymmetric

Coroutines

Asymmetric coroutines do not need to be scheduled, because they will only exe-

cute when they are called explicitly. However, it is very common for asymmetric

coroutines to receive an input value to work with and/or return a result value

to the caller each time they are called.

In fact, this behavior is common enough to warrant an explicit implementation,

although it might also be implemented by the user on top of a simpler coroutine

system. In order to make asymmetric coroutines more convenient and type-safe

we specify the types of the input and output values as generic type parameters

of the asymmetric coroutine class.

3.5 Thread-to-Thread Migration

Due to the thread affinity of coroutines, it is not possible to resume a coroutine

on some other thread. In fact, trying to do so will lead to an exception. This

is the expected behavior in the normal case and leads to good performance
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characteristics, but in some cases it is necessary to transfer a coroutine to some

other thread.

In an application that implements user interactions as coroutines, with many

user interactions running in one thread, a coroutine might be blocked due to a

computationally expensive operation at one point in the user interaction. It is

not acceptable for this coroutine to block all other coroutines that happen to be

on the same thread, thus there needs to be a way to move coroutines to other

threads.

3.5.1 Coroutine Stealing

When moving coroutines from one thread to the other there are four possible

semantics depending on who takes the active role in the process:

Source and Target Thread Both the source and the target thread need to reach

a synchronization point where the coroutine is handed over from one thread

to the other.

Source Thread The source thread“injects” the coroutine into the target thread.

Target Thread The target thread “steals” the coroutine from the source thread.

Third Party Thread A third party thread takes the coroutine from the source

thread and gives it to the target thread.

In the case of a blocked coroutine it is impractical to require the source thread

to take part in the process, because it is busy and will likely not reach a synchro-

nization point quickly. The target thread, however, is idling anyway (otherwise

it would not try to acquire new coroutines), so it makes sense for it to take the

active role in the process. This is called coroutine stealing, analogous to work

stealing, which is an established concept in concurrent programming.

3.5.2 Migration Process

Coroutines that are moved from one thread to the other need of course be aware

of the changes they will see after migration: Thread.current() will return the

new thread, and the value of thread locals might also have changed.
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Also, a coroutine cannot be transferred to another thread if there are native

method frames on the stack. The VM does not have sufficient information to

relocate native frames to another stack, which is required during the transfer

process.

Stack frames of methods which hold locks (via the synchronized keyword) also

cannot be transferred to another thread, because locks are bound to threads.

Additionally, the implementation would be much more complex if locks needed

to be transferred.

3.6 Serialization/Deserialization

When a coroutine has been suspended for a long time, but may be needed in the

future, it might be best to move the coroutine into permanent storage (disk, DB,

. . . ) in order to free the memory associated with it. This is especially important

in systems that sustain a large number of concurrent sessions, e.g. web servers

that support many concurrent user interactions.

Java serialization allows a program to serialize all of its data, but it is not possible

to serialize a thread. The coroutine system, on the other hand, provides a way

to serialize a coroutine, which essentially turns a coroutine into an array of Java

objects. Each of these objects represents one Java activation frame, and contains

the frame’s current method, bytecode index, local variables and expression stack.

The application that uses the coroutine serialization mechanism can then decide

how it wants to handle the actual serialization of these values. In a sense, the

coroutine serialization mechanism does not actually perform the serialization, it

only makes the contents of the coroutine’s stack frames accessible to serialization.

This also means that for coroutine serialization the user has to deal with the

same problems as for other uses of the Java serialization mechanism: Where

to make the cut between the serialized and non-serialized parts of the program

state and what to do with non-serializable objects. This is application-dependent

and cannot be decided by the coroutine implementation. An application can

use the object-replacement functionality provided by the ObjectInputStream

and ObjectOutputStream classes to communicate its requirements to the Java

serialization mechanism.
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The restrictions for coroutine serialization are similar to the restrictions for

thread-to-thread migration: The coroutine cannot contain native frames or

frames with locked methods.
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Chapter 4

Coroutine API

TM

java.dyn

This chapter describes the API that is used to implement, create, use

and destroy symmetric and asymmetric coroutines. This chapter also

shows the API for migrating coroutines between threads and closes

with a description of the API used to serialize and deserialize corou-

tines.

A survey of 12 different programming languages with coroutine implementations

showed that there is no common naming scheme for coroutines, neither in the

way the corresponding language features are called, nor in the names of the

methods that are used to control them. The Java API presented here tries to be

consistent with the majority of programming languages and to fit smoothly into

the Java world. The API always works on the coroutines of the current thread

in order to avoid having to lock data structures.

There are two main classes: Coroutine for symmetric coroutines, and

AsymCoroutine for asymmetric coroutines. The size of a new coroutine’s
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stack can be specified via the stackSize parameter at construction. Like the

stackSize parameter of the Thread constructors this is only a hint which

may or may not be obeyed by the runtime system. The system also enforces a

platform-specific minimum value for this parameter.

By specifying a stack size the user can deal with extreme cases such as coroutines

that call deeply recursive methods and therefore need a large stack, or large

numbers of coroutines that hardly call any other methods and for which a large

stack would be a waste of memory. In most cases, however, the automatically

chosen stack size will be adequate.

The user can also provide the runtime with a hint that two specific coroutines

should share a stack. To do so the constructor of the second coroutine needs

to be called with the sharedStack parameter set to the first coroutine. Again,

this is only a hint that may or may not be obeyed by the runtime system.

Both Coroutine and AsymCoroutine extend the class CoroutineBase, which

contains implementation-specific code that is common to both symmetric and

asymmetric coroutines.

4.1 Symmetric Coroutines

The interface for symmetric coroutines is shown in Figure 4.1. It is similar to

Thread in that it can either be subclassed (overriding the run() method) or

supplied with a Runnable at construction1.

Each thread maintains the coroutines that are associated with it in a data

structure that provides fair scheduling. The details of the scheduling algorithm

are explained in Section 3.3. The coroutine system inserts each newly created

Coroutine object after the current one, which means that it is the next corou-

tine to be scheduled. This also means that there is no need to register a coroutine

with the runtime system, and that coroutines can only be added to the current

thread. While this might seem to be an arbitrary restriction it is vital for the

performance of the system, as explained in Section 3.1.

There are two ways to switch to another coroutine:
1Coroutine, however, does not implement Runnable. In hindsight it was a poor decision for
Thread to do so.
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1 package java.dyn;
2

3 public class Coroutine extends CoroutineBase {
4

5 public Coroutine();
6 public Coroutine(Runnable r);
7 public Coroutine(long stackSize);
8 public Coroutine(Runnable r, long stackSize);
9 public Coroutine(Runnable r, CoroutineBase sharedStack);

10

11 public static void yield();
12 public static void yieldTo(Coroutine target);
13

14 public boolean isFinished();
15 protected void run();
16 }

Figure 4.1: Coroutine Java API: Coroutine class

• yield() transfers control to the next coroutine, as determined by the

scheduling algorithm. Under normal circumstances this means that the

current coroutine will only be activated again after all other coroutines.

• yieldTo(Coroutine target) transfers control to the specified coroutine.

The target coroutine must be a coroutine created within the current thread,

otherwise an exception is thrown. The user of this method cannot make

assumption as to how it influences scheduling, other than that the future

calls to yield() will again be scheduled in a fair way.

Both these methods are static because they will often be used in a context

where the current coroutine object is not readily available. They also always act

on the current thread’s list of coroutines, following the general paradigm that

coroutines are strongly coupled to the thread they are running on. Note that the

main program, i.e., the thread’s initial execution context, is a coroutine as well.

The instance method isFinished() returns true if the Coroutine in question

has ended by either reaching its end, by executing a return-statement or by

throwing or propagating an exception.

Figure 4.2 shows an example of a simple coroutine that produces the following

output:

1 start
2 Coroutine running 1
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1 public class ExampleCoroutine extends Coroutine {
2

3 public void run() {
4 System.out.println("Coroutine running 1");
5 yield();
6 System.out.println("Coroutine running 2");
7 }
8

9 public static void main(String[] args) {
10 new ExampleCoroutine();
11 System.out.println("start");
12 yield();
13 System.out.println("middle");
14 yield();
15 System.out.println("end");
16 }
17 }

Figure 4.2: Example for the usage of Coroutine

3 middle
4 Coroutine running 2
5 end

In practice it would be better to specify the program using the Runnable inter-

face, which leads to the same behavior. This is shown in Figure 4.3.

4.2 Asymmetric Coroutines

For reasons of generality, we also provide an implementation of asymmetric

coroutines, called AsymCoroutine, shown in Figure 4.4. Instances of this

class can be created by either subclassing AsymCoroutine (overriding the run

method) or providing an instance of AsymRunnable (shown in Figure 4.5).

AsymCoroutine objects are not part of the ordinary Coroutine-scheduling,

they are thus only executed when they are called explicitly. They also know

their caller, which allows them to return to their caller with a ret call.

AsymCoroutines are prepared to take an input from their caller and to return

an output. The types of these input and output parameters can be specified by

generic type parameters. If the input and/or output parameters are not used,
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1 public class ExampleCoroutine implements Runnable {
2

3 public void run() {
4 System.out.println("Coroutine running 1");
5 Coroutine.yield();
6 System.out.println("Coroutine running 2");
7 }
8

9 public static void main(String[] args) {
10 new Coroutine(new ExampleCoroutine());
11 System.out.println("start");
12 Coroutine.yield();
13 System.out.println("middle");
14 Coroutine.yield();
15 System.out.println("end");
16 }
17 }

Figure 4.3: Example for the usage of Coroutine with the Runnable interface

the respective type parameters should be set to Void. The input parameter

given to the first call will become the input parameter of the run method, and

the output parameter returned by the run method will become the last call’s

return value.

AsymCoroutine and AsymRunnable use co- and contravariant generic

type parameters in order to allow for a maximum of compatibility. An

AsymCoroutine<I, O> can be initialized with any AsymRunnable that can

work with any input parameter that can be cast to I and that will return an

output parameter that can be cast to O. The run method of AsymRunnable has

an additional parameter coroutine, which provides the asymmetric coroutine

object needed for calls to ret, again with a co- and contravariant type. For

example: An AsymCoroutine<Integer, Object> can be initialized with an

AsymRunnable<Number, String>, because the runnable takes an input that

is less specific and returns an output that is more specific.

The fact that AsymCoroutine implements Iterable allows such coroutines to

be used in enhanced for loops (see Figure 4.7). In this case, the input parameter

is always null, as there is no way to supply the iterator with an input.

The AsymCoroutine interface looks as follows:
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1 package java.dyn;
2

3 public class AsymCoroutine<I, O> extends CoroutineBase
4 implements Iterable<O> {
5

6 public AsymCoroutine();
7 public AsymCoroutine(long stackSize);
8 public AsymCoroutine(
9 AsymRunnable<? super I, ? extends O> target);

10 public AsymCoroutine(
11 AsymRunnable<? super I, ? extends O> target,
12 long stackSize);
13 public AsymCoroutine(
14 AsymRunnable<? super I, ? extends O> target,
15 CoroutineBase sharedStack);
16

17 public O call(I input);
18 public I ret(O output);
19

20 public boolean isFinished();
21 protected O run(I input);
22

23 public Iterator<O> iterator();
24 }

Figure 4.4: Coroutine Java API: AsymCoroutine class

• O call(I input) transfers control to the coroutine that this method

is called upon. The calling coroutine can either be a Coroutine or an

AsymCoroutine instance, and it is recorded as the caller of the target

coroutine. call passes an input parameter of type I to the called corou-

tine and returns the coroutine’s output parameter, which is of type O. A

coroutine can only be called if it is not currently in use. This means that

a coroutine cannot directly or indirectly call itself.

• I ret(O output) suspends the current coroutine and returns to the caller.

The output parameter of type O is passed to the calling coroutine, and the

next time the current coroutine is called ret will return the input parameter

of type I.

• boolean isFinished() returns true if the AsymCoroutine in question

has reached its end. Invoking call on a AsymCoroutine that is not alive

leads to an exception.
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1 package java.dyn;
2

3 public interface AsymRunnable<I, O> {
4

5 public O run(AsymCoroutine<? extends I, ? super O> coro,
6 I value);
7 }

Figure 4.5: Coroutine Java API: AsymRunnable interface

It is important to note that trying to Coroutine.yield() to an-

other Coroutine generates an exception if the current coroutine is an

AsymCoroutine.

1 public class CoSAXParser
2 extends AsymCoroutine<Void, String> {
3

4 public String run(Void input) {
5 SAXParser parser = ...
6 parser.parse(new File("content.xml"),
7 new DefaultHandler() {
8 public void startElement(String name) {
9 ret(name);

10 }
11 });
12 return null;
13 }
14

15 public static void main(String[] args) {
16 CoSAXParser parser = new CoSAXParser();
17

18 while (!parser.isFinished()) {
19 String element = parser.call(null);
20 System.out.println(element);
21 }
22 }
23 }

Figure 4.6: SAX parser inversion

Figure 4.6 shows an example AsymCoroutine that inverts a SAX parser [19] to

return one XML element at a time. Figure 4.7 contains an alternative version of

the main method that uses an enhanced for loop.
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1 ...
2 public static void main(String[] args) {
3 CoSAXParser parser = new CoSAXParser();
4

5 for (String element: parser) {
6 System.out.println(element);
7 }
8 }
9 }

Figure 4.7: SAX parser inversion using enhanced for loops

4.3 Thread-to-Thread Migration

The API for thread-to-thread migration of coroutines is very simple and consists

of one method that is available in both the Coroutine and AsymCoroutine

classes:

public boolean steal();

This method will migrate the coroutine it is called upon to the current thread.

If the transfer was successful it will return true, otherwise it will return false

or throw an exception.

The operation can fail for a number of reasons:

• It will return false if the coroutine is busy. This will happen if the corou-

tine is currently running or the coroutine’s current thread performs an oper-

ation on it, e.g., serialization. Any use of the migration mechanism needs to

be prepared for this to happen, because the migration is performed without

busy waiting and on a best-effort basis.

• It will throw an IllegalArgumentException if:

– The coroutine already belongs to the current thread.

– The coroutine is the initial coroutine of its thread. The initial coroutine

can never be migrated to some other thread, because this coroutine is

needed in order to correctly terminate the thread.

– The coroutine contains a stack frame of a method that holds a lock.

– The coroutine contains a native stack frame.
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– The coroutine is an asymmetric coroutine that has not yet returned to

its calling coroutine.

The distinction between a false return value and an exception is intended to

differentiate between failures that can happen for any use of steal (because of

the fact that migration is performed on a best-effort basis) and failures that will

not occur for correct uses of the migration mechanism.

When a symmetric coroutine is migrated it is removed from its thread’s schedul-

ing sequence and added to the current thread’s sequence as the next coroutine

to be executed.

Symmetric coroutines that are migrated need to be aware that

Coroutine.yield will now schedule different coroutines, and that calls to

Coroutine.yieldTo that were valid before will now likely be invalid.

Symmetric and asymmetric coroutines need to be aware that calls to an asym-

metric coroutine (via AsymCoroutine.call) that were valid before will now be

invalid, unless the asymmetric coroutine was migrated as well.

4.4 Serialization / Deserialization

Serialization and deserialization is also available for both symmetric and asym-

metric coroutines. The main task of these two mechanisms is to transform the

stack of a coroutine into a data structure that is accessible from Java, and vice-

versa. The class CoroutineFrame, which is used to represent stack frames, is

shown in Figure 4.8 and contains the following fields:

method This field contains the method that this stack frame belongs to. It is

important to note that java.lang.reflect.Method is not serializable.

An application that serializes CoroutineFrame objects needs to be aware

of this.

bci The bytecode index of the next instruction to execute in the method.

localCount The number of local variables in this stack frame.
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1 package java.dyn;
2

3 import java.io.Serializable;
4 import java.lang.reflect.Method;
5

6 public class CoroutineFrame implements Serializable {
7

8 public Method method;
9 public int bci;

10

11 public int localCount;
12 public int expressionCount;
13

14 public long[] scalarValues;
15 public Object[] objectValues;
16

17 public CoroutineFrame(Method method, int bci,
18 int localCount, int expressionCount, long[] scalarValues,
19 Object[] objectValues);
20 }

Figure 4.8: Coroutine Java API: CoroutineFrame class

expressionCount The number of stack slots on the expression stack that were

used for evaluating an expression at the time the coroutine was suspended.

A stack frame will only contain temporary expressions if the coroutine was

suspended while calculating an expression, i.e., during a function call.

scalarValues This array of length localCount + expressionCount contains

the scalar values of all local variables and the expression stack. Entries that

contain an object reference have no scalar value, and the scalarValues

array contains a zero value in that case.

objectValues This array is of the same length as scalarValues and contains

the object references of all local variables and the expression stack. Entries

that contain a scalar value have no object reference, and the objectValues

array contains a null value in that case.

The serialization mechanism can of course not only be used for storing coroutines

to disk. In fact, the ability to modify the stack of a running application can

be useful for dynamic languages that compile to bytecode on the fly (Ruby,

JavaScript, etc.): If the language runtime detects that a piece of code that is

executed by an interpreter loop is taking too long, it can suspend the execution,

replace the interpreter loop with compiled (to bytecode) methods and resume



4.4 Serialization / Deserialization 27

the execution. This allows languages that run on top of a JVM to perform on-

stack replacement at the Java level, similar to the JVM itself, which performs

on-stack replacement at the native code level.

Arbitrarily modifying stack frames of course requires an application to have

extensive knowledge about the structure of the compiled methods, which is not

provided by the coroutine implementation.

An example that uses the serialization mechanism to perform session persistence

is shown in Section 5.2.

4.4.1 Serialization

The serialization of coroutines is supported via the following method that is

available in both symmetric and asymmetric coroutines:

public CoroutineFrame[] serialize();

If the coroutine contains stack frames of native methods or stack frames that cur-

rently hold locks, which cannot be transformed into CoroutineFrame objects,

it will throw an IllegalArgumentException. It will also throw an exception

if the coroutine is the initial coroutine of a thread, which cannot be serialized

because it will always contain native frames.

If successful, this method will return an array of CoroutineFrame objects. If

the coroutine’s stack contained references to Java objects, then the resulting

CoroutineFrame objects will contain references to the same objects, as shown

in Figure 4.9.

In the simplest case an application can serialize the array of CoroutineFrame

objects using an ObjectOutputStream. It only needs to take care of non-

serializable classes, as shown in Section 5.2.

In a more complex application it might be necessary to perform additional sub-

stitutions, e.g., replace objects that represent database entities with a serializable

form or take care of other objects that are not serializable. Applications that

keep coroutines in a serialized state for only a limited amount of time might as-

sociate IDs with non-serializable objects, and store these objects in a hash table

or a similar data structure.
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Figure 4.9: A coroutine stack (left) and the equivalent CoroutineFrame objects
(right).

4.4.2 Deserialization

Similar to serialization the deserialization is also performed by a method that is

available in both symmetric and asymmetric coroutines:

public void deserialize(CoroutineFrame[] frames);

This method is the opposite of serialize: it takes an array of CoroutineFrame

objects and replaces the target coroutine’s stack with the given frames. It will

fail if the coroutine is the thread’s initial coroutine, in which case it will throw

an IllegalArgumentException.

Again, if the CoroutineFrame objects contain references to Java objects, then

the coroutine’s stack frames will also contain references to these objects, as shown

in Figure 4.9.
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Chapter 5

Case Studies and Examples

This chapter presents a number of examples that both motivate and ex-

plain the usage of coroutines for real world applications. Although the

examples are only small in size, they are sufficient to show the advan-

tages of coroutines for numerous tasks. They also motivate the more

advanced concepts of thread-to-thread migration and serialization.

5.1 Machine Control

Machine control programs typically have a fixed cycle time, for example 1 ms. In

each cycle all control programs for the different components are executed exactly

once. Some of them are simple and perform almost the same actions in every

cycle, while others are more complex and need to perform a series of actions

over a longer period of time. In general every component only executes a few

instructions before switching to the next one, so that the total execution time is

influenced heavily by the time it takes to perform a switch.
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The following example is influenced by the author’s experience with the Monaco

programming language [21], which is a domain-specific language for machine

control applications.

The example program controls an injection molding machine, which is used to

produce parts from thermoplastic materials by injecting molten plastic into a

mold cavity, letting it cool and ejecting the finished part.

Figure 5.1: Schematic of an injection molding machine
Created by Brendan Rockey, University of Alberta Industrial Design. License: CC BY 3.0

The control program in this simplified example needs to control the following

components of the molding machine (see Figure 5.1):

Heater The heater controls the temperature of the molten material. In order

to produce faultless parts the temperature needs to be within a specified

range.

Mold and Injection Unit The injection unit starts and stops the injection of

material. It also controls the position of the mold and the ejection actuator.

5.1.1 Implementation

The components are accessed via the following two interfaces Heater and

Injection:

(the actual implementation, which is machine-specific, is not presented here)
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Heater.java - Interface for the heater component

1 public interface Heater {
2

3 public double getTemperature();
4

5 public void enable();
6 public void disable();
7 }

This interface can be used to determine the current temperature of the heater,

and to enable and disable the heating component.

HeaterControl.java - Control program for the heater component

1 public class HeaterControl extends Coroutine {
2 private final Heater heater;
3

4 public HeaterControl(Heater heater) {
5 this.heater = heater;
6 }
7

8 protected void run() {
9 while (true) {

10 // wait until temperature falls below lower threshold
11 while (heater.getTemperature() >= 75)
12 Coroutine.yield();
13

14 // enable heater
15 heater.enable();
16

17 // wait until temperature is at upper threshold
18 while (heater.getTemperature() < 80)
19 Coroutine.yield();
20

21 // disable heater
22 heater.disable();
23 }
24 }
25 }

The coroutine HeaterControl is responsible for keeping the heater at the cor-

rect temperature. It is implemented as a simple loop that waits for the tem-

perature to drop below 75◦C. The heater is then enabled until the temperature

reaches 80◦C.
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Injection.java - Interface for the injection component

1 public interface Injection {
2

3 public double getVolume();
4

5 public double getPosition();
6

7 public void setTargetPosition(double pos);
8

9 public void startInjection();
10 public void stopInjection();
11

12 public void ejectPart();
13 }

The Injection interface is used to determine the total amount (volume) of

material that was injected, to determine the position of the movable part of the

mold (0 = closed, 100 = open), to set the target position for the mold (the mold

will immediately start to move towards the given position), to start and stop the

injection of material and to eject the finished part from the machine.

InjectionControl.java - Control program for the injection component

1 public class InjectionControl extends Coroutine {
2 private final Injection injection;
3 private final Heater heater;
4

5 public InjectionControl(Injection injection, Heater heat) {
6 this.injection = injection;
7 this.heater = heat;
8 }
9

10 protected void run() {
11 double initialVolume = injection.getVolume();
12

13 // close the mold
14 injection.setTargetPosition(0);
15 while (injection.getPosition() > 0)
16 Coroutine.yield();
17

18 // wait until the heater has reached the minimum
19 // temperature
20 while (heater.getTemperature() < 70)
21 Coroutine.yield();
22

23 // start injecting
24 injection.startInjection();
25

26 // wait until 100 units have been injected, then stop
27 while (injection.getVolume() < initialVolume + 100)
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28 Coroutine.yield();
29 injection.stopInjection();
30

31 // wait 10 cycles, i.e., 10 ms
32 for (int i = 0; i < 10; i++)
33 Coroutine.yield();
34

35 // open the mold
36 injection.setTargetPosition(100);
37 while(injection.getPosition() < 100)
38 Coroutine.yield();
39

40 // finally: eject the new part
41 injection.ejectPart();
42 }
43 }

The coroutine InjectionControl performs a more complex series of actions.

It first closes the mold, waiting for the movement to be finished. Then it waits

for the heater to reach a temperature of at least 70◦C, after which it can start

the injection process.

As soon as 100 units of material have been injected the injection is stopped.

After a cooling time of 10 cycles, i.e., 10 ms, the mold is opened again, and when

this is done the finished part is ejected.

5.1.2 Conclusion

This example shows that coroutines can be a very natural and convenient way

to write code that performs a complex series of actions. The coroutines in this

example also perform non-blocking busy waiting.

Using threads in this context would not be ideal: Real-world systems can have

hundreds of components, each of which would need a separate thread. These

threads would have to be synchronized in order to pass control from one to the

other. This synchronized thread switch is a very expensive operation. Machine

control programs normally run at a CPU load of 10-20%, and with hundreds

of switches within one 1 ms cycle the switching time will dominate the system

performance.

In contrast to threads, the existence of hundreds of coroutines is not a perfor-

mance problem, because coroutines use less resources than threads and perform
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switches by an order of magnitude faster than threads. Also, synchronization is

unnecessary with coroutines.

As with any coroutine this example could also have been implemented using

explicit state machines, but this would have made it much more complex and

harder to understand.

This example could also have been implemented even more elegantly if Java had

an implementation of lambda expressions [15], which is currently planned for

JDK 8 [16].

Instead of:

while (heater.getTemperature() >= 75)
Coroutine.yield();

one could simply write:

waitUntil(#{heater.getTemperature() < 75});

5.2 Session Persistence

Servers that implement user sessions often have to solve the problem of how to

deal with a large number of concurrent sessions. For some types of systems there

will likely by a large amount of time between subsequent interactions with the

user. It may be impractical to keep all sessions in memory until they expire, so

there needs to be a way to store these sessions, e.g. to disk or to a database.

The following example shows a simple user interaction that is implemented using

coroutines, which can be suspended to disk. Although it is a simplified example,

it still demonstrates how the serialization of sessions can be achieved.

A typical interaction with the main program, called Questions, looks like this:

1 > java Questions
2 Please enter your name:
3

4 > java Questions "John Doe"
5 Please enter your country:
6

7 > java Questions Genovia
8 Please enter your age:
9

10 > java Questions twenty−eight
11 Please enter your age:
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12 Please enter a valid number!
13

14 > java Questions 28
15 Please enter your email address:
16

17 > java Questions no@spam.at
18 Name: John Doe, Country: Genovia, Age: 28, Email: no@spam.at

While the interaction in this example takes place via command-line parameters,

the solution can also be applied to other types of interaction, like web servers.

5.2.1 Implementation

The implementation is divided into three parts: The class that models the user

interaction, the main program that drives the serialization and deserialization

and helper classes that are needed to serialize the coroutine.

Interaction.java - Implementation of the user interaction

1 public class Interaction
2 implements AsymRunnable<String, String>, Serializable {
3

4 private AsymCoroutine<? extends String, ? super String> coro;
5

6 //helper method used to acquire user input
7 private String readString(String message) {
8 return coro.ret(message);
9 }

10

11 //helper method used to acquire numerical user input
12 private int readNumber(String message) {
13 int tries = 0;
14 while (true) {
15 try {
16 return Integer.valueOf(readString(message));
17 } catch (NumberFormatException e) {
18 if (tries++ == 0)
19 message += "\nPlease enter a valid number!";
20 }
21 }
22 }
23

24 @Override
25 public String run(
26 AsymCoroutine<? extends String, ? super String> coro,
27 String value) {
28
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29 this.coro = coro;
30

31 String name = readString("Please enter your name: ");
32 String country = readString("Please enter your country:");
33 int age = readNumber("Please enter your age:");
34

35 if (age < 70) {
36 String email;
37 email = readString("Please enter your email address:");
38 return "Name: " + name + ", Country: " + country +
39 ", Age: " + age + ", Email: " + email;
40 } else {
41 String telephone = readString("Please enter your " +
42 "telephone number:");
43 return "Name: " + name + ", Country: " + country +
44 ", Age: " + age + ", Telephone: " + telephone;
45 }
46 }
47 }

This is the only class a programmer would have to implement within a framework

that supports the implementation of sessions via coroutines. It is programmed

as if the user input was available immediately any time the user is presented

with a question.

The user input is forwarded to the asymmetric coroutine via its input value, and

the console output is passed to the main program via the coroutine’s output

value.

The readString method would, in a more sophisticated version, employ some

form of non-blocking i/o. The coroutine would then be restored whenever user

input is available.

It is important to note that local variables are available again when the coroutine

is restored and that coroutines can be suspended from within subsequently called

methods (like readNumber and readString).

Questions.java - Main program containing the serialization / deserialization logic

1 public class Questions {
2

3 public static void main(String[] args) {
4

5 AsymCoroutine<String, String> coro;
6

7 // check if there is a suspended coroutine on disk
8 if (new File("data.bin").exists()) {
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9 FileInputStream fis = new FileInputStream("data.bin");
10 CoroutineInputStream<String, String> cis;
11 cis = new CoroutineInputStream<String, String>(fis);
12 coro = cis.readAsymCoroutine();
13 cis.close();
14 } else {
15 coro = new AsymCoroutine<String, String>(
16 new Interaction());
17 }
18

19 // transfer control, this will execute the next step
20 String msg = coro.call(args.length > 0 ? args[0] : null);
21 System.out.println(msg);
22

23 // if the coroutine isn’t finished: store to disk
24 if (coro.isFinished()) {
25 new File("data.bin").delete();
26 } else {
27 FileOutputStream fos = new FileOutputStream("data.bin");
28 CoroutineOutputStream<String, String> cos;
29 cos = new CoroutineOutputStream<String, String>(fos);
30 cos.writeAsymCoroutine(coro);
31 cos.close();
32 }
33 }
34 }

This main program contains the main serialization / deserialization logic.

It checks whether there is a suspended coroutine on disk (stored in a file called

data.bin), and if there is one it restores it using the coroutine deserialization

mechanism. If there is no suspended coroutine then a new one will be created.

The main program then transfers control to the asymmetric coroutine, which

will perform one step in the user interaction.

Finally, if the coroutine (and thus, the user interaction) is not finished yet it is

serialized to disk. Otherwise, the data file is deleted.

CoroutineOutputStream.java - Object output stream with special coroutines handling

1 public class CoroutineOutputStream<I, O>
2 extends ObjectOutputStream {
3

4 private AsymCoroutine<I, O> coro;
5

6 public CoroutineOutputStream(OutputStream out) {
7 super(out);
8 enableReplaceObject(true);
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9 }
10

11 @Override
12 protected Object replaceObject(Object obj) {
13 if (obj instanceof Method) {
14 return new SerializableMethod((Method) obj);
15 } else if (obj == coro) {
16 return new CoroutineDummy();
17 }
18 return super.replaceObject(obj);
19 }
20

21 public void writeAsymCoroutine(AsymCoroutine<I, O> coro) {
22 this.coro = coro;
23 writeObject(coro.serialize());
24 }
25 }

The special object output stream CoroutineOutputStream is needed for two

reasons: It needs to replace instances of java.lang.reflect.Method, which

are not serializable, with instances of the SerializableMethod class, and it

needs to replace all instances of the coroutine in question with an instance of

the CoroutineDummy class (because coroutine objects themselves are also not

serializable).

CoroutineDummy.java - Helper class used to represent serialized coroutine objects

1 public class CoroutineDummy implements Serializable {
2 }

The helper class CoroutineDummy is needed because only the CoroutineFrame

objects are serializable, and not the Coroutine and AsymCoroutine objects

themselves.

SerializableMethod.java - Helper class to replace java.lang.reflect.Method

1 public class SerializableMethod implements Serializable {
2

3 private final Class<?> clazz;
4 private final String name;
5 private final Class<?>[] parameters;
6

7 public SerializableMethod(Method method) {
8 this.clazz = method.getDeclaringClass();
9 this.name = method.getName();

10 this.parameters = method.getParameterTypes();
11 }
12
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13 public Method getMethod() {
14 return clazz.getDeclaredMethod(name, parameters);
15 }
16 }

The serializable class SerializableMethod is used by the coroutine object

output stream to store references to instances of java.lang.reflect.Method.

This implementation might not be enough for complex use cases, but it is a simple

workaround for the fact that the reflective method class is not serializable.

CoroutineInputStream.java - Object input stream with special handling of coroutines

1 public class CoroutineInputStream<I, O>
2 extends ObjectInputStream {
3

4 private AsymCoroutine<I, O> coro;
5

6 public CoroutineInputStream(InputStream in) {
7 super(in);
8 enableResolveObject(true);
9 }

10

11 @Override
12 protected Object resolveObject(Object obj) {
13 if (obj instanceof SerializableMethod) {
14 return ((SerializableMethod) obj).getMethod();
15 } else if (obj instanceof CoroutineDummy) {
16 return coro;
17 }
18 return super.resolveObject(obj);
19 }
20

21 public AsymCoroutine<I, O> readAsymCoroutine() {
22 coro = new AsymCoroutine<I, O>();
23 CoroutineFrame[] frames = (CoroutineFrame[]) readObject();
24 coro.deserialize(frames);
25 return coro;
26 }
27 }

The special object input stream CoroutineInputStream undoes the replace-

ments performed by the coroutine object output stream: It transforms in-

stances of SerializableMethod back into reflective method objects and re-

places CoroutineDummy instances with a new coroutine object.
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5.2.2 Conclusion

Being able to serialize coroutines is a vital feature for numerous applications

such as web frameworks or other systems with long-lasting user sessions. At the

same time it will present the implementors of frameworks that are built on top

of a coroutine system with a number of challenges: How should non-serializable

classes (like java.lang.Method) be dealt with, and how deep should the object

graph be serialized? The replacement feature of Java object serialization streams

is vital in solving these problems.
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Related Work

Most of the publications on coroutines deal with the operational semantics and

the connection to other research areas, while the actual implementation details

are often omitted.

Weatherly et al. [28] implemented coroutines in Java for simulation tasks. Their

implementation copies data to and from the stack for each context switch. The

focus of their work lies on the connection to the simulation infrastructure, and

they hardly touch the intricacies of the coroutine semantics and implementation

in the Java environment.

Ierusalimschy et al. [14] describe how the Lua virtual machine handles coroutines.

Their implementation uses a separate stack for each coroutine. The Lua virtual

machine is interpreter-only, and the interpreter works in a stackless way. This

means that the actual stack data can be stored at an arbitrary memory position,

completely circumventing the problem of dealing with native stacks.

Bobrow and Wegbreit [4] show an implementation of coroutines that uses a

“spaghetti stack” containing stack frames of multiple coroutines combined into

a single stack. Every time a subroutine is called the system has to check if

there is enough space for a new stack frame, because some other coroutine might

occupy the area where the stack frame would normally be placed. While this

approach can be efficient, it suffers from a number of drawbacks: It requires

extensive modifications within the compiler and the runtime system, performs

costly range checks for each method call and violates the assumption made by

modern operating systems that there is always a certain amount of available

stack space beneath the current stack frame.
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Pauli and Soffa [20] improve upon Bobrow and Wegbreit. They introduce a dy-

namic and moving reentry point for coroutines, instead of the static one used by

the original algorithm. They also show how to apply the algorithm to statically

scoped languages and conclude with a detailed analysis of different variations of

the algorithm. However, all models described by Pauli and Soffa still incur a

significant overhead for each method call.

Mateu [17] makes the case that a limited version of continuations can be im-

plemented via coroutines. He presents an implementation that heap-allocates

frames and uses a generational garbage collector to free obsolete frames. The

performance measurements show that it is difficult to find the optimal size of

this frame heap because the performance is dominated by the trade-off between

CPU cache efficiency (small heap) and fewer collections (large heap).

Carroll [5] shows an example of a real-world problem that would benefit from

a coroutine implementation in Java. Two consecutive parsers are used to parse

RDF (which is based on XML). Using two ordinary parsers is only possible if they

are executed in different threads. Carroll shows that a significant performance

increase is possible if the two parsers are combined into a single thread. In this

case this is achieved via inverting the RDF parser, which is undesirable from

a design perspective. The need for manual inversion could be avoided if real

coroutines were available.

Second Life, developed by Linden Lab, makes heavy use of the concept of

portable agents. These portable agent scripts [7], which implement the behavior

of virtual objects, are essentially coroutines that can be transfered to other VMs

whenever the virtual object passes the boundary of a simulation server (called

sim). Since August 2009 Second Life executes these agent scripts on Mono, an

open source implementation of the Microsoft .NET platform. In order to be

able to suspend coroutines and move running scripts from server to server, the

scripts are instrumented in such a way that they can store and restore their

current state, similar to the javaflow library [3]. These transformation-based

coroutines are at least an order of magnitude slower than a native coroutine or

continuation implementation [26].
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