
Change Tolerant Indexing for Constantly Evolving Data
Technical Report CSD TR# 04-006

Reynold Cheng Yuni Xia Sunil Prabhakar Rahul Shah
Department of Computer Science, Purdue University.

West Lafayette
IN 47907-1398, USA

Email: {ckcheng,xia,sunil,rahul}@cs.purdue.edu

Abstract

Index structures are designed to optimize search perfor-
mance, while at the same time supporting efficient data up-
dates. Although not explicit, existing index structures are
typically based upon the assumption that the rate of updates
will be small compared to the rate of querying. This as-
sumption is not valid in streaming data environments such
as sensor and moving object databases, where updates are
received incessantly. In fact, for many applications, the rate
of updates may well exceed the rate of querying. In such en-
vironments, index structures suffer from poor performance
due to the large overhead of keeping the index updated with
the latest data. move in a well behaved, but restrictive man-
ner (e.g. in straight lines with constant velocity). In this
paper, we propose and develop an index structure that is
explicitly designed to perform well for both querying and
updating. We present techniques for altering the design of
an index in order to optimize for both updates and query-
ing. The paper is developed with the example of R-trees,
but the ideas can be extended to other index structures as
well. We present the design of theChange TolerantR-tree,
an experimental evaluation.

1 Introduction

Index structures are used to improve query performance
by limiting the amount of data that needs to be examined in
order to generate an answer. Static index structures such
as the ISAM file format [11] are not designed to handle
updates to the data very well and can lead to poor query
performance as a result of updates. Dynamic index struc-
tures, such as the B-tree and R-tree, are designed to adapt
the index structure as data is updated so as to continue to
provide good query performance. Existing (dynamic) index
structures perform satisfactorily for traditional database ap-

plications where updates are infrequent in comparison to
queries.

Emerging applications such as sensor-based streaming
databases, represent a drastic shift from this traditional
behavior. These applications are characterized by virtu-
ally constant updates to the data, and relatively infrequent
querying. In this setting, existing index structures are com-
pelled to expend large amounts of resources in simply keep-
ing the index updated with the latest values of the data.
The cost of updating the index dominates the advantage of
improved query performance through the use of the index.
One feasible solution is to reduce the need for updates to
the index. Recent efforts at indexing moving object data re-
duce the need for index updates by assuming that objects
will move in a well behaved, but restrictive manner (e.g. in
straight lines with constant velocity) [12]. This solution is
not generally applicable since the assumption is not reason-
able for many applications.

In this paper, we address the problem of efficient index
update where update rates are high. We drop the traditional
approach of processing updates with the goal of improved
query performance. Instead, we propose and develop index
structures that are explicitly designed to perform well for
both querying and updating. We begin by observing that
most index structures inherently tolerate some change in
the data values being indexed. The first step is therefore
to exploit this “tolerance” to avoid an index (without mak-
ing any restrictions on the nature of change of the data).
Next, we present techniques for altering the design of the in-
dex in order to optimize for both updates and queries. This
is achieved by balancing the need for efficient search (the
common criterion for index design) with the cost of updates.

As we shall see, the two goals of improved query perfor-
mance and improved update performance are directly op-
posed to each other: improving update performance is typ-
ically at the cost of query performance (and vice versa).
The paper presents an index structure that is designed for

1

high update environments – achieving significantly better
update performance at the cost of slightly poorer query per-
formance – and superior overall performance as compared
to existing methods. The paper is developed with the exam-
ple of R-trees, but the ideas can be extended to other index
structures as well.

The main contributions of this paper are:
1. The introduction ofChange Tolerantindex structures

that optimize for frequent updates and queries and the
design and development of change tolerant R-trees.

2. An experimental evaluation and validation of the per-
formance, and adaptability of these index structures.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the inherent tolerance of index structures
to updates and study how this can be exploited to avoid in-
dex updates. In Section 3 the design of a change tolerant
R-tree is discussed. Section 4 presents experimental results.
Section 5 discusses related work and Section 6 concludes
the paper.

2 Change Tolerance of Indexes

The main motivation for our change tolerant indexes
comes from data which changes slowly but constantly with
respect to time for most periods of time, followed by short
periods of time when the data may show a major variation.
In nature (e.g., weather systems), these major variations are
likely to be caused by some underlying events, which are
relatively infrequent.

Consider an index over people in a city. For most of
the time a large fraction of these people are inside a build-
ing. They may change their locations but these variations
are not big. They are confined to limited range of space for
a long time. Then, sometimes, when they are on the road,
the changes in their locations are rapid. However, this hap-
pens for relatively shorter periods of time for most people.

The situation can also be extended to sensor data. Con-
sider temperature and pressure sensors. The index contains
temperature and pressure values of many different places.
For each place, the variation in these parameters against
time is not rapid for most of the time. However, during
evenings or during special events like thunderstorms, they
can change rapidly. They finally settle around their new val-
ues.

We can exploit this property of changing data to build
better indexes. In some of the models for changing data,
the data variations are modeled as a smooth straight line
with constant rate of change. For example, indexes based
on kinetic data structures [5] assume mobility of objects in
straight lines with some velocity. Our model does not as-
sume data changes are well behaved. The changes are ran-
dom, but they are restricted in small range of values and in
only a few moments rapid changes occur. The rapid changes

are followed by another set of small changes – again the
changes are confined and random.

2.1 Tolerance to Change

Many index structures are inherently tolerant to the
changes in data values without requiring a change in the
index structure. Consider the case of an R-tree index [7].
The R-tree is a height balanced tree which can be seen as a
generalization of the B-tree for indexing objects in multidi-
mensional space. Each node of the R-tree (internal as well
as leaf node) represents a hyper-rectangle ind dimensions.
The leaf level rectangles contain objects, and the rectangles
for internal nodes contain the rectangles at one level below.
The boundaries of the rectangles are made as tight as possi-
ble. There is an object on each boundary face (hyperplane in
d dimensions) of each of these rectangles. These rectangles
are calledMinimum Bounding Rectanglesor MBRs. Un-
like the B-Tree, the MBRs of nodes at the same level in an
R-Tree are allowed to overlap. Hence searching an object
may involve traversing several paths in this tree. When a
node becomes overfull it undergoes a split. Efficient heuris-
tics and pruning are used to reduce the expected number of
paths visited by subsequent searches.

Given any specific entry in a leaf node of the tree, the
Minimum Bounding Rectangle (MBR) of the entry for that
leaf node in its parent node represents the “tolerance” of the
index to changes in the values of the objects pointed to by
the leaf node. In particular, if an object’s location remains
within this MBR, the index is correct without requiring an
update. Under normal R-tree operations, such an update is
processed by searching the index and updating the location
of the object. In order to avoid this expense for each update,
it is desirable to be able to perform a cheap update in cases
where the index does not change.

The R-tree is very often used as an index on spatial coor-
dinates. Typical updates on R-trees are insertions and dele-
tions. While performing a deletion operation on the space
attribute, the object is first searched (based upon its spatial
coordinates) and then deleted. However, if the deletion op-
eration directly provides a pointer to the page in which the
object is stored, then the cost for searching in the R-tree can
be saved. For example, if a deletion is by a different (non-
spatial) attribute, say object identifier (id), we can maintain
a secondary index onid. This secondary index stores, for
eachid, the pointer to the page containing the correspond-
ing object in the R-tree.

When the R-tree is used to index constantly evolving
data such as the locations of mobile objects, the types and
the frequencies of the updates can be very different. For
example, most updates can be of the form—object with id
i moves from its current location(x1,y1) to new location
(x2,y2). This can be handled in an R-tree by first deleting

2

!"

!# !$

%" %# %$ %&

'$ (& (#()

(" * *(+

(, (-(.

(-
(+
()
(&
($
(#
("

(.
(,
("'
///

Figure 1. Secondary hash-index structure

this object from its current location and then re-inserting it
in the new location. However, if the new location is in the
same MBR, the change tolerant property of the R-tree can
be exploited. Additionally, the secondary index onid can
be used to reduce the search cost associated with deletion
and insertion.

Hence, in conjunction with the R-tree, we maintain a sec-
ondary hash index onid for handling updates. This is the
basic idea applied in the lazy-update R-trees [10]. Figure 1
shows an example of this secondary index structure. The
secondary index (on the right) is simply an array of pointers
to leaf pages of the R-tree with one entry for each object
ordered byid. Thus, all the updates where the new location
is in the same MBR as the old location can be accomplished
with a constant number of I/Os. Note that the R-tree struc-
ture does not change due to such updates (only the location
of the updated object is changed in the corresponding leaf
node). This kind of secondary structure is essential when
updates are frequent. If most objects remain within their
MBRs, most updates can be handled through the secondary
hash index while the R-tree index is used to process spatial
queries.

2.2 Optimizing for Updates

In the previous subsection, we saw that the available tol-
erance of an index to data change can be used to improve
update performance with no impact on search performance.
In this section we explore the possibility of altering the de-
sign of the index structure to increase the available tolerance
of an index while balancing the potential increase in the cost
for querying. Again, we focus on R-trees as the running ex-
ample.

Given a set of data, the structure of an R-tree index for
this data is determined by two critical parameters: the node
size, and the order of inserts and deletes. The node size is

chosen to be a multiple of disk blocks. The structure that
results is largely determined by split of an overfull node
into two nodes. The R-tree (like other index structures) at-
tempts to find a split of the children of the overfull node in
order to achieve balance (each of the split nodes has roughly
the same number of children), and improve search perfor-
mance. It is assumed that the area of the resulting MBR
of each child is proportional to the number of queries that
will access the corresponding node. Consequently, the goal
is to minimize this area. Other structures such as R*-trees
use a slightly more complicated decision process to deter-
mine the split, but with the same goal of minimizing the ex-
pected number of queries that will intersect with the result-
ing nodes. In either case, the impact of the split on future
updates is not taken into account. For example, the split
may result in a situation wherein objects frequently cross
from one MBR to another – thereby resulting in a high up-
date cost.

In the traditional R-tree, the MBR is tight (i.e. it is
the smallest rectangle that contains all underlying objects).
This implies that there is at least one object touching each
side of the MBR (otherwise it would shrink further). Having
a small MBR improves search performance and pruning. In
situations where the objects move constantly, these bound-
ary objects are likely to move in and out of the MBR very
frequently. Each time an object leaves the MBR, it has to
be re-inserted (either into a different MBR or stays in the
same MBR after expansion). Note that the use of lazy up-
dating through the secondary index discussed above does
not eliminate this cost. Thus, MBR boundaries being tight
to the objects improves the search performance but can re-
sult in a high update cost. The concept of having slightly
larger MBRs than needed (that is, the MBR is no longer a
minimumbounding rectangle) is explored in [10]. We shall
call this structure theα-tree, which is essentially an R-tree
with “loose” MBRs. The idea is that whenever an MBR
needs to be expanded, we expand it byα% more than its
minimum size. Thus, the boundary objects get some lee-
way to move and stay within the same MBR. Naturally, this
implies poorer query performance.

The intuition behind these indexes is as follows: The
design of the MBRs of the index should not be governed
solely by the current values of the data being indexed. In-
stead, the MBRs should be designed based upon the nature
of changes to data values. For example, if changes from
one particular value to another are very common, the in-
dex structure should tolerate this change with minimal cost.
Naturally, this may lead to increased query cost. Therefore,
the cost savings for updates should be balanced against cost
increases for queries. We will discuss how this can be done
in details in the next section.

3

3 CT-R-tree–the change tolerant index

TheCT-R-tree we develop is an extension of the R-tree
that is tolerant to frequent data changes. The structure of
this index is based on R-tree, where the data is hierarchi-
cally arranged in bounding rectangles (MBRs). The key
idea is to design the MBRs such that updates that cross
MBR boundaries are not common. While the future updates
(or queries) cannot be predicted, we assume that the past be-
havior is a good indicator of events in the future.1 With this
in mind, our algorithm utilizes the history of updates to cre-
ate aCT-R-tree, in order to facilitate future updates. In this
section, we first describe how the index is created, followed
by a discussion of index maintenance operations.

3.1 Creating aCT-R-Tree

The creation procedure ofCT-R-tree can be summarized
by four steps:

1. Identification of MBRs (calledquasi-static regions
(qs-regions)) that maximize the “tolerance” of the in-
dex to update. A qs-region is simply a range of the
domain which encloses numerous updates. Updates
that change the value from one qs-region to another
should be relatively infrequent (since these are expen-
sive updates). For the case of moving objects, these
are regions of space in which objects tend to remain
for a long period of time. qs-regions are generated by
consulting the history of updates received from each
object (Section 3.1.1).

2. Using qs-regions found in step 1, construct a structure
called theupdate graph, which depicts traffic among
qs-regions (Section3.1.2).

3. The update graph is used to merge the qs-regions (Sec-
tion 3.1.3).

4. Creation of an “empty” R-tree structure using the iden-
tified qs-regions as MBRs at the leaf level, and inser-
tions of current data values to generate theCT-R-tree
(Section 3.1.4).

Let us now investigate these steps in further details.

3.1.1 Phase 1: Identifying object qs-regions

This phase results in the identification of rectangular re-
gions of the domain that are small and enclose several up-
dates of an object. These rectangles are essentiallyqs-
regions, since they represent ranges of values where the data
changes constantly in a confined space. We begin by di-
viding the update trail of each object into pieces that do

1Note that the design of existing index structures is based upon a pre-
diction of future queries under the assumption that queries are uniformly
distributed (i.e. the area of a MBR is a rough indicator of how often it will
be accessed by queries).

not have very large changes over a short period of time.
As an example, consider Figure 2(a), where some individ-
ual object trails are segmented into qs-regions. The con-
nected bold lines show the update trails of objects. The
dashed boxes represent the bounding rectangles for initial
qs-regions. For ease of exposition, we use an example of
mobile objects in two-dimensional space to describe the
scenario. However, the algorithms presented here are ap-
plicable to the general case of any multidimensional data
where the movement of an object represents the change in
data value.

Formally, let O1,O2, . . . ,On be n moving objects.
Let Hi denote the trail history of objectOi . Then
Hi is a set of points{(xi,1,yi,1, ti,1), . . . ,(xi,k,yi,k, ti,k), . . . ,
(xi,|Hi |,yi,|Hi |, ti,|Hi |)}, whereti,k is the time when thekth lo-
cation update(xi,k,yi,k) occurs, and|Hi | is the the total num-
ber of samples inHi . Let Bi(j,k) be the bounding rectangle
(MBR) for Oi which encloses{(xi, j ,yi, j), . . . ,(xi,k,yi,k)} in
Hi . LetAi(j,k) be the area ofBi(j,k). Further, letdi(j,k) be
the diameter (i.e. diagonal) ofBi(j,k). We assume thatHi

is ordered by increasing values ofti,k’s. Figure 3 describes
the algorithm for this phase.

Input: Hi
Output: Bi,l ,τi,l
1. j ← 1, l ← 1
2. Bi, j (1,1)← (xi,1,yi,1)
3. for k = 2 to |Hi | do

A. Let Bi(j,k) be the MBR after expanding
Bi(j,k−1) to include(xi,k,yi,k)

B. if di(j,k) > Tdist and
di(j,k)−di(j,k−1)

tk−tk−1
> Trate then

a. if tk−1− t j > Ttime and Ai(j,k) < Tarea then
i. Bi,l ← Bi(j,k−1)
ii. τi,l ← tk−1− t j
iii. l ← l +1

b. elseDiscardBi(j,k−1)
c. j ← k
d. Bi(j, j)← (xi,k,yi,k)

Figure 3. Identifying qs-regions for object Oi

(Phase 1).

The algorithm “grow”s MBRs to enclose the samples
while tracing the history records, and if an MBR satisfies
certain criteria, it is “frozen” and qualified as aqs-region
for Oi . We maintain a list of qualified MBRs for each ob-
ject Oi , where we denote thel th MBR of this list byBi,l .
Let Ai,l be the area ofBi,l , andτi,l the time objectOi spent
in Bi,l .

Step 1 introduces the variablej, which indicates the time
t j at which the oldest sample is included in thel th MBR

4

!

"

#

$

(a) (b)

Figure 2. (a) Initial qs-regions from object trails. (b) Object update graph.

(Bi,l). Both j and l are set to 1, and the first MBR,Bi,1,
contains only the first sample,(xi,1,yi,1) (Step 2).

Step 3 scans the trail of the object in increasing order
of time, identifyingqs-regions on the way. In Step 3(A),
Bi,l is expanded to include thekth sample ofHi . Step 3(B)
decides ifBi,l should befrozenas aqs-region, based on the
following conditions:

di(j,k) > Tdist (1)

di(j,k)−di(j,k−1)
tk− tk−1

> Trate (2)

That is to say, after expandingBi(j,k) to some particular
threshold diameterTdist, if Bi(j,k) grows at the rate faster
thanTrate, we stop it from growing further. This relies on the
fact that after the initial growth of the rectangle, if there is a
sudden increase in growth rate of the region, the object has
started moving faster and thus should not be considered as
lying in a qs-region. As long as these two conditions are not
violated,Bi,l continues to grow to enclose more samples.

Steps (a) to (d) in 3(B) take care of the situation when
Bi,l ceases to grow. First, we decide whetherBi,l should be
considered as aqs-region (steps (a) and (b)).Bi,l is only
qualified as a qs-region when

1. tk−1− t j is larger thanTtime. This verifiesOi has stayed
long enough inBi,l . Singleton rectangles, such as those
labeled ‘a’, ‘b’, ‘c’, and ‘d’, in Figure 2(a), are also
eliminated.

2. The area ofBi,l , i.e.,Ai,l , is smaller thanTarea. This re-
moves rectangles that are too large, whose dead space
may lead to poor query performance.

in which case we “freeze”Bi,l (step (a)(i)) and calculateτi,l ,
which is the time spent by the object inBi,l (step (b)(ii)).

Steps (c) and (d) create a new MBR(Bi,l+1), which only con-
tains thekth sample. The whole process is repeated again
until all the samples inHi are exhausted, at which time we
obtain a sequence ofqs-regions forOi . For the sake of con-
venience, letCi denote the number ofqs-regions generated
from Hi .

3.1.2 Phase 2: Creating an update graph

1. for i = 1 ton do
A. while ∃ j,k∈ [1,Ci] such that

τi, j/Ai, j < (τi, j + τi,k)/(Ai, j,k) and
τi,k/Ai,k < (τi, j + τi,k)/(Ai, j,k) and Ai, j,k < Tarea do

a. ExpandBi, j to includeBi,k
b. Replace common links ofBi, j andBi,k

by a single link, and update the weight of the link
c. τi, j ← τi, j + τi,k

Figure 4. Merging qs-regions (Phase 2).

We can represent the sequence of rectangular qs-regions
just generated as a chain graph with the set of MBRsBi,l

as vertices and link between each consecutive rectangles
in this sequence (initially each edge is assumed to have a
weight 1). Figure 2(b) shows this chain graph for the exam-
ple histories shown in Figure 2(a) (note that not all nodes
and edges of this graph are shown for the purpose of clar-
ity).

We now discuss how to cluster the chain graph of each
object to obtain theobject update graph, where the clus-
tering is based on grouping subsets of vertices (i.e., rect-

5

angular qs-regions). Figure 4 illustrates the details of how
the graph is formed for each object. Define the term “resi-
dent density”, which is the total amount of time that objects
spends inside the qs-region (τi,l), divided by the area of the
qs-region. We see that Step 1(A) chooses anyj andk in
[1,Ci] such that the following conditions hold:

τi, j/Ai, j < (τi, j + τi,k)/(Ai, j,k) (3)

τi,k/Ai,k < (τi, j + τi,k)/(Ai, j,k) (4)

Ai, j,k < Tarea (5)

whereAi, j,k denote the area of the new rectangle that
tightly enclosesBi, j andBi,k. These three conditions enforce
the rule that the pair of rectangles are merged only when
the resulting “resident density” of the resulting rectangle is
greater than each of the “resident densities” of the individ-
ual rectangles. Moreover, rectangles are only merged when
there is sufficient overlap.

When all these conditions are satisfied,Bi, j is expanded
to includeBi,k (Step (a)). Further, the links that are destined
to the same qs-region fromBi, j andBi,k are replaced by a
single link (Step (b)), with the weight of the new link up-
dated as the sum of the weights of the links being replaced.
The time valueτi, j is then assigned to be the sum of all the
individual time values of the merging rectangles (Step (c)).
Notice that the algorithm merges the rectangles in arbitrary
order, until none of them satisfies the above criteria. This
process is repeated for every object (Step 1).

Once the update graphs for all objects are generated, we
take the union of all these graphs. A merging procedure
similar to Step 1(A) in Figure 4 is applied to this unified
graph. This merging gives a us a set of qs-regions as rect-
angles and a graph on it called theupdate graph. The time
value of each rectangle gives the total amount of time that
objects spent in that rectangle, and the weight of link(i, j)
between two rectanglesi and j in the update graph gives
the total number of updates betweenBi andBj . Finally, we
scale down all the edge weights by the factor oftTot, where
tTot = max(ti,|Hi | (i.e., the longest duration of the trail histo-
ries). Each edge weight now reflects the number of updates
between two qs-regions per unit time.

3.1.3 Phase 3: Merging qs-regions via update graph

In the previous phase, merging occurs only when qs-regions
have reasonable amount of overlap. In other words, two
rectangles that do not overlap will not be merged by the
above phase. However, there could be two unmerged rect-
angles between which a large number of objects move. In
such a situation, it is reasonable to merge these rectangle to
form a single MBR and save update cost. In this stage, we
use the update graph to detect such occurrences, and merg-
ing qs-regions if necessary.

!"
!#

!$

!%

Figure 5. Merged qs-regions.

The high volume of traffic between qs-regions by itself
cannot guarantee a good merge. This is because these rect-
angle can be far apart, in which case the merging of these
qs-regions into a single MBR will result in a very large
MBR, with lots of dead space. If this happens, many queries
will hit this MBR unnecessarily, resulting in higher query
cost. Thus there is a trade-off between merging qs-regions
and query cost.

We capture the effect of the various factors that con-
tribute to this trade-off. Let∆A be the increase in area due
to the merging operation,A be the total area spanned by the
structure, andrq be the query arrival rate. Then, we expect
that rq∆A/A queries per unit time will hit the dead space.
This represents the loss due to this merge. On the other
hand, if the weight of the edge between these two qs-regions
in the update graph isw, thenw is the rate of updates caused
by not merging these rectangles. LetCq andCu be the scal-
ing factors for queries and updates respectively. Then we
merge two qs-regions if the following criterion holds:

Cuw > Cqrq
∆A
A

(6)

Figure 5 shows the qs-regions as a result of these merging
steps for the example history.

3.1.4 Phase 4: Creating a structural R-tree

Given the set of qs-regions identified in the earlier phases,
we first create an R-tree index on these qs-regions. This is
achieved by inserting the qs-regions into an empty R-tree.
This forms aStructural R-tree, where the leaf level of this
R-tree contains the qs-regions. Note that bulk loading tech-
niques [3] for R-tree can be applied here with appropriate
modifications, but since this is not the focus of this paper,
we choose repeated insertions, a simpler method. We are
not concerned here with the cost of constructing the index,

6

!"

!#

!$

!%

&"

&#

&$

!"

!# !$

%" %# %$ %&

Figure 6. Structural R-tree over qs-regions

since index construction is seen as an offline process. We
are more interested in the online query and update perfor-
mance of the index. Figure 6 shows the structural R-tree
that results for our running example.

Using the structural R-tree, we create the change tolerant
R-tree (CT-R-Tree) over current data. The structural R-tree
does not index data – it indexes qs-regions. We begin by
inserting the current data values into the structural R-tree,
treating the leaf level nodes of this index as one level above
the leaf for theCT-R-Tree. The qs-regions in the leaves
of the structural R-tree serve as the parent MBRs for the
data being inserted. Although these MBRs serve a similar
purpose as MBRs in a regular R-tree, they are treated spe-
cially in two respects: (i) they are never removed from the
index (i.e. they are allowed to be underfull – in fact they
are all empty at the beginning of theCT-R-Tree construc-
tion)2 and (ii) they are not split when overfull – this avoids
the high cost for updates. Thus there is a possibly unlimited
overflow buffer (which can span multiple pages) attached to
these MBRs, as in theX-tree [6].

We also attach a linked list of overflow buffers to each in-
ternal (non-leaf) MBR. When an object’s new position does
not fall in any of the qs-region MBRs (MBRs at leaf level),
it is stored in the lowest internal node whose MBR contains
the new location. The objects which are stored in the in-
ternal node buffers are likely to be those whose values are

2For now we assume the movement patterns of objects is never un-
changed. If a qs-region becomes useless due to movement pattern changes,
it is possible to remove the qs-region from theCT-R-tree. We will discuss
this in Appendix A.

!"

!#

!$

!%&"

&#

&$

' (
)

*

+

,
-

.

/

0

!"

!# !$

%" %# %$ %&

'

()

* +

, -

.
/

0

12--,34
56+,

Figure 7. The Change Tolerant R-tree

changing rapidly. Usually, there are relatively fewer objects
of this kind unless the movement patterns of objects change
significantly. In case any linked list overflow buffers be-
comes too large, it is converted to anα-R-tree. This issue
will be addressed again in Appendix A.

To conclude, objects can be stored in the internal nodes,
and each MBR (leaf or internal) has a special pointer to its
set of buffer pages. Figure 7 shows the structure ofCT-R-
tree for our example. This index has four levels as opposed
to the three levels of the structural R-tree of Figure 6. Ex-
amples of data points are shown in the top figure of the do-
main. The nodes shown in dashed lines are either linked
lists of overflow buffers orα-R-trees for the internal nodes.
The data objects are inserted at the new leaf level of this
tree.

Along with this structure we also maintain a secondary
hash-index. Each entry in this hash-index consists of two
fields: (1) object id and (2) a pointer to the page in R-tree
which contains its location. This structure is the same as the
secondary index described in Section 2.1. Figure 1 shows
the structure. When we insert an object into the CT-R-Tree,
it is also simultaneously inserted into the hash-index and the
pointer in its corresponding entry in the hash index is set to
the page in the CT-R-tree where it is stored. More details
on insertions and other dynamic operations are presented in
the next subsection.

7

3.2 Dynamic operations

Once the index structure is created for rectangular qs-
regions, they are usually not deleted, even if they are empty.
Thus the structure of the index is basically intact even when
objects are inserted or deleted. Query processing is similar
to that of the R-tree while updates, insertions and deletions
are handled differently. We now describe how these oper-
ations are supported. Although all these operations are de-
scribed in terms of a two-dimensional space structure, they
can be extended to multiple dimensions.
Insert(o). Insert objecto with location(o.x,o.y) into the
index. Determine all the leaf level MBRs (qs-regions) that
contain this point. If multiple MBRs contain the point, we
choose the one with minimum area (to optimize query per-
formance). The object is inserted into the first non-full page
of this MBR. If all pages are full, a new page is allocated
and the object is inserted into it. If none of the leaf-level
MBRs contain the point, a lowest level MBR that contains
this point is chosen. If more than one such MBRs exist, the
one with minimum area is chosen. Note that the overflow
buffer associated with an internal node can be in the form
of either a linked list or anα-R-tree. If the number of pages
of the linked list is less thanTlist after insertion, the point is
inserted to the linked list. Otherwise, anα-R-tree is created,
to which all data in the linked list are moved. Theα-R-tree
is then attached to the internal node. Subsequent insertions
to the internal node will be directed to theα-R-tree. Finally,
the entry foro in the hash-index is updated to point to the
page which containso.
Delete(o). Search the hash-index foro. Deleteo from the
page and deallocate the page if it is empty. Set the hash-
index entry foro to null.
UpdateLoc(o,(x1,y1),(x2,y2)). Consult the hash index for
o. Seto.x = x2,o.y = y2. If (x2,y2) does not belong to the
same MBR, performDelete(o) andInsert(o).
Search(x,y). Searching for point(x,y) follows the search
pattern of R-tree. Since objects can also be stored in the
internal nodes, the search visits the set of buffer pages at
each internal node. If the overflow buffer is a linked list, the
search checks all the pages since the data in the linked list
is unordered. If it is anα-R-tree, an R-tree range search is
performed.
RangeSearch((x1,y1),(x2,y2)). This is similar toSearch.
Each MBR which intersects with the rectangle (lower left
(x1,y1) and upper right(x2,y2)) qualifies.

As long as traffic patterns do not change, the qs-regions
discovered by our algorithms remain valid, and our index
behaves well. However, when the pattern of movement
changes, previously undiscovered qs-regions may appear.
Many objects may not fall into a qs-region, and they are
accumulated in theα-R-trees of internal nodes. We can de-
tect which MBRs of theseα-R-trees which show stability,

change them into qs-regions, and insert them to the main
structure of theCT-R-tree. Details can be found in Ap-
pendix A.

4 Experimental Results

We performed an extensive simulation study on the per-
formance of change-tolerant indexing. We implemented the
CT-R-tree, and compared its performance with three vari-
ants of R-trees. A study of the sensitivity of theCT-R-tree to
various parameters was also conducted. Below we discuss
the simulation model, followed by the experimental results.
The experiment results for changing traffic patterns can be
found in Appendix A.

4.1 Simulation Model

Our experiments are based upon data generated by the
City Simulator 2.0 [8] developed independently at IBM.
The City Simulator simulates the realistic motion of up to 1
million people (Nob j) people moving in a city. The input to
the simulator is a map of a city. We used the sample map
provided with the simulator that models a city containing
71 buildings, 48 roads, six road intersections and one park.
Each building is three-dimensional and contains a number
of floors. The simulator models the movement of objects
within the building and on the roads and park. To generate
reasonable movement and occupation of buildings, the sim-
ulator keeps track of two conditions based on parameters
Tf ill andTempty: The simulator ensures that the fraction of
people at the ground level lies betweenTf ill andTempty.

Each object reports its location to the server at an average
rate ofλu. Before recording the simulation results, the sim-
ulator enters a warm-up phase, where at mostNrelax samples
for each object are generated, or at leastTstart of the popu-
lation are in the ground level of buildings. Next, the simu-
lator records the location updates of each object in a trace
file, which contains the timestamp of the update and the
spatial coordinates of the object at that time. The trace file
serves as the data source for our experiments. It captures,
for each object, a total ofNhist + Nupdate location updates.
We use the firstNhist updates as the history profile. The first
Nhist−1 records are used to generate an R-tree composed of
qs-regions. TheNhist-th sample is then inserted to the R-tree
to produce theCT-R-tree. Once theCT-R-tree is built, the
remainingNupdatesamples are modeled as dynamic updates
to theCT-R-tree, as well as other R-tree variants. At the
same time, range queries are generated at an average rate of
λq. Each range query has the shape of a square, with central
point chosen randomly within the city area and size equal to
a fraction fq of the city area. It should be noted that the city
map is used only by the City Simulator to generate realistic

8

movement of objects – it is not used for the generation of
theCT-R-tree index structure.

Since these are disk-based index structures, the number
of page I/Os is the natural metric for measuring the perfor-
mance of the indexes. We measure the number of page I/Os
for reads and writes of both dynamic updates and queries
during the simulation. We do not distinguish between se-
quential page I/Os and random page I/Os – each page is
treated equally. This is likely to be a disadvantage for the
CT-R-tree since its node buffer pages may often be multi-
ple pages long, unlike the other trees for which the nodes
are always the same size. Each page has a size ofSpage,
with a fan-out ofNentry. The secondary index of theCT-R-
tree (i.e., the hash table) with sizeShash. We assume all tree
structures and the hash table are stored on disk.

The City Simulator is implemented in Java and run under
Windows XP. The programs for generating theCT-R-tree
are written in C++ and Java, and the testbed is run on a
UNIX server. Although we focus on the performance of
dynamic updates and queries, it is worth notice that the time
required to generate the CT-R-tree using the history profiles
is usually less than ten minutes. Also, since this process
can be done in an offline fashion, it does not interrupt the
processing of online updates. Table 1 shows the parameters
of the simulation model, the parameters of theCT-R-tree,
as well as their corresponding values.

4.2 Results

Here we present the simulation results of theCT-R-tree.
Four index structures are evaluated in our experiments: (i)
the traditional R-tree [15]; (ii) the traditional R-tree aug-
mented with lazy updating using the secondary index struc-
ture shown in Figure 1. We call thislazy-R-tree; (iii) the
α-tree which is essentially an R-tree with lazy updating
and expanded MBRs (i.e. the MBRs are not minimal, but
widened by a factor ofα (we usedα = 0.1 in our experi-
ments); and (iv) theCT-R-tree.

4.2.1 Effect of Update/Query Ratio

We begin by studying the relative performance of the vari-
ous index structures as the number of queries and updates
is varied. Figure 8 shows the total number of page I/Os per-
formed for query and update for the R-tree, thelazy-R-tree,
theα-tree and theCT-R-tree. The performance is measured
under the same query generation rate but different update
arrival rates. To generate a slower update rate, some loca-
tion samples are skipped. It should be noted that this graph
uses a Log-scale on both axes. As the ratio of update rate
over the query rate (abbreviated as update/query ratio) is in-
creased from 10−2 to 103, all four indexes show an increase
in the number of I/Os. This is because increasing the update

rate implies more demands on the index, and consequently
more I/Os are needed.

When the update/query ratio is low, theCT-R-tree takes
about 2 times as many as I/Os than the other R-tree variants.
Recall that the R-tree and thelazy-R-tree uses MBRs, which
are tight bounds over the enclosed objects’ values. On the
other hand, theCT-R-tree employs qs-regions that do not
necessarily enclose as tightly as MBRs. When a query is ex-
ecuted, its query region potentially has less overlap with the
R-tree’s MBRs than with qs-regions. This results in fewer
searches and better performance. With anα of 0.1, the ex-
panded MBR of theα-tree is slightly larger than the other
R-trees. Thus it also suffers the same problem as theCT-
R-tree and its performance is worse than the R-trees. The
advantage of using the secondary structure in thelazy-R-
tree gives it a minor edge over the traditional R-tree since
it saves the cost of accessing the R-tree when an updated
object remains inside the same leaf node.

Towards the right end of the graph, when the update
workload dominates the query workload, theCT-R-tree
registers a significant improvement over other R-tree vari-
ants. In fact, once the update/query ratio crosses over 5.6,
the number of I/Os needed by all three R-trees increases
sharply, whereas theCT-R-tree gracefully handles the high
update burden. When updates are much more frequent than
queries, which is a typical scenario in sensor and moving
object databases, the R-tree suffers from expensive updates.
The distinction between the R-tree and thelazy-R-tree be-
gins to show in this high update setting as the secondary
index yields significant gains from cheaper updates. Theα-
tree improves further over thelazy-R-tree since it can han-
dle more updates through the secondary index on account
of its more lax MBR. TheCT-R-tree clearly outperforms
the other indexes in this high update environment since its
structure is inherently designed to maximize tolerance to
changes in object values. The advantage of better update
performance more than compensates for the slightly poorer
query performance.

The CT-R-tree works the best under high update rates
because it is aware of the presence of qs-regions, and uses
them to cluster the search space. Further, these qs-regions
are not split further into smaller units. Therefore, when an
object moves inside the qs-region, no matter how frequently
it reports its value, only the secondary index is consulted
and the current value is directly updated in the leaf node. As
the update/query ratio increases, the improvement over R-
trees is more obvious. In particular, when the update/query
ratio is 1000, the number of I/Os required by theCT-R-tree
is only 1/4th that of theα-tree, 1/7th that of thelazy-R-tree,
and 1/27th that of the R-tree.

9

Param Default Meaning

Simulation parameters
λu 5,000 Location update rate (sec−1)
Tstart 0.15 Start threshold
Tf ill 0.09 Fill threshold
Tempty 0.5 Empty threshold
Nob j 105 # of moving objects
Nrelax 2000 Max samples skipped before recording
Nhist 110 # of historic samples (per object)
Nupdate 20 # of online updates (per object)
λq 50 Query arrival rate (sec−1)
fq 0.1 Query size (% of the city area)

CT-R-tree parameters
Tdist 25 Distance threshold in Eqn 1 (m)
Trate 1 Max growth rate of qs-region (m/sec)
Ttime 300 Min time objects in qs-region (sec)
Tarea 22500 Max area of qs-region (m2)
Cq 1 Query scaling factor (Eqn 6)
Cu 1 Update Scaling factor (Eqn 6)

Spage 4096 Size of a page (bytes)
Nentry 20 # of entries (per page)
Shash 8 Size of secondary index (Mbytes)

Table 1. Parameters and baseline values.

4.2.2 Effect of Query Size

Since thelazy-R-tree maintains tighter bounding rectangles
than theα-tree and theCT-R-tree, it is expected to outper-
form them for querying. In this experiment, we examine
more precisely how well thelazy-R-tree outperforms the
two indexes by measuring the ratio of the query I/Os of two
trees over the query I/Os for thelazy-R-tree. Note that the
lazy-R-tree and the traditional R-tree have identical query
performance. Figure 9 shows the ratios over different query
sizes. The query size is varied from 0.1% to 2% of the do-
main. We observe that both theα-tree and theCT-R-tree
require more query I/Os than the R-tree. Also, theCT-R-
tree needs more query I/Os than theα-tree. As the query
size increases, their performance starts to converge to that
of the R-tree. The reason is that with a large query area, the
probability that a given region will be covered by a query in-
creases. Thus the advantage of having a smaller area MBR
reduces. To see this, consider a very large query that covers
95% of the space – it is highly likely that most MBRs will
overlap with this query and therefore need to be searched.
In that case, searching a qs-region in theCT-R-tree is even
more effective than searching in the R-tree, because a qs-
region does not limit how many objects are stored inside.
On the other hand, MBRs need to be split when they are
over-full, so that more access paths are necessary. Thus the
performance ofCT-R-tree improves over large query size.

Although theCT-R-tree does not perform as well for
queries as the other two indexes, we can see from Fig-

14

15

16

17

18

19

20

21

22

23

24

-2 -1 0 1 2 3

Lo
g2

(d
is

k
I/O

s)

Log10(update/query ratio)

RTree
CTRtree

Lazy RTree
alpha RTree

Figure 8. Total I/O vs. Update/Query Ratio

ure 10 that it is the clear winner in terms of overall perfor-
mance (total number of I/Os). TheCT-R-tree is designed
for databases with more updates than queries. Its loss in
query performance is compensated with a significant gain
in update performance, resulting in three-fold improvement
over theα-tree, and four-fold improvement over the lazy-R-
tree, consistently over all query sizes considered.

1

1.5

2

2.5

3

0 0.5 1 1.5 2

Q
ue

ry
 I/

O
 r

at
io

Query Size, % of space

CT-Rtee/Rtree
alpha Rtree/Rtree

Figure 9. Query I/O ratio vs. Query Size

4.2.3 Scalability ofCT-R-tree

In this experiment, we study the scalability of theCT-R-
tree. The number of I/Os for thelazy-R-tree and theCT-
R-tree are reported for up to 500K objects (Figure 11). We
observe that theCT-R-tree performs better than thelazy-R-
tree as the number of objects is increased from the baseline
value (100K). This shows that theCT-R-tree scales with
the number of objects. A closer look at the graph reveals
that the performance gap between the two indexeswidens
with increasing number of objects. The rationale is two-
fold: First, when more objects are maintained in the system,
more update requests are generated. As discussed in 4.2.1,
the performance of the R-tree degrades more than that of the

10

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 0.5 1 1.5 2

T
ot

al
 I/

O
s

Query Size, % of space

RTree
CTRtree

alpha Rtree

Figure 10. Total I/O vs. Query Size

CT-R-tree. Second, the city plan is fixed. Injecting more ob-
jects to the city implies a higher population density. Many
objects are close to each other, so that they have a higher
chance of being clustered to the same MBR. As a result, an
MBR gets full easily, and more splits are necessary to main-
tain the R-tree. ACT-R-tree does not have to perform any
split operations, even when the density of objects is high. It
therefore requires fewer I/Os.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

100 150 200 250 300 350 400 450 500

di
sk

 I/
O

s

Number of Objs(K)

CTRtree
RTree

Figure 11. Total I/O vs. Number of objects

4.2.4 Sensitivity to Parameter Values

This set of experiments studies the sensitivity of theCT-R-
tree to its parameter values, namelyTdist, Trate, Tarea, and
Ttime. These parameters are used in the first step of identi-
fying qs-regions, so their values can be critical to the per-
formance results. We examine the I/O performance of the
CT-R-tree over a wide range of values for these parameters.
The results forTrate andTarea are shown in Figures 12(a)
and (b) respectively. The results forTdist andTtime showed
trends very similar to those forTrate and the graphs are om-
mitted due to space constraints. Each graph plots the num-
ber of page I/Os for query and update for theCT-R-tree as
a function of the respective parameter.

In general, these graphs illustrate flat curves for update,
query and overall I/O performance, over a wide range of

values. This indicates that theCT-R-tree is not sensitive to
these parameters and therefore it is not critical to choose
precise parameter values for theCT-R-Tree to work effi-
ciently. As long as the parameter values are “reasonable”,
theCT-R-tree behaves well. Special care needs to be taken
in choosing a value forTarea, though. In particular, one
needs to avoid choosing a value that is too small, otherwise
the number of qs-regions may be too small, or qs-regions
may tend to be smaller than they should be. Many objects
that should be in a qs-region may then not be able to hit
one of these small qs-regions. They are forced to be placed
in the overflow pages of the internal nodes, leading to poor
performance.

We also studied the effect of changing traffic patterns
on α-R-tree experimentally. Their results are shown in Ap-
pendix A.

5 Related Work

Developing an efficient index structure for constantly
evolving data is an important research issue for databases.
Most works in this area so far focus on moving object envi-
ronments, where the positions of objects keep changing. As
a simple approach, multi-dimensional spatial index struc-
tures can be used for indexing the positions of moving ob-
jects. However, they are not efficient because of frequent
and numerous update operations.

To reduce the number of updates, many approaches de-
scribe a moving object’s location by a linear function, and
the index is updated only when the parameters of the func-
tion change, for example, when the moving object changes
its speed or direction. Saltenis et al. [12] proposed the time-
parameterized R-tree (TPR-tree). In this scheme, the posi-
tion of a moving point is represented by a reference position
and a corresponding velocity vector. The MBRs of the tree
vary with time as a function of the enclosed objects. When
splitting nodes, the TPRtree considers both the positions of
the moving points and their velocities. Later, Tao et al [13]
presented TPR∗-tree, which extends the idea of TPR-trees
by employing a different set of insertion and deletion algo-
rithms in order to minimize the query cost. Kollios et al. [9]
proposed an efficient indexing scheme using partition trees.
Tayeb et al. [14] introduced the issue of indexing moving
objects to query the present and future positions and pro-
posed PMR-Quadtree for indexing moving objects. Agar-
wal et al.[1] proposed various schemes based on the dual-
ity and developed an efficient indexing scheme to answer
approximate nearest-neighbor queries. The problem of all
these techniques is that there hardly exists a good function
for describing the objects’ movements in reality. In many
applications, the movement of objects is complicated and
non-linear. In such situations, the approaches based on a lin-
ear function cannot work efficiently– the function changes

11

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10

D
is

k
I/

O

Max growth rate of slow region(m/s)

Update
Query
Total

0

100000

200000

300000

400000

500000

600000

0 50 100 150 200 250

D
is

k
I/

O

Max area of slow region

Update
Query
Total

(a) (b)

Figure 12. Performance for (a) Trate, and (b) Tarea

too often. Approximation technique using threshold such as
maximal velocity has been proposed to reduce the update
cost. However, this approximation technique can decrease
the efficiency of the index.

In the computational geometry community, kinetic data
structures [5] were introduced for mobile data. These are
main memory structures that assume that the objects move
in a rectilinear motion with certain velocities. The updates
are in the form of change in velocity or direction of an ob-
ject. A kinetic event occurs when objects change their ve-
locities or directions or when the combinatorial structure
changes e.g. when two points cross each other. The idea
is that the structure only needs to be updated when such
a kinetic event occurs. These data structures were applied
to solve geometry problems like closest pair, convex hull
and voronoi diagram problems efficiently while objects are
moving continuously. Kinetic space partitioning tree (or
cell-trees) were introduced by [2]. Based on this notion
of kinetic data structures, Agarwal et al. [1] proposed
kinetic version of kd-tree, where the medians are dynam-
ically maintained. However, most works have been in the
main memory data structures. For external memory, Agar-
wal et al. [1] applied this idea to external range trees [4] and
bounds on query performance are proved.

6 Conclusion and Future Work

Traditionally, index structures are optimized for im-
proved query performance in the presence of less frequent
updates. For environments such as sensor and moving ob-
ject databases where data is constantly evolving traditional
index structures give poor performance. We introduced the
notion of Change Tolerantindexing for these high update
environments. Change tolerant indexes optimize for both
query and update performance. We developed the algo-
rithms for creation and use of a change tolerant R-tree in-
dex. Experimental results showed the superior performance

of the proposed index structure. The proposedCT-R-tree
trades slightly poorer query performance for much superior
update performance resulting in better overall performance.
The performance was also found to be robust with regards
to number of objects and queries, and query sizes. We ob-
serve that the generic idea of change tolerant indexing can
be applied to other index structures. Preliminary ideas for
extensions to other structures were outlined. In future work,
we will study change tolerant versions of these other index
structures in more detail.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving
points. InSym. on Principles of Database Systems, pages
175–186, 2000.

[2] P. M. Agarwal, J. Erickson, and L. J. Guibas. Kinetic binary
space partitions for intersecting segments and disjoint trian-
gles. InSymposium on Discrete Algorithms, pages 107–116,
1998.

[3] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Ef-
ficient bulk operations on dynamic r-trees.Algorithmica,
33(1):104–128, May 2002.

[4] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional
indexability and optimal range search indexing. InProc. of
the ACM Sym. Principles of Database Systems,, pages 346–
357, 1999.

[5] J. Basch, L. Guibas, and J. Hershberger. Data structures for
mobile data.Symposium on Discrete Algorithms, 1997.

[6] S. Berchtold, D. A. Keim, and H. P. Kreigel. The X-tree: An
index structure for high-dimensional data. In22nd. Confer-
ence on Very Large Databases, pages 28–39, Bombay, India,
1996.

[7] A. Guttman. R-trees: A dynamic index structure for spatial
searching.Proc. of the ACM SIGMOD Int’l. Conf., 1984.

[8] J. Kaufman, J. Myllymaki, and J. Jackson. IBM City Simula-
tor 2.0. http://www.alphaworks.ibm.com/tech/citysimulator.

[9] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing
mobile objects. InSym. on Principles of Database Systems,
pages 261–272, 1999.

12

[10] D. Kwon, S. J. Lee, and S. Lee. Indexing the current po-
sitions of moving objects using the lazy update R-tree.3rd
International Conference on Mobile Data Management, Jan
2002.

[11] R. Ramakrishnan and J. Gehrke.Datatabase Management
Systems. McGraw-Hill, 2000.

[12] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. In-
dexing the position of continuously moving objects.Proc. of
ACM SIGMOD, 2000.

[13] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An opti-
mized spatio-temporal access method for predictive queries.
Proceedings of the 29th International Conference on Very
Large Databases(VLDB), pages 790–802, 2003.

[14] J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-based dy-
namic attribute indexing method.The Computer Journal,
pages 185–200, 1998.

[15] University of California, Riverside. Spatial index li-
brary version 0.44.2b (java). http://www.cs.ucr.edu/ mar-
ioh/spatialindex/.

Appendix A: Adaptation to Changing Patterns

Recall that we build theCT-R-tree by consulting history
records of the objects. The structure of theCT-R-tree, once
built, is basically unchanged. In essence, we assume future
changes of data follow the discovered patterns (in the form
of qs-regions). This assumption may not hold, however, if
the patternsdochange. For example, a party of people may
gather around for a few hours and dismiss afterwards. The
qs-regions discovered is then be no longer useful. Simi-
larly, new qs-regions can be created after theCT-R-tree is
constructed. To handle these problems, we may rebuild the
CT-R-tree periodically, running as a background process,
and then switch to the new tree once it is built. But since
the cost of construction is high, we cannot afford to rebuild
it very often. In this section, we discuss how to change the
CT-R-tree temporarily to handle unexpected traffic pattern
changes.

We described in Section 3.2 that the overflow buffer is
switched from the linked list to theα-R-tree when the linked
list is longer thanTlist . This is the first measure to handle
movement pattern changes. Usually the portion of items
that need to be placed in the overflow buffer is little (as ver-
ified by our experiments), and thus a linked list suffices.
However, if traffic pattern changes, the linked list may grow
indefinitely and degrade index performance. This is why an
upper boundTlist is placed on the length of the linked list,
and anα-R-tree, an adaptive structure, is used to replace the
linked list when it is excessively long.

A.1 Discovering new qs-regions online

Another purpose of using theα-R-tree as the overflow
buffer is that it facilitates discovery of new, albeit approx-
imate, qs-regions. The MBR of theα-R-tree is actually
(1+α) larger than its actual size, and is thus more tolerant
than the MBR of the R-tree. We may thus treat the MBR
of the α-R-tree’s leaf node as an approximate qs-region if
the objects located there illustrate some properties of a qs-
region. The identified MBR can then be migrated to the
CT-R-tree as its new leaf node.

In order to detect if a leaf-node MBRXi of the overflow
α-R-tree behaves like a qs-region, we store the following
information in the node:

• The time qs-region behavior is observed,ti . Initially, ti
is ∞.

• The number of objects in the leaf node,ni , with an
initial value of 0.

When an insertion toXi is made at timet, ni is incre-
mented. Then we perform additional checks on the follow-
ing conditions:

13

1. ni > Tlea f−num

2. Area of the MBR of the leaf node< Tarea

where Tlea f−num is the minimum number of objects in
Xi , andTarea is the area constraint defined before in Sec-
tion 3.1.1. If these conditions are satisfied,ti is set tot, and
insertion is completed.

On subsequent insertions, conditions (1) and (2) are
checked again. If any of them are not satisfied, thenti is
reset to∞, indicating that the node does not behave like a
qs-region. Otherwise, the following additional condition is
checked:

3. t− ti > Tlea f−time

Here Tlea f−time denotes the minimum amount of time
that (1) and (2) are satisfied. That is, we require (1) and
(2) to hold over a periodTlea f time.

If condition (3) is satisfied,Xi (and its associated objects)
is removed from theα-R-tree and re-inserted to the struc-
tural R-tree as a new qs-region. No change to the hash table
is necessary. We remark that the qs-regions so discovered
may only approximate the true qs-regions. They are only
used as temporary measures when a complete analysis of
qs-regions is not feasible.

A.2 Deleting a qs-region

When a qs-region is no longer useful due to a change
in traffic pattern, it may be removed to improve query per-
formance. Let the upper bound of the number of times an
object is removed from each qs-region beTremoveper unit
time. We observe that every time an object is removed from
a qs-region, the object has violated the supposed stability of
the qs-region. When the removal rate is greater thanTremove,
it indicates that the qs-region is not qualified for holding ob-
jects, and it cannot save updates. Thus, we can check the re-
moval rate of a qs-region every time an object gets deleted,
and remove the qs-region if necessary. All items in the qs-
region are re-inserted to theCT-R-tree.

Notice that even if a qs-region is not used now, it does
not necessarily mean that the qs-region is not used again.
In particular, if there is a periodic pattern, e.g., the office
is occupied between 9-5 every day, we may retain the qs-
region representing the office space in the tree for future
use. Whether deleting a qs-region is beneficial depends on
the requirements.

A.3 Rebuilding a CT-R-tree

Since the MBRs in theα-R-tree are not true qs-regions,
and some qs-regions may not even be discovered, the
scheme we just proposed can only approximate the perfor-
mance of an actualCT-R-tree. However, it can be used as
a temporary measure to adapt to changing patterns, and is

much cheaper than the cost of constructing the wholeCT-
R-tree. We still need to rebuild theCT-R-tree if its structure
changes too much. For example, we may start the rebuild-
ing process if the number of qs-regions being deleted or in-
serted is too high. New history records that are not used for
constructing the tree can be used. The rebuilding process
should be run in background, with no interference to the
current index. Once the rebuilding is completed, the new
index is used immediately.

A.4 Experimental Results

35000

40000

45000

50000

55000

60000

65000

70000

75000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
D

is
k

I/O
s

Log10(update/query ratio)

Changed Behaviour/Unchanged qs regions
Changed Behaviour with new qs regions

Figure 13. Total I/O vs. Update/Query Ratio

We experimentally study the effect of changing traffic
patterns on the performance of theCT-R-tree, using the ba-
sic settings mentioned in Section 4.1. ACT-R-tree is first
built based on their movement records in the city plan. Then
we generate a set of movement records based on a new city
plan, with five buildings removed and five buildings cre-
ated. Since an object now cannot enter the regions where
buildings are destroyed, but they can enter buildings which
originally do not exist, some qs-regions are no longer valid,
while new qs-regions are created.

The index created based on the first set of records is used
to test its efficiency in storing the locations of objects which
move around in the second city. Its performance in shown
in the curve “Changed Behavior/Unchanged qs-regions” in
Figure 13. The second curve “Changed Behavior/New qs-
regions” illustrates the performance of the index when we
apply the approximate qs-region detection algorithm men-
tioned in this section. As we can see, over a large range
of update/query ratios, theCT-R-tree performs consistently
better after the qs-region detection algorithm is applied. We
thus show experimentally that theCT-R-tree can adapt to
changing traffic patterns.

14

