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Abstract. Van Glabbeek (1990) presented the linear time/branching time spec-
trum of behavioral equivalences for finitely branching, concrete, sequential pro-
cesses. He studied these semantics in the setting of the basic process algebra
BCCSP, and tried to give finite complete axiomatizations for them. Obtaining
such axiomatizations in concurrency theory often turns out to be difficult, even
in the setting of simple languages like BCCSP. This has raised a host of open
questions that have been the subject of intensive research in recent years. Most
of these questions have been settled over BCCSP, either positively by giving a
finite complete axiomatization, or negatively by proving that such an axiomatiza-
tion does not exist. Still some open questions remain. This paper reports on these
results, and on the state-of-the-art in axiomatizations for richer process algebras
with constructs like sequential and parallel composition.

1 Introduction

One of Jan Willem Klop’s main contributions to the theory of concurrency is the devel-
opment of the ACP family of process algebras in collaboration with Jan Bergstra—see
the original papers [8–12], the textbooks [6, 18] and the historical paper [5]. Process
algebras in the ACP style are defined, following the tradition of the algebraic speci-
fication of abstract data types, relying on tools from universal algebra and equational
logic. More specifically, languages in the ACP family are defined by specifying their
signature—that is, the collection of algebraic operations that can be used to build new
descriptions of reactive systems in terms of ones that we have already constructed—
together with a collection of equational axioms that implicitly define the expected se-
mantic properties of processes. This is an application of the classic axiomatic method,
on which the development of modern algebra rests, to concurrency theory.



An example of a typical axiom that holds for all of the classic algebras in the ACP
family, and is familiar from the theory of regular languages [16, 33], is

(x+ y) · z ≈ (x · z) + (y · z) .

In the above equation, the operation symbols + and · stand for “alternative composi-
tion” (or nondeterministic choice) and “sequencing”, respectively. Intuitively, this ax-
iom states that a process that can initially choose to behave either like x or like y, and
then proceeds to behave like z, is “equivalent” to one that initially chooses to behave
either like x · z or like y · z.

On the other hand, the right-distributivity axiom of alternative composition over
sequencing familiar from formal language theory, namely

x · (y + z) ≈ (x · y) + (x · z) ,

is usually not considered part of the axiom systems for process algebras since the left-
and right-hand sides of the above equation may exhibit different deadlock potential, and
should not be equated as descriptions of reactive systems.

Axiom systems arise from the desire of isolating the features that are common to a
collection of algebraic structures—namely, their models. Early examples of models of
the axiom systems for ACP style process algebras were the “projective limit” model—
as employed in, e.g., [8]—, and the “graph model” adopted in [11].

Given a language in the ACP family, one may define intuitively appealing models
of its axiom system as quotients of the collection of labelled transition systems modulo
some behavioural congruence. Labelled transition systems (LTSs) [32] are a funda-
mental formalism for the description of concurrent computation, which is widely used
in light of its flexibility and applicability. In particular, they underlie Plotkin’s Struc-
tural Operational Semantics [41, 42] and, following Milner’s pioneering work on CCS
[36], are by now the standard formalism for describing the semantics of various process
description languages.

LTSs model processes by explicitly describing their states and their transitions
from state to state, together with the actions that produced them. Since this view of
process behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appropri-
ate technical sense. The lack of consensus on what constitutes an appropriate notion
of observable behaviour for reactive systems has led to a large number of proposals
for behavioural equivalences for concurrent processes. (See the study [24], where van
Glabbeek presents the linear time/branching time spectrum—a lattice of known be-
havioural equivalences and preorders over LTSs, ordered by inclusion.)

Having defined a model of an axiom system for a process algebra in terms of LTSs,
it is natural to study the connection between the equations that are valid in the chosen
model, and those that are derivable from the axioms using the rules of equational logic.
The key questions here are:

– Is the axiom system complete? That is, can all of the equations that hold in the
LTS model modulo the chosen notion of behavioural equivalence be derived from
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the axiom system using the rules of equational logic? (A complete axiom system
is also referred to as a basis for the algebra it axiomatizes.) Researchers in concur-
rency theory often restrict themselves to studying axiom systems that are complete
with respect to the collection of valid equations that do not contain occurrences of
variables.

– Does the algebra of LTSs modulo the chosen notion of behavioural equivalence
afford a finite equational axiomatization?

A complete axiomatization of a behavioural congruence yields a purely syntactic char-
acterization, independent of LTSs and of the actual details of the definition of the chosen
behavioural equivalence, of the semantics of the process algebra. This bridge between
syntax and semantics plays an important role in both the practice and the theory of pro-
cess algebras. From the point of view of practice, these proof systems can be used to
perform system verifications in a purely syntactic way using general purpose theorem
provers or proof checkers, and form the basis of purpose-built axiomatic verification
tools like, e.g., PAM [34]. A positive answer to the first basic question raised above is
therefore not just theoretically pleasing, but has potential practical applications. From
the theoretical point of view, complete axiomatizations of behavioural equivalences cap-
ture the essence of different notions of semantics for processes in terms of a basic col-
lection of identities, and this often allows one to compare semantics which may have
been defined in very different styles and frameworks. A review of existing complete
equational axiomatizations for many of the behavioural semantics in van Glabbeek’s
spectrum is offered in [24]. The equational axiomatizations offered ibidem are over the
language BCCSP, a common fragment of Milner’s CCS [36] and Hoare’s CSP [31]
suitable for describing finite synchronization trees, and characterize the differences be-
tween behavioural semantics in terms of a few revealing axioms.

If the answer to the second basic question mentioned above is negative, then one
may resort to expanding the signature with auxiliary operations, thus adding expressive
power for the purpose of axiomatizing the equational theory. Bergstra and Heering [7]
have proved that every algebra with a recursively enumerable equational theory has a
finite complete equational axiomatization if it may involve a hidden sort and some aux-
iliary hidden functions. That the auxiliary functions are declared hidden means in par-
ticular that they themselves need not be completely axiomatized. So then the question
remains whether it is possible to expand the algebra with (visible) auxiliary operations,
preferably with an intuitive interpretation of their own, in such a way that the equational
theory of the expansion has a finite axiomatization.

A classic example of this line of research, which can again be traced back to Jan
Willem Klop’s work in concurrency theory, is offered by the paper [10]. There Bergstra
and Klop showed how to give a finite axiomatization of the language ACP using the
auxiliary left and communication merge operators to characterize parallel composition.
As shown by Moller [38, 39], auxiliary operators are needed to obtain a finite basis
for that language because the process algebras CCS and ACP without the auxiliary
left merge operator from [8] do not have a finite equational axiomatization modulo
bisimulation equivalence.

An axiom system E is ω-complete when an equation can be derived from E if,
and only if, all of its closed instantiations can be derived from E. In theorem proving
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applications, it is often convenient to work with axiomatizations that are ω-complete. In
fact, using an ω-complete axiomatization one can avoid proofs by (structural) induction
in favour of purely equational reasoning. Moreover, as argued by Heering in [26], ω-
completeness of an axiom system is desirable in the partial evaluation of programs.
A classic example of an axiom system that is not ω-complete is that for the lambda-
calculus—see [40].

Many of the existing axiomatizations of behavioural equivalences over expressive
process description languages studied in concurrency theory are powerful enough to
prove all of the valid equalities between terms that contain no occurrences of variables,
but are not ω-complete. In fact, obtaining ω-complete axiomatizations in concurrency
theory often turns out to be a difficult question, even in the setting of simple languages
like BCCSP. This has raised a host of open questions that have been the subject of inten-
sive investigation by process algebraists in recent years. Most of these questions have
been settled over BCCSP and other simple process algebras, either positively by giving
a finite ω-complete axiomatization, or negatively by proving that such an axiomatiza-
tion does not exist. Still some open questions remain—especially for process descrip-
tion languages and behavioural equivalences that, like observation equivalence [29, 36],
abstract, in some formal sense, from events in process behaviours that are deemed to be
unobservable.

In this paper, we report on positive and negative results pertaining to the existence
of (finite) complete axiomatizations for BCCSP and richer process algebras, contain-
ing constructs like sequential composition and interleaving. We hope that this survey of
results will contribute to their dissemination in our research community, and will stimu-
late further investigations leading to the solution of the challenging open problems that
are left.

The paper is organized as follows. We begin by presenting in Section 2 some basic
background on universal algebra and equational logic that will be useful for the remain-
der of this study. In this general setting, we describe a collection of proof techniques
that can be used to establish positive and negative results pertaining to the existence
of finite, complete axiomatizations for algebras of processes. Section 3 reports on re-
sults and open problems on axiomatizations of behavioural equivalences over the lan-
guage BCCSP studied by van Glabbeek in [24]. The paper concludes with a survey of
the state-of-the-art in the equational theory of extensions of that language with more
complex operators such as parallel composition and sequential composition (Sections 4
and 5).

2 General Techniques

Our aim in this section is to present some general techniques that can be used to estab-
lish results pertaining to the existence or non-existence of finite equational axiomatiza-
tions for behavioural equivalences and preorders over process description languages. A
suitable general framework within which these techniques can be described is given by
the classic fields of universal algebra and equational logic. We therefore begin by in-
troducing the basic notions from these areas of mathematical research that will be used
throughout this paper. We state at the outset that we shall not need very deep results or
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constructions from universal algebra in what follows, and that much more on it may be
found in, e.g., the classic reference [15]. A self-contained presentation from a computer
science perspective of the topics we now proceed to introduce may be found in [27].

2.1 Preliminaries

Σ-Algebras We start from a countably infinite set V of variables with typical elements
x, y, w, z. A signature Σ consists of a set of operation symbols, disjoint from V , to-
gether with a function arity that assigns a natural number to each operation symbol.
The set of terms over Σ is the least set such that

– Each x ∈ V is a term.
– If f is an operation symbol of arity n, and t1, . . . , tn are terms, then f(t1, . . . , tn)

is also a term.

An operation symbol f of arity 0 will be often called a constant symbol, and the term
f() will be abbreviated as f .

We write (Σ) for the set of all terms over Σ and use t, u, v, possibly subscripted
and/or superscripted, to range over terms. A term is closed (or ground) if it contains
no occurrences of variables. We denote by T(Σ) the set of closed terms over Σ. A
substitution is a mapping from variables to terms. A substitution is closed if it maps
variables to closed terms. For every term t and substitution σ, the term obtained by
replacing every occurrence of a variable x in t with the term σ(x) will be written σ(t).
Note that σ(t) is closed if σ is. Throughout this paper, we use the symbol “=” to stand
for (syntactic) equality.

Example 1. A signature for the natural numbers with the operation max yielding the
maximum of two numbers might contain a constant 0, a unary successor operation S
and the binary operation symbol ∨. We shall use this signature as our running example
throughout this section, and use ∨ in its customary infix notation for the sake of clarity.

Example 2. A process algebra that will be discussed extensively in Section 3 is BCCSP.
Its signature consists of the constant 0, the binary operator + called alternative compo-
sition, and unary prefix operators a , where a ranges over a nonempty set A of actions.

The collection of terms over a signature Σ yields a language. The semantics of this
language can be defined canonically once we equip the set of intended denotations with
the structure of a Σ-algebra. A Σ-algebra is a structure

A = (A,
{
fA | f ∈ Σ

}
) ,

where A is a non-empty set (often called the carrier of the algebra), and

fA : An → A

for each operation symbol f ∈ Σ of arity n. Note that if f is a constant symbol, then
fA can be viewed as an element of A.

In order to interpret terms in (Σ) in a Σ-algebra A = (A,
{
fA | f ∈ Σ

}
) we

need the notion of an environment. An environment is a function ρ mapping variables
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to elements of A. The mapping ρ can be extended homomorphically to (Σ) in a unique
way by stipulating that

ρ(f(t1, . . . , tn)) = fA(ρ(t1), . . . , ρ(tn))

for each operation symbol f of arity n and terms t1, . . . , tn. Note that ρ(t) is indepen-
dent of ρ whenever t is closed. For each closed term t, we write tA for the element of
A that is the interpretation of t in the algebra A. An element of the carrier set of A is
denotable if it is the interpretation of some closed term.

Example 3. A suitable algebra N in which to interpret the collection of terms over the
signature introduced in Example 1 has the set of natural numbers IN as carrier set. The
constant symbol 0 is interpreted as the natural number 0, the unary function symbol
S is interpreted as the successor function—that is, the function mapping each natural
number n to n + 1—and the binary function symbol ∨ is interpreted as the function
mapping each pair of natural numbers to the largest of the two.

It is easy to see that each element of N is denotable. Indeed, the natural number n
is the interpretation of the term tn defined thus:

t0 = 0 and

tn+1 = S(tn) .

The interpretation of the language (Σ) in a Σ-algebraA = (A,
{
fA | f ∈ Σ

}
) natu-

rally induces a congruence relation =A over (Σ). This is defined thus:

t =A u if, and only if, ρ(t) = ρ(u), for each environment ρ .

Example 4. Examples of identities that hold with respect to the congruence relation
=N induced by the interpretation of the language of terms over the signature for the
natural numbers in our running example are

x ∨ 0 =N x

0 ∨ x =N x and

S(x) ∨ S(y) =N S(x ∨ y) .

The results reviewed in this paper all aim at using the classic logic of equality to offer
a syntactic characterization of the relation =A for algebras of processes. The study
of such axiomatic characterizations of semantic equivalences falls therefore within the
realm of equational logic, whose basics we now proceed to present.

Equational Logic An axiom system is a collection E of equations t ≈ u over the
language (Σ). (The equations inE are often referred to as axioms.) An equation t ≈ u
is derivable from an axiom system E, notation E ` t ≈ u, if it can be proven from the
axioms in E using the rules of equational logic (viz. reflexivity, symmetry, transitivity,
substitution and closure under Σ-contexts):

t ≈ t t ≈ u
u ≈ t

t ≈ u u ≈ v
t ≈ v

t ≈ u
σ(t) ≈ σ(u)

6



ti ≈ ui (1 ≤ i ≤ n)

f(t1, . . . , tn) ≈ f(u1, . . . , un)
.

(The first three rules above state that ≈ is an equivalence relation, whereas the latter
two state that ≈ is closed under substitutions, and is a congruence.) Formally, a proof
of an equation t ≈ u from E is a sequence ti ≈ ui (1 ≤ i ≤ n) of equations such that

– tn = t and un = u, and
– for each 1 ≤ i ≤ n, the equation ti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations in E or some of the equations that
precede it in the sequence as premises.

Without loss of generality one may assume that the substitution rule is only applied to
axioms, i.e., that the rule

t ≈ u
σ(t) ≈ σ(u)

may only be used when (t ≈ u) ∈ E. In this case, the equation σ(t) ≈ σ(u) is called a
substitution instance of an axiom in E.

Moreover, by postulating that for each axiom in E also its symmetric counterpart
is present in E, one may assume that there are no applications of the symmetry rule in
equational proofs.

It is well-known (see, e.g., Sect. 2 in [25]) that if an equation relating two closed
terms can be proven from an axiom system E, then there is a closed proof for it.

Definition 1 (Soundness). Let A be a Σ-algebra. An equation t ≈ u is sound with
respect to =A iff t =A u. An axiom system is sound with respect to =A iff so is each of
its equations.

The collection of all equations that are sound with respect to =A is called the equa-
tional theory of A.

In other words, an axiom system is sound with respect to =A if it can only be used
to prove equations that are valid in the algebra A. This is, of course, a most natural
requirement on an axiom system. However, ideally an axiom system should also allow
us to prove all of the equations that hold in a given algebra. This is captured by the
technical requirement of completeness.

Definition 2 (Completeness). Let A be a Σ-algebra. An axiom system E is ground
complete with respect to =A iff E ` t ≈ u whenever t =A u, for all closed terms t, u.

E is complete with respect to =A iffE ` t ≈ u whenever t =A u, for all terms t, u.

Definition 3 (Equational Bases and Finitely Based Algebras). An equational basis
for an algebra A is a sound axiom system E that is complete with respect to =A. We
say that an algebra A is finitely based if it has a finite equational basis.

The notion of completeness of an axiom system relates the proof-theoretic notion of
derivability using the rules of equational logic with the model-theoretic one of “validity
in a model”. From a proof-theoretic perspective, a useful property of an axiom system
E is that, for all terms t, u ∈ (Σ),

E ` t ≈ u iff E ` σ(t) ≈ σ(u), for each closed substitution σ . (1)
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An axiom system with the above property is called ω-complete. In theorem proving ap-
plications, it is convenient if an axiomatization is ω-complete, because this means that
proofs by (structural) induction can be avoided in favour of purely equational reason-
ing. In fact, suppose that σ(t) ≈ σ(u) is provable from an axiom system E, for each
closed substitution σ. If E is ω-complete, then we know that an equational proof of
the actual equation t ≈ u from E exists. In general, the equation t ≈ u might not be
derivable from E if E is just ground complete. In that case, we might have to content
ourselves with showing that all closed instantiations of that equation are derivable from
E, and this is usually done by induction on the structure of the closed terms that can be
substituted for the variables occurring in t and u.

Example 5. The collection of equations corresponding to the congruences listed in Ex-
ample 4 is easily seen to be ground complete with respect to =N . That axiom system
is, however, neither complete nor ω-complete. For example, the equation

x ∨ x ≈ x (2)

is valid in the algebra N , and all of its closed instantiations are provable from the three
equations in Example 4. However, the above equation itself is not derivable from the
axioms in Example 4. (See Examples 7 and 8 for proofs of this claim.)

A finite basis for the algebra N is given by the following axiom system

x ∨ 0 ≈ x
S(x) ∨ S(y) ≈ S(x ∨ y)

S(x) ∨ x ≈ S(x)

x ∨ x ≈ x
x ∨ y ≈ y ∨ x and

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z .

It turns out that completeness and ω-completeness are closely related properties of an
axiom system. Indeed, assume that A is a Σ-algebra each of whose elements is deno-
table. Suppose that E is sound and complete with respect to =A. It is not hard to argue
that, in this case, E is also ω-complete.

Remark 1. For the aforementioned connection between the model-theoretic notion of
completeness and the proof-theoretic one of ω-completeness to hold, it is crucial that
each element in the algebra A be denotable. To see this, consider the signature consist-
ing of the constant ⊥ and the unary function symbol P . Interpret this language over the
algebra having {0, 1} as carrier set, where ⊥ is interpreted as 0, and P is interpreted
as the constant function 0. We claim that no basis for this algebra can be ω-complete.
To see that this holds, note, first of all, that each closed term over the aforementioned
signature denotes the element 0. Therefore each closed instantiation of the equation
P (x) ≈ x holds in the algebra, and is provable from the chosen basis. However, the
equation P (x) ≈ x is itself not provable. This follows because E is sound, and that
equation does not hold in the algebra, as can be seen by setting the variable x to 1.
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Consider the Σ-algebra obtained by quotienting the set of closed terms T(Σ) with re-
spect to the congruence relation that equates two closed terms t, u iff the equation t ≈ u
is provable from an axiom system E. As a corollary of the aforementioned observation,
we have that an equational basis for that algebra is also ω-complete.

Remark 2. Let A be a Σ-algebra. It is not hard to see that an axiom system that is both
ω-complete and ground complete with respect to =A is also complete with respect to
=A.

One of the classic topics in the field of equational logic, and in its applications in process
algebra, is the study of results pertaining to the existence or non-existence of finite bases
for algebras. In the realm of concurrency theory, van Glabbeek presented in [23, 24] the
linear time/branching time spectrum of behavioral equivalences for finitely branching,
concrete, sequential processes. He studied these semantics in the setting of the basic
process algebra BCCSP, and tried to give finite ω-complete axiomatizations for them.
In many cases this turns out to be a difficult question. Most of these finite basis ques-
tions have been settled, either positively by giving a finite ω-complete axiomatization,
or negatively by proving that such an axiomatization does not exist. But some open
questions remain. The main aim of this paper is to survey such results. Before doing so,
however, we give a brief overview of some of the general proof techniques that have
been developed in the literature on universal algebra, and more specifically within pro-
cess algebra, to show that certain algebras afford a finite equational basis, or that no
such basis exists. These strategies will then be used in Sections 3–5 to establish positive
and negative results on the existence of finite bases for behavioural congruences over
several process description languages.

2.2 Methods for Establishing Positive Results

Assume that we have an algebra A and a (finite) axiom system E that is sound with
respect to =A. How can we show that E is complete or ground complete? There are
a few general proof techniques that have been applied in the literature to answer this
question, and we review some of those in the remainder of this section.

Normal Forms A classic strategy for showing that an axiom system is complete or
ground complete that has had a wealth of applications in process algebra relies on the
following two steps:

– Isolation of normal forms. In this step one finds a collection of terms, the so-
called normal forms, with the property that each term t can be proved equal to a
normal form using the equations in E. In other words, the set of normal forms is as
expressive as the whole collection of terms modulo the equational theory generated
by E. (If we are aiming at showing that our axiom system E is ground complete,
then the normal forms are closed terms, and it suffices only to prove that each closed
term is provably equal to a normal form using the equations in E.)

– Distinctness of normal forms. In this second step, one argues that two normal
forms are related by =A if, and only if, they are “identical”. This is often done by
showing that, for each pair of different normal forms, it is possible to construct an
environment ρ distinguishing them.
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In applications of this method in process algebra, the former step in this proof strategy
is often carried out with the use of term rewriting techniques. In that case, the normal
forms are precisely those of the term rewriting system, and the analysis is complicated
by the need to consider rewriting modulo commutativity and associativity of certain
operators like alternative composition. Moreover, the isolation of a suitable notion of
normal form often requires considerable ingenuity, and is a difficult art.

Example 6. The aforementioned strategy based upon the isolation of suitable normal
forms for terms can be used to show that the axiom system presented in Example 5 is,
as claimed there, a finite basis for the algebraN . Indeed, a suitable set of normal forms
for terms over the signature of that algebra is given by the collection of terms of the
form ∨

i∈I
Sni(xi) [∨Sn(0)] ,

where

– I is a finite index set,
– ni ≥ 0, for each i ∈ I , and
– the variables xi (i ∈ I) are all different.

The notation [∨{Sn(0)}] used in defining normal forms means that the term Sn(0)
is optional. If that term is present then n must be larger than each of the ni (i ∈ I).
Moreover, for an index set J = {j1, . . . , jk} (k ≥ 0) and collection of terms tj (j ∈ J),
we have used the notation

∨
j∈J tj as a short-hand for

tj1 ∨ · · · ∨ tjk .

(That term stands for 0 if J is empty.)
It is not too hard to argue that

1. each term can be proven equal to a normal form using the equations in Example 5
and

2. if t and u are different normal forms, then there is an environment ρ mapping
variables to natural numbers such that ρ(t) 6= ρ(u).

Therefore, as claimed in Example 5, that axiom system is a finite basis for the algebra
N . Since each element of N is denotable (Example 3), E is also ω-complete.

Inverted Substitutions A proof technique that can be used to prove the ω-completeness
of an axiom system, and that originates from research in process algebra, was offered
by Groote in [25]. Groote’s strategy is based on proof transformations, and proceeds as
follows. Assume that we have an axiom system E, and an arbitrary equation t ≈ u all
of whose closed instantiations are provable from E. The first step in Groote’s “inverted
substitutions” strategy is to find a closed substitution σ such that a proof of the equation
σ(t) ≈ σ(u) from E can be transformed uniformly to a proof of the equation t ≈ u.
This proof transformation is achieved by means of a mapping σ̂ : T(Σ) → (Σ) that
intuitively maps each closed term representing a variable to the variable itself. This
transformation yields the desired proof of the equation t ≈ u from E, provided that the
technical conditions stated in the following theorem are met.
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Theorem 1 (Groote [25]). Let E be an axiom system over signature Σ. Assume that,
for each equation t ≈ u all of whose closed instantiations can be proven from E, there
exist a closed substitution σ and a mapping σ̂ : T(Σ)→ (Σ), satisfying the following
conditions:

1. E proves the equations σ̂(σ(t)) ≈ t and σ̂(σ(u)) ≈ u,
2. for each operation symbol f and terms u1, . . . , un, u

′
1, . . . , u

′
n, where n is the arity

of f , the equation σ̂(f(u1, . . . , un)) ≈ σ̂(f(u′1, . . . , u
′
n)) is provable from those in

E and the equations ui ≈ u′i and σ̂(ui) ≈ σ̂(u′i) (1 ≤ i ≤ n) and
3. the equation σ̂(σ′(t1)) ≈ σ̂(σ′(t2)) is provable from E for each (t1 ≈ t2) ∈ E

and closed substitution σ′.

Then E is ω-complete.

The strategy for proving the ω-completeness of axiom systems offered by the above
result has been applied with success by Groote and other researchers in the field of
process algebra, and, when applicable, often leads to simpler proofs than the standard
one based on normal forms. As remarked by Groote in [25], the ω-completeness of the
finite basis for the algebra N given in Example 5 cannot be shown using the technique
in Theorem 1.

Giving Semantics to All Terms The algebras that are used in the field of process descrip-
tion languages to interpret terms over some signature Σ are often obtained by taking
the quotient T(Σ)/∼ of the algebra of closed terms over Σ modulo some notion of
congruence∼. The interpretation of a closed term in this algebra is its congruence class
with respect to ∼, and two arbitrary terms are congruent if, and only if, so are all of
their closed instantiations.

Another technique that has been developed in the field of process algebra to estab-
lish ω-completeness results for axiom systems relies on the following steps:

– Define the congruence relation ∼ over all terms in (Σ) directly. The relation
∼ should be defined over (Σ) in such a way that two terms are related by ∼ if,
and only if, so are all of their closed instantiations. This means, in particular, that
an equation t ≈ u is sound in the quotient algebra T(Σ)/∼ exactly when t ∼ u
holds. (This step usually involves giving an operational semantics to open terms,
and possibly adapting the definition of the congruence relation ∼.)

– Completeness over terms. In this second step, one proves that the candidate axiom
system E is a basis for the quotient algebra of terms (Σ) modulo ∼, and hence
for the quotient algebra of closed terms T(Σ) modulo∼. Since each element of the
algebra T(Σ)/∼ is denotable, it follows that E is also ω-complete.

To the best of our knowledge, this technique was first applied in [35] by Milner to show
completeness of his inference system for bisimulation equivalence over the regular frag-
ment of the Calculus of Communicating Systems (CCS) [36].
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Cover Equations This technique from Fokkink and Nain [20] is tailored to BCCSP.
The aim is to obtain an explicit description of the equational theory for a particular
semantics. The central idea is that if an equation t ≈ u is sound for BCCSP modulo
some semantics in the linear time/branching time spectrum, then u+t ≈ t and t+u ≈ u
are sound as well; and from the last two equations one can derive t ≈ u. This implies
that it is sufficient to only consider sound equations of the form at + u ≈ u (where a
denotes an action and t, u are BCCSP terms). These are called the cover equations.

When the cover equations have been classified, one can proceed in two ways. Either
one can determine an infinite family of cover equations that obstructs a finite basis, or
one can determine a finite basis among the cover equations.

2.3 Methods for Establishing Negative Results

To prove that a set of equations cannot be derived from a given, possibly finite, subset
of this set, we usually point out one specific equation in the superset, and prove that it
is not derivable from the subset. To show that an equational theory—that is, the set of
equations that hold in a given algebra—is not finitely based, we extend this reasoning
by proving that for each finite subset of the theory, there is an equation that cannot
be derived from this finite set. Often we obtain this result by establishing a stronger
result: we identify a particular countably infinite sequence of equations in the theory
with some suitable properties, and show that no finite subset of the theory can prove all
of the equations in that sequence.

The proof techniques used for this purpose can roughly be divided into two cate-
gories: the model-theoretic techniques and the proof-theoretic ones. In what follows we
will try to describe the essence of these two main methodologies.

Model-theoretic Techniques If a set of equations E is sound in an algebra A, we say
that A is a model for E. By Birkhoff’s completeness theorem for equational logic [13],
each equation that is derived from E holds in A, if A is a model for E. Thus, to prove
that an equation t ≈ u is not derivable from E it is sufficient to find an algebra that is a
model for E but not of the equation t ≈ u.

Example 7. In Example 5 we claimed that equation (2) is not derivable from the axioms
in Example 4. As argued above, this can be proven by exhibiting a model of the axioms
in Example 4 where ∨ is not idempotent. A simple example of such a model consists
of the collection of all finite strings over the symbol a, where 0 is interpreted as the
empty string, the unary operation symbol S is interpreted as the identity function, and
∨ is used to stand for concatenation.

In light of the previous observations, to prove that an equational theory is not finitely
based, one may therefore proceed as follows:

– isolate a countably infinite collection of equations en (n ≥ 0) in the equational
theory,

– for each finite subset E of the equational theory, construct an algebra AE that is a
model of E, but in which some of the equations en fail.

Examples of the application of this strategy may be found in, e.g., [1, 2, 16, 22].
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Proof-theoretic Techniques Recall that an equation t ≈ u is derivable from a set of
equations E if there is a sequence ti ≈ ui (1 ≤ i ≤ n) of equations such that

– tn = t and un = u, and
– for each 1 ≤ i ≤ n, the equation ti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations in E or some of the equations that
precede it in the sequence as premises.

Proof-theoretic techniques aim at showing that t ≈ u is not derivable from E, by estab-
lishing that no such proof sequence exists. This is often done by finding a property of
equations that

– holds true for each instantiation of the axioms in E,
– is preserved by the rules of equational logic—that is, if all of the equations that are

premises of the rule have the property, then so does the conclusion of the rule—,
and

– fails for the equation t ≈ u.

This contradicts the existence of a proof for the equation t ≈ u from E, showing that
t ≈ u is not derivable from that axiom system.

Example 8. The aforementioned proof-theoretic strategy can be used to give an alter-
native proof that the idempotence of ∨ is not derivable from the axioms in Example 4.
To this end, observe that the left- and right-hand sides of each axiom in Example 4
contain the same number of occurrences of each variable. It is not hard to see that this
property is preserved under equational derivations. On the other hand, the term x ∨ x
contains two occurrences of the variable x, whereas the term x has only one. It follows
that equation (2) is not derivable from the axioms in Example 4.

The proof-theoretic strategy we have just described can be applied to show that an
equational theory is not finitely based as follows:

– isolate a countably infinite collection of equations en (n ≥ 0) in the equational
theory,

– for each finite subset E of the equational theory, show that there is a property of
equations that is satisfied by all of the equations that can be derived from E, but
that is not afforded by some of the equations en.

Proof-theoretic techniques have found wide application in establishing that algebras
of processes do not afford a finite basis. In particular, all of the known proofs of the
negative results we survey in Sections 4 and 5 are based on applications of the afore-
mentioned proof-theoretic strategy.

Remark 3. An observation that can sometimes be used to show that an equational the-
ory does not afford a finite equational axiomatization relies on the compactness theorem
(see, e.g., [15]). Assume that we have an infinite axiomatizationE for an equational the-
ory T . If T had a finite axiomatization, then, by the compactness theorem, some finite
subset of E would be a complete axiomatization for the theory T . Namely, since E is
complete, each axiom in the finite axiomatization for T could be derived from E, and
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each of these derivations uses only finitely many axioms in E. To prove that T does not
have a finite axiomatization, it therefore suffices to show that, for each finite subset E′

of E, there is an equation in E that is not provable from E ′. This can be achieved using
either of the two general proof strategies described above. Applications of this proof
methodology may be found in, e.g., [16, 17].

3 On Finite Bases for BCCSP

3.1 The Linear Time/Branching Time Spectrum

Van Glabbeek presented in [23, 24] the linear time/branching time spectrum of be-
havioural equivalences for finitely branching, concrete processes. In this section, for
the sake of completeness, we define the semantics in this spectrum.

A labelled transition system contains a set of states, with typical element s, and a
set of transitions s

a→ s′, where a ranges over some set of labels. The set I(s) consists
of those labels a for which there exists a transition s

a→ s′.
First we define four semantics based on simulation.

Definition 4 (Simulations). Assume a labelled transition system.

– A binary relationR on states is a simulation if s0 R s1 and s0
a→ s′0 imply s1

a→ s′1
with s′0 R s′1.

– A simulationR is a ready simulation if s0 R s1 and a 6∈ I(s0) imply a 6∈ I(s1).
– A simulationR is a 2-nested simulation ifR−1 is included in a simulation.
– A bisimulation is a symmetric simulation.

Next we define six semantics based on decorated versions of execution traces.

Definition 5 (Decorated Traces). Assume a labelled transition system.

– A sequence a1 · · · an, with n ≥ 0, is a trace of a state s0 if there is a sequence of
transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn. It is a completed trace of s0 if moreover
I(sn) = ∅.

– A pair (a1 · · · an, X), with n ≥ 0 and X ⊆ A, is a ready pair of a state s0 if there
is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with I(sn) = X . It is a
failure pair of s0 if I(sn) ∩X = ∅.

– A sequence X0a1X1 . . . anXn, with n ≥ 0 and Xi ⊆ A, is a ready trace of a state
s0 if there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with I(si) = Xi

for i = 0, . . . , n. It is a failure trace of s0 if I(si) ∩Xi = ∅ for i = 0, . . . , n.

Finally, we define two semantics based on possible futures and on possible worlds.

Definition 6 (Possible Futures/Worlds). Assume a labelled transition system.

– A pair (a1 · · · an, X), with n ≥ 0 and X ⊆ A∗, is a possible future of a state s0 if
there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn where X is the set of
traces of sn.
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– A state s is deterministic if for each a ∈ I(s) there is exactly one state s′ such that
s
a→ s′, and moreover s′ is deterministic.

A state s is a possible world of a state s0 if s is deterministic and s R s0 for some
ready simulationR.

Two states s and s′ are simulation, ready simulation, or 2-nested simulation equiva-
lent if there exist simulations, ready simulations, or 2-nested simulations R1 and R2,
respectively, with sR1 s

′ and s′R2 s. They are bisimilar if there is a bisimulation that
relates them. They are possible futures, possible worlds, ready trace, failure trace, ready,
failure, completed trace, or trace equivalent if they have the same possible futures, pos-
sible worlds, ready traces, failure traces, ready pairs, failure pairs, completed traces, or
traces, respectively.

completed traces

traces

possible worlds

failure pairs

bisimulation

2-nested simulation

ready simulation

possible futures

ready pairsfailure tracessimulation

ready traces

Fig. 1. The Linear Time/Branching Time Spectrum

The linear time/branching time spectrum is depicted in Figure 1, where a directed
edge from one semantics to another means that the source of the edge is included in the
target.

3.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behaviour. Its signature
consists of the constant 0, the binary operator + called alternative composition, and
unary prefix operators a , where a ranges over a nonempty set A of actions, called the
alphabet (with typical elements a, b, c, d). Intuitively, closed BCCSP terms represent
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finite process behaviour, where 0 does not exhibit any behaviour, p+ q is the nondeter-
ministic choice between the behaviours of p and q, and ap executes action a to transform
into p. This intuition is captured by the transition rules below, in which a ranges over
A. They give rise to A-labelled transitions between BCCSP terms.

ax
a→ x

x
a→ x′

x+ y
a→ x′

y
a→ y′

x+ y
a→ y′

We use summation
∑n
i=1 ti, with n ≥ 0, to denote t1 + · · ·+ tn, where the empty sum

denotes 0.
The semantics in the linear time/branching time spectrum all constitute a congru-

ence for BCCSP, meaning that p1 ∼ q1 and p2 ∼ q2 imply ap1 ∼ aq1 for a ∈ A and
p1 + p2 ∼ q1 + q2, where ∼ ranges over the semantics in the spectrum.

3.3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results, and open questions, on the
existence of a finite basis for the equational theories of BCCSP modulo the equiva-
lences in the spectrum above. The axiomatizations that we will present for the different
semantics in the spectrum were mostly taken from [24].

In case of an infinite alphabet, occurrences of action names in axioms are interpreted
as variables (or action schemes).

Bisimulation The core axioms in Table 1 are sound and ground complete for BCCSP
modulo bisimulation. Moller [37] proved using normal forms that this axiomatization
is ω-complete; Groote provided an alternative proof of this result in [25] using inverted
substitutions.

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A6 x+ 0 ≈ x

Table 1. The axioms for bisimulation.

2-Nested Simulation and Possible Futures Aceto, Fokkink, van Glabbeek and Ingolfs-
dottir [4] proved that BCCSP modulo any semantics no coarser than possible futures and
no finer than 2-nested simulation does not possess a finite sound and ground complete
axiomatization. The infinite family of equations that they used to prove this negative
result is defined as follows. Let E be any finite axiomatization for BCCSP that is sound
modulo possible futures. Let the depth of a BCCSP term t be the largest number of
transitions in sequence that t can exhibit. Pick an m such that

m > max{depth(t), depth(u) | (t ≈ u) ∈ E} .
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For n ≥ 0, let pn and qn be defined inductively as follows, for some a ∈ A:

p0 = a2m−10 q0 = am−10
pn+1 = apn + aqn qn+1 = apn .

The equations pn ≈ qn for n ≥ 2 are sound modulo 2-nested simulation. However,
they cannot be derived from E.

Ready Simulation Van Glabbeek presented a conditional axiom for ready simulation
equivalence: I(x) = I(y)⇒ a(x+ y) ≈ a(x+ y) +ay. Blom, Fokkink and Nain [14]
showed that a sound and ground complete finite equational axiomatization for BCCSP
modulo ready simulation exists. It is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z) ,

where a, b range overA. WhenA is infinite, Groote’s technique of inverted substitutions
can be applied to show that this axiomatization is ω-complete. When A is finite, it
remains an open question whether BCCSP modulo ready simulation is finitely based.

Simulation A sound and ground complete axiomatization for BCCSP modulo simula-
tion is obtained by extending the four core axioms with

a(x+ y) ≈ a(x+ y) + ay .

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is ω-complete. When 1 < |A| < ∞, it remains an open ques-
tion whether BCCSP modulo simulation is finitely based. When |A| = 1, simulation
equivalence coincides with trace equivalence, and we will see that in this case a finite
basis does exist.

Possible Worlds A sound and ground complete axiomatization for BCCSP modulo
possible worlds is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ z) + a(by + z) .

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is ω-complete. Fokkink and Nain [20] showed that when 1 <
|A| < ∞, BCCSP modulo any semantics no coarser than ready equivalence and no
finer than possible worlds equivalence does not possess a finite basis. (Note that ready
traces are within this semantic range.) Their proof of this negative result, which uses
cover equations and applies the compactness theorem to the equational theory for terms
of depth 1, is based on the following infinite family of equations:

a(

|A|−1∑

i=1

xi) +

|A|−1∑

j=1

a(

j−1∑

i=1

xi +

n∑

i=j+1

xi) +

n∑

j=|A|
a(

|A|−1∑

i=1

xi + xj + yj) ≈

a(

|A|−1∑

i=1

xi) +

|A|−1∑

j=1

a(

j−1∑

i=1

xi +

n∑

i=j+1

xi) +

n∑

j=|A|
a(

|A|−1∑

i=1

xi + xj + yj) + a(

n∑

i=1

xi).
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These equations are sound modulo possible worlds for n ≥ |A|. However, any finite ax-
iomatization that is sound for BCCSP modulo ready pairs cannot derive them all. When
|A| = 1, possible worlds equivalence coincides with completed trace equivalence, and
we will see that in this case a finite basis does exist.

Ready Traces Van Glabbeek presented a conditional axiom for ready trace equivalence:
I(x) = I(y)⇒ ax+ ay ≈ a(x+ y). Blom, Fokkink and Nain [14] showed that when
A is finite, a sound and ground complete finite equational axiomatization for BCCSP
modulo ready traces exists. It is obtained by extending the four core axioms with

a(

|A|∑

i=1

(bixi + biyi) + z) ≈ a(

|A|∑

i=1

bixi + z) + a(

|A|∑

i=1

biyi + z) .

When A is infinite, they showed using the compactness theorem that a finite sound and
ground complete axiomatization does not exist. Their proof is based on the following
equations, for n > 0:

a(

n∑

i=1

(bic0 + bid0)) ≈ a(

n∑

i=1

bic0) + a(

n∑

i=1

bid0) .

When 1 < |A| < ∞, the aforementioned negative result from [20] (see the paragraph
on possible worlds) implies that BCCSP modulo ready traces does not possess a finite
basis. When |A| = 1, ready trace equivalence coincides with completed trace equiva-
lence, and we will see that in this case a finite ω-complete axiomatization does exist.

Failure Traces Van Glabbeek presented a conditional axiom for failure traces (the same
one as for ready traces). Blom, Fokkink and Nain [14] showed using normal forms that a
sound and ground complete finite equational axiomatization for BCCSP modulo failure
traces exists. It is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(by + z)

ax+ ay ≈ ax+ ay + a(x+ y) .

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is ω-complete. When 1 < |A| <∞, it remains an open question
whether BCCSP modulo failure traces is finitely based. When |A| = 1, failure trace
equivalence coincides with completed trace equivalence, and we will see that in this
case a finite basis does exist.

Ready Pairs A sound and ground complete axiomatization for BCCSP modulo ready
pairs is obtained by extending the four core axioms with

a(bx+ z1) + a(by + z2) ≈ a(bx+ by + z1) + a(by + z2) .

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is ω-complete. When 1 < |A| <∞, the aforementioned nega-
tive result from [20] (see the paragraph on possible worlds) implies that BCCSP modulo
ready pairs does not possess a finite basis. When |A| = 1, ready equivalence coincides
with completed trace equivalence, and we will see that in this case a finite basis does
exist.
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Failure Pairs A sound and ground complete axiomatization for BCCSP modulo failure
pairs is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z)

ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y) .

Fokkink and Nain [21] proved using cover equations that when A is infinite, this ax-
iomatization is ω-complete. They also proved that when A is finite, one extra axiom is
needed to obtain an ω-complete axiomatization:

a(

|A|∑

i=1

bixi + y + z) ≈ a(

|A|∑

i=1

bixi + y + z) + a(

|A|∑

i=1

bixi + y) .

Completed Traces A sound and ground complete axiomatization for BCCSP modulo
completed traces is obtained by extending the four core axioms with

a(bw + y) + a(cx+ z) ≈ a(bw + cx+ y + z) .

Groote [25] proved using normal forms that in order to obtain an ω-complete axiomati-
zation, one extra axiom is needed:

ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y) .

Traces A sound and ground complete axiomatization for BCCSP modulo traces is ob-
tained by extending the four core axioms with

ax+ ay ≈ a(x+ y) .

Groote [25] proved using normal forms that this axiomatization is ω-complete when
|A| > 1. When |A| = 1, it is not hard to see that one extra axiom, ax + x ≈ ax, suf-
fices to make the axiomatization ω-complete. Indeed, in that case, the algebra of closed
BCCSP terms modulo trace equivalence is isomorphic to the algebra N in Example 3.
(To the best of our knowledge this is the first time this last observation appears in print.)

3.4 Overview

Concluding, BCCSP has a finite sound and ground complete axiomatization for most
of the semantics in the linear time/branching time spectrum. Only for 2-nested simula-
tion and possible futures, and for ready traces in case of an infinite alphabet, such an
axiomatization does not exist.

Regarding ω-completeness, matters are more mixed, especially when 1 < |A| <
∞. The table below presents an overview, where + means that there a finite basis, –
means that there is no finite basis, and ? means that it is unknown whether a finite basis
exists. We distinguish between an infinite alphabet, a finite alphabet with more than one
element, and a singleton alphabet.
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|A| = 1 1 < |A| <∞ |A| =∞
bisim + + +
2-nes sim – – –
poss futu – – –
ready sim ? ? +
sim + ? +
poss worl + – +
ready tr + – –
failure tr + ? +
ready + – +
failure + + +
compl tr + + +
traces + + +

4 Parallelism

In this section we discuss extensions of BCCSP with a binary operation ‖ for parallel
composition. We only consider bisimulation semantics. The intuition is that p ‖ q does
a move from either component, or establishes some kind of synchronization between
its components. The synchronization mechanism differs from one process description
language to another. For the sake of generality, we make use of the mechanism in-
corporated in ACP, and show how it can be instantiated, e.g., to the synchronization
mechanism of CCS.

ACP’s synchronization mechanism presupposes a communication function γ, i.e.,
a partial function

γ : A×A ⇀ A

such that for all a, b, c ∈ A:

(i) if γ(a, b) is defined, then so is γ(b, a) and moreover γ(a, b) = γ(b, a); and
(ii) γ(a, γ(b, c)) is defined iff γ(γ(a, b), c) is defined, and if both are defined, then

γ(a, γ(b, c)) = γ(γ(a, b), c).

The operational semantics of ‖ is then given by the following transition rules:

x
a→ x′

x ‖ y a→ x′ ‖ y
y

a→ y′

x ‖ y a→ x ‖ y′
x

a→ x′, y
b→ y′, γ(a, b) = c

x ‖ y c→ x′ ‖ y′

By additional assumptions on γ we can obtain the different versions of parallel compo-
sition that are encountered in the literature; we give three examples:

1. The assumption γ = ∅ expresses that there is no communication at all, i.e., the
operation ‖ models pure interleaving.

2. The assumption that γ(a, γ(b, c)) is always undefined expresses that there is only
handshaking communication.

3. We get the operation for parallel composition of CCS by assuming that
(a) A contains a special action τ ;
(b) there is a bijection .̄ onA−{τ} such that ¯̄a = a and ā 6= a for all a ∈ A−{τ};
(c) γ(a, ā) = γ(ā, a) = τ for all a ∈ A− {τ}, and γ is undefined otherwise.
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Let BCCSP‖ be the extension of BCCSP with ‖. A ground complete axiomati-
zation for BCCSP‖ modulo bisimulation equivalence is obtained by adding to the ax-
ioms A1–3,6 in Table 1 the equations generated by the so-called Expansion Law: for
all t =

∑
i∈I aixi and u =

∑
j∈J bjyj :

t ‖ u ≈
∑

i∈I
ai (xi ‖ u) +

∑

j∈J
bj (t ‖ yj) +

∑

i∈I

∑

j∈J
γ(ai, bj)(xi ‖ yj) , (3)

with, for i ∈ I and j ∈ J , the summand γ(ai, bj)(ti ‖ uj) only present when γ(ai, bj)
is defined. The result was first established by Hennessy and Milner [29].

Since the Expansion Law generates infinitely many equations, the aforementioned
ground complete axiomatization is infinite. If the set of actions A contains at least one
element a such that γ(a, a) is undefined, then a finite ground complete axiomatization
is not possible, as shown by Moller [37, 39]. He establishes that there does not exist a
finite set of BCCSP‖-equations, sound with respect to bisimulation equivalence, from
which all equations of the form

a0 ‖ ϕn ≈ aϕn +

n∑

i=1

aai (with ϕn =

n∑

i=1

ai, n ≥ 1) (4)

are equationally derivable. Moller carries out his proof in a pure interleaving setting
(i.e., γ = ∅), but it is easy to see that the assumption can be relaxed to: γ(a, a) is
undefined. First note that, with the relaxed requirement, the equations in (4) are still
sound with respect to bisimulation equivalence. Now, suppose there does exist a finite
basisE for BCCSP‖ modulo bisimulation equivalence. Then, since the equations in (4)
are sound with respect to bisimulation equivalence, they are all derivable from E. Let
E′ ⊆ E be the set of equations in E that are involved in the derivations of the equations
in (4). Then E′ consists of equations in which no actions other than a occur (for if p
and q are bisimulation equivalent closed BCCSP‖-terms, then p and q contain the same
actions). Obviously, the equations in E ′ are all sound for BCCSP‖ with A = {a} and
γ = ∅, contradicting Moller’s result.

Moller’s result shows that for a finite axiomatization of parallel composition aux-
iliary operators are indispensable. Three such auxiliary operators have been proposed
in the literature: Bergstra and Klop introduced the left merge (‖ ) in [8] and the com-
munication merge (|) in [10], and Hennessy [28] introduced an operation that we call
Hennessy’s merge (|/). In the remainder of this section we discuss these auxiliary op-
erators in the context of BCCSP. In the next section we examine the consequences of
replacing action prefixing in BCCSP by a binary operation for sequential composition.

4.1 Left merge

First we consider the special case of axiomatizing parallel composition under the pure
interleaving assumption (γ = ∅). In that case, as can be seen from the transition rules
for ‖, a parallel composition p ‖ q either does a move p

a→ p′ from its left component
p and proceeds as p′ ‖ q, or it does a move q

a→ q′ from its right component q and
proceeds as p ‖ q′. So, intuitively, it is an alternative composition of two subprocesses.
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The auxiliary operation left merge is a device for expressing these subprocesses in terms
of p and q; its operational semantics is given by the following transition rule:

x
a→ x′

x ‖ y
a→ x′ ‖ y

Using the left merge the intuition with respect to the behaviour of a parallel composition
can be captured in a single equation:

M x ‖ y ≈ x ‖ y + y ‖ x .

The axiom M and the axioms L1–3 in Table 2 allow the elimination of all occurrences
of ‖ and ‖ from closed terms. (Bergstra and Klop [10] established a similar result in the
more general setting of ACP.) Hence, together with the axioms of BCCSP in Table 1,
those equations constitute a ground complete axiomatization of BCCSP‖,T.

L1 0 ‖ x ≈ 0

L2 ax ‖ y ≈ a(x ‖ y)

L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z

L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)

L5 x ‖ 0 ≈ x

Table 2. The axioms for left merge.

An ω-complete axiomatization is obtained by adding the axioms L4 and L5 in Ta-
ble 2. Moller [37] proved this assuming that A is infinite. He used the technique based
on normal forms: first he showed that every term is provably equal to a normal form,
and then he argued that for distinct normal forms there is a distinguishing environment.
Moller used a distinguishing environment that substitutes a special action (not already
occurring in either normal form) for every variable, which is only possible if there are
infinitely many actions. Both the proof that every term is provably equal to a normal
form and the proof that normal forms can be distinguished are quite involved. It turns
out that Groote’s inverted substitutions technique also applies (see [25]), and the appli-
cation is in fact quite straightforward.

The requirement that A is infinite seems essential for the application of Groote’s
technique. However, the authors have recently established that Moller’s proof can be
adapted with a distinguishing environment that only requires one action. So, if γ =
∅, then the axioms of BCCSP together with the axioms in Table 2 constitute a basis
for BCCSP‖,T modulo bisimulation equivalence, for each non-empty set of actions A.
Hence, ifA is finite, then BCCSP‖,T modulo bisimulation equivalence is finitely based.

4.2 Communication merge

If p
a→ p′ and q

b→ q′ and γ(a, b) = c, then the parallel composition p ‖ q has the extra
option to perform the synchronization move p ‖ q c→ p′ ‖ q′. The communication merge
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C1 0 | x ≈ 0
C2 ax | by ≈ c(x ‖ y) if γ(a, b) = c
C3 ax | by ≈ 0 if γ(a, b) is undefined
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)

C7 x | (y ‖ z) ≈ (x | y) ‖ z

Table 3. The axioms for communication merge.

provides notation for this part of the behaviour of a parallel composition; its operational
semantics is given by the following transition rule:

x
a→ x′, y

b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′

Of course, if synchronization is possible, then the axiom M is not sound and needs to
be replaced by:

M’ x ‖ y ≈ (x ‖ y + y ‖ x) + x | y .

Using the axiom M’, the axioms L1–3 in Table 2 and the axioms C1–5 in Table 3
all occurrences of ‖, ‖ and | can be eliminated from closed terms. Hence, together
with the axioms of BCCSP in Table 1, those equations constitute a ground complete
axiomatization of BCCSP‖,T,|.

Let us now consider ω-completeness. Note that it critically depends on γ whether
certain equations between terms with variables are sound. For instance, the equation

x | y ≈ 0

is sound if γ = ∅, but if there exist actions a and b such that γ(a, b) is defined, then it
is clearly not sound.

Groote [25] proved that if A is a commutative semigroup under γ (which means
that γ is an associative and commutative total function on A), and A is moreover freely
generated by some infinite subset, then the axioms of BCCSP in Table 1 together with
M’ and the axioms in Tables 2 and 3 constitute an ω-complete axiomatization. (Of
course, since γ is total, the axiom C3 is superfluous in this axiomatization.) It is an
open problem whether it is necessary to require A to be generated by an infinite subset.

If γ satisfies the requirement that γ(a, γ(b, c)) is undefined for all a, b, c ∈ A (i.e.,
there is only handshaking communication), then the axiom

H x | y | z ≈ 0

is sound. We conjecture that if A is non-empty and γ implements the CCS communi-
cation mechanism, then the axioms M’ and H together with the axioms in Tables 1, 2
and 3 constitute an ω-complete axiomatization.
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4.3 Hennessy’s merge

In [28], Hennessy proposed another auxiliary operator, using it in his axiomatizations of
observation congruence and timed congruence. Hennessy’s merge, as we call it, com-
bines the behaviour of the left merge and the communication merge. Its operational
semantics is given by the following transition rules:

x
a→ x′

x |/ y a→ x′ ‖ y
x

a→ x′, y
b→ y′, γ(a, b) = c

x |/ y c→ x′ ‖ y′

Note that with Hennessy’s merge, parallel composition is definable with the following
equation:

x ‖ y ≈ x |/ y + y |/ x .

This may seem promising for the existence of a finite axiomatization of parallel compo-
sition that only uses Hennessy’s merge as auxiliary operation. However, as was already
conjectured by Bergstra and Klop in [10], it turns out that the operation itself cannot
be finitely axiomatized. Assuming the CCS synchronization mechanism (see the begin-
ning of Section 4), the authors recently proved in [3] that there does not exist a finite set
of sound BCCSP‖,|/ -equations from which all equations of the form

a0 |/ ψn ≈ aψn +
n∑

i=0

τai (with ψn =
n∑

i=0

āai, n ≥ 0)

are equationally derivable.

4.4 Overview

In the table below we summarize the results and open problems discussed in this sec-
tion. A + in the first (respectively, second) column means that there exists a finite ground
complete (respectively, ω-complete) axiomatization, a – means that such an axiomati-
zation does not exist, and a ? means that it is unknown whether such an axiomatization
exists.

ground complete ω-complete
BCCSP‖ – –
BCCSP‖,T + +
BCCSP‖,T,| (handshaking) + ?
BCCSP‖,|/ – –

Moller’s result shows that BCCSP‖ has no finite ground complete axiomatiza-
tion. With the two auxiliary binary operations ‖ and | of Bergstra and Klop a finite
ground complete axiomatization becomes possible. If one assumes pure interleaving,
then adding only ‖ suffices, and then there even exists a finite ω-complete axiomati-
zation. It remains an open problem whether it is possible to axiomatize BCCSP‖ with
arbitrary handshaking or the CCS synchronization mechanism adding only one auxil-
iary binary operation.
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5 Sequential composition

In this section we discuss the consequences of having sequential composition instead
of action prefixing. We remove the constant 0 and the unary prefixes a from BCCSP,
and replace them by a binary operation · for sequential composition, treating the actions
in A as constant symbols. Thus we get the signature of BPA [10]. The transition rules
for actions and sequential composition are as follows:

a
a→ √

x
a→ x′

x · y a→ x′ · y

Note the special state
√

that we use to write the transition rules; it signals successful
termination. To make the rules work, we stipulate that

√·x = x and
√‖x = x‖√ = x.

We also require that bisimulations relate
√

only to
√

.

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4 (x + y) · z ≈ x · z + y · z
A5 (x · y) · z ≈ x · (y · z)

Table 4. The axioms for alternative and sequential composition.

The axioms of BPA are obtained by taking the first three axioms of BCCSP, adding
that · distributes from the right over + and that · is associative. For the sake of clarity,
we list them all in Table 4. It is folklore that they constitute a ground complete axiom-
atization of BPA. Moreover, the axiomatization is ω-complete. As far as we know, this
latter result does not explicitly appear in print, but a proof can be extracted from the
ω-completeness proof for PA [19] that we discuss below.

In [38], Moller adapted his proof that BCCSP‖ is not finitely based to the setting
with sequential composition. The infinite family of equations he uses to establish this
result is obtained from the equations in (4) by the obvious translation (replace action
prefixes by actions and sequential compositions, and omit all occurrences of 0).

M1 x ‖ y ≈ x ‖ y + y ‖ x

M2 a ‖ x ≈ a · x
M3 a · x ‖ y ≈ a · (x ‖ y)

M4 (x + y) ‖ z ≈ x ‖ z + y ‖ z

M5 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)

M6 (x · α) ‖ α ≈ (x ‖ α) · α
Table 5. The axioms for merge and left merge.
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The signature of PA combines that of BPA with ‖ and ‖ . Parallel composition
in PA stands for pure interleaving (i.e., γ = ∅), so the relation between ‖ and ‖ is
expressed by the axiom M1 in Table 5. For a ground complete axiomatization of PA it
suffices to add the first four axioms in Table 5 to the axioms of BPA. Fokkink and Luttik
proved in [19] that if M5 and M6 are added too, then the axiomatization is ω-complete.
The α in M6 ranges over finite sums of distinct actions. The equation that results by
replacing both occurrences of ‖ in M6 with ‖ is also sound (it is an instructive exercise
to derive it using M6 and the other axioms). It is an example of a so-called mixed
equation, equating a parallel composition and a sequential composition. There is a deep
theory of mixed equations developed by Hirshfeld and Jerrum [30] for the benefit of
their proof that bisimulation equivalence is decidable for normed PA. The proof in [19]
that the presented axiomatization is ω-complete partly relies on their theory.

Incorporation of synchronization can be done by adding a communication merge
and replacing the axiom M1 by M’. It is not difficult to adapt the axioms in Table 3
in such a way that all communication merges can be eliminated from closed terms;
thus a ground complete axiomatization can be obtained. Note that this does require the
addition of a special constant δ that will assume the rôle of 0; it satisfies

δ · x ≈ δ
x + δ ≈ x .

There are no known ω-completeness results pertaining to the extension of BPA with
‖, | and δ. It would again be necessary to make some assumptions about the synchro-
nization mechanism. If there is only handshaking communication, then the equations

(· · · (((x1 | x2) · y1 ‖ z1) · y2 ‖ z2) · · · · yn ‖ zn) | x3 ≈ δ (n ≥ 0)

are sound. We conjecture that there does not exist a finite set of sound equations from
which they are all derivable.
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