
Pragmatics of Type�Directed Partial Evaluation

Olivier Danvy

Computer Science Department
Aarhus University �

http���www�brics�dk��danvy

Abstract� Type�directed partial evaluation stems from the residualiz�
ation of arbitrary static values in dynamic contexts� given their type�
Its algorithm coincides with the one for coercing a subtype value into a
supertype value� which itself coincides with the one of normalization in
the ��calculus� Type�directed partial evaluation is thus used to specialize
compiled� closed programs� given their type�
Since Similix� let�insertion is a cornerstone of partial evaluators for call�
by�value procedural programs with computational e�ects� It prevents the
duplication of residual computations� and more generally maintains the
order of dynamic side e�ects in residual programs�

This article describes the extension of type�directed partial evaluation to
insert residual let expressions� This extension requires the user to annot�
ate arrow types with e�ect information� It is achieved by delimiting and
abstracting control� comparably to continuation�based specialization in
direct style� It enables type�directed partial evaluation of e�ectful pro�
grams �e�g�� a de�nitional lambda�interpreter for an imperative language�
that are in direct style� The residual programs are in A�normal form�

� Introduction

Type�directed partial evaluation ���� stems from the need to residualize arbitrary
static values in dynamic contexts� in a partial evaluator ���� ���� It requires
the type of these values� including that of their free variables� if these values
are higher�order� and in practice� works on the value 	 not on the text 	 of
closed source programs� Its algorithm parallels the one for source binding�time
improvements ��
� ���� and coincides with the one of coercion in type systems
with subtypes ���� ���� and with the one of normalization in proof theory ��� and
logical frameworks ����� Interpreting static expressions as executable code and
dynamic expressions as code construction yields type�directed partial evaluation�
the specialization of compiled code into the text of its 
long ��� normal form �����

Type�directed partial evaluation encounters the same problem as all other
partial evaluators for call�by�value programs� computation duplication� For ex�
ample� consider the following procedure 
where the type constructor �� accounts
for Scheme�s uncurried procedures �����

� Ny Munkegade� Building ��	� DK�
			 Aarhus C� Denmark� �danvy�brics�dk�



�define foo ��� ��a 	� b
 � a � ��b � b
 �� c

 �� c

�lambda �f x k


��lambda �v
 �k v v

 �f x





Let us residualize the value of foo� 
Its text is unavailable� it has been compiled
away��

� �residualize	basic foo ����a 	� b
 � a � ��b � b
 �� c

 �� c



�lambda �f
 a� f�


�f� �f
 a�
 �f
 a�




�

A computation has been duplicated� that of the application of the �rst argument
of foo to its second� Sometimes this duplication is of no consequence� e�g�� if
the function denoted by the �rst argument of foo is pure and total� If the func�
tion is furthermore inexpensive� computation duplication then reduces to code
duplication� In general� however� this duplication is not wanted�

The point of this paper is to remedy to this situation� We extend the language
of types handled by type�directed partial evaluation to account for impure pro�
cedures� whose application should not be duplicated� Our treatment is proven ���
	 we insert a residual let expression�

Let us residualize the value of foo again� This time� we specify that its �rst
argument is e�ectful� 
Syntactically� the type of this argument is written with a
long arrow 		���

� �residualize	mulets foo ����a 		� b
 � a � ��b � b
 �� c

 �� c



�lambda �f
 a� f�


�let ��b� �f
 a�
�


�f� b� b�




�

A residual let expression has been inserted�
This let insertion naturally scales up to more voluminous programs� yielding

residual programs in �CPS without continuations� 
a�k�a� �nqCPS�� �A�normal
forms� ����� �monadic normal forms� ����� etc��� as illustrated below�

� �residualize	mulets �lambda �f x k


��lambda �v
 �k v v

 �f �f x





����b 		� b
 � b � ��b � b
 �� c

 �� c



�lambda �f
 b� f�


�let� ��b� �f
 b�
�

�b� �f
 b�
�


�f� b� b�




�

The reader should keep in mind that inserting let expressions is something
of a challenge� since in contrast to all other existing partial evaluators� we
have no access to the text of the source program� In the interaction above�
residualize	mulets is a Scheme procedure� and Scheme obeys call�by�value�



The rest of this paper is structured as follows� We �rst start with a side�issue
about naming residual variables 
Section ��� This side�issue is pragmatically
trivial� but solving it does improve the readability of residual programs� Thus
equipped� we review the problem of residual computational e�ects in partial eval�
uation� and its solutions 
Section ��� We then specialize Section � with respect to
type�directed partial evaluation 
Section ��� This makes it possible to specialize a
direct�style interpreter for Paulson�s Tiny language 
Section 
�� As a corollary of
Section �� we describe the CPS transformation of compiled programs in normal
form 
Section ��� The technique of Section � relies on delimiting and abstracting
control� which clashes with similar control operations to handle disjoint sums�
Section � outlines how to make both coexist� After a comparison with related
work 
Section ��� we conclude 
Section ���

� What is in a name�

Under lexical scope� names of local variables do not matter� In practice� though�
they contribute to program readability� and thus programmers usually pick
�meaningful� identi�ers� One reason why automatically generated programs are
hard to read is precisely because they have uninformative identi�ers�

Schism�s and Similix�s residual identi�ers� for example� depend on the history
of the static computation and are spiced with source scope information �
� ��� They
can be very long� Often� to the relative delight of the user� they di�er only subtly
one from another�

Our strategy for picking residual names 
surprise� is type�directed�

��� Implicit naming

Variables of base types are named after the �rst letter of their type� catenated
with a gensym�generated number� A similar scheme applies for variables of higher
types� Their name stub is �p� for products� �s� for sums� �b� for booleans� and
�f� for functions�

��� Explicit naming

The user can also specify name stubs in the type language� through the directive
with� The directive alias speci�es a full name 	 which may come handy if no
name clash is expected�

��� An example

For example� the type ��a � �b with �Y�� � �c alias �Juliet��� �� c�

denotes an uncurried Scheme procedure with three arguments� the second of
which is associated with the name stub �Y�� and the third of which is associated
with the name �Juliet��



� �residualize	mulets

�lambda �x y z
 z


���a � �b with �Y�
 � �c alias �Juliet�

 �� c



�lambda �a
 Y� Juliet
 Juliet


�

� Sound call unfolding under call�by�value

To propagate constants across procedure boundaries� a partial evaluator unfolds
calls� Not all parameters may be static� however� and thus under call�by�value�
call unfolding is unsound in general� Against this backdrop� and to tame partially
static structures� Torben Mogensen suggested to insert a residual let expression
for each dynamic parameter� and to pass on the residual identi�er naming the
dynamic actual parameter instead of this parameter ���� 	 the rationale being
that under call�by�value� this parameter can be duplicated without compromising
the dynamic semantics of the source program� as illustrated in Section ��

This simple solution� put at the core of Similix� before it even had partially
static values� has scaled up remarkably well� e�g�� to provide a simple solution
to the thorny problem of automating call unfolding ����� and also to provide a
sound treatment for dynamic side�e�ects ���� Doubled with a variable�splitting
mechanism ����� it provides a simple and elegant treatment of both partially
static values and higher�order values ����

In the next section� we adapt this let�insertion technique to type�directed
partial evaluation�

� The particular case of type�directed partial evaluation

Lacking access to the source code� it is impossible to insert residual let expres�
sions at call sites 	 they are compiled� along with the rest of the source program�
So let us go upstream from calls� since the point of residual let expressions is to
stop dynamic expressions from �owing across a procedure boundary� let us see
where these dynamic expressions come from� Essentially� they come from residual
calls to e�ectful procedures� which form these dynamic expressions�

Thus we choose 
�� to annotate the type of e�ectful procedures� 
�� to insert
a residual let expression naming their result when they are unfolded� and 
��
to return the residual name to the current context� Point 
�� requires one to
delimit and to abstract control ���� ��� ���� comparatively to the strategy for
continuation�based partial evaluation in direct style ��� �
��

The corresponding speci�cation of type�directed partial evaluation is shown
in Figure �� It is an extension of type�directed partial evaluation �����

The domains Value and Expr are de�ned inductively� following the structure
of types� and starting from the same set of 
dynamic� base types� TLT is the
domain of 
well�typed� two�level terms� it contains both Value and Expr�

The down arrow is read reify� it maps a static value and its type into a
two�level ��term that statically reduces to the dynamic counterpart of this static



t � Type ��� b j t� � t� j t� �� t� j t� � t�

v � Value ��� c j x j �x � t�v j v�
 v� j

pair�v�� v�� j fst v j snd v

e � Expr ��� c j x j �x � t�e j e�
 e� j

pair�e�� e�� j fst e j snd e j

let x � e� in e�

reify � �t��v � t��t v

� Type� Value� TLT

�b v � v

�t��t� v � �x��resett� �
t� �v
 �t�

t�
x��

�t���t� v � �x��resett� �
t� �v
 �t�

t�
x��

where x� is fresh�

�t��t� v � pair��t� fst v� �t� snd v�

re�ect � �t
�
��t��e � t��t

�

t e

� Type� Type� Expr � TLT

�tb e � e

�tt��t�
e � �v���

t

t�
�e
 �t� v��

�tt���t�
e � �v��shift � � t� � t in let x� � e
 �t� v�

in resett ��
 �tt� x��

where x� is fresh�

�tt��t�
e � pair��tt� fst e� �

t

t�
snd e�

Reset and re�ect are annotated with the type of the value expected by the delimited
context�

residualize � statically�reduce � reify

� Type� Value � Expr

Fig� �� Type�directed residualization with let insertion

value� Conversely� the up arrow is read re�ect� it maps a dynamic expression into
a two�level ��term representing the static counterpart of this dynamic expression�

In residualize� reify 
resp� re�ect� is applied to types occurring positively

resp� negatively� in the source type�

Figure � generalizes the speci�cation of type�directed partial evaluation from

the POPL��� proceedings in the following sense� Removing
�

�� from the type
language yields the original speci�cation 	 remembering the algebraic property
of reset ���� ����



Property � For any expression e containing no occurrence of shift� reset
e� �
e�

In the presence of e�ectful procedures� the result of type�directed partial eval�
uation contains series of �at let expressions� These are characteristic of nqCPS�

� An example� Paulson�s Tiny interpreter in direct style

Section ��� of �Type�Directed Partial Evaluation� ���� addresses the classical
example of Paulson�s Tiny interpreter ����� a�k�a� MP in partial�evaluation circles
��� �� ��� ����

hpgmi ��� hnamei� hcmdi

hcmdi ��� skip j hcmdi � hcmdi j hidei �� hexpi j

if hexpi then hcmdi else hcmdi j

while hexpi do hcmdi end

hexpi ��� hinti j hidei j hexpi hopi hexpi j read

hopi ��� � j � j � j � j �

It is a simple exercise to write the corresponding de�nitional interpreter in

direct style 
in contrast to the POPL��� proceedings where it was written in
continuation style�� to apply it to� e�g�� the factorial program� and to residualize
the result�

Figure � displays this residual program� It is the direct�style counterpart
of the residual program displayed in the POPL��� proceedings� Thanks to the
naming scheme of Section �� it is also directly readable� 
N�B� We could have
taken advantage of the single�threadedness of the store to generate a unique
residual identi�er for it ������

What is particularly lovely here is that this residual program has been gen�
erated straight out of an ordinary direct�style interpreter� which was compiled
with an ordinary Scheme compiler� Yet not only is the residual program perfectly
readable but in addition it was generated at the speed and e�ciency of compiled
code�

	 Corollary� CPS transformation of compiled programs

It is very simple to translate nqCPS terms into CPS ���� ���� Let expressions� for
example� in the context of a continuation k� are essentially desugared as follows�

��let v � f�x in e�� k � f�x�
�v���e�� k�

This makes it simple to adapt Figure � to produce CPS terms� For lack of
time� we do not display the adapted �gure in this submission� The corresponding
program is available through the author�s home page�



�lambda �add sub mul equal gt read fix true� lookup update


�lambda �s



�let� ��i� �read
�

�s� �update � i� s

�

�s� �update � � s�
�

�s�� ��fix �lambda �f�


�lambda �s�


�let� ��i� �lookup � s�
�

�i� �gt i� 

�


�true� i�

�lambda �s�


�let� ��i� �lookup � s�
�

�i�
 �lookup � s�
�

�i�� �mul i�
 i�
�

�s�� �update � i�� s�
�

�i�� �lookup � s��
�

�i�� �sub i�� �
�

�s�� �update � i�� s��
�


�f� s��




�lambda �s��
 s��


s�






s�
�

�i�� �lookup � s��
�


�update 
 i�� s��





This residual program is a specialized version of the Tiny interpreter with
respect to the factorial source program� As can be observed� it is a direct�
style Scheme program in A�normal form� threading the store throughout�
The while loop has been mapped into a �xed�point declaration �re�ecting
the semantics of while loops in the Tiny interpreter�� All the location o�sets
have been computed at partial�evaluation time�

Fig� �� Residual factorial program �without hand�renaming�


 Out of control� let insertion vs� disjoint sums

In the POPL��� proceedings� shift and reset are used to handle disjoint sums ����
Section ��� This use clashes with the let insertion of Section �� There is� however�
a natural hierarchy in these control abstractions� where the treatment for disjoint
sums clearly supersedes the treatment for let insertion� This is thus a case for
shift� and reset� ����� We leave this aspect for a future work�

� Related work

Section � has already situated type�directed partial evaluation among related
work� it stems from the need to residualize static values in dynamic contexts at



higher type� its algorithm coincides with the one for higher�order coercions� and
also with the one for ��calculus normalization� We express it using the two�level
��calculus ����� This coincidence of algorithms shows that there is as much com�
putational power in residualization as in an o�ine monovariant partial evaluator
for the ��calculus� Picking a particular representation of staticness 
compiled
syntax constructions� and of dynamicness 
compiled syntax constructors� makes
it possible to specialize closed compiled programs� given their type��

In his PhD thesis ����� Filinski de�nes extensional mappings between monadic
values 
and programs them in Standard ML�� In particular� this makes it pos�
sible to de�ne an extensional CPS transformation� in the particular case of the
identity monad and of the continuation monad� Composing this transformation
with Berger and Schwichtenberg�s algorithm 
also programmed in Standard ML�
yields the same e�ect as the CPS transformation of Section ��


 Conclusion and issues

We have extended type�directed partial evaluation with two pragmatic features�
the ability to specify identi�ers and to insert let expressions in residual pro�
grams� This makes it possible to ensure sound call unfolding 
which matters
since type�directed partial evaluation is inherently call�by�value�� to specialize
direct�style programs containing dynamic computational e�ects� and to improve
the readability of residual programs�

References

�� Ulrich Berger and Helmut Schwichtenberg� An inverse of the evaluation functional
for typed ��calculus� In Proceedings of the Sixth Annual IEEE Symposium on

Logic in Computer Science� pages �	������ Amsterdam� The Netherlands� July
����� IEEE Computer Society Press�

�� Dines Bj�rner� Andrei P� Ershov� and Neil D� Jones� Partial Evaluation and Mixed

Computation� North�Holland� ��

�
�� Hans�J� Boehm� editor� Proceedings of the Twenty�First Annual ACM Symposium

on Principles of Programming Languages� Portland� Oregon� January ����� ACM
Press�

�� Anders Bondorf� Self�Applicable Partial Evaluation� PhD thesis� DIKU� Com�
puter Science Department� University of Copenhagen� Copenhagen� Denmark� ���	�
DIKU Report �	����

�� Anders Bondorf� Similix manual� system version ��	� Technical Report �����
DIKU� Computer Science Department� University of Copenhagen� Copenhagen�
Denmark� �����

�� Anders Bondorf� Improving binding times without explicit cps�conversion� In
William Clinger� editor� Proceedings of the ���� ACM Conference on Lisp and

� The referee encouraged us to stress the distinction between constructions and con�
structors� a constructor generates a construction� This distinction proves essential in
the context of program�generating programs�



Functional Programming� LISP Pointers� Vol� V� No� �� pages ���	� San Francisco�
California� June ����� ACM Press�

�� Anders Bondorf and Olivier Danvy� Automatic autoprojection of recursive equa�
tions with global variables and abstract data types� Science of Computer Program�
ming� ����������� �����


� William Clinger and Jonathan Rees �editors�� Revised� report on the algorithmic
language Scheme� LISP Pointers� IV��������� July�September �����

�� Charles Consel� A tour of Schism� A partial evaluation system for higher�order
applicative languages� In David A� Schmidt� editor� Proceedings of the Second

ACM SIGPLAN Symposium on Partial Evaluation and Semantics�Based Program

Manipulation� pages �������� Copenhagen� Denmark� June ����� ACM Press�
�	� Charles Consel and Olivier Danvy� Tutorial notes on partial evaluation� In

Susan L� Graham� editor� Proceedings of the Twentieth Annual ACM Symposium

on Principles of Programming Languages� pages �����	�� Charleston� South Car�
olina� January ����� ACM Press�

��� Olivier Danvy� Back to direct style� Science of Computer Programming� �������
��
���� ����� Special Issue on ESOP���� the Fourth European Symposium on Pro�
gramming� Rennes� February �����

��� Olivier Danvy� Type�directed partial evaluation� In Guy L� Steele Jr�� editor�
Proceedings of the Twenty�Third Annual ACM Symposium on Principles of Pro�

gramming Languages� St� Petersburg Beach� Florida� January ����� ACM Press�
��� Olivier Danvy and Andrzej Filinski� Abstracting control� In Mitchell Wand� editor�

Proceedings of the ���� ACM Conference on Lisp and Functional Programming�
pages ������	� Nice� France� June ���	� ACM Press�

��� Olivier Danvy and Andrzej Filinski� Representing control� a study of the CPS trans�
formation� Mathematical Structures in Computer Science� ������������� December
�����

��� Olivier Danvy� Karoline Malmkj�r� and Jens Palsberg� The essence of eta�
expansion in partial evaluation� LISP and Symbolic Computation� 
�����	������
����� An earlier version appeared in the proceedings of the ���� ACM SIGPLAN
Workshop on Partial Evaluation and Semantics�Based Program Manipulation�

��� Olivier Danvy� Karoline Malmkj�r� and Jens Palsberg� Eta�expansion does The
Trick� Technical report BRICS RS������� DAIMI� Computer Science Department�
Aarhus University� Aarhus� Denmark� August �����

��� Matthias Felleisen� The theory and practice of �rst�class prompts� In Jeanne
Ferrante and Peter Mager� editors� Proceedings of the Fifteenth Annual ACM Sym�

posium on Principles of Programming Languages� pages �
	���	� San Diego� Cali�
fornia� January ��

�

�
� Andrzej Filinski� Controlling E�ects� PhD thesis� School of Computer Science�
Carnegie Mellon University� Pittsburgh� Pennsylvania� �����

��� Cormac Flanagan� Amr Sabry� Bruce F� Duba� and Matthias Felleisen� The essence
of compiling with continuations� In David W� Wall� editor� Proceedings of the ACM
SIGPLAN��� Conference on Programming Languages Design and Implementation�
SIGPLAN Notices� Vol� �
� No �� pages �������� Albuquerque� New Mexico� June
����� ACM Press�

�	� John Hatcli� and Olivier Danvy� A generic account of continuation�passing styles�
In Boehm ���� pages ��
�����

��� Fritz Henglein� Dynamic typing� Syntax and proof theory� Science of Com�

puter Programming� ������������	� ����� Special Issue on ESOP���� the Fourth
European Symposium on Programming� Rennes� February �����



��� Fritz Henglein and Jesper J�rgensen� Formally optimal boxing� In Boehm ����
pages ��������

��� Neil D� Jones� Carsten K� Gomard� and Peter Sestoft� Partial Evaluation and

Automatic Program Generation� Prentice Hall International Series in Computer
Science� Prentice�Hall� �����

��� Julia L� Lawall� Continuation Introduction and Elimination in Higher�Order Pro�

gramming Languages� PhD thesis� Computer Science Department� Indiana Uni�
versity� Bloomington� Indiana� USA� July �����

��� Julia L� Lawall and Olivier Danvy� Continuation�based partial evaluation� In Caro�
lyn L� Talcott� editor� Proceedings of the ���	 ACM Conference on Lisp and Func�

tional Programming� LISP Pointers� Vol� VII� No� �� Orlando� Florida� June �����
ACM Press�

��� Torben �� Mogensen� Partially static structures in a self�applicable partial evalu�
ator� In Bj�rner� Ershov� and Jones ���� pages ��������

��� Torben �� Mogensen� Binding Time Aspects of Partial Evaluation� PhD thesis�
DIKU� Computer Science Department� University of Copenhagen� Copenhagen�
Denmark� March ��
��

�
� Flemming Nielson and Hanne Riis Nielson� Two�Level Functional Languages�
volume �� of Cambridge Tracts in Theoretical Computer Science� Cambridge Uni�
versity Press� �����

��� Larry Paulson� Compiler generation from denotational semantics� In Bernard
Lorho� editor� Methods and Tools for Compiler Construction� pages ������	� Cam�
bridge University Press� ��
��

�	� Frank Pfenning� Logic programming in the LF logical framework� In G�erard
Huet and Gordon Plotkin� editors� Logical Frameworks� pages �����
�� Cambridge
University Press� �����

��� David A� Schmidt� Detecting global variables in denotational de�nitions� ACM

Transactions on Programming Languages and Systems� �����������	� April ��
��
��� Peter Sestoft� Automatic call unfolding in a partial evaluator� In Bj�rner� Ershov�

and Jones ���� pages �
���	��

This article was processed using the LATEX macro package with LLNCS style


