
Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories

1 Infinite Loop, M/S 301 -3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA

+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall. Smith@ Sun.com

ABSTRACT
Morphic is a user interface construction environment that

strives to embody directness and liveness. Directness

means a user interface designer can initiate the process of

examining or changing the attributes, structure, and

behavior of user interface components by pointing at their

graphical representations directly. Liveness means the user

interface is always active and reactive-+bjects respond to

user actions, animations run, layout happens, and
information displays update continuously. Four
implementation techniques work together to support
directness and liveness in Morphic: structural reification,
layout reification, ubiquitous animation, and live editing.

KEYWORDS: User interface frameworks, user interface
construction, directness, liveness, direct manipulation,
animation, structural reification, automatic layout, live
editing.

INTRODUCTION
Creating a good user interface is an iterative process.
Streamlining this process enables the user interface
designer to try more alternatives in search of the best
solution. Directness means a user interface designer can
initiate the process of examining or changing the attributes,
structure, and behavior of user interface components by
pointing at their graphical representations directly, as
opposed to navigating through an alternate representation.
Liveness means the user interface is always active and
reactive—objects respond to user actions, animations run,
layout happens, and information displays are updated
continuously. Directness and liveness are properties of the
physical world: to examine and change a physical object,
you manipulate it directly while the laws of physics
continue to operate. In a user interface construction
environment, directness and liveness reduce iteration time.
They also decrease cognitive load by not forcing the
designer to correlate graphical components of the interface

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for protit or commercial advantage, the copy-
right notice, the title of Ihe puhlicti[km and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. Tu copy otherwise.
to republish, to post on sewers or to redistribute to lists, requires specific
permission and/or fee.
UIST 95 Pittsburgh PA USA
@ 1995 ACM o-89791-709-x/95/l i ..$3.50

with their alternate representations (directness) or to switch
between run and edit modes (Iiveness).

Morphic is a user interface construction environment that
strives to embody the principles of directness and liveness
[10]. Morphic is based on general graphical objects known
as mo?phs, from the Greek for “shape” or “physical form.”
Morphic allows user interfaces and their components to be
assembled, disassembled, and rearranged via direct
manipulation. It supports interactive automatic layout,
animation, and multiple users working simultaneously in a
large, virtual space (like Shared ARK [1 l]).

Morphic draws many ideas from earlier work, although it
attempts to go beyond previous systems in consciously
harnessing and integrating these ideas in the service of
directness and liveness. The section on related work
acknowledges some of Morphic’s intellectual debt.

Directness and liveness in Morphic are supported by four
implementation techniques:
● structural reification (supports directness),
● layout reification (supports directness and liveness),
● ubiquitous animation (supports liveness), and
● live editing (supports directness and liveness).

The remainder of this paper will describe these techniques
and how they each contribute to directness and liveness in
Morphic.

STRUCTURAL REIFICATION
Complex morphs are constructed by composition (Figure
1). Any morph can be made into a composite morph by
attaching other morphs JO it as submorphs. A composite
morph behaves like a single object: when it is moved,
drawn, copied, or deleted, all its submorphs (and their
submorphs, recursively) are moved, drawn, copied, or
deleted as well. The submorphs of a composite morph are
drawn in front of their parent morph and, by default, are
given a chance to handle user input events, such as mouse
button presses, before their parent. In short, submorphs act
as if they were glued onto the face of their parent morph.
The submorph structure forms a tree in which every node is
a concrete morph and any morph can be a root, leaf, or
inner node. Thus, if a composite morph is disassembled,

November 14-17, 1995 UIST ’95 21



every part is a visible, manipulable morph. This tangibility

of the composite structure is called structural reification,

and it enables directness in structural manipulation.

Figure 1. A composite morph (the circle) with three
submorphs: a rectangle, a label, and a button. The
button itself is a composite morph consisting of a
basic button plus a label. A copy of this composite
is being moved; the translucent drop shadow
indicates that it is temporarily lifted out of the world.
Morphs can have non-rectangular boundaries with
holes. A composite morph can be grabbed by any
part that is not mouse-sensitive; in this case, the
copy was grasped by its label submorph.

Many of the components in the Morphic library are

composite morphs, allowing them to be modified by direct

manipulation, For example, an iconic button could be

created by removing the label from a labeled button and

replacing it with an arbitrary morph, even a running movie

or animation. A menu morph can be “pinned down” (made
persistent) and customized by adding, removing, and re-
ordering its buttons. The most extreme example of this
composite component approach is an experimental morph-
based document editor, in which any “character” in the
document can bean arbitrary morph.

Applications constructed with Morphic are just composite

morphs that can be built and modified by direct

manipulation (Figure 2). Many applications combine

morphs that embody the information content of the

application (e.g., a morph showing a graph of recent stock

prices) with morphs that control this information content

(e.g., a slider to control how many days’ worth of data is

displayed). Morphic allows the user to establish

connections between controls and their target morphs by

direct manipulation. These connections are stored internally

as direct object references: each control morph has a

pointer to its target morph, While several alternative

reference schemes were considered, including a name-

based and several path-based schemes, the direct reference

scheme was chosen because it was the most robust in the

face of structural changes. (The disadvantage of direct

references is that the copy operation must update the copy’s

intra-composite references.) Thus, the user can arrange the
morphs of an application in completely different
configurations, possibly inserting or removing new layers
of submorphs. This flexibility supports directness and,
since controls continue to work when they have been
removed from their application component, it supports
liveness as well.

Figure 2. A very simple application (an ideal gas
simulation) and an exploded view showing its

submorph structure. The exploded view reveals that
the highlights on the atoms are just small, light-
colored circles. The exploded view is itself a morph
constructed by a simple program written by one of
the authors.

Structural reification is essential for directness. It allows

every graphical object to be examined, manipulated, and

disassembled by direct manipulation. The same structuring

mechanism is used at all scales, from small components,

such as labeled buttons, up to complete applications.

Furthermore, using morphs themselves as the structuring
mechanism yields a uniformity that allows morphs to be
combined freely, even in ways unforeseen by their creators.
The next section will show how structural reification can be
extended to encompass the placement and sizing of user
interface components.

LAYOUT REIFICATION
Automatic layout of user interface components frees the
designer from many tedious details of sizing and
placement. Without automatic layout, for example, a
designer might have to manually adjust the size of a button
to accommodate a larger label, and then move several
adjacent buttons to make space. Morphic supports
automatic layout via layout morphs, which adjust the size
and placement of their submorphs according to the amount
of space available. Just as morphs themselves reify
structure, layout morphs reify layout policy, making it
something that can be manipulated directly. This layout

reljication supports directness and, since automatic layout
appears to operate continuously, liveness.

Currently all layout in Morphic is accomplished using just
two types of layout morphs: row morphs and column
morphs (Figure 3). A row morph packs its submorphs in a
tight horizontal row with no overlaps, while a column
morph does the analogous packing vertically. A
justification parameter controls placement in the secondary
dimension; for example, the tops, bottoms, or centers of a
row’s submorphs can be aligned with the top, bottom, or
center of the row.

22 UIST ’95 November 14-17, 1995



(A)
(B) -,,.

.,

Figure 3. A row morph and column morph. The row
is bottom justified while the column is center
justified. Both morphs are shrinkwrap, meaning that
they shrink to the minimum size required to contain
their submorphs. In this example, the row and
column have been given a non-zero border width,
so their submorphs are slightly inset.

Layout Specification
Row and column morphs, in addition to aligning their

submorphs horizontally or vertically, also determine how

space should be shared among these submorphs. Space

allocation can be thought of as a negotiative process: each

layout morph (row or column) finds the best compromise

among the space requests of its submorphs. Each layout

morph also acts as an intermediary, presenting its owner

with a single space request that consolidates the individual

space requests of its submorphs.

A morph expresses its space requirements via two
attributes. Its basic minimum size attribute determines the
least amount of space that should be allocated to the morph.
Its resizirrg attribute determines how that morph adapts to

the availability of extra space. The resizing attribute takes

one of three values:

rigid the morph’s size is fixed, regardless
of the available space

space fill the morph expands or shrinks to fill
the available space

shrinkwrap the morph shrinks to smallest size

that satisfies the minimum size

requirements

The horizontal and vertical dimensions of a morph are

completely independent; each dimension has its own

minimum size and resizing attributes and each dimension is

treated separately by the layout algorithm. The minimum

size of a morph is computed from its own basic minimum
size and the minimum sizes of its submorphs.

Rows and columns use a simple one-dimensional packing
algorithm that (1) preserves the size of rigid submorphs, (2)
gives each shrinkwrap submorph exactly its minimum
space, and (3) gives each space filling submorph at least its
minimum space. Any remaining space is divided evenly
among all space filling submorphs. This packing algorithm
has proven relatively easy to understand and control.
Despite its apparent simplicity, nested rows and columns,
combined with judicious use of minimum size and resizing
attributes, can express a wide variety of layouts (Figure 4).
A full programming environment complete with editor,
debugger, and hierarchical code browsers has been

constructed using these layout facilities, as well as a World
Wide Web browser that translates HTML specifications
into page layouts built out of rows and columns.

(A) (B) (c)

1

2 R

‘#Cl?

4CIC2R
& 4

Figure 4: Resizing a column containing four rows
from its minimum size (a) to a larger size (b).
Nesting has been used to achieve a variety of
layout behavior. Here, rows and columns have
been given contrasting colors to show the structure,
but layout morphs are usually all made the same
color (c), so that they are effectively invisible in
context yet become visible when removed and
placed on a contrasting background. Morphic
includes an optimization that suppresses the
drawing of nested morphs of the same COIOLthus,
nested layout morphs normally incur no additional
drawing costs.

Layout Implementation
Consistent with the principle of Iiveness, Morphic
maintains morph layout continuously. Any operation that
might affect layout—such as resizing a morph, adding or
removing a submorph, or changing the font size of piece of
text—triggers a layout update. One way to achieve this
layout update is with a two-pass algorithm: the first pass
computes the minimum size requirements of all morphs in
the submorph tree from the leaves up to the root; the second
pass partitions the available space starting at the root and
working back down to the leaves. Unfortunately, the
liveness goal may require frequent layout updates, such as
after every mouse movement during resizing. This,
combined with the fact that composite morphs may include
thousands of submorphs, forces the implementation to be
more clever. Morphic uses three optimizations to achieve
acceptable layout performance.

The first optimization, deferred layout, saves the cost of

layout when composite morphs are constructed under
program control. The idea is to defer layout until the newly
created morph is first added to a morph world (a world is
just a special composite morph associated with a window);
after all, if the morph is not visible, the user shouldn’t care
if its layout is incorrect. This optimization avoids a

potential N 2 cost during morph construction: layout would
otherwise be done after adding each submorph, and the cost
of each layout operation would be proportional to the total
number of morphs that had already been added.

The second optimization is called pruning. The idea is to
avoid unnecessarily recomputing the layout of submorphs
that were laid out during earlier layout computations. This
is implemented via a “layoutOkay” flag. When a row or
column does layout, it first computes the appropriate size of

November 14-17, 1995 UIST ’95 23



each submorph. If the submorph’s current size matches this
computed size, and if its layoutOkay flag is set, it is simply
shifted into position. Otherwise, the recursive call is made
to recompute the layout of the submorph. This optimization
saves considerable time. For example, consider adding a
new row to a column containing a hundred fixed-height
rows that are already laid out. Assuming that adding the
new row does not affect the width of the column, only the
layouts of the column itself and the newly added row are
recomputed; pruning saves recomputing the layouts of the
hundred existing rows.

The final optimization, site selection, attempts to limit the
scope of a layout computation to the smallest possible
submorph tree. Starting from the site of a change, the
system searches up the submorph tree to find a morph
whose external layout attributes (size and minimum size)
are likely to be stable even when the layout of its
submorphs changes (for example, a rigid morph is a good
candidate). The layout of this site and its submorph tree is
done. If the site’s external layout properties do not change,
the process terminates. Otherwise, a promising site higher
in the submorph tree is chosen, and the process is repeated
there. Site selection can save significant time in deeply-
nested composite morphs. Without it, even with pruning,
the layout of every morph along the path from root to the
site of the layout change would be recomputed. Site
selection can reduce this to a single, localized
recomputation.

UBIQUITOUS ANIMATION
The slogan “ubiquitous animation” encompasses three
related ideas. First, Morphic allows morphs to have
lightweight autonomous behavior which typically, although
not necessarily, appears as animation. For example, a clock
might advance the time or a discrete simulation might
compute simulation steps autonomously. Second, Morphic
allows multiple animations to be active concurrently, even
while the system responds to inputs from multiple users;
Morphic coordinates display updates among these various
activities to keep the display consistent. Finally, Morphic
includes a kit of animation behaviors that can be applied to
any morph, including motion, scaling, and color change
animations. These three facets of ubiquitous animation add
a great deal of liveness (and liveliness!) to Morphic (Figure
5).

One important application of autonomous behavior is
observing. Observing allows an object to respond to
changes in other objects without the cooperation of those
objects: it is an alternative to notification-based schemes
such as Smalltalk-80’s dependency mechanism. The Self
programming environment relies on observing to update the
graphical representation of Self language objects when
those objects change. Observing is a polling technique; the
observer periodically compares the current observation with
the previous observation and performs some action when
they differ. Polling means there may be a time lag between
a change of state and the display update that reflects this
change, but this loose coupling allows rapidly changing

values to be observed (sampled) without slowing the

computation to the screen update rate. (There are, of course,

other ways to achieve such loose coupling.)

Figure 5. Three simultaneously active morphs: an
ideal gas simulation, a digital clock, and a graphical
representation of the Self object underlying one of
the atoms in the simulation (an outliner). The clock
updates every second, the simulation runs
continuously, and the outliner uses observing to
periodically update its center and velocity slots as
the atom bounces around. Any of these morphs
continues to operate if it is picked up and moved
(e.g., here the clock is being moved) or an external
animation is applied to it. Note that two users are
working together in this example. Each user has
their own cursor and the two users can be active at
the same time.

Autonomous Behavior Specification
Although autonomous behavior and other animations are
implemented using the same underlying mechanism, they
have different purposes and are specified in different ways.
The autonomous behavior of a morph is an intrinsic
property of that morph. For example, updating the time is
central to being a clock morph. Autonomous behavior is
defined in the morph itself. Animation, on the other hand, is
typically transient and imposed from outside, For example,
the Self programming environment gives feedback for
certain actions by “wiggling” the relevant morph.
Animation is specified by creating a separate animation
activity object and applying it to the morph to be animated.
Animation is orthogonal to autonomous behavior; for

example, a clock morph would continue to run even while a
motion animation whisked it across the screen.

The autonomous behavior of a morph is defined by its step

method. For example, a digital clock morph can be created
from a label morph by adding a step method that sets the
label’s contents to a string representing the current time.
This behavior is activated by asking the system to send the
“step” message to that morph either continuously (every
display update cycle) or at periodic intervals (e.g., once per
second). Step messages are sent synchronously during the
display update cycle. This has the advantage of simplifying
synchronization but requires that step methods execute
quickly.

An animation activity changes some property of its target
morph—such as its position, shape, or color—gradually
over the course of a number of display cycles (frames). The
programmer specifies the beginning and final values of the
property to be changed (e.g., the starting and ending

24 UIST ’95 November 14-17, 1995



position of a motion animation) and the duration over
which the change should occur. The duration can be
defined in two ways. Frame-based animation lets the
programmer control animation smoothness by specifying
that the animation should take a given number of frames
regardless of the time per frame. Time-based animation lets
the programmer specify the desired amount of time the
animation should take, but the number of intermediate
frames depends on the time per frame, which may vary
with system load, scene complexity, and other factors.
Animations can be paced linearly or slow-in-slow-out. A
slow-in-slow-out animation starts slowly, builds to a
maximum pace, then decelerates [4]. The system could be
extended easily to support other types of pacing.

Animations can be combined into composite animations
that execute their components either sequentially or
concurrently. An animation can be paused and resumed,
restarted, or aborted. Animations can be made to abort
automatically if the target morph is grabbed by the user.
This facility might be used in a desktop user interface to
implemented an abortable delete operation: deleting a file

or folder might cause its icon to drift slowly toward the
trash can. The user could abort the delete operation by
“catching” the icon before it arrived.

Autonomous Behavior Implementation
Morphic uses the well-known damage list technique to
support concurrent animation. When a morph is changed in
any way that affects its appearance, it is not drawn
immediately, but its bounding box is added to the damage
list (if it moves, this is done at both its old and its new
location). Every display cycle, the damage list is processed,
then emptied. All morphs that intersect each damaged
rectangle are redrawn in back-to-front order in an off screen
buffer and then copied to the screen (i.e., screen updates are
double-buffered). The MMM system [1] used a similar
technique to coordinate screen updates resulting from the
activities of multiple users.

Three refinements of this basic idea improve performance
dramatically. First, since the cost of a redisplay cycle
depends on the length of the damage list, the list is
condensed by merging overlapping damage reports.
Second, row and column morphs prune their submorph
drawing to the bounds of the damage rectangle being
processed. If only a few submorphs of a long row intersect
this damage rectangle, then the remaining submorphs are
not drawn. (Actually, any composite morph could suppress
drawing any of its submorphs that did not intersect the
damage rectangle, but rows and columns exploit the fact
that their submorphs are packed in a linear, non-
overlapping fashion.) Finally, a simple occlusion test
suppresses the drawing of morphs that are completely
covered by a morph in front of them. (To enable this
optimization, the implementor of a morph must assert that it
completely fills its bounding rectangle.)

Morphic uses an activity list (another old idea) to schedule
both autonomous behaviors and animations. The activity
list is processed once per display cycle. For each morph

being stepped, there is an entry in the activity list (a
periodicStep activity) that sends “step” to the given morph
whenever a certain interval of time has passed since the last
time it sent “step” to that morph. A periodicStep activity
remains in the activity list until its morph is deleted or its
morph’s autonomous behavior is explicitly stopped. The
other kind of activity list entries, animation activities
(including composite animations), just perform the next

step of their animation every cycle. An animation activity is

removed from the activity list automatically when the

animation completes.

LIVE EDITING
Many direct manipulation user interface editors make a
distinction between run mode, during which animations run
and buttons and other widgets can be operated, and edit
mode, during which animation is suspended and buttons
and other widgets can be moved or edited but not operated.
Morphic avoids this run/edit distinction (sometimes called
the “use/mention” distinction [13]). This has several
advantages. First, it eliminates the overhead of frequent
mode changes. Second, it frees the user of the cognitive

burden of remembering the current mode. Finally, in a
multi-user system, a run/edit distinction would require users
to agree on the desirable mode at any given moment,
hampering their ability to work independently.

Modeless editing of potentially mouse-sensitive composite
morphs poses a number of interesting problems. The
system must provide ways to:
● distinguish editing gestures from operating gestures,
● disambiguate spatial references,
● identify the operands of an operation, and
● manipulate submorphs in place.
This section describes Morphic’s solutions to these
problems. Directness and Iiveness issues will be taken up
towards the end of the section.

Distinguishing Editing Gestures from Operating Gestures
How does a system without an edit mode distinguish
between gestures intended to operate an object from those
intended to manipulate it? SUIT [8] uses a special key
combination to make this distinction; for example, holding
down the SUIT keys while pressing the mouse over a
button indicates that the button should be moved, rather
than operated. SUIT thus achieves a fair degree of both
liveness and directness.

Morphic used a SUIT-like approach initially: special key-
mouse combinations were devoted to operations such a
move, copy, and delete. However, as this list of operations
grew, it became difficult to remember the various key-
mouse combinations. Thus, the editing commands were
collected into a meta menu (Figure 6), popped up by
pressing the right mouse button over any morph. (One-
button mice could be supported by using a special key-
mouse combination to get this menu, as SUIT does.) The
meta menu is context sensitive; the operations in it apply to

the root of the composite morph under the cursor when the

menu is popped up. The meta menu allows the morph to be

November 14-17, 1995 UIST ’95 25



duplicated, deleted, resized, disassembled, given a new

color, or picked up, even if it is mouse sensitive.

One meta menu command is especially interesting. The
“Outliner for Morph...” command summons a graphical
interface to the Self language object that implements the
morph. This makes it possible to get at the implementation
of a user interface component just by pointing at it. It also
supports directness in user interface construction: a slot in
the underlying Self object can be turned into a button that
sends the message associated with that slot. This button can
then be used as a component of the user interface. For
example, the button could be added to a menu prototype to
extend the system.

Figure 6. The meta menu for manipulating a morph.
Every menu has an unlabeled bar at the top that
allows it to be pinned (made persistent) allowing the
menu itself to be manipulated. This allows menus to
be taken apart into individual (functioning) buttons,
reorganized, or otherwise altered.

Disambiguating Spatial References
The user may need to remove a submorph from a composite
morph. This raises the problem of disambiguating spatial
references to submorphs. That is, since the submorphs of a
composite may overlap and nest, pointing at a given screen
location is not enough to specify a unique submorph.
Morphic uses a technique that might be called “spatial
demultiplexing” to disambiguate such references; that is,
the stack of submorphs below a single pixel are temporarily
represented by a larger area of the screen. One application
of this idea is to use a secondary menu (or submenu) to
specify the submorph in question. Invoking the
“Submorphs” command on a morph pops up a menu listing
its submorphs at the spot where the meta menu was
invoked, which allows the user to pick the submorph of
interest (Figure 7). Another application of this idea is a tool
known as the core sampler, which will be discussed in a
later section.

Identifying Operands
The operations of the meta menu have an implicit operand,
the morph on which the menu was invoked. Some
operations require additional operands. Morphic uses
spatial relationships to specify these operands. (Spatial
relationships are very direct !) For example, the “Embed”
command makes the morph on which the command was
invoked become a submorph of the morph immediately
behind (below) it. Drag-and-drop uses a similar spatial

relationship to determine two operands: the morph being
dropped and the morph immediately below it. The target of
control morphs, such as buttons and sliders, is bound by
placing the morph over the desired target and invoking the
“Set Target” menu command.

P@pwix$., ‘

131s&9 i

Figure 7. Using the submorph menu to extract a
circle from a row. The “Submorphs” command was
selected the meta menu, causing the submorph
menu to appear (a). The cross hairs indicate the
point at which the meta menu was originally
invoked. Selecting “circleMorph” in this menu yields
a meta menu for the circle (b). Selecting “Yank it
out” extracts the circle and attaches it to the cursor
(c). Note that the row immediately repacks its
remaining submorphs.

Manipulating Submorphs in Place
It is sometimes necessary to modify a submorph of a
composite morph. One could extract the submorph from the
composite, change it, and replace it, but it is easier to
modify submorph in place. One way to do this is through
the “Submorphs” command discussed earlier. Selecting a
submorph from this menu yields a meta menu that applies
to just that submorph.

Another way is to use the core sampler (Figure 8). The core

sampler shows a columnar list of submorphs at the screen

location in its cross hairs. Each row in this list acts as a

proxy for the submorph that it represents. The user can get

the meta menu for a submorph by pointing to its proxy.

Since resize attributes are so important to layout behavior,

proxies make the state of these attributes manifest and

manipulable via buttons on the right of each proxy. The

user could immediately see, for example, that a row morph

was rigid in the horizontal dimension, and could use a

popup menu to make it be shrinkwrap instead. Core

samplers update their proxy lists continuously as they are
moved about the screen (supporting liveness). This allows
the user to rapidly probe the submorph structure of any
composite morph.

Editing, Liveness, and Directness
The morph manipulation techniques outlined in this section
support directness and liveness in several ways. First, these
techniques allow editing without introducing a runledit
distinction. Such a distinction would immediately make the

system feel less live. Second, the use of spatial

26 UIST ’95 November 14-17, 1995



relationships and context sensitive menus enhance

directness, because the user operates directly on the
graphical object of interest. Where a spatial reference
would be ambiguous, the use of spatial demultiplexing in
the submorph menu and core sampler afford near-directness
by temporarily devoting some screen space to proxies for
the objects of interest.

.,,.,,.
,V .&’$, ,

“j , ;;,

,,

;“. ~“

Figure 8. The core sampler with proxies for the two
submorphs at its cross hairs, a circle and the row
that contains it. The small square on the left side of
each proxy shows the color of the associated
morph. When the mouse is pressed over this
square, a bright-colored frame is temporarily drawn
around the submorph to help the user locate the
submorph visually. As an accelerator for
experienced users, holding the shift key while
pressing the mouse over the square extracts the
given submorph, while holding the shift key as a
morph is dropping onto the square embeds the
dropped morph in the given morph.

RELATED WORK
Few of the ideas in Morphic are completely novel, although

their combination in a single system is unique and the

extent to which directness and liveness are pursued sets it

apart. ThingLab [2], and Sketchpad before it [14],

pioneered the idea of structural reification and also

manifested a certain degree of directness and Iiveness.

Automatic layout based on rows and columns was done in

TeX [6] and InterViews [7], although Morphic’s space

allocation policy is different. Trillium [5], Cardelli’s UI

builder [3], and the NeXTStep [16] UI builder were early

demonstrations of the value of directness in UI construction

tools. The Alternate Reality Kit [9] embodied both

directness and Iiveness, but was aimed at constructing

physics simulations rather than arbitrary user interfaces.
The idea of reserving special gestures to edit a live user
interface was used in SUIT [8].

EXPERIENCE
Morphic is implemented in Self, a dynamic, prototype-

based object-oriented language [12, 15]. Morphic has been
in use for about two years and is the user interface
framework of the Self 4.0 programming system. (Self 4.0 is
freely available via anonymous ftp from self. smli.com. It
requires a Sun SparcStation with a color or gray-scale
display.).

Morphic encourages a style in which simple morphs are
composed into larger and larger building blocks until a
complete user interface is built. How well does this
compositional approach scale? The Self programming
environment was built this way. Outliners are deeply-nested
composite morphs that represent Self objects. An outliner

on a large Self object can have thousands of submorphs
nested over a dozen levels deep. Such large outliners

motivated many of the optimizations discussed in this

paper. Thanks to these optimizations, however,
performance on a SparcStation 10 is acceptable even for
very large composite morphs. Most operations on a
composite morph-such as copying, drawing, or updating
its layout—are linear in the number of submorphs it has.

Achieving directness is a matter of degree, and Morphic
misses the mark in a few ways. Spatial demultiplexing
resolves ambiguous submorph references at the cost of a
reduction of directness. However, some loss of directness
may be unavoidable. That is, given a neatly aligned stack of
submorphs with exactly the same shape and size, the
quickest way to select one of them seems to be to spread
them out spatially, as card players fan out their cards. True,
using a menu to disambiguating a submorph reference
burdens the user with an extra mouse click, but a single
click can select from a large number of submorphs. Another
alternative that was considered was to use successive clicks
to cycle through the submorphs. However, this would have
required many clicks to access a deeply-buried submorph.

A more significant loss of directness arises because,
although the user may begin by pointing at the morph of
interest, some tasks are accomplished through secondary
tools that operate on the morph remotely. For example,
changing a morph’s color is done through a color changer
tool and commonly edited properties are changed through a
property sheet. These tools represent areas where the
system is not completely polished; with a little work they
could be replaced by more direct mechanisms. A deeper
philosophical problem arises from the distinction between
the morph itself and the programming environment’s
graphical representation of the Self object that implements
that morph (its outliner), If both the morph and its outliner
are on the screen, and the user can directly manipulate
either, which is the “real” object? Of course, a user
interface construction environment that did not allow
access to the underlying programming language structures
would not face this problem.

CONCLUSIONS
Directness and liveness are design principles. One
contribution of Morphic is to demonstrate how these
abstract principles can be translated into specific
implementation techniques in four general areas. Structural

rel~cation supports directness by giving the user concrete
objects to point at down to a fine granularity. This means
that direct manipulation can be used to construct and
modify the user interface, and provides a way to get at the
underlying implementation of graphical objects. For
example, a nice dial morph could be extracted from one
application and used to replace a slider in another. L.uyout

reification supports directness by embedding layout
behavior in morphs, which are visible and directly
manipulable. Since layout morphs respond immediately to
changes that affect their layout—such as adding, removing,
or resizing a submorph,—layout reification also supports a

November 14-17, 1995 UIST ’95 27



sense of liveness. Liveness is enhanced by ubiquitous

animation: autonomous morph behavior, animations, and
the activities of multiple-users all proceed concurrently.
Finally, Morphic uses a number of interaction techniques to
support live editing. This frees the user from the
unnecessary cognitive burden of arunledit mode and blurs
the boundary between creating and using user interfaces.

The second contribution of Morphic is to validate the
hypothesis that directness and liveness are worthy goals.
Despite the shortcomings discussed in the previous section,
Morphic achieves these goals much more completely than
previous systems. The result is a system that is
unexpectedly powerful and fun to use. It is difficult for a
paper, or even a video, to convey the feeling of engagement
and empowerment one gets from using Morphic. Anything
you see, you can examine and change. This malleability is
the result of striving toward the design principles of
directness and liveness.

ACKNOWLEDGEMENTS
Everyone in the Self group has contributed to Morphic,
even those who worked primarily on the virtual machine,
since the efficiency of the language implementation
allowed all of Morphic (down to the XLib calls) to be
implemented in Self, Lars Bak designed the outliner view
of Self objects. David Ungar implemented a large part of
the programming environment. Ole Lehrrnann Madsen has
been a patient pioneer and insightful critic. Robert Duvall
and Brook Conner were courageous enough to teach a
course using the system at Brown. Finally, thanks to our
loyal users for their feedback and encouragement.

REFERENCES
1.

2.

3.

4.

5.

Bier, E., and Freeman, S., “MMM: A User Interface
Architecture for Shared Editors on a Single Screen,”
UIST ’91, pp. 79-86 (November 1991).

Borning, A., “The Programming Language Aspects of
ThingLab, A Constraint-Oriented Simulation
Laboratory,” Trans. on Programming Languages and

Systems 3(4):353-387 (October 1981).

Cardelli, L., “Building User Interfaces by Direct

Manipulation,” UIST ’88, pp. 152-166 (October 1988).

Chang, B. and Ungar, D., “From Cartoons to the User
Interface,” UIST ’93, pp. 45-55 (November 1993).

Henderson, D., “The Trillium User Interface Design
Environment,” CHI ’86, pp. 221-227 (April 1986).

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Knuth, D., The TeXbook, Addison-Wesley (Reading,
1984).

Linton, M., Wissides, J., and Calder, P., “Composing
User Interfaces with InterViews,” Computer 22(2):8-

22, (February 1989).

Pausch, R., Young, N., and DeLine, R. “Simple User
Interface Toolkit (SUIT): The Pascal of User Interface
Toolkits,” ULST ’91, pp. 117-125 (November 1991).

Smith, R., Experiences with the Alternate Reality Kit:
An Example of the Tension Between Liberalism and
Magic,” CHI+GI ’87, pp. 61-67 (April 1987).

Smith, R., Maloney, J., and Ungar, D., “The Self-4.O
User Interface: Manifesting the System-wide Vision of
Concreteness, Uniformity, and Flexibility,” OOPSLA

’95, to appear (October 1995).

Smith, R., O’ Shea, T., O’Malley, C., ScanIon, E., and
Taylor, J., “Preliminary Experiments with a
Distributed, Multi-media Problem Solving
Environment,” in Bowers, J. and Ben ford, S., cd.,
Studies in Computer Supported Cooperative Work:

Theoq, Practice, and Design, pp. 31-48, North-
Holland (199 1).

Smith, R. and Ungar, D., “Programming as an
Experience: The Inspiration for Self,” to appear in
ECOOP ‘9S.

Smith, R., Ungar, D., and Chang, B., “The Use
Mention Perspective on Programming for the
Interface,” in Myers, B., cd., Languages for Designing

User Interfaces, pp. 79-89, Jones and Bartlett (Boston,

1992).

Sutherland, I., “Sketchpad: A Man-Machine Graphical

Communication System,” Spring Joint Computer

Conference, pp. 329-345, IFIPS (1963).

Ungar, D. and Smith, R., “Self: The Power of
Simplicity,” 00PSLA ’87, pp. 227-242, (October
1987). A revised version appeared in Journal of Lisp

and Symbolic Computation 4(3) (June 199 1).

Webster, B., The NeXT Book, Addison-Wesley

(Reading, 1989).

28 UIST ’95 November 14-17, 1995


