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Abstract

GOCE will be the first satellite ever to measure the second order derivatives of the Earth’s
gravitational potential in space. With these measurements it is possible to derive a high accu-
racy and resolution gravitational field if systematic errors and/or outliers have been removed
to the extent possible from the data. It is necessary to detect as many outliers as possible in
the data pre-processing because undetected outliers may lead to erroneous results when the
data are further processed, for example in the recovery of a gravity field model. Outliers in the
GOCE gravity gradients, as they are likely to occur in the real observations, will be searched
for and detected in the processing step preceding gravity field analysis.

As the diagonal gravity gradients are the main gradient observables for GOCE, three meth-
ods are discussed to detect outliers in these gradients. The first is the tracelessness condition,
that is, the sum of the diagonal gradients has to be zero. The second method compares GOCE
gravity gradients with model or filtered gradients. Finally, along track interpolation of grav-
ity gradient anomalies is discussed. Since the difference between an interpolated value and
a measured value is large when outliers are present, along track interpolation is known to be
suitable for outlier detection. The advantages and disadvantages of each method are discussed
and it is shown that the final outlier detection algorithm, which is a combination of the three
methods, is able to detect almost all outliers while the number of falsly detected outliers re-
mains small.
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1 Introduction

Outlier detection is one of the important tasks in the GOCE data pre-processing. In this paper,
the focus will be on the gravity gradients (GG). The outliers themselves may point to possible
instrument problems, while undetected outliers may lead to erroneous results when the data are
further processed, for example in the external calibration of the gravity gradients, in the gravity
field analysis or in the error assessment. It is therefore important to detect as many outliers as
possible in the data pre-processing. A restriction in the context of quick-look data processing is
the time required to detect outliers. The outlier detection algorithm that is implemented should
have a short run-time, while the intervention by an operator should be minimal, that is, the s/w has
to be fully automated.

First, the outlier detection is described in the pre-processing context. Second, several outlier
detection methods are discussed and compared. Finally, the outlier detection methods are tested
in a simulation study and the overall algorithm is discussed. Alternatives are discussed in, for
example (Albertella et al. 2000; Bouman et al. 2004a; Kern et al. 2004; Tscherning 1991).



2 Pre-processing

Since the main goal of the GOCE mission (expected launch in August 2006) is to provide unique
models of the Earth’s static gravity field (ESA 1999), the GOCE gravity gradients need to be
corrected for temporal gravity field variations such as tides. Furthermore, even after in-flight
calibration the observations will be contaminated with stochastic and systematic errors. Systematic
errors include GG scale factor errors and biases (Cesare 2002) which one tries to correct for in
the external calibration step (see e.g. Bouman et al. 2004b). Also outliers in the GOCE gravity
gradients need to be searched for and detected in the Level 2 pre-processing step. The steps for
quick-look pre-processing are:

1. corrections for temporal gravity field variations;

2. outlier detection and correction;

3. external calibration and error assessment;

4. iteration of steps 2 and 3.

3 Outlier detection

We will consider time series of gravity gradients���������
	���
����������
(1)

with
� 	�� � 	���� ���

s, � � �"!#!$
�%&%
or '�' and

�
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First, data snooping is discussed when a model of condition equations is used, which will
be the starting point for our outlier detection. Then we will discuss the tracelessness condition
which will be the baseline method for outlier detection. The comparison of measured gradient
with model gradients (gradient anomalies) and the interpolation of the gradient anomalies are
discussed as well.

3.1 Data snooping

Let’s assume that the
�)(*�

vector
%

contains the diagonal gravity gradients which errors are
normally distributed with known error variance matrix +-, :% ."/0��1324% 5�
 + , � (2)

with
1

the expectation operator. All single observations will be tested for outliers. The hypothesis6879�;:=<>1324% 5?�"@
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is the condition equation matrix,
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C , is a unit vector with 1 at row
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if the
i-th observations is to be tested, and

F
is an outlier with unknown size. In the condition equation

(3), the matrix
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has L rows, the number of conditions, and it has
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columns, the number of
observations. It can be shown that
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will be rejected if, see (Teunissen 2000):MON �QPSR
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with M � C < D + ���D"WX C < D + ���D CED (6)

where W �Y: < %
is the vector of misclosures, + D �Z: < +�, : , and

P R
is the critical value which

depends on the significance level [ . The random variable M is the w-teststatistic and has a standard
normal distribution under

6\7
. A disadvantage of data snooping may be that it is computationally

intensive. In general + D is a full matrix and its inverse has to be computed.
One can make two types of errors in hypothesis testing (Teunissen 2000). Type I error: rejec-

tion of
687

when
687

is true, that is, an outlier is detected, but there is no outlier; Type II error:
acceptance of

6]7
when

6]7
is false, that is, an outlier goes undetected.

3.2 Tracelessness condition

The sum of the diagonal gravity gradients has to be zero which is called Laplace’s equation or the
tracelessness condition (Heiskanen and Moritz 1967). For observed gradients one has182^�`_a_Qbc� ,d, be��f�f^59�"@

(7)
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under the assumption that there is no error correlation between the different gradients. One prob-
lem is that the gravity gradients suffer from systematic errors before external calibration of which
biases and scale factor errors are the most important. For GG the effect of a scale factor error is
the largest at a frequency of 0 Hz and also the bias is manifest at this frequency. Therefore, the
median of the sum of the diagonal gradients over the time interval considered is subtracted in (7).
Since the mean is more sensitive to outliers than the median, the former is not used.

The + D -matrix, needed in the test (6), is+ Dt� +kj lml b +kjKnun b +kj pqp^v (9)

If the along-track error correlation is neglected, then the +8jawow are diagonal and the w-teststatistic
becomes M ���o�x� � _a_ ���m�ybe� ,�, ���m�ybe� f�f ���o� �

medianX z|{jalml ���m�|b z|{j non ���o�yb z|{jap�p ���o� (10)

with
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and
�

the number of observation points. It is well known that the GOCE GG along-
track error correlation is high. Nevertheless, it may be that for outlier detection one can neglect
this correlation. Moreover, in the simulation study the +3jawow matrices are taken as scaled unit
matrices. If the along-track error correlation would not have been neglected, the + D

matrix would
have become full, which makes the computation of its inverse much more problematic. One could
of course work with distinct patches of, for example, 50 observations neglecting the correlation
between patches. However, the choice of the patch size is arbitrary and the observations within
one patch would be treated differently, which leads to an incoherent test method.

The advantage of the tracelessness condition is that the signal-to-noise ratio (SNR) is very
small. In fact, the SNR can not be smaller, which means that outliers that are well above the noise
can be detected easily. A disadvantage is that with this method one can not discriminate between
outliers in

� _a_ 
d� ,�, and
� f�f

.



3.3 Gravity gradient anomalies

The idea is to predict gravity gradients in the GOCE orbit points from a global gravity field model
and to compare them with the GOCE GG. The condition equation is132^����� ��~ ����5��"@

(11)

with error matrix +�, �J� +kj wuw @@ +;�}wow�� (12)

where the error of the model gradients is described by + � wow . Among others, this error depends on
the accuracy of the global model, the omission error, attitude errors and the accuracy of the orbit.

In this case, the + D -matrix is + Dt� +kj wow b +k� wuw�v (13)

If it is assumed that + D is diagonal (no along-track error correlation), then the w-teststatistic be-
comes M ���o��� �`�d� ���o� ��~ �d� ���o� �

medianX z {jawow ���m�yb z {�&wow ���o� (14)

for
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. Also here the median is subtracted. Furthermore, in the simulation study the +
matrices are taken as scaled unit matrices.

One problem of condition (11) may be that the omission error is large, for example when a
GRACE-only model is used, or that the commission error is large, for example when OSU91A is
used. Thus the total

z
may be large and the test has little ‘power’. However, all GG are tested

separately and point wise and it is therefore an unambiguous test.

3.4 Overhauser spline interpolation

As an alternative to (11), consider the interpolation of anomalies along tracks. The interpolated
gravity gradient anomaly can be compared with the ‘measured’ anomaly, � ��� ����� ���-��~��d�3�
median, and 132 � 	��^D��� � � �d�}5?��@�
 � � ��!#!>
�% %�
 '�' (15)

with � 	��^D��� the interpolated value. The error of the interpolated anomalies depends on the interpo-
lation method, the orbit accuracy and on the errors of the observed GG. To a lesser extent also the
accuracy of the model gradients

~ �d�
has an effect on the error. There are many possible interpo-

lation methods but only Overhauser splines are considered (Overhauser 1968). The computations
are simple and fast, while the interpolation errors are small, see (Bouman and Koop 2003). For
equidistant data along track the condition equations take the form%S	|�Z��x��%S	�����b�%S	��>�K� � �� ��%S	�� { b�%S	�� { � v (16)

If there are
�

observations, then
�

may take the values
� ��� � � . (The weights given in (Bouman

and Koop 2003) are incorrect. The interpolation errors reported there become even smaller using
the correct weights.)

Under the assumption that the error matrices are scaled unit matrices, the w-teststatistic may
be approximated with M ���o��� �� � @ z < wuw 	�� {��a� 	�� {`� � � ����� P � (17)



Table 1: Noise, outlier and gravity gradient anomaly (
�y�d� �0~ ���

) properties, values in [mE].

Small set (86,351 pts) � lml � non � p�p
noise mean 1443.7 -805.2 2248.9

rms 2.2 4.4 5.7
outliers mean 0.5 0.3 0.0

rms 58.9 27.9 52.7
anomalies mean 0.0 1.5 -1.5

rms 36.4 35.3 58.9

Large set (5,097,835 pts) � lml � non � p�p
noise mean 0.0 0.0 0.0

rms 10.1 2.7 10.0
outliers mean 0.0 0.0 0.0

rms 78.5 78.5 78.5
anomalies mean 0.0 -0.4 0.4

rms 37.2 35.3 60.0

Table 2: Type I error for case 1 in % (no outliers, critical value is ��� ); T – tracelessness condition,
M – model gradients, S – spline interpolation, TMS – T + M or T + S.

Small data set Large data set
Method � lml � non � pqp � lml � non � pqp
T 0.0 0.0 0.0 4.7 4.7 4.7
M 6.2 6.0 5.9 6.3 6.4 6.2
S 0 0 0 0 0 0
TMS 0 0 0 0.3 0.3 0.3

for
��� � ��� � � , with weights � 	�� { � � 	�� { � � �

, � 	������ � 	 �>�¡�"¢
and � 	$� � �

. ( £ � {� � � @
)

The advantage of this method is that each GG can be tested separately. A disadvantage is
that several consecutive points are combined, which may hinder the identification of points with
outliers (masking).

4 Simulation study

Two data sets with different characteristics were studied. One is a small data set with a length of
1 day which contains various types of outliers. The second data set has a length of 59 days and
contains single and bulk outliers. These gradients allow for gravity field analysis (GFA).

The first data set used in this study consists of the diagonal gravity gradients
� _a_

,
� ,d, and

� f�f
which were simulated using EGM96 (Lemoine et al. 1998) for a 1 day orbit with a sampling rate
of 1 s. Simulated, correlated noise was added to the signals, the data statistics are given in Table 1.
The model gradients were generated using OSU91A (Rapp et al. 1991). The second data set used
in this study also consists of the diagonal gravity gradients which were simulated using OSU91A
for a 59 day orbit with a sampling rate of 1 s (over five million data points). Simulated, correlated
noise was added to the signals. In this case, model gradients were generated using EGM96.

Errors other than outliers and simulated noise were not considered in this study, that is, orbit
errors, omission errors, etc. are all zero.
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Figure 1: Test values for tracelessness condition, case 1, small data set. The dashed lines denote
the critical value ��� .
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Figure 2: Test values for
� _a_ �0~ _a_

, case 1, small data set.
� _a_

are simulated GOCE gradients,
whereas

~ _a_
are model gradients. Test values for

� ,�, and
� f�f

are similar to
� _a_

. The dashed
lines denote the critical value ��� .
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Figure 3: Test values for � _a_ spline interpolation, case 1, small data set. Test values for � ,�, and� f�f are similar to � _a_ .

4.1 Case 1: no outliers

A first test was done that used the noisy gradients without any outliers (case 1). Fig. 1 - 3 show the
w-test values for the tracelessness condition, gradient anomalies and spline interpolation respec-
tively (small data set), while the type I error is summarised in Table 2. Given the critical value ofP � � , approximately 4.6% of the observations should be rejected although they are correct. For
the tracelessness condition, however, the type I error is 0% for the small data set, while it is ac-
cording to the expected value for the large data set. The former may be due to the error correlation
between the different simulated diagonal gradients. In the small data set these errors are heavily
correlated, which is neglected, whereas there is no error correlation between different gradients for
the large data set. The type I error is also 0% for the spline interpolation for both data sets. Both
the small and the large data sets have errors with a high spatial correlation along tracks. These
long wavelength errors, however, cancel in the spline interpolation as it is a local interpolation
method. This could explain the small type I error.

The model gradients have a large type I error as it is dominated by the model error, that is,
the difference between EGM96 and OSU91A. The type I error is probably larger than expected
because we have used a simple scaled unit matrix as error covariance matrix. Despite the some-
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Figure 4: Test values for � _a_ spline interpolation, case 2a. Panel zooms in on W � � �¥¤
min. The

dashed lines denote the critical value ��� .

what larger type I error, model gradients may be usefull. First of all, it may be that at the time
GOCE flies a more accurate gravity field model is available, which would reduce the type I error.
Secondly, with the gradient anomalies one can test the individual gradients point wise. In contrast,
with the trace condition one tests point wise the sum of three gradients, while with spline interpo-
lation individual gradients are tested on an interval. Thus the three methods are complementary.

A combination of the three methods gives good results which is shown in Table 2. In this case
combined means that if an outlier is detected by the tracelessness condition and if it is confirmed
by a 2nd method, an outlier is flagged. The type I error is close to zero for all gradients.

4.2 Case 2: outliers on ¦ _a_�§ ¦ ,�, and ¦ f�f
To the small data set outliers with the following characteristics were added (case 2a): A total of
3891 randomly distributed single outliers for

� _a_
with an absolute size varying between 0.07 E

and 0.1 E; An offset of 0.5 E during one minute (
�¥� � @ � � ¤

s) for
� ,�, and a bulk of outliers

during six minutes (
�¨�O©S@V@V@V@ � ©S@ � © ¤

s) with an absolute size varying between 0.07 E and 0.1
E; A total of 994 ‘twangs’, randomly distributed, for

� f�f
, that is, an outlier at

�ª���K	
is followed

by an outlier with opposite sign and of the same size at
�]��� 	 �>�

. In total �Q« ¤V¤ ¢¬��� ¤V­V­
outliers

with absolute size between 0.07 E and 0.1 E. For the large data set 83153 outliers were added to all
three gradients with an absolute size varying between 0.05 E and 1.8051 E (case 2b). The outliers
were randomly distributed single outliers as well as bulk outliers, see Table 1 for data statistics.

The tracelessness condition detects almost all outliers, see Table 3 and 4. If we would use the
tracelessness condition only and no other method then one cannot discriminate which diagonal
GG contains an outlier and all three GG would be flagged if one of them does contain an outlier,
which leads to large type I errors.

Most of the outliers are detected when gradient anomalies are used, but the type II error can
be relatively large. Only 3/4 of the

� f�f
outliers of the small data set are detected for example,

which is caused by the larger GOCE GG error and the larger difference between the ‘true’ GG
and the model GG. The type I error is of course at the level of case 1, see Table 3 and 4. As an
alternative to model gradients, one could also filter the GOCE GG with outliers and use these as
‘model gradients’. A 2nd order low-pass Butterworth filter has been used with a cut-off frequency
of 0.2 Hz. Except for the gradients with an offset, the method with filtered gradients detects most
of the outliers. The type I error can be large because low-pass filtering not only reduces the size
of the outliers, but redistributes their power over neighbouring points as well. An offset tends to
cancel and is therefore hard to detect with filtered gradients.

With spline interpolation the major part of the
� _a_

outliers (case 2a) is detected, but many
valid observations are flagged as outliers, see Table 3. The type I error is large because one outlier
may affect five consecutive w-test values, see Fig. 4. As an alternative to this outlier detection
in one step, one could use an iterative procedure, that is, reject the global maximum, replace the



Table 3: Detected outliers for case 2a in % (outliers on all three diagonal gradients, small data
set, critical value is �k� ); T – tracelessness condition, M – model gradients, F – filtered gradients,
S – spline interpolation, TMS – T + M or T + S, TFS – T + F or T + S.� lml � non � p�p

Method correct type I correct type I correct type I

T 99.9 2.6 99.8 6.7 99.9 4.8
M 93.6 5.9 92.6 6.0 76.9 5.8
F 99.8 23.5 84.5 0.0 100 2.2
S 98.9 11.6 77.6 0.0 99.5 2.0

TMS 99.8 0.5 98.6 0.4 99.7 0.4
TFS 99.9 0.7 87.1 0 99.9 0.1

Table 4: Detected outliers for case 2b in % (outliers on all three diagonal gradients, large data
set, critical value is �k� ); T – tracelessness condition, M – model gradients, F – filtered gradients,
S – spline interpolation, TMS – T + M or T + S, TFS – T + F or T + S.� lml � non � p�p

Method correct type I correct type I correct type I

T 99.8 7.7 99.9 7.7 99.9 7.7
M 96.8 5.9 97.5 6.2 92.3 5.9
F 99.0 5.6 99.7 10.5 98.9 5.6
S 86.8 2.2 98.6 4.7 86.8 2.2

TMS 97.7 0.6 99.8 0.8 94.6 0.6
TFS 99.6 0.4 99.9 0.8 99.6 0.4

associated observation with the interpolated value, find next global maximum, etc. The iterative
procedure was implemented and tested, and the type I error decreased significantly. However, also
the number of detected outliers decreased, which has a negative effect on the combination solution
as well. Therefore, the iterative procedure is abandoned. The spline interpolation method detects
most of the bulk outliers, but is unable to detect the offset, see Table 3. An offset cancels using
spline interpolation and cannot be detected directly. The type I error is small in this case because
the w-test ‘side lobes’ drown in the bulk outliers. The results of the large data set (case 2b) suggest
that the larger the GG noise the smaller the number of detected outliers. The GG

� _a_
and

� f�f
have

a higher noise level than
� ,d, , while the number of detected outliers is the largest for the latter.

The last two rows of Table 3 and 4 show that a combination of three methods yields excellent
results. An outlier is flagged if the tracelessness condition is confirmed by one of two methods.
In general the method with model gradients detects less outliers than the method with filtered
gradients. However, the latter is less suited to detect an offset. For a critical value of 2, about 99%
of the outliers are detected, while the type I error is small, below 1%. The expected type I error is
4.6% which is much larger. This is likely due to the combination of the three methods.

Finally, Fig. 5 shows the gravity field anomaly differences between OSU91A and a quick-look
GFA solution up to degree and order 250. As input the TFS cleaned GG were used (case 2b).
The rms difference, excluding polar caps of 10 ® , is 9.8 mGal, which is somewhat larger than the
difference when gradients without outliers are used in the GFA (6.7 mGal). When the TFS cleaned
GG are used with an additional outlier search in the GFA, 100% of the outliers are detected and
the rms gravity anomaly difference is only 6.9 mGal, see also (Bouman et al. 2004a).
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Figure 5: Gravity anomaly differences OSU91A – QL-GFA (log scale), pre-processing outlier
detection using TFS.

5 Conclusions and outlook

The tracelessness condition is the baseline method for the quick-look outlier detection algorithm
studied here. If an outlier is detected by this method and if it is confirmed by either model (or
filtered) gradients and/or by spline interpolation, then an outlier is flagged. Although the individual
methods have their disadvantages, their combination yields high outlier detection rates and only
a small number of falsly detected outliers. The w-test, which was used, explicitely accounts for
the GG errors. However, to obtain a managable solution, the error correlations were neglected
and it was even assumed that the error matrices are scaled unit matrices. Despite the heavy error
correlation, outliers can be very well detected. It therefore seems that the simplifications do little
harm.

To further improve the performance, the spline interpolation may be replaced by, for exam-
ple, least-squares prediction. The outlier detection results may also improve by taking the spatial
correlation between the observables into account using least-squares collocation (LSC), see (Tsch-
erning 1991). It may be that the turn-around time of the current GRAVSOFT implemenation of
LSC (Tscherning 1974) is acceptable for operational use. This needs, however, to be studied.
Future simulation studies should also include the

� _ , , � _af and
� , f gradients. In addition, more re-

alistic GOCE error characteristics should be used, and other errors, such as orbit errors or attitude
quaternion errors, should be accounted for.



6 Acknowledgements

This study was performed in the framework of the ESA-project GOCE High-level Processing
Facility (GOCE HPF, Main Contract No. 18308/04/NL/MM). Michael Kern computed the QL-
GFA solutions and provided the GFA figure. All this is gratefully acknowledged.

References
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