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Abstract. Type-directed partial evaluation stems from the residualiz-
ation of arbitrary static values in dynamic contexts, given their type.
Its algorithm coincides with the one for coercing a subtype value into a
supertype value, which itself coincides with the one of normalization in
the A-calculus. Type-directed partial evaluation is thus used to specialize
compiled, closed programs, given their type.

Since Similix, let-insertion is a cornerstone of partial evaluators for call-
by-value procedural programs with computational effects. It prevents the
duplication of residual computations, and more generally maintains the
order of dynamic side effects in residual programs.

This article describes the extension of type-directed partial evaluation to
insert residual let expressions. This extension requires the user to annot-
ate arrow types with effect information. It is achieved by delimiting and
abstracting control, comparably to continuation-based specialization in
direct style. It enables type-directed partial evaluation of effectful pro-
grams (e.g., a definitional lambda-interpreter for an imperative language)
that are in direct style. The residual programs are in A-normal form.

1 Introduction

Type-directed partial evaluation [12] stems from the need to residualize arbitrary
static values in dynamic contexts, in a partial evaluator [10, 23]. It requires
the type of these values, including that of their free variables, if these values
are higher-order, and in practice, works on the value — not on the text — of
closed source programs. Its algorithm parallels the one for source binding-time
improvements [15, 16], and coincides with the one of coercion in type systems
with subtypes [21, 22], and with the one of normalization in proof theory [1] and
logical frameworks [30]. Interpreting static expressions as executable code and
dynamic expressions as code construction yields type-directed partial evaluation:
the specialization of compiled code into the text of its (long £n) normal form [12].

Type-directed partial evaluation encounters the same problem as all other
partial evaluators for call-by-value programs: computation duplication. For ex-
ample, consider the following procedure (where the type constructor => accounts
for Scheme’s uncurried procedures [8]).

* Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark. (danvy@brics.dk)



(define foo 333 ((@a->Db) *a*x ((bxb) =>c)) =>c
(lambda (f x k)
((lambda (v) (k v v)) (f x))))

Let us residualize the value of foo. (Tts text is unavailable: it has been compiled
away.)

> (residualize-basic foo “(((a -=> b) * a * ((b * b) => ¢c)) => c))
(lambda (fO a1 £2)

(f2 (£0 al) (£0 al)))
>

A computation has been duplicated: that of the application of the first argument
of foo to its second. Sometimes this duplication is of no consequence, e.g., if
the function denoted by the first argument of foo is pure and total. If the func-
tion is furthermore inexpensive, computation duplication then reduces to code
duplication. In general, however, this duplication is not wanted.

The point of this paper is to remedy to this situation. We extend the language
of types handled by type-directed partial evaluation to account for impure pro-
cedures, whose application should not be duplicated. Our treatment is proven [7]
— we insert a residual let expression.

Let us residualize the value of foo again. This time, we specify that its first
argument is effectful. (Syntactically, the type of this argument is written with a
long arrow —->.)

> (residualize-mulets foo “(((a -=>b) * a * ((b * b) => c)) => c))
(lambda (fO a1 £2)
(let ([b3 (£0 a1)1)
(f2 b3 b3)))
>

A residual let expression has been inserted.

This let insertion naturally scales up to more voluminous programs, yielding
residual programs in “CPS without continuations” (a.k.a. “nqgCPS”, “A-normal
forms” [19], “monadic normal forms” [20], ete.), as illustrated below.

> (residualize-mulets (lambda (f x k)
((lambda (v) (k v v)) (£ (£ x))))
(((b=-=>Db) * b* ((b*xb) =>c)) =>c))
(lambda (£f0 bl £2)
(let* ([b3 (£0 b1)]
[b4 (£0 b3)1)
(£2 b4 b4)))
>

The reader should keep in mind that inserting let expressions is something
of a challenge, since in contrast to all other existing partial evaluators, we
have no access to the text of the source program. In the interaction above,
residualize-mulets is a Scheme procedure, and Scheme obeys call-by-value.



The rest of this paper 1s structured as follows. We first start with a side-issue
about naming residual variables (Section 2). This side-issue is pragmatically
trivial, but solving it does improve the readability of residual programs. Thus
equipped, we review the problem of residual computational effects in partial eval-
uation, and its solutions (Section 3). We then specialize Section 3 with respect to
type-directed partial evaluation (Section 4). This makes it possible to specialize a
direct-style interpreter for Paulson’s Tiny language (Section 5). As a corollary of
Section 4, we describe the CPS transformation of compiled programs in normal
form (Section 6). The technique of Section 4 relies on delimiting and abstracting
control, which clashes with similar control operations to handle disjoint sums.
Section 7 outlines how to make both coexist. After a comparison with related
work (Section 8), we conclude (Section 9).

2 What is in a name?

Under lexical scope, names of local variables do not matter. In practice, though,
they contribute to program readability, and thus programmers usually pick
“meaningful” identifiers. One reason why automatically generated programs are
hard to read is precisely because they have uninformative identifiers.

Schism’s and Similix’s residual identifiers, for example, depend on the history
of the static computation and are spiced with source scope information [5, 9]. They
can be very long. Often, to the relative delight of the user, they differ only subtly
one from another.

Our strategy for picking residual names (surprise) is type-directed.

2.1 Implicit naming

Variables of base types are named after the first letter of their type, catenated
with a gensym-generated number. A similar scheme applies for variables of higher
types. Their name stub is “p” for products, “s” for sums, “b” for booleans, and

“£” for functions.

2.2 Explicit naming

The user can also specify name stubs in the type language, through the directive
with. The directive alias specifies a full name — which may come handy if no
name clash 1s expected.

2.3 An example

For example, the type ((a * (b with "Y") * (c alias "Juliet")) => c¢)
denotes an uncurried Scheme procedure with three arguments, the second of
which is associated with the name stub “Y”, and the third of which is associated
with the name “Juliet”.



> (residualize-mulets

(lambda (x y z) z)

“((a * (b with "Y") * (c alias "Juliet")) => c))
(lambda (a0 Y1 Juliet) Juliet)
>

3 Sound call unfolding under call-by-value

To propagate constants across procedure boundaries, a partial evaluator unfolds
calls. Not all parameters may be static, however, and thus under call-by-value,
call unfolding is unsound in general. Against this backdrop, and to tame partially
static structures, Torben Mogensen suggested to insert a residual let expression
for each dynamic parameter, and to pass on the residual identifier naming the
dynamic actual parameter instead of this parameter [26] — the rationale being
that under call-by-value, this parameter can be duplicated without compromising
the dynamic semantics of the source program, as illustrated in Section 1.

This simple solution, put at the core of Similix, before it even had partially
static values, has scaled up remarkably well, e.g., to provide a simple solution
to the thorny problem of automating call unfolding [32], and also to provide a
sound treatment for dynamic side-effects [7]. Doubled with a variable-splitting
mechanism [27], it provides a simple and elegant treatment of both partially
static values and higher-order values [4].

In the next section, we adapt this let-insertion technique to type-directed
partial evaluation.

4 The particular case of type-directed partial evaluation

Lacking access to the source code, it is impossible to insert residual let expres-
sions at call sites — they are compiled, along with the rest of the source program.
So let us go upstream from calls: since the point of residual let expressions is to
stop dynamic expressions from flowing across a procedure boundary, let us see
where these dynamic expressions come from. Essentially, they come from residual
calls to effectful procedures, which form these dynamic expressions.

Thus we choose (1) to annotate the type of effectful procedures, (2) to insert
a residual let expression naming their result when they are unfolded, and (3)
to return the residual name to the current context. Point (3) requires one to
delimit and to abstract control [13, 14, 17], comparatively to the strategy for
continuation-based partial evaluation in direct style [6, 25].

The corresponding specification of type-directed partial evaluation is shown
in Figure 1. It is an extension of type-directed partial evaluation [12].

The domains Value and Expr are defined inductively, following the structure
of types, and starting from the same set of (dynamic) base types. TLT is the
domain of (well-typed) two-level terms; it contains both Value and Expr.

The down arrow is read reify: it maps a static value and its type into a
two-level A-term that statically reduces to the dynamic counterpart of this static
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Reset and reflect are annotated with the type of the value expected by the delimited
context.

residualize = statically-reduce o reify

: Type — Value — Expr

Fig. 1. Type-directed residualization with let insertion

value. Conversely, the up arrow is read reflect: it maps a dynamic expression into
a two-level A-term representing the static counterpart of this dynamic expression.
In residualize, reify (resp. reflect) is applied to types occurring positively
(resp. negatively) in the source type.
Figure 1 generalizes the specification of type-directed partial evaluation from
the POPL’96 proceedings in the following sense. Removing — from the type

language yields the original specification — remembering the algebraic property
of reset [13, 14]:



Property 1 For any expression e containing no occurrence of shift, reset(e) =
e.

In the presence of effectful procedures, the result of type-directed partial eval-
uation contains series of flat let expressions. These are characteristic of nqCPS.

5 An example: Paulson’s Tiny interpreter in direct style

Section 2.3 of “Type-Directed Partial Evaluation” [12] addresses the classical
example of Paulson’s Tiny interpreter [29], a.k.a. MP in partial-evaluation circles

[4, 7,23, 27].

{(pgm) ::= (name)” (cmd)
(emd) ::=skip | {emd) 5 {emd) | (ide) := (exp) |
if {exp) then (emd) else (emd) |
while (exp) do (emd) end
(exp) = (int) | (ide) | {(exp) (op) {exp) | read
o) =+ | — | x | = | >

It is a simple exercise to write the corresponding definitional interpreter in
direct style (in contrast to the POPL’96 proceedings where it was written in
continuation style), to apply it to, e.g., the factorial program, and to residualize
the result.

Figure 2 displays this residual program. It is the direct-style counterpart
of the residual program displayed in the POPL’96 proceedings. Thanks to the
naming scheme of Section 2, it is also directly readable. (N.B. We could have
taken advantage of the single-threadedness of the store to generate a unique
residual identifier for it [31].)

What is particularly lovely here is that this residual program has been gen-
erated straight out of an ordinary direct-style interpreter, which was compiled
with an ordinary Scheme compiler. Yet not only is the residual program perfectly
readable but in addition it was generated at the speed and efficiency of compiled
code.

6 Corollary: CPS transformation of compiled programs

It is very simple to translate nqCPS terms into CPS [11, 24]. Let expressions, for
example, in the context of a continuation &, are essentially desugared as follows:

[letv = fQuine] k = fQzQ(Av.[e] k)

This makes it simple to adapt Figure 1 to produce CPS terms. For lack of
time, we do not display the adapted figure in this submission. The corresponding
program is available through the author’s home page.



(lambda (add sub mul equal gt read fix true? lookup update)
(lambda (s0)
(let* ([il (read)]
[¢2 (update 1 il £0)]
[¢3 (update 2 1 s2)]
[¢18 ((fix (lambda (f4)
(lambda (s5)
(let* ([i6 (lookup 1 s5)]
[i7 (gt i6 O)1)
(true? i7
(lambda (s8)
(let* ([1i9 (lookup 1 =8)]
[i10 (lookup 2 s8)]
[i11 (mul i10 i9)]
[£12 (update 2 i1l £8)]
[113 (lookup 1 s12)]
[i14 (sub i13 1)]
[s15 (update 1 i14 s12)1)
(£f4 =15)))
(lambda (s17) s17)
s5)))))
£3)]
[119 (lookup 2 s18)]1)
(update 0 119 s18))))

This residual program is a specialized version of the Tiny interpreter with
respect to the factorial source program. As can be observed, it is a direct-
style Scheme program in A-normal form, threading the store throughout.
The while loop has been mapped into a fixed-point declaration (reflecting
the semantics of while loops in the Tiny interpreter). All the location offsets
have been computed at partial-evaluation time.

Fig. 2. Residual factorial program (without hand-renaming)

7

Out of control: let insertion vs. disjoint sums

In the POPL’96 proceedings, shift and reset are used to handle disjoint sums [12,
Section 3]. This use clashes with the let insertion of Section 4. There is, however,
a natural hierarchy in these control abstractions, where the treatment for disjoint
sums clearly supersedes the treatment for let insertion. This is thus a case for
shifty and resets [13]. We leave this aspect for a future work.

8

Related work

Section 1 has already situated type-directed partial evaluation among related
work: it stems from the need to residualize static values in dynamic contexts at




higher type; its algorithm coincides with the one for higher-order coercions, and
also with the one for A-calculus normalization. We express it using the two-level
A-calculus [28]. This coincidence of algorithms shows that there is as much com-
putational power in residualization as in an offline monovariant partial evaluator
for the A-calculus. Picking a particular representation of staticness (compiled
syntax constructions) and of dynamicness (compiled syntax constructors) makes
it possible to specialize closed compiled programs, given their type.?

In his PhD thesis [18], Filinski defines extensional mappings between monadic
values (and programs them in Standard ML). In particular, this makes it pos-
sible to define an extensional CPS transformation, in the particular case of the
identity monad and of the continuation monad. Composing this transformation
with Berger and Schwichtenberg’s algorithm (also programmed in Standard ML)
yields the same effect as the CPS transformation of Section 6.

9 Conclusion and issues

We have extended type-directed partial evaluation with two pragmatic features:
the ability to specify identifiers and to insert let expressions in residual pro-
grams. This makes it possible to ensure sound call unfolding (which matters
since type-directed partial evaluation is inherently call-by-value), to specialize
direct-style programs containing dynamic computational effects, and to improve
the readability of residual programs.
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