Change Tolerant Indexing for Constantly Evolving Data
Technical Report CSD TR# 04-006

Reynold Cheng Yuni Xia Sunil Prabhakar Rahul Shah
Department of Computer Science, Purdue University.
West Lafayette
IN 47907-1398, USA
Email: {ckcheng,xia,sunil,rahy@cs.purdue.edu

Abstract plications where updates are infrequent in comparison to
queries.

Index structures are designed to optimize search perfor- Emerging applications such as sensor-based streaming
mance, while at the same time supporting efficient data up-gatabases, represent a drastic shift from this traditional
dates. Although not explicit, existing index structures are pehavior. These applications are characterized by virtu-
typically based upon the assumption that the rate of updatesy|ly constant updates to the data, and relatively infrequent
will be small compared to the rate of querying. This as- querying. In this setting, existing index structures are com-
sumption is not valid in streaming data environments such pelled to expend large amounts of resources in simply keep-
as sensor and moving object databases, where updates arghg the index updated with the latest values of the data.
received incessantly. In fact, for many applications, the rate The cost of updating the index dominates the advantage of
of updates may well exceed the rate of querying. In such enimproved query performance through the use of the index.
vironments, index structures suffer from poor performance one feasible solution is to reduce the need for updates to
due to the large overhead of keeping the index updated withihe index. Recent efforts at indexing moving object data re-
the latest data. move in a well behaved, but restrictive man- qyce the need for index updates by assuming that objects
ner (e.g. in straight lines with constant velocity). In this il move in a well behaved, but restrictive manner (e.g. in
paper, we propose and develop an index structure that isstrajght lines with constant velocity) [12]. This solution is
explicitly designed to perform well for both querying and not generally applicable since the assumption is not reason-
updating. We present techniques for altering the design ofaple for many applications.

an index in order to optimize for both updates and query- In this paper, we address the problem of efficient index

ing. The paper is developed with the example of R-trees, . "
but the ideas can be extended to other index structures asupdate where update rates are high. We drop the traditional

well. We present the design of thidnange ToleranR-tree, approach of processing updates with the goal of |mpr9ved
. . guery performance. Instead, we propose and develop index
an experimental evaluation.

structures that are explicitly designed to perform well for
both querying and updating. We begin by observing that
most index structures inherently tolerate some change in
1 Introduction the data values being indexed. The first step is therefore
to exploit this “tolerance” to avoid an index (without mak-

Index structures are used to improve query performancelNd any restrictions on the nature of change of the data).
by limiting the amount of data that needs to be examined in N€xt, we present techniques for altering the design of the in-
order to generate an answer. Static index structures suclfl€ in order to optimize for both updates and queries. This
as the ISAM file format [11] are not designed to handle i achleveq by_ balan_cmg the r_1eed fpr efficient search (the
updates to the data very well and can lead to poor querycommon criterion for index design) with the cost of updates.
performance as a result of updates. Dynamic index struc- As we shall see, the two goals of improved query perfor-
tures, such as the B-tree and R-tree, are designed to adaphance and improved update performance are directly op-
the index structure as data is updated so as to continue t@osed to each other: improving update performance is typ-
provide good query performance. Existing (dynamic) index ically at the cost of query performance (and vice versa).
structures perform satisfactorily for traditional database ap-The paper presents an index structure that is designed for

high update environments — achieving significantly better are followed by another set of small changes — again the

update performance at the cost of slightly poorer query per-changes are confined and random.

formance — and superior overall performance as compared

to existing methods. The paper is developed with the exam-2 1 Tolerance to Change

ple of R-trees, but the ideas can be extended to other index

structures as well.

The main contributions of this paper are:
1. The introduction ofhange Toleranindex structures

that optimize for frequent updates and queries and the
design and development of change tolerant R-trees.

Many index structures are inherently tolerant to the
changes in data values without requiring a change in the
index structure. Consider the case of an R-tree index [7].
The R-tree is a height balanced tree which can be seen as a
: : . neralization of the B-tree for indexin j in multidi-
2. An experimental evaluation and validation of the per- genera ation of the B-tree for inde gObJe?tS ultid

- . mensional space. Each node of the R-tree (internal as well
formance, and adaptability of these index structures. . .
) i : as leaf node) represents a hyper-rectanght dimensions.

_ The rest of this paper is organized as follows. In Sec- The |eaf level rectangles contain objects, and the rectangles
tion 2 we discuss the inherent tolerance of index structurestq internal nodes contain the rectangles at one level below.
to updates and study how this can be exploited to avoid in-The houndaries of the rectangles are made as tight as possi-
dex updates. In Section 3 the design of a change toleranye There is an object on each boundary face (hyperplane in

R-tree is discussed. Section 4 presents experimental resultg dimensions) of each of these rectangles. These rectangles
Section 5 discusses related work and Section 6 conclude%lre calledMinimum Bounding Rectangles MBRs. Un-

the paper. like the B-Tree, the MBRs of nodes at the same level in an
R-Tree are allowed to overlap. Hence searching an object
2 Change Tolerance of Indexes may involve traversing several paths in this tree. When a

node becomes overfull it undergoes a split. Efficient heuris-

The main motivation for our change tolerant indexes tics and pruning are used to reduce the expected number of
comes from data which changes slowly but constantly with paths visited by subsequent searches.
respect to time for most periods of time, followed by short ~ Given any specific entry in a leaf node of the tree, the
periods of time when the data may show a major variation. Minimum Bounding Rectangle (MBR) of the entry for that
In nature (e.g., weather systems), these major variations aréeaf node in its parent node represents the “tolerance” of the
likely to be caused by some underlying events, which are index to changes in the values of the objects pointed to by
relatively infrequent. the leaf node. In particular, if an object’s location remains

Consider an index over people in a city. For most of within this MBR, the index is correct without requiring an
the time a large fraction of these people are inside a build-update. Under normal R-tree operations, such an update is
ing. They may change their locations but these variations processed by searching the index and updating the location
are not big. They are confined to limited range of space for of the object. In order to avoid this expense for each update,
a long time. Then, sometimes, when they are on the road,it is desirable to be able to perform a cheap update in cases
the changes in their locations are rapid. However, this hap-where the index does not change.
pens for relatively shorter periods of time for most people. The R-tree is very often used as an index on spatial coor-

The situation can also be extended to sensor data. Condinates. Typical updates on R-trees are insertions and dele-
sider temperature and pressure sensors. The index contairtions. While performing a deletion operation on the space
temperature and pressure values of many different placesattribute, the object is first searched (based upon its spatial
For each place, the variation in these parameters againstoordinates) and then deleted. However, if the deletion op-
time is not rapid for most of the time. However, during eration directly provides a pointer to the page in which the
evenings or during special events like thunderstorms, theyobject is stored, then the cost for searching in the R-tree can
can change rapidly. They finally settle around their new val- be saved. For example, if a deletion is by a different (non-
ues. spatial) attribute, say object identified], we can maintain

We can exploit this property of changing data to build a secondary index oid. This secondary index stores, for
better indexes. In some of the models for changing data,eachid, the pointer to the page containing the correspond-
the data variations are modeled as a smooth straight lineng object in the R-tree.
with constant rate of change. For example, indexes based When the R-tree is used to index constantly evolving
on kinetic data structures [5] assume mobility of objects in data such as the locations of mobile objects, the types and
straight lines with some velocity. Our model does not as- the frequencies of the updates can be very different. For
sume data changes are well behaved. The changes are raexample, most updates can be of the form—aobject with id
dom, but they are restricted in small range of values and ini moves from its current locatiofxs,y1) to new location
only a few moments rapid changes occur. The rapid changegxz,y2). This can be handled in an R-tree by first deleting

chosen to be a multiple of disk blocks. The structure that
results is largely determined by split of an overfull node
into two nodes. The R-tree (like other index structures) at-
tempts to find a split of the children of the overfull node in
order to achieve balance (each of the split nodes has roughly
the same number of children), and improve search perfor-
mance. It is assumed that the area of the resulting MBR
of each child is proportional to the number of queries that
will access the corresponding node. Consequently, the goal
is to minimize this area. Other structures such as R*-trees
use a slightly more complicated decision process to deter-
mine the split, but with the same goal of minimizing the ex-
pected number of queries that will intersect with the result-
ing nodes. In either case, the impact of the split on future
updates is not taken into account. For example, the split

Figure 1. Secondary hash-index structure may result in a situation wherein objects frequently cross
from one MBR to another — thereby resulting in a high up-
date cost.

this object from its current location and then re-inserting it
in the new location. However, if the new location is in the
same MBR, the change tolerant property of the R-tree can In the traditional R-tree, the MBR is tight (i.e. it is
be exploited. Additionally, the secondary index idncan the smallest rectangle that contains all underlying objects).
be used to reduce the search cost associated with deletiodhis implies that there is at least one object touching each
and insertion. side of the MBR (otherwise it would shrink further). Having
Hence, in conjunction with the R-tree, we maintain a sec- @ small MBR improves search performance and pruning. In
ondary hash index ol for handling updates. This is the situations where the objects move constantly, these bound-
basic idea applied in the lazy-update R-trees [10]. Figure 1ary objects are likely to move in and out of the MBR very
shows an example of this secondary index structure. Thefrequently. Each time an object leaves the MBR, it has to
secondary index (on the right) is simply an array of pointers be re-inserted (either into a different MBR or stays in the
to leaf pages of the R-tree with one entry for each object Same MBR after expansion). Note that the use of lazy up-
ordered byid. Thus, all the updates where the new location dating through the secondary index discussed above does
is in the same MBR as the old location can be accomplishednot eliminate this cost. Thus, MBR boundaries being tight
with a constant number of 1/0Os. Note that the R-tree struc- to the objects improves the search performance but can re-
ture does not change due to such updates (only the locatiorsult in a high update cost. The concept of having slightly
of the updated object is changed in the corresponding leaflarger MBRs than needed (that is, the MBR is no longer a
node). This kind of secondary structure is essential whenminimumbounding rectangle) is explored in [10]. We shall
updates are frequent. If most objects remain within their call this structure the-tree, which is essentially an R-tree
MBRs, most updates can be handled through the secondaryvith “loose” MBRs. The idea is that whenever an MBR
hash index while the R-tree index is used to process spatianeeds to be expanded, we expand it more than its

queries. minimum size. Thus, the boundary objects get some lee-
way to move and stay within the same MBR. Naturally, this
2.2 Optimizing for Updates implies poorer query performance.

In the previous subsection, we saw that the available tol- The intuition behind these indexes is as follows: The
erance of an index to data change can be used to improvelesign of the MBRs of the index should not be governed
update performance with no impact on search performancesolely by the current values of the data being indexed. In-
In this section we explore the possibility of altering the de- stead, the MBRs should be designed based upon the nature
sign of the index structure to increase the available toleranceof changes to data values. For example, if changes from
of an index while balancing the potential increase in the costone particular value to another are very common, the in-
for querying. Again, we focus on R-trees as the running ex- dex structure should tolerate this change with minimal cost.
ample. Naturally, this may lead to increased query cost. Therefore,

Given a set of data, the structure of an R-tree index for the cost savings for updates should be balanced against cost
this data is determined by two critical parameters: the nodeincreases for queries. We will discuss how this can be done
size, and the order of inserts and deletes. The node size i details in the next section.

3 CT-R-tree—the change tolerant index not have very large changes over a short period of time.
As an example, consider Figure 2(a), where some individ-
The CT-R-tree we develop is an extension of the R-tree Ual object trails are segmented into gs-regions. The con-
that is tolerant to frequent data changes. The structure of€cted bold lines show the update trails of objects. The
this index is based on R-tree, where the data is hierarchi-dashed boxes represent the bounding rectangles for initial
cally arranged in bounding rectangles (MBRs). The key ds-regions. For ease of exposition, we use an example of
idea is to design the MBRs such that updates that crossmobile objects in two-dimensional space to describe the
MBR boundaries are not common. While the future updates Scenario. However, the algorithms presented here are ap-
(or queries) cannot be predicted, we assume that the past pdllicable to the general case of any multidimensional data
havior is a good indicator of events in the futdrivith this ~ Where the movement of an object represents the change in
in mind, our algorithm utilizes the history of updates to cre- data value.
ate aCT-R-tree, in order to facilitate future updates. Inthis ~ Formally, let O1,0z,...,0, be n moving objects.
section, we first describe how the index is created, followed Let H; denote the trail history of objecOj. Then

by a discussion of index maintenance operations. Hi is a set of points{(Xi1,Yi1,ti1), -, Xk Yikotik)s-- -
(%, 1 |» Vi,)1 B 1)} Wheret i is the time when théth lo-
3.1 Creating aCT-R-Tree cation updat€X; k, Yi k) occurs, andH;| is the the total num-

ber of samples itt;. LetB;(j,k) be the bounding rectangle
(MBR) for O; which encloseq(xi,j,Vi j),---, Xk Yik)} in
Hi. LetAi(j,k) be the area dB;(j,k). Further, let;(j,k) be
the diameter (i.e. diagonal) & (j,k). We assume that;

is ordered by increasing valuestpf’s. Figure 3 describes
the algorithm for this phase.

The creation procedure @fT-R-tree can be summarized
by four steps:

1. Identification of MBRs (calledquasi-static regions
(gs-regions) that maximize the “tolerance” of the in-
dex to update. A gs-region is simply a range of the
domain which encloses numerous updates. Updates
that change the value from one gs-region to anotherinput: H;
should be relatively infrequent (since these are expen-Output: Bj|,Tj
sive updates). For the case of moving objects, thesel. j« 1,1 <1
are regions of space in which objects tend to remain 2- Bi,j(1,1) < (%.1,¥i1)
for a long period of time. gs-regions are generated by 3: for k=2 to[Hi| do _
consulting the history of updates received from each A Let Bi(1.k) beﬁ the MBR after expanding
object (Section 3.1.1). B i‘(J.’(K*k)lltfl’_'hcgjndde(xi-“y‘v")

2. Using gs-regions found in step 1, construct a structure 'dl(j_'kf,’d,(j_,k,l‘f'a
called theupdate graphwhich depicts traffic among 4ter -~ raethen
gs-regions (Section3.1.2). a.1f -1 =) > Trime ANA Ai(], K) < Tareathen

i. Bij —Bj(j,k—1
3. The update graph is used to merge the gs-regions (Sec- il 1,)

. ii. Ti| < 1t
tion 3.1.3). il —14+1
4. Creation of an “empty” R-tree structure using the iden- b. elseDiscardB; (j,k— 1)
tified gs-regions as MBRs at the leaf level, and inser- c.j—k
tions of current data values to generate @ER-tree d.Bi(j,) — (XixYik)

(Section 3.1.4).
Let us now investigate these steps in further details.

Figure 3. Identifying qgsregions for object O

Phase 1).
3.1.1 Phase 1: Identifying object gs-regions (Phase 1)

This phase results in the identification of rectangular re-

gions of the domain that are small and enclose several up- The algorithm “grow”s MBRs to enclose the samples
dates of an object. These rectangles are essentigly ~ While tracing the history records, and if an MBR satisfies
regions since they represent ranges of values where the data&ertain criteria, it is “frozen” and qualified ascgregion
Changes Constanﬂy in a confined space. We begin by di-for ;. We maintain a list of quallfled MBRs for each ob-
viding the update trail of each object into pieces that do ject O, where we denote thith MBR of this list by B; .
Let A be the area oB;, andt; the time objec; spent
INote that the design of existing index structures is based upon a pre-in Bi|.

diction of future queries under the assumption that queries are uniformly . . L .
distributed (i.e. the area of a MBR is a rough indicator of how often it will Step 1 introduces the variabjewhich indicates the time

be accessed by queries). t; at which the oldest sample is included in tlie MBR

(a) (b)
Figure 2. (a) Initial gs-regions from object trails. (b) Object update graph.

(Bi;). Both j andl are set to 1, and the first MBHS; 1, Steps (c) and (d) create a new MBR(1), which only con-
contains only the first sampléx 1,Yi 1) (Step 2). tains thekth sample. The whole process is repeated again
Step 3 scans the trail of the object in increasing order until all the samples iH; are exhausted, at which time we
of time, identifyingqgsregions on the way. In Step 3(A), obtain a sequence g®ions forQ;. For the sake of con-
Bi, is expanded to include theh sample oH;. Step 3(B) venience, leC; denote the number afsregions generated

decides ifB;| should befrozenas agsregion, based on the from H;.
following conditions:

. 3.1.2 Phase 2: Creating an update graph
Ai(j,K) > Tais) g an tpdate drap

di<j’k)_di(jak_l)

> Trate (2) l.fori=1tondo
b —ta A. while 3j,k € [1,G] such that
That is to say, after expandirg(j,k) to some particular Tij/ALj < (Tij+Tik)/(Aijk) and
threshold diameteTyig, if Bi(j,k) grows at the rate faster Tik/Aik < (Ti,j +Tik) /(A jk) and A j k < Tarea dO

a. Expands; j to includeB; i
b. Replace common links & ; andB; k

by a single link, and update the weight of the link
C.Tij < Ti,j +Tik

thanT;ate, We stop it from growing further. This relies on the
fact that after the initial growth of the rectangle, if there is a
sudden increase in growth rate of the region, the object has
started moving faster and thus should not be considered as
lying in a gs-region. As long as these two conditions are not
violated,B; | continues to grow to enclose more samples.

Steps (a) to (d) in 3(B) take care of the situation when Figure 4. Merging gs-regions (Phase 2).
Bi, ceases to grow. First, we decide whetBgrshould be
considered as gsregion (steps (a) and (b))B;; is only We can represent the sequence of rectangular gs-regions
qualified as a gs-region when just generated as a chain graph with the set of MBRs

1. t1 —tj is larger tharlime. This verifiesO; has stayed as vertices and link between each consecutive rectangles
long enough irB; ;. Singleton rectangles, such as those in this sequence (initially each edge is assumed to have a
labeled ‘a’, ‘b’, ‘c’, and ‘d’, in Figure 2(a), are also weight 1). Figure 2(b) shows this chain graph for the exam-

eliminated. ple histories shown in Figure 2(a) (note that not all nodes
2. The area oBj), i.e.,Aj|, is smaller thamarea. Thisre- and edges of this graph are shown for the purpose of clar-
moves rectangles that are too large, whose dead spacgy).
may lead to poor query performance. We now discuss how to cluster the chain graph of each
in which case we “freezeB; | (step (a)(i)) and calculatg, object to obtain thebject update graphwhere the clus-
which is the time spent by the object By (step (b)(ii)). tering is based on grouping subsets of vertices (i.e., rect-

angular gs-regions). Figure 4 illustrates the details of how
the graph is formed for each object. Define the term “resi- =
dent density”, which is the total amount of time that objects o 1 —
spends inside the gs-region (), divided by the area of the =
gs-region. We see that Step 1(A) chooses amandk in ——
[1,Gi] such that the following conditions hold: —

Ti,j /AL < (Tij +Tik) /(ALK 3)
Tik/Ak < (Ti,j +Tik) /(A k) 4) er
Ai,j7k < Tarea (5)

where A j « denote the area of the new rectangle that
tightly encloses; ; andB; k. These three conditions enforce
the rule that the pair of rectangles are merged only when .]
the resulting “resident density” of the resulting rectangle is Figure 5. Merged gs-regions.
greater than each of the “resident densities” of the individ-
ual rectangles. Moreover, rectangles are only merged when
there is sufficient overlap.

When all these conditions are satisfi&g; is expanded
to includeB; x (Step (a)). Further, the links that are destined
to the same gs-region fro® ; andB; are replaced by a
single link (Step (b)), with the weight of the new link up-
dated as the sum of the weights of the links being replaced
The time value; j is then assigned to be the sum of all the
individual time values of the merging rectangles (Step (c)).
Notice that the algorithm merges the rectangles in arbitrarytri
order, until none of them satisfies the above criteria. This

process is repeated for every object (Step 1). structure, andq be the query arrival rate. Then, we expect

Once the_update graphs for all objects are_generated, WefhatrqAA/A gueries per unit time will hit the dead space.
take the union of all these graphs. A merging procedure This represents the loss due to this merge. On the other

Z'Qgﬁr ?hitfrﬁ)erlg(ﬁ)glgi\lzgu;eug ;Ss?tjgl]lequ_troeé?c';:gg'ﬁgct_hand, if the weight of the edge between these two gs-regions
angles and a graph on it called thedate graph The time in the update graph ig, thenw s the rate of updates caused

. . by not merging these rectangles. tandC, be the scal-
value of each rectangle gives the total amount of time that . . .
. . . - factors f t tively. Th
objects spent in that rectangle, and the weight of (ink) ing factors for queries and updates respectively en we

. o ! merge two gs-regions if the following criterion holds:
between two rectanglgsand j in the update graph gives
the total number of updates betwegrandB;. Finally, we AA
scale down all the edge weights by the factotygf, where Cuw > quqf (6)
trot = max(ti,‘Hi‘ (i.e., the longest duration of the trail histo- _ . .
ries). Each edge weight now reflects the number of updated=igure 5 shows the gs-regions as a result of these merging
between two gs-regions per unit time. steps for the example history.

The high volume of traffic between gs-regions by itself
cannot guarantee a good merge. This is because these rect-
angle can be far apart, in which case the merging of these
gs-regions into a single MBR will result in a very large
MBR, with lots of dead space. If this happens, many queries
will hit this MBR unnecessarily, resulting in higher query
‘cost. Thus there is a trade-off between merging gs-regions
and query cost.

We capture the effect of the various factors that con-
bute to this trade-off. LefA be the increase in area due
to the merging operatior be the total area spanned by the

3.1.3 Phase 3: Merging gs-regions via update graph 3.1.4 Phase 4: Creating a structural R-tree

In the previous phase, merging occurs only when gs-regionsGiven the set of gs-regions identified in the earlier phases,
have reasonable amount of overlap. In other words, twowe first create an R-tree index on these gs-regions. This is
rectangles that do not overlap will not be merged by the achieved by inserting the gs-regions into an empty R-tree.
above phase. However, there could be two unmerged rect-This forms aStructural R-treewhere the leaf level of this
angles between which a large number of objects move. InR-tree contains the gs-regions. Note that bulk loading tech-
such a situation, it is reasonable to merge these rectangle tmiques [3] for R-tree can be applied here with appropriate
form a single MBR and save update cost. In this stage, wemodifications, but since this is not the focus of this paper,
use the update graph to detect such occurrences, and mergve choose repeated insertions, a simpler method. We are
ing gs-regions if necessary. not concerned here with the cost of constructing the index,

e e e e N N N R A = s e~ "= == = e e e e N N N N e e A s e~ "= == =
F R2! : F R2 :
b i D : 2® %| o I 0
{ © o S S R
| ! | [] !
: s2 5 : s2 % 5
N ! A R s A
] ; : : ;
oo — ' oo — '
: : n :] . o
: | I : [| n
: | & i ! { h
! f " ! f "
: : . : ®% | s3 i
i [i ! : [
' ' s4 | ' ' Ic 3
- : ; - : ;
| R (R3 i | R (R3O St
®h

[st]s2[ss]sa][[J[[] IS1I82II33IS4\II [I T 1
[ab NE |\ XK
. . d j
Figure 6. Structural R-tree over gs-regions e | |
since index construction is seen as an offline process. We Figure 7. The Change Tolerant R-tree

are more interested in the online query and update perfor-
mance of the index. Figure 6 shows the structural R-tree

that results for our running example. changing rapidly. Usually, there are relatively fewer objects
Using the structural R-tree, we create the change toleraniyf thjs kind unless the movement patterns of objects change
R-tree CT-R-Tree) over current data. The structural R-tree gjgnificantly. In case any linked list overflow buffers be-
does not index data — it indexes gs-regions. We begin bycomes too large, it is converted to arR-tree. This issue
inserting the current data values into the structural R-tree, il pe addressed again in Appendix A.
treating the leaf level nodes of this index as one level above
the leaf for theCT-R-Tree. The gs-regions in the leaves
of the structural R-tree serve as the parent MBRs for the
data being inserted. Although these MBRs serve a similar
purpose as MBRs in a regular R-tree, they are treated spe
cially in two respects: (i) they are never removed from the
index (i.e. they are allowed to be underfull — in fact they
are all empty at the beginning of tl&T-R-Tree construc-
tion)? and (ii) they are not split when overfull — this avoids
the high cost for updates. Thus there is a possibly unlimite
overflow buffer (which can span multiple pages) attached to '€€-
these MBRs, as in th&-tree [6]. Along with this structure we also maintain a secondary
We also attach a linked list of overflow buffers to each in- hash-index. Each entry in this hash-index consists of two
ternal (non-leaf) MBR. When an object’s new position does fields: (1) object id and (2) a pointer to the page in R-tree
not fall in any of the gs-region MBRs (MBRs at leaf level), which contains its location. This structure is the same as the
it is stored in the lowest internal node whose MBR contains secondary index described in Section 2.1. Figure 1 shows
the new location. The objects which are stored in the in- the structure. When we insert an object into the CT-R-Tree,
ternal node buffers are likely to be those whose values areit is also simultaneously inserted into the hash-index and the
P S pointer in its corresponding entry in the hash index is set to
or now we ass_ume the movement patterns of objects IS never Un-the page in the CT—R-tree Where It iS Stored. MOI’e details
changed. If a gs-region becomes useless due to movement pattern changes, . . _ . .
it is possible to remove the gs-region from B&R-tree. We will discuss ON insertions and other dynamic operations are presented in
this in Appendix A. the next subsection.

To conclude, objects can be stored in the internal nodes,
and each MBR (leaf or internal) has a special pointer to its
set of buffer pages. Figure 7 shows the structur€ofR-
tree for our example. This index has four levels as opposed
to the three levels of the structural R-tree of Figure 6. Ex-
amples of data points are shown in the top figure of the do-
main. The nodes shown in dashed lines are either linked
lists of overflow buffers oo-R-trees for the internal nodes.

g The data objects are inserted at the new leaf level of this

3.2 Dynamic operations change them into gs-regions, and insert them to the main
structure of theCT-R-tree. Details can be found in Ap-

Once the index structure is created for rectangular gs-Pendix A.
regions, they are usually not deleted, even if they are empty.
Th_us the str_ucture of the index is basically intac'_[even v_vh_en4 Experimental Results
objects are inserted or deleted. Query processing is similar
to that of the R-tree while updates, insertions and deletions]))
are handled differently. We now describe how these oper- e performed an extensive simulation study on the per-
ations are supported. Although all these operations are deformance of change-tolerant indexing. We implemented the

scribed in terms of a two-dimensional space structure, they® T-R-trée, and compared its performance with three vari-
can be extended to multiple dimensions. ants of R-trees. A study of the sensitivity of t6&-R-tree to

Insert(o). Insert object with location (0.x,0.y) into the various parameters was also conducted. Below we discuss

index. Determine all the leaf level MBRs (gs-regions) that Epr? S|muIaF|on modeI,I folflowe: by _the exg_erlmental resultz.
contain this point. If multiple MBRs contain the point, we € experiment results for changing traffic patterns can be

choose the one with minimum area (to optimize query per- 0UNd in Appendix A.
formance). The object is inserted into the first non-full page

of this MBR. If all pages are full, a new page is allocated 4.1 Simulation Model
and the object is inserted into it. If none of the leaf-level

MBRs contain the pOint, a lowest level MBR that contains Our experiments are based upon data generated by the
this point is chosen. If more than one such MBRs exist, the City Simulator 2.0 [8] developed independently at IBM.
one with minimum area is chosen. Note that the overflow The City Simulator simulates the realistic motion of up to 1
buffer asso'C|ated.W|th an internal node can be in the form mjjlion people (Nobj) people moving in a city. The input to
of either a linked list or a-R-tree. If the number of pages the simulator is a map of a C|ty We used the Samp|e map
of the linked list is less thaiis; after insertion, the pointis provided with the simulator that models a city containing
inserted to the linked list. Otherwise, arR-tree is created, 71 puildings, 48 roads, six road intersections and one park.
to which all data in the linked list are moved. TheR-tree Each building is three-dimensional and contains a number
is then attached to the internal node. Subsequent insertiongf fioors. The simulator models the movement of objects
to the internal node will be directed to thieR-tree. Fina”y, within the bu||d|ng and on the roads and park_ To generate
the entry foro in the hash-index is updated to point to the reasonable movement and occupation of buildings, the sim-
page which containe. ulator keeps track of two conditions based on parameters
Delete@). Search the hash-index for Deleteo fromthe Ty andTempty The simulator ensures that the fraction of
page and deallocate the page if it is empty. Set the haSh-peop|e at the ground level lies betweB, andTempty
index entry foro to null. Each object reports its location to the server at an average
UpdateLoc(o, (x1,y1), (X2,Y2)). Consultthe hashindexfor rate ofA,. Before recording the simulation results, the sim-
0. Seto.x=X2,0.y =V>. If (X2,y2) does not belong to the yjator enters a warm-up phase, where at g, samples
same MBR, perfornDeletgo) andinser{0). for each object are generated, or at |éRgt of the popu-
Searchg,y). Searching for pointx,y) follows the search |ation are in the ground level of buildings. Next, the simu-
pattern of R-tree. Since objects can also be stored in thélator records the location updates of each object in a trace
internal nodes, the search visits the set of buffer pages afile, which contains the timestamp of the update and the
each internal node. If the overflow buffer is a linked list, the spatial coordinates of the object at that time. The trace file
search checks all the pages since the data in the linked liserves as the data source for our experiments. It captures,
is unordered. If it is am-R-tree, an R-tree range search is for each object, a total dflyis; + Nypdate location updates.
performed. We use the firshhis; updates as the history profile. The first
RangeSearch(xi,y1), (X2,¥2)). This is similar toSearch Nhist — 1 records are used to generate an R-tree composed of
Each MBR which intersects with the rectangle (lower left gs-regions. Thél,s-th sample is then inserted to the R-tree
(x1,y1) and upper rightxz,y2)) qualifies. to produce theCT-R-tree. Once th€T-R-tree is built, the

As long as traffic patterns do not change, the gs-regionsremainingNypdateSamples are modeled as dynamic updates
discovered by our algorithms remain valid, and our index to the CT-R-tree, as well as other R-tree variants. At the
behaves well. However, when the pattern of movement same time, range queries are generated at an average rate of
changes, previously undiscovered gs-regions may appear\q. Each range query has the shape of a square, with central
Many objects may not fall into a gs-region, and they are point chosen randomly within the city area and size equal to
accumulated in the-R-trees of internal nodes. We can de- a fractionf of the city area. It should be noted that the city
tect which MBRs of these-R-trees which show stability, map is used only by the City Simulator to generate realistic

movement of objects — it is not used for the generation of rate implies more demands on the index, and consequently
the CT-R-tree index structure. more 1/Os are needed.

Since these are disk-based index structures, the number
of page I/Os is the natural metric for measuring the perfor— When the update/query ratio is low, tha-R-tree takes
mance of the indexes. We measure the number of page I/Ogibout 2 times as many as I/Os than the other R-tree variants.
for reads and writes of both dynamic updates and queriesRecall that the R-tree and thazy-R-tree uses MBRs, which
during the simulation. We do not distinguish between se- agre tight bounds over the enclosed objects’ values. On the
quential page 1/Os and random page I/Os — each page isther hand, theCT-R-tree employs gs-regions that do not
treated equally. This is likely to be a disadvantage for the necessarily enclose as tightly as MBRs. When a query is ex-
CT-R-tree since its node buffer pages may often be multi- ecuted, its query region potentially has less overlap with the
ple pages long, unlike the other trees for which the nodesr-tree’s MBRs than with gs-regions. This results in fewer

are always the same size. Each page has a siBg.gf searches and better performance. Wittoaof 0.1, the ex-
with a fan-out ofNentry. The secondary index of tHeT-R- panded MBR of thai-tree is slightly larger than the other
tree (i.e., the hash table) with si%gash We assume alltree R-trees. Thus it also suffers the same problem atfe
structures and the hash table are stored on disk. R-tree and its performance is worse than the R-trees. The

The City Simulator is implemented in Java and run under advantage of using the secondary structure inlaagR-
Windows XP. The programs for generating 16&-R-tree tree gives it a minor edge over the traditional R-tree since
are written in C++ and Java, and the testbed is run on ajt saves the cost of accessing the R-tree when an updated
UNIX server. Although we focus on the performance of object remains inside the same leaf node.
dynamic updates and queries, it is worth notice that the time

required to generate the CT-R-tree using the history profiles towards the right end of the graph, when the update

is usually less than ten minutes. Also, since this process,,orkload dominates the query workload, tRF-R-tree

can be done in an offline fashion, it does not interrupt the ggisters a significant improvement over other R-tree vari-
processing of online updates. Table 1 shows the parametergis | fact, once the update/query ratio crosses ager 5

of the simulation model, the parameters of B&R-tree, the number of 1/0s needed by all three R-trees increases
as well as their corresponding values. sharply, whereas theT-R-tree gracefully handles the high
update burden. When updates are much more frequent than

4.2 Results queries, which is a typical scenario in sensor and moving
object databases, the R-tree suffers from expensive updates.
Here we present the simulation results of @ER-tree. ~ The distinction between the R-tree and they-R-tree be-

Four index structures are evaluated in our experiments: (i)gins to show in this high update setting as the secondary
the traditional R-tree [15]; (i) the traditional R-tree aug- index yields significant gains from cheaper updates. d-he
mented with lazy updating using the secondary index struc-tree improves further over tHazy-R-tree since it can han-
ture shown in Figure 1. We call thiazy-R-tree; (iii) the dle more updates through the secondary index on account
a-tree which is essentially an R-tree with lazy updating of its more lax MBR. TheCT-R-tree clearly outperforms
and expanded MBRs (i.e. the MBRs are not minimal, but the other indexes in this high update environment since its
widened by a factor oft (we useda = 0.1 in our experi- structure is inherently designed to maximize tolerance to
ments); and (iv) th€T-R-tree. changes in object values. The advantage of better update
performance more than compensates for the slightly poorer

4.2.1 Effect of Update/Query Ratio query performance.

We begin by studying the relative performance of the vari- The CT-R-tree works the best under high update rates
ous index structures as the number of queries and updatebecause it is aware of the presence of gs-regions, and uses
is varied. Figure 8 shows the total number of page I/Os per-them to cluster the search space. Further, these gs-regions
formed for query and update for the R-tree, llB-R-tree, are not split further into smaller units. Therefore, when an
thea-tree and th&€T-R-tree. The performance is measured object moves inside the gs-region, no matter how frequently
under the same query generation rate but different updatet reports its value, only the secondary index is consulted
arrival rates. To generate a slower update rate, some locaand the current value is directly updated in the leaf node. As
tion samples are skipped. It should be noted that this graphthe update/query ratio increases, the improvement over R-
uses a Log-scale on both axes. As the ratio of update raterees is more obvious. In particular, when the update/query
over the query rate (abbreviated as update/query ratio) is in+atio is 1000, the number of I/Os required by (O&R-tree
creased from 1¢% to 1%, all four indexes show an increase is only 1/4th that of thex-tree, 1/7th that of thazy-R-tree,

in the number of I/Os. This is because increasing the updateand 1/27th that of the R-tree.

Param | Default | Meaning I 2 Er—e—
CTRtree —+—

Simulation parameters 3t LezyRlree 1
Au 5,000 Location update rate (set) wl a
Tstart 0.15 Start threshold A
Trill 0.09 Fill threshold ar ‘ / Ve
Tempty | 0.5 Empty threshold gof P
Nobj 10° # of moving objects %
Nrelax 2000 Max samples skipped before recording ?
Nhist 110 # of historic samples (per object)
Nupdate | 20 # of online updates (per object)
Aq 50 Query arrival rate (sed)
fq 0.1 Query size (% of the city area)

CT-R-tree parameters
Taist 25 Distance threshold in Eqn Inj !
Trate 1 Max growth rate of gs-regiom{/seq oaiolupdareiquery ai)
Ttime 300 Min time objects in gs-region (sec) Figure 8. Total I/O vs. Update/Query Ratio
Tarea 22500 | Max area of gs-regiom(?)
Cq 1 Query scaling factor (Eqn 6)
Cy 1 Update Scaling factor (Eqn 6) - .)
Spage | 4096 Size of a page (bytes) ure 10 that it is the clear winner in terms of (_)verall_perfor-
Nen?ry 20 # of entries (per page) mance (total number of 1/0s). THeT-R-tree is designed
Swash | 8 Size of secondary index (Mbytes) for databases with more updates than queries. Its loss in

query performance is compensated with a significant gain
in update performance, resulting in three-fold improvement
Table 1. Parameters and baseline values. over thea-tree, and four-fold improvement over the lazy-R-
tree, consistently over all query sizes considered.

4.2.2 Effect of Query Size .

"CT-RteelRtee ——
alpha Rree/Riree o

Since thdazy-R-tree maintains tighter bounding rectangles
than thea-tree and theCT-R-tree, it is expected to outper-
form them for querying. In this experiment, we examine
more precisely how well théazy-R-tree outperforms the
two indexes by measuring the ratio of the query 1/Os of two
trees over the query 1/Os for thazy-R-tree. Note that the
lazy-R-tree and the traditional R-tree have identical query .
performance. Figure 9 shows the ratios over different query ‘ ‘ ‘
sizes. The query size is varied from 0.1% to 2% of the do- ’ P e !
main. We observe that both tlietree and theCT-R-tree
require more query 1/Os than the R-tree. Also, GER-
tree needs more query I/Os than tdree. As the query
size increases, their performance starts to converge to that
of the R—.tree. The reason is tha't with a large query area, the4_2_3 Scalability of CT-R-tree
probability that a given region will be covered by a query in-
creases. Thus the advantage of having a smaller area MBRn this experiment, we study the scalability of tBd-R-
reduces. To see this, consider a very large query that coversree. The number of 1/0Os for thezy-R-tree and theCT-
95% of the space — it is highly likely that most MBRs will R-tree are reported for up to 500K objects (Figure 11). We
overlap with this query and therefore need to be searchedobserve that th€T-R-tree performs better than thezy-R-
In that case, searching a gs-region in @ER-tree is even tree as the number of objects is increased from the baseline
more effective than searching in the R-tree, because a gsvalue (100K). This shows that th@T-R-tree scales with
region does not limit how many objects are stored inside. the number of objects. A closer look at the graph reveals
On the other hand, MBRs need to be split when they arethat the performance gap between the two indexieens
over-full, so that more access paths are necessary. Thus theith increasing number of objects. The rationale is two-
performance oCT-R-tree improves over large query size. fold: First, when more objects are maintained in the system,
Although the CT-R-tree does not perform as well for more update requests are generated. As discussed in 4.2.1,
gueries as the other two indexes, we can see from Fig-the performance of the R-tree degrades more than that of the

Query IO ratio

Figure 9. Query I/O ratio vs. Query Size

10

values. This indicates that ti&T-R-tree is not sensitive to
,,,,,,,,,,,,,,,,,,,,] these parameters and therefore it is not critical to choose
e | precise parameter values for ta-R-Tree to work effi-
ciently. As long as the parameter values are “reasonable”,
. the CT-R-tree behaves well. Special care needs to be taken
1 in choosing a value folfaes though. In particular, one

] needs to avoid choosing a value that is too small, otherwise

Total I/Os

| —] the number of gs-regions may be too small, or gs-regions
may tend to be smaller than they should be. Many objects
E N : that should be in a gs-region may then not be able to hit

one of these small gs-regions. They are forced to be placed
in the overflow pages of the internal nodes, leading to poor
performance.

We also studied the effect of changing traffic patterns
CT-R-tree. Second, the city plan is fixed. Injecting more ob- ona-R-tree experimentally. Their results are shown in Ap-
jects to the city implies a higher population density. Many pendix A.
objects are close to each other, so that they have a higher
chance of being clustered to the same MBR. As aresult, an5 Related Work
MBR gets full easily, and more splits are necessary to main-
tain the R-tree. ACT-R-tree does not have to perform any
split operations, even when the density of objects is high. It
therefore requires fewer 1/0Os.

Figure 10. Total I/O vs. Query Size

Developing an efficient index structure for constantly
evolving data is an important research issue for databases.
Most works in this area so far focus on moving object envi-
ronments, where the positions of objects keep changing. As
a simple approach, multi-dimensional spatial index struc-
tures can be used for indexing the positions of moving ob-
| jects. However, they are not efficient because of frequent
| and numerous update operations.

'] To reduce the number of updates, many approaches de-
T] scribe a moving object’s location by a linear function, and

] the index is updated only when the parameters of the func-
| tion change, for example, when the moving object changes

1.8e+07

CTRUee ——
RTree e’
16e407 |

1.4e+07 -

disk 105
%

/ its speed or direction. Saltenis et al. [12] proposed the time-
uber o 0500 parameterized R-tree (TPR-tree). In this scheme, the posi-
Figure 11. Total I/O vs. Number of objects tion of a moving point is represented by a reference position

and a corresponding velocity vector. The MBRs of the tree
vary with time as a function of the enclosed objects. When
splitting nodes, the TPRtree considers both the positions of
the moving points and their velocities. Later, Tao et al [13]
presented TPRtree, which extends the idea of TPR-trees
This set of experiments studies the sensitivity of @leR- by employing a different set of insertion and deletion algo-
tree to its parameter values, nam@élys, Trate, Tarea and rithms in order to minimize the query cost. Kollios et al. [9]
Tiime- These parameters are used in the first step of identi-proposed an efficient indexing scheme using partition trees.
fying gs-regions, so their values can be critical to the per- Tayeb et al. [14] introduced the issue of indexing moving
formance results. We examine the I/O performance of theobjects to query the present and future positions and pro-
CT-R-tree over a wide range of values for these parametersposed PMR-Quadtree for indexing moving objects. Agar-
The results forTyate and Tarea are shown in Figures 12(a) wal et al.[1] proposed various schemes based on the dual-
and (b) respectively. The results foyis and Tijme Showed ity and developed an efficient indexing scheme to answer
trends very similar to those fGkate and the graphs are om- approximate nearest-neighbor queries. The problem of all
mitted due to space constraints. Each graph plots the numthese techniques is that there hardly exists a good function
ber of page I/Os for query and update for D&R-tree as for describing the objects’ movements in reality. In many
a function of the respective parameter. applications, the movement of objects is complicated and
In general, these graphs illustrate flat curves for update,non-linear. In such situations, the approaches based on a lin-
query and overall I/O performance, over a wide range of ear function cannot work efficiently— the function changes

4.2.4 Sensitivity to Parameter Values

11

600000

600000 —

Upda{e —_— Updéle —_—
Query —x-— Query —x-—
00 | Total --* 00 | Total x|
400000 - X * 400000 | w e 1
.
o /\ o \\/
% 300000 | % 300000 |]
a a
200000 |- 200000 |-
100000 100000 et
- -
0 0 .
0 2 4 6 8 10 0 50 100 150 200 250
Max growth rate of slow region(m/s) Max area of slow region
(@) (b)

Figure 12. Performance for (a) Tiate, and (b) Tarea

too often. Approximation technique using threshold such asof the proposed index structure. The propo§SdR-tree
maximal velocity has been proposed to reduce the updatdrades slightly poorer query performance for much superior
cost. However, this approximation technique can decreaseupdate performance resulting in better overall performance.
the efficiency of the index. The performance was also found to be robust with regards
In the computational geometry community, kinetic data to number of objects and queries, and query sizes. We ob-
structures [5] were introduced for mobile data. These areserve that the generic idea of change tolerant indexing can
main memory structures that assume that the objects movée applied to other index structures. Preliminary ideas for
in a rectilinear motion with certain velocities. The updates extensions to other structures were outlined. In future work,
are in the form of change in velocity or direction of an ob- we will study change tolerant versions of these other index
ject. A kinetic event occurs when objects change their ve- structures in more detail.
locities or directions or when the combinatorial structure
changes e.g. when two points cross each other. The ide
is that the structure only needs to be updated when sucf?eferences
a kinetic event occurs. These data structures were applied
to solve geometry problems like closest pair, convex hull
and voronoi diagram problems efficiently while objects are
moving continuously. Kinetic space partitioning tree (or 2]
cell-trees) were introduced by [2]. Based on this notion
of kinetic data structures, Agarwal et al. [1] proposed
kinetic version of kd-tree, where the medians are dynam-
ically maintained. However, most works have been in the [3]
main memory data structures. For external memory, Agar-
wal et al. [1] applied this idea to external range trees [4] and
bounds on query performance are proved.

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving
points. InSym. on Principles of Database Systemages
175-186, 2000.

P. M. Agarwal, J. Erickson, and L. J. Guibas. Kinetic binary
space partitions for intersecting segments and disjoint trian-
gles. InSymposium on Discrete Algorithmpages 107-116,
1998.

L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Ef-
ficient bulk operations on dynamic r-treesdlgorithmica
33(1):104-128, May 2002.

L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional
indexability and optimal range search indexing.Proc. of

the ACM Sym. Principles of Database Systepesges 346—
357, 1999.

[5] J. Basch, L. Guibas, and J. Hershberger. Data structures for
mobile data.Symposium on Discrete Algorithi®997.

S. Berchtold, D. A. Keim, and H. P. Kreigel. The X-tree: An

index structure for high-dimensional data. 28nd. Confer-

(4]

6 Conclusion and Future Work

Traditionally, index structures are optimized for im- [g)
proved query performance in the presence of less frequent
updates. For environments such as sensor and moving ob- ence on Very Large Databasgmges 28—39, Bombay, India,
ject databases where data is constantly evolving traditional 1996.
index structures give poor performance. We introduced the [7] A. Gutt.man. R-trees: A dynamic index structure for spatial
notion of Change Toleranindexing for these high update searchingProc. of the ACM SIGMOD Int'l. Conf1984.

. ts. Ch tol t ind timize for both [8] J.Kaufman, J. Myllymaki, and J. Jackson. IBM City Simula-
environments. ange tolerant indexes optimize tor bo tor 2.0. http://www.alphaworks.ibm.com/tech/citysimulator.

query and updgte performance. We developed the algo- [9] G. Kaollios, D. Gunopulos, and V. J. Tsotras. On indexing
rithms for creation and use of a change tolerant R-tree in- mobile objects. IrSym. on Principles of Database Systems

dex. Experimental results showed the superior performance pages 261-272, 1999.

12

[10] D. Kwon, S. J. Lee, and S. Lee. Indexing the current po- Appendix A: Adaptation to Changing Patterns

(11]

(12]

(13]

(14]

(15]

sitions of moving objects using the lazy update R-tr8ed
International Conference on Mobile Data Managemean
2002.

R. Ramakrishnan and J. GehrkBatatabase Management

SystemsMcGraw-Hill, 2000.

Recall that we build th€T-R-tree by consulting history
records of the objects. The structure of @i&R-tree, once

S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. In-pyjjjt is pasically unchanged. In essence, we assume future

dexing the position of continuously moving objed&oc. of
ACM SIGMOND 2000.

Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An opti-

changes of data follow the discovered patterns (in the form
of gs-regions). This assumption may not hold, however, if

mized spatio-temporal access method for predictive queries.the patternsio change. For example, a party of people may
Proceedings of the 29th International Conference on Very gather around for a few hours and dismiss afterwards. The

Large Databases(VLDBpages 790-802, 2003.

gs-regions discovered is then be no longer useful. Simi-

J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-based dy- |arly, new gs-regions can be created after @R-tree is

namic attribute indexing methodThe Computer Journal
pages 185-200, 1998.

University of California, Riverside. Spatial index li-
brary version 0.44.2b (java). http://www.cs.ucr.edu/ mar-

ioh/spatialindex/.

13

constructed. To handle these problems, we may rebuild the
CT-R-tree periodically, running as a background process,
and then switch to the new tree once it is built. But since
the cost of construction is high, we cannot afford to rebuild
it very often. In this section, we discuss how to change the
CT-R-tree temporarily to handle unexpected traffic pattern
changes.

We described in Section 3.2 that the overflow buffer is
switched from the linked list to the-R-tree when the linked
list is longer thanTg;. This is the first measure to handle
movement pattern changes. Usually the portion of items
that need to be placed in the overflow buffer is little (as ver-
ified by our experiments), and thus a linked list suffices.
However, if traffic pattern changes, the linked list may grow
indefinitely and degrade index performance. This is why an
upper boundiji; is placed on the length of the linked list,
and amo-R-tree, an adaptive structure, is used to replace the
linked list when it is excessively long.

A.1 Discovering new gs-regions online

Another purpose of using the-R-tree as the overflow
buffer is that it facilitates discovery of new, albeit approx-
imate, gs-regions. The MBR of the-R-tree is actually
(1+a) larger than its actual size, and is thus more tolerant
than the MBR of the R-tree. We may thus treat the MBR
of the a-R-tree’s leaf node as an approximate gs-region if
the objects located there illustrate some properties of a gs-
region. The identified MBR can then be migrated to the
CT-R-tree as its new leaf node.

In order to detect if a leaf-node MBR of the overflow
o-R-tree behaves like a gs-region, we store the following
information in the node:

e The time gs-region behavior is observgd|nitially, t;
iS 00,

e The number of objects in the leaf nodg, with an
initial value of O.

When an insertion to§ is made at time, n; is incre-
mented. Then we perform additional checks on the follow-
ing conditions:

1. N > Teaft—num much cheaper than the cost of constructing the wiile
R-tree. We still need to rebuild tH&T-R-tree if its structure
2. Area of the MBR of the leaf node Tarea changes too much. For example, we may start the rebuild-

where Tieat_num iS the minimum number of objects in ing process if the number of gs-regions being deleted or in-

X;, and Tarea is the area constraint defined before in Sec- serted is 'Foo high. New history records that are n_ot used for
tion 3.1.1. If these conditions are satisfigds set tot, and constructing the tree can be used. The rebuilding process

insertion is completed. should be run in background, with no interference to the
On subsequent insertions, conditions (1) and (2) arepurreqt index.. Once_ the rebuilding is completed, the new
checked again. If any of them are not satisfied, thaa Indexis used immediately.

reset toeo, indicating that the node does not behave like a]
gs-region. Otherwise, the following additional condition is A-4 Experimental Results
checked:

3.t —1t > Tieaf—time o

Here Tieaf—_time denotes the minimum amount of time R e e
that (1) and (2) are satisfied. That is, we require (1) and
(2) to hold over a periodieattime

If condition (3) is satisfied¥; (and its associated objects) 000 -
is removed from thex-R-tree and re-inserted to the struc-
tural R-tree as a new gs-region. No change to the hash table
is necessary. We remark that the gs-regions so discovered
may only approximate the true gs-regions. They are only)
used as temporary measures when a complete analysis of T
gs-regions is not feasible.

Disk I/0s

55000 |-

45000 -

. 1 . .
15 1 05 0 05 1 15 2
Log10(update/query ratio)

. . Figure 13. Total I/0O vs. Update/Query Ratio
A.2 Deleting a gs-region

When a gs-region is no longer useful due to a change We experimentally study the effect of changing traffic
in traffic pattern, it may be removed to improve query per- patterns on the performance of {6&-R-tree, using the ba-
formance. Let the upper bound of the number of times ansic settings mentioned in Section 4.1.GY¥-R-tree is first
object is removed from each gs-region Bgmove per unit built based on their movement records in the city plan. Then
time. We observe that every time an object is removed fromwe generate a set of movement records based on a new city
a gs-region, the object has violated the supposed stability ofplan, with five buildings removed and five buildings cre-
the gs-region. When the removal rate is greater Haghbve ated. Since an object now cannot enter the regions where
it indicates that the gs-region is not qualified for holding ob- buildings are destroyed, but they can enter buildings which
jects, and it cannot save updates. Thus, we can check the resriginally do not exist, some gs-regions are no longer valid,
moval rate of a gs-region every time an object gets deleted while new gs-regions are created.
and remove the gs-region if necessary. All items in the gs- The index created based on the first set of records is used
region are re-inserted to ti&T-R-tree. to test its efficiency in storing the locations of objects which

Notice that even if a gs-region is not used now, it does move around in the second city. Its performance in shown
not necessarily mean that the gs-region is not used againin the curve “Changed Behavior/Unchanged gs-regions” in
In particular, if there is a periodic pattern, e.g., the office Figure 13. The second curve “Changed Behavior/New gs-
is occupied between 9-5 every day, we may retain the gs-regions” illustrates the performance of the index when we
region representing the office space in the tree for future apply the approximate gs-region detection algorithm men-
use. Whether deleting a gs-region is beneficial depends ortioned in this section. As we can see, over a large range

the requirements. of update/query ratios, tHeT-R-tree performs consistently
better after the gs-region detection algorithm is applied. We
A.3 Rebuilding aCT-R-tree thus show experimentally that tH&T-R-tree can adapt to

changing traffic patterns.
Since the MBRs in the-R-tree are not true gs-regions,
and some @s-regions may not even be discovered, the
scheme we just proposed can only approximate the perfor-
mance of an actualT-R-tree. However, it can be used as
a temporary measure to adapt to changing patterns, and is

14

