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ABSTRACT

On February 2, 1999, we completed the factorization of the 140–digit number RSA–140 with the help of the

Number Field Sieve factoring method (NFS). This is a new general factoring record. The previous record was

established on April 10, 1996 by the factorization of the 130–digit number RSA–130, also with the help of

NFS. The amount of computing time spent on RSA–140 was roughly twice that needed for RSA–130, about

half of what could be expected from a straightforward extrapolation of the computing time spent on factoring

RSA–130. The speed-up can be attributed to a new polynomial selection method for NFS which will be

sketched in this paper.
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The implications of the new polynomial selection method for factoring a 512–bit RSA modulus are discussed

and it is concluded that 512–bit (= 155–digit) RSA moduli are easily and realistically within reach of factoring

efforts similar to the one presented here.
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1. Introduction

Factoring large numbers is an old and fascinating métier in number theory which has become
important for cryptographic applications after the birth, in 1977, of the public-key cryptosys-
tem RSA [22]. Since then, people have started to keep track of the largest (difficult) numbers
factored so far, and reports of new records were invariably presented at cryptographic confer-
ences. We mention Eurocrypt ’89 (C1001 [14]), Eurocrypt ’90 (C107 and C116 [15]), Crypto
’93 (C120, [8]), Asiacrypt ’94 (C129, [1]) and Asiacrypt ’96 (C130, [6]). The 130–digit number
was factored with help of the Number Field Sieve method (NFS), the others were factored
using the Quadratic Sieve method (QS).

For information about QS, see [21]. For information about NFS, see [13]. For additional
information, implementations and previous large NFS factorizations, see [9, 10, 11, 12].

In this paper, we report on the factoring of RSA–140 by NFS and the implications for
RSA. The number RSA–140 was taken from the RSA Challenge list [23]. In Sect. 2 we
estimate how far we are now from factoring a 512–bit RSA modulus. In Sect. 3, we sketch
the new polynomial selection method for NFS and we give the details of our computations
which resulted in the factorization of RSA–140.

2. How far are we from factoring a 512–bit RSA modulus?

RSA is widely used today. We quote from RSA Laboratories’ Frequently Asked Questions
about today’s Cryptography 4.0
(http://www.rsa.com/rsalabs/faq/html/3-1-9.html):

Question 3.1.9.
Is RSA currently in use?

RSA is currently used in a wide variety of products,
platforms, and industries around the world. It is found
in many commercial software products and is planned to be
in many more. RSA is built into current operating systems
by Microsoft, Apple, Sun, and Novell. In hardware, RSA
can be found in secure telephones, on Ethernet network
cards, and on smart cards. In addition, RSA is

1By “Cxxx” we denote a composite number having xxx decimal digits.
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incorporated into all of the major protocols for secure
Internet communications, including S/MIME (see Question
5.1.1), SSL (see Question 5.1.2), and S/WAN (see Question
5.1.3). It is also used internally in many institutions,
including branches of the U.S. government, major
corporations, national laboratories, and universities.

At the time of this publication, RSA technology is
licensed by about 350 companies. The estimated installed
base of RSA encryption engines is around 300 million,
making it by far the most widely used public-key
cryptosystem in the world. This figure is expected to
grow rapidly as the Internet and the World Wide Web
expand.

The best size for an RSA key depends on the security needs of the user and on how long
the data needs to be protected. At present, information of very high value is protected by
512–bit RSA keys. For example, CREST [7] is a system developed by the Bank of England
and used to register all the transfers of stocks and shares listed in the United Kingdom. The
transactions are protected using 512–bit RSA keys. Allegedly, 512–bit RSA keys protect 95%
of today’s E-commerce on the Internet [24].

The amount of CPU time spent to factor RSA–140 is estimated to be only twice that used
for the factorization of RSA–130, whereas on the basis of the heuristic complexity formula
[3] for factoring large N by NFS:

O
(

exp
(

(1.923 + o(1))(logN)1/3(log logN)2/3
))

,

one would expect an increase in the computing time by a factor close to four. This has been
made possible by algorithmic improvements (mainly in the polynomial generation step [18],
and to a lesser extent in the sieving step and the filter step of NFS), and by the relative
increase in memory speed of the workstations and PCs used in this project.

After the completion of RSA–140, we completely factored the 211–digit number 10211 − 1
with the Special Number Field Sieve (SNFS) at the expense of slightly more computa-
tional effort than we needed for RSA–140. We notice that the polynomial selection stage
is easy for 10211 − 1. Calendar time was about two months. This result means a new fac-
toring record for SNFS (see ftp://ftp.cwi.nl/pub/herman/NFSrecords/SNFS-211). The
previous SNFS record was the 186–digit number 3263341 − 1 (see ftp://ftp.cwi.nl/pub/
herman/NFSrecords/SNFS-186).

Experiments indicate that the approach used for the factorization of RSA–140 may be
applied to RSA–155 as well. Estimates based on these experiments suggest that the total
effort involved in a 512–bit factorization (RSA–155 is a 512–bit number) would require only
a fraction of the computing time that has been estimated in the literature so far. Also, there
is every reason to expect that the matrix size, until quite recently believed to be the main
stumbling block for a 512–bit factorization using NFS, will turn out to be quite manageable.
As a result 512–bit RSA moduli do, in our opinion, not offer more than marginal security,
and should no longer be used in any serious application.
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3. Factoring RSA–140

We assume that the reader is familiar with NFS [13], but for convenience we briefly describe
the method here. Let N be the number we wish to factor, known to be composite. There
are four main steps in NFS: polynomial selection, sieving, linear algebra, and square root.

In the polynomial selection step, two irreducible polynomials f1(x) and f2(x) with a com-
mon root m mod N are selected having as many as practically possible smooth values over a
given factor base.

In the sieving step which is by far the most time-consuming step of NFS, pairs (a, b) are
found with gcd(a, b) = 1 such that both

bdeg(f1)f1(a/b) and bdeg(f2)f2(a/b)

are smooth over given factor bases, i.e., factor completely over the factor bases. Such a pair
(a, b) is called a relation. The purpose of this step is to collect so many relations that several
subsets S of them can be found with the property that a product taken over S yields an
expression of the form

X2 ≡ Y 2 (mod N). (3.1)

For approximately half of these subsets, computing gcd(X − Y,N) yields a non-trivial factor
of N (if N has exactly two distinct factors).

In the linear algebra step, the relations found are first filtered with the purpose of eliminat-
ing duplicate relations and relations in which a prime or prime ideal occurs which does not
occur in any other relation. If a prime ideal occurs in exactly two or three relations, these
relations are combined into one or two (respectively) so-called relation-sets. These relation-
sets form the columns of a very large sparse matrix over F2. With help of an iterative block
Lanczos algorithm a few dependencies are found in this matrix. This is the main and most
time- and space-consuming part of the linear algebra step.

In the square root step, the square root of an algebraic number of the form∏
(a,b)∈S

(a− bα)

is computed, where α is a root of one of the polynomials f1(x), f2(x), and where a, b and the
cardinality of the set S are all a few million. The norms of all (a − bα)’s are smooth. This
leads to a congruence of the form (3.1).

In the next four subsections, we describe these four steps, as carried out for the factorization
of RSA–140. We pay most attention to the polynomial selection step because, here, new ideas
have been incorporated which led to a reduction of the expected – and actual – sieving time
for RSA–140 (extrapolated from the RSA–130 sieving time) by a factor of 2.

3.1 Polynomial selection
For number field sieve factorizations we use two polynomials f1, f2 ∈ Z[x] with, amongst
other things, a common root m mod N . For integers as large as RSA–140, a modified base-m
method is the best method we know of choosing these polynomials. Montgomery’s “two-
quadratics” method [11] is the only known alternative, and it is unsuitable for numbers this
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large. With the base-m method, we fix a degree d (here d = 5) then seek m ≈ N1/(d+1) and
a polynomial f1 of degree d for which

f1(m) ≡ 0 (mod N). (3.2)

The polynomial f1 descends from the base-m representation of N . Indeed, we begin with
f1(x) =

∑d
i=0 aix

i where the ai are the coefficients of the base-m representation, adjusted so
that −m/2 ≤ ai < m/2.

Sieving occurs over the homogeneous polynomials F1(x, y) = ydf1(x/y) and F2(x, y) =
x−my. The aim for polynomial selection is to choose f1 and m such that the values F1(a, b)
and F2(a, b) are simultaneously smooth at many coprime integer pairs (a, b) in the sieving
region.

We consider this problem in two stages; first we must decide what to look for, then we must
decide how to look for it. The first stage requires some understanding of polynomial yield;
the second requires techniques for generating polynomials with good yield. In this paper we
seek only to outline our techniques. Full details will be published at a later date.

Polynomial yield. The yield of a polynomial F (x, y) refers to the number of smooth (or
almost smooth) values it produces in its sieve region. Ultimately of course we seek a pair
of polynomials F1, F2 with good yield. Since F2 is linear, all primes are roots of F2, so the
difficult polynomial is the non-linear F1. Hence, initially, we speak only of the yield of F1.

There are two factors which influence the yield of F1. These are discussed in a preliminary
manner in [19]. We call the factors size and root properties. Choosing good F1 requires
choosing F1 with a good combination of size and root properties.

By size we refer to the magnitude of the values taken by F1. It has always been well un-
derstood that size affects the yield of F1. Indeed previous approaches to polynomial selection
have sought polynomials whose size is smallest (for example, [6]).

The influence of root properties however, has not previously been either well understood
or adequately exploited. By root properties we refer to the extent to which the distribution
of the roots of F1 modulo small pk, for p prime and k ≥ 1, affects the likelihood of F1

values being smooth. In short, if F1 has many roots modulo small pk, the values taken by
F1 “behave” as if they are much smaller than they actually are. That is, on average, the
likelihood of F1-values being smooth is increased. We are able to exploit this property to
the extent that F1 values behave as if they are as little as 1/1000 their actual value. We
estimate this property alone increases yield by a factor of four due (by comparison to sieving
over random integers of the same size).

Generating polynomials with good yield. We consider this problem in two stages. In the first
stage we generate a large sample of good polynomials. Although each polynomial generated
has a good combination of size and root properties, there remains significant variation in
the yield across the sample. Moreover, there are still far too many polynomials to conduct
sieving experiments on each one. Thus in the second stage we identify without sieving, the best
polynomials in the sample. The few polynomials surviving this process are then subjected to
sieving experiments.

Consider the first stage. We concentrate on so-called skewed polynomials, that is, polynomi-
als whose first few coefficients (a5, a4 and a3) are small compared to m, and whose last few co-
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efficients (a2, a1 and a0) may be large compared to m. In fact usually |a5| < |a4| < . . . < |a0|.
To compensate for the last few coefficients being large, we sieve over a region much longer in
x than y. We take the region to be a rectangle whose length-to-height ratio is s.

Notice that any base-m polynomial may be re-written so that sieving occurs over a rectangle
of skewness s. Let m = O(N1/(d+1)) giving an unmodified base-m polynomial F1 with
coefficients also O(N1/(d+1)). The expected sieve region for F1 is a “square” given by {(x, y) :
−M ≤ x ≤ M and 1 ≤ y ≤ M} for some M . For some (possibly non-integer) s ∈ R let
x′ = x/

√
s, y′ = y

√
s and m′ = ms. The polynomials F1(x′, y′) and F2(x′, y′) with common

root m′, considered over a rectangle of skewness s and area 2M2, have the same norms as F1

and F2 over the original square region. Such a skewing process can be worthwhile to increase
the efficiency of sieving.

However, we have additional methods for constructing highly skewed polynomials with
good yields. Hence, beyond simply skewing the region on unmodified base-m polynomials,
we focus on polynomials which are themselves intrinsically skewed. The search begins by
isolating skewed polynomials which are unusually small over a rectangle of some skewness s
and which have better than average root properties. The first quality comes from a numerical
optimization procedure which fits a sieve region to each polynomial. The second quality comes
from choosing (small) leading coefficients divisible by many small pk.

We then exploit the skewness to seek adjustments to f1 which cause it to have exceptionally
good root properties, without destroying the qualities mentioned above. We can make any
adjustment to f1 as long as we preserve (3.2). We make what we call a rotation by P for
some polynomial P (x). That is, we let

f1,P (x) = f1(x) + P (x) · (x−m)

where P ∈ Z[x] has degree small compared to d. Presently we use only linear P (x) = j1x−j0
with j1 and j0 small compared to a2 and a1 respectively. We use a sieve-like procedure to
identify pairs (j1, j0) which cause f1,P to have exceptionally good root properties mod small
pk. At the end of this procedure (with pk < 1000 say) we have a large set of candidate
polynomials.

Consider then the second stage of the process, where we isolate without sieving the poly-
nomials with highest yield. Notice that as a result of looking at a large range of ad the values
of m may vary significantly across the sample. At this stage it is crucial then to consider both
F1 and F2 in the rating procedure. Indeed, the values s vary across the sample too.

We use a quantitative estimate of the effect of the root properties of each polynomial. We
factor this parameter into estimates of smoothness probabilities for F1 and F2 across a region
of skewness s. It is not necessary to estimate the yield across the region, simply to rank the
polynomial pairs in the order in which we expect their yields to appear. Of course to avoid
missing good polynomial pairs it is crucial that the metric so obtained be reliable.

At the conclusion of this procedure we perform short sieving experiments on the top-ranked
candidates.

Results. Before discussing the RSA–140 polynomial selection results, we briefly consider
the previous general factoring record, RSA–130 [6]. As a test, we repeated the search for
RSA–130 polynomials and compared our findings to the polynomial used for the factoriza-
tion. We searched for non-skewed polynomials only, since that is what was used for the
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RSA–130 factorization. Despite therefore finding fewer polynomials with exceptional root
properties, we did, in a tiny fraction of the time spent on the RSA–130 polynomial search,
find several small polynomials with good root properties. Our best RSA–130 polynomial has
a yield approximately twice that of the polynomial used for the factorization. In essence, this
demonstrates the benefit of knowing “what to look for”.

The RSA–140 search however, further demonstrates the benefit of knowing “how to look
for it”. Here of course we exploit the skewness of the polynomials to obtain exceptional root
properties.

Sieving experiments on the top RSA–140 candidates were conducted at CWI using line
sieving. All pairs were sieved over regions of the same area, but skewed appropriately for
each pair. Table 1 shows the relative yields of the top five candidate pairs, labeled A, . . . ,E.
These yields match closely the predictions of our pre-sieving yield estimate.

Table 1: Relative Yields of the top RSA–140 polynomials
Poly. Rel. Yield

A 1.00
B 0.965
C 0.957
D 0.931
E 0.930

The chosen pair, pair A, is the following:

F1(x, y) = 43 96820 82840 x5

+39031 56785 38960 y x4

−7387 32529 38929 94572 y2x3

−190 27153 24374 29887 14824 y3x2

−6 34410 25694 46461 79139 30613 y4x
+31855 39170 71474 35039 22235 07494 y5

and
F2(x, y) = x− 3 44356 57809 24253 69517 79007 y,

with s ≈ 4000.
Consider F1, F2 with respect to size. We denote by amax the largest |ai| for i = 0, . . . , d.

The un-skewed analogue, F1(63x, y/63), of F1(x, y) has

amax ≈ 5 · 1020.

A typical unmodified base-m polynomial has

amax ≈ 1/2N1/6 ≈ 8 · 1022.

The un-skewed analogue, F2(63x, y/63), of F2(x, y) has

amax ≈ 3N1/6.
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Hence, compared to the typical case F1 values have shrunk by a factor about 160 whilst F2

values have grown by a factor of 3. F1 has real roots x/y near −4936, 2414, and 4633.
Now consider F1 with respect to root properties. Notice that a5 factors as 23 · 32 · 5 · 7 ·

11 · 13 · 41 · 29759. Since also 4|a4 and 2|a3, F1(x, y) is divisible by 8 whenever y is even.
F1(x, y) has at least three roots x/y modulo each prime from 3 to 17 (some of which are due
to the factorization of the leading coefficient), and an additional 35 such roots modulo the
18 primes from 19 to 97.

We estimate that the yield of the pair F1, F2 is approximately eight times that of a skewed
pair of average yield. Approximately a factor of four in that eight is due to the root properties,
the rest to its size. We estimate the effort spent on the polynomial selection to be equivalent
to 0.23 CPU years (approximately 60 MIPS-years). Searching longer may well have produced
better polynomials, but we truncated the search to make use of idle time on workstations
over the Christmas period (for sieving). We leave as a subject of further study the trade-off
between polynomial search time and the corresponding saving in sieving time.

3.2 Sieving
Partially for comparison, two sieving methods were used: lattice sieving and line sieving.
The line siever fixes a value of y (from y = 1, 2, . . . up to some bound) and finds values of
x for which both F1(x, y) and F2(x, y) are smooth. The lattice siever fixes a prime q, called
the special-q, which divides F1(x, y), and finds (x, y) pairs for which both F1(x, y)/q and
F2(x, y) are smooth. This is carried out for many special-q’s. Lattice sieving was introduced
by Pollard [20] and the code we used is the implementation described in [12, 6], with some
additions to handle skew sieving regions efficiently.

For the lattice sieving, a rational factor base of 250 001 elements (the primes ≤ 3 497 867)
and an algebraic factor base of 800 000 elements (ideals of norm ≤ 12 174 433) were chosen.
For the line sieving, larger factor base bounds were chosen, namely: a rational factor base
consisting of the primes < 8 000 000 and an algebraic factor base with the primes <
16 777 216 = 224. For both sieves the large prime bounds were 500 000 000 for the rational
primes and 1 000 000 000 for the algebraic primes. The lattice siever allowed two large primes
on each side, in addition to the special-q input. The line siever allowed three large primes on
the algebraic side (this was two for RSA–130) and two large primes on the rational side.

The special-q’s in the lattice siever were taken from selected parts of the interval [12 175 000,
91 000 000] and a total of 2 361 390 special-q’s were handled. Lattice sieving ranged over a
rectangle of 8192 by 4000 points per special-q, i.e., a total of about 7.7 ·1013 points. Averaged
over all the workstations and PCs on which the lattice siever was run, about 52 seconds were
needed to handle one special-q and about 16 relations were found per special-q. So on average
the lattice siever needed 3.25 CPU seconds to generate one relation.

Line sieving ranged over most of |x| < 9 000 000 000 and 1 ≤ y ≤ 70 000, about 1.2 · 1015

points. It would have been better to reduce the bound on x and raise the bound on y, in
accordance with skewness 4000, but we overestimated the amount of line sieving needed.
30% of the relations found with the line-siever had three large primes. Averaged over all
the workstations and PCs on which the line siever was run, it needed 5.1 CPU seconds to
generate one relation.

A fair comparison of the performances of the lattice and the line siever is difficult for the
following reasons: memory requirements of the two sievers are different; the efficiency of both
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sievers decreases – but probably not with the same “speed” – as the sieving time increases;
the codes which we used for lattice and line sieving were optimized by different persons (Arjen
Lenstra, resp. Peter Montgomery).

A total of 68 500 867 relations were generated, 56% of them with lattice sieving (indicated
below by “LA”), 44% with line sieving (indicated by “LI”).

Sieving was done at five different locations with the following contributions:

36.8 % Peter L. Montgomery, Stefania Cavallar, Herman J.J. te Riele,
Walter M. Lioen (LI, LA at CWI, Amsterdam, The Netherlands)

28.8 % Paul C. Leyland (LA at Microsoft Research Ltd, Cambridge, UK)
26.6 % Bruce Dodson (LI, LA at Lehigh University, Bethlehem, PA, USA)
5.4 % Paul Zimmermann (LA at Médicis Center, Palaiseau, France)
2.5 % Arjen K. Lenstra (LA at Citibank, Parsippany, NJ, USA, and

at the University of Sydney, Australia)

Sieving started the day before Christmas 1998 and was completed one month later. Sieving
was done on about 125 SGI and Sun workstations running at 175 MHz on average, and on
about 60 PCs running at 300 MHz on average. The total amount of CPU time spent on
sieving was 8.9 CPU-years. We estimate this to be equivalent to 2000 MIPS years. For
comparison, RSA–130 took about 1000 MIPS years. Practical experience we collected with
factoring large RSA–numbers tells us that with a careful tuning of the parameters the sieving
times may be reduced now to 1000 resp. 500 MIPS years. The relations were collected at
CWI and required 3.7 Gbytes of disk storage.

3.3 Filtering and finding dependencies
The filtering of the data and the building of the matrix were carried out at CWI and took
one calendar week.

Filtering. Not all the sieved relations were used for filtering since we had to start the huge
job for finding dependencies at a convenient moment. We actually used 65.7M of the 68.5M
relations as filter input.

First, the “raw” data from the different contributing sites were searched through for dupli-
cates. This single-contributor cleaning removed 1.4M duplicates. Next, we collected all the
relations and eliminated duplicates again. This time, 9.2M duplicates were found. The 1.4 +
9.2M duplicates came from machine and human error (e.g., the resumption of early aborted
jobs resp. duplicate jobs), from the simultaneous use of the lattice and the line siever, and
from the line siever and the lattice siever themselves.

In the filter steps which we describe next, we only considered prime ideals with norm larger
than 10 million; in the sequel, we shall refer to these ideals as the large prime ideals. In the
remaining 55.1M relations we counted 54.1M large prime ideals. We added 0.1M free relations
(cf. [11, Sect. 4, pp. 234–235]). Taking into account another 1.3M prime ideals with norm
below 10 million, it seemed that we did not have enough relations at this point. However,
after we removed 28.5M so-called singletons (i.e., relations which contain a large prime ideal
that does not appear in any other relation) we were left with 26.7M relations having 21.5M
large prime ideals. So now we had more than enough relations compared with the total
number of prime ideals. We deleted another 17.6M relations which were heuristically judged
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the least useful2, or which became singletons after we had removed some other relations. We
were finally left with 9.2M relations containing 7.8M large prime ideals. After this, relations
with large prime ideals occurring twice were merged (6.0M relations left) and, finally, those
occurring three times were merged (4.7M relations left).

Finding dependencies. The resulting matrix had 4 671 181 rows and 4 704 451 columns,
and weight 151 141 999 (32.36 nonzeros per row). With the help of Peter Montgomery’s
Cray implementation of the block Lanczos algorithm (cf. [17]) it took almost 100 CPU-hours
and 810 Mbytes of central memory on the Cray C916 at the SARA Amsterdam Academic
Computer Center to find 64 dependencies among the rows of this matrix. Calendar time for
this job was five days.

3.4 The square root step
During February 1–2, 1999, four square root (cf. [16]) jobs were started in parallel on four
different 250 MHz processors of CWI’s SGI Origin 2000, each handling one dependency. Each
had about 5 million (not necessarily distinct) a− bα terms in the product. After 14.2 CPU-
hours, one of the four jobs stopped, giving the two prime factors of RSA–140. Two others
also expired with the two prime factors after 19 CPU-hours (due to different input parameter
choices). One of the four jobs expired with the trivial factors.

We found that the 140–digit number

RSA–140 =

2129024631825875754749788201627151749780670396327721627823338321538194\
9984056495911366573853021918316783107387995317230889569230873441936471

can be written as the product of the two 70–digit primes:

p = 3398717423028438554530123627613875835633986495969597423490929302771479

and

q = 6264200187401285096151654948264442219302037178623509019111660653946049.

Primality of the factors was proved with the help of two different primality proving codes
[2, 5]. The factorizations of p± 1 and q ± 1 are given by

p− 1 = 2 · 7 · 7649 · 435653 · 396004811 · 183967535370446691250943879126698812223588425357931
p+ 1 = 23325 · 13 · 8429851 · 33996935324034876299 · 2534017077123864320746970114544624627539

q − 1 = 2661 · 135613 · 3159671789 · 3744661133861411144034292857028083085348933344798791
q + 1 = 2 · 3 · 52389 · 6781 · 982954918150967 · 16106360796654291745007358391328807590779968869

Acknowledgements. Acknowledgements are due to the Dutch National Computing Fa-
cilities Foundation (NCF) for the use of the Cray C916 supercomputer at SARA, and to
(in alphabetical order) CWI, Lehigh University, the Magma Group of John Cannon at the
University of Sydney, the Médicis Center at École Polytechnique (Palaiseau, France), and
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