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Abstract

MPSCM is an extension to the MzScheme dialect of Scheme that provides facil-

ities for distributed programming with a message passing base and higher-level

distributing constructs designed in a more functional style. This paper provides

a description of the MPSCM environment and an analysis of the results in terms

of performance, expressivity, and usability.
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Chapter 1

Introduction

MPSCM is posed as an experiment with MzScheme, as a means to assess the

feasibility of building a functional-style distributed environment on top of an

existing Scheme implementation. This paper investigates the issues of syntax

and performance that arise from this approach. Another important issue is how

well the MPSCM environment maintains the character and advantages of the

MzScheme language and exploits the natural decomposability of Scheme pro-

grams. This analysis will focus on ease of use and functional programming style.

Finally, this paper will examine the overall practical viability of an approach

like MPSCM as a distributed programming environment.

1.1 Background

1.1.1 About MzScheme

MPSCM is a library of parallelizing functions for MzScheme, an implementation

of the Scheme programming language developed by PLT-Scheme. MzScheme

is R5RS-compliant but provides a great deal of additional functionality that

is helpful and, in some cases, necessary for creating a distributed program-

ming environment. Like most Scheme dialects, MzScheme provides a read-eval-

8



1.1 Background 9

print loop (REPL), interface. In a REPL a user enters a functional expression

into a prompt and, in this case, MzScheme evaluates it and prints the result.

MzScheme’s non-standard functions include constructs for TCP/IP, threading,

and synchronization, [6] all of which are important in MPSCM. It is the goal of

this project to thoroughly explore the possibilities of MzScheme but to not un-

necessarily restrict the scope of interest of this research. Non-standard functions

that are only available in MzScheme should be used in isolated, replaceable, and

necessary situations.

The abilities of MzScheme library functions very much define the implemen-

tation of MPSCM. It is meant to be an extension to this environment, not an

offshoot. All library functions, with the exception of the boot functions, which

use some BASH scripts with SSH to initialize the environment, are coded di-

rectly in MzScheme. The syntax and operation of the parallelizing functions

follow the rules of MzScheme: MPSCM programs are MzScheme programs first.

In some cases this presents some difficulties, the assessment and handling of

which are essential to this project. All that said, the author of this paper makes

no claim that MPSCM takes full advantage of MzScheme’s capabilities in these

areas and further investigation of all problems addressed would be welcomed.

1.1.2 MPI

The Message Passing Interface (MPI), is a standard for distributed libraries

that is extensively used in distributed programming, particularly with C and

FORTRAN. It is a standardization of the message passing paradigm, which is,

itself, the standard approach to distributed computing. [16] Message passing is,

at its core, a very simple approach to parallel computing. A group of networked

computers, called processes or nodes, is initialized, each with a path of commu-

nication to each other node and a unique integer ID, or rank. In MPI programs,

generally each node runs an identical program but has its own dataspace, in an

approach called Single Program Multiple Data (SPMD). [18] Such a program

generally contains conditional logic based on node rank with 0 being the rank
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of the master, or user-occupied, node. The nodes communicate data with each

other using send and receive functions that transmit a value along with header

information: a tag, the rank of the sending process, information about the value

being sent. Generally speaking, each node computes a subproblem of the com-

putation and sends the value to another node to continue with the computation

or to compile the final result.

The basic parallelization constructs implemented in MPSCM are derived

from a subset of MPI but it does not adhere to the MPI standard. MPSCM

uses message passing in an extremely simplified form. This message passing core

forms the lowest levels of MPSCM. The ultimate goal is to provide as much of

the capability of an MPI-style approach as possible while still preserving the

functional programming experience, both in the strict sense of proper treat-

ment of state and function calls, and in giving users, students, and educators

a comfortable and expressive functional style environment in which to work.

To balance this desire with an MPI-based framework, MPSCM uses additional

layers of functionality to create typical functional parallel constructs that use

message passing without explicit direction from the programmer to do so. How-

ever, it is possible to use MPSCM to write MPI-style programs, albeit with a

simplified library.

By modeling the base environment after MPI, MPSCM fits into the basic

expectations of a distributed programming environment and also our under-

standing of the physical structure of such an environment. That is, each node

in the network has its own data-space and a set method for communicating

data to other machines. This abstraction is exactly our understanding of the

hardware involved: each physical machine has a processor and its own local

memory and the nodes are connected in a network via TCP. This is attractive

in certain ways for any distributed programming platform because it is simple

and expressive and can be modeled intuitively. However, because this approach

is so tied to the distributed environment, and to state and sequence across the

nodes, it limits the aspects of Scheme, particularly the ability to program in a

functional style, that allow for simple problem decomposition. This is one of
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the central problems of this paper and of MPSCM itself. How can an MPI-like

foundation provide the basis for a powerful, elegant, and functional distributed

programming experience without losing the advantages of both Scheme and

MPI?

1.1.3 Functional Programming

In evaluating the success of the MPSCM implementation, this paper will focus

on the preservation of the functional programming experience. The essentials

of functional programming are different to different people, and some are easier

to pin down than others. A few characteristics that are generally associated

with functional programming, and are especially of interest to distributed pro-

gramming and the MPSCM project, will serve as a point of reference for this

discussion.

Declarativeness

Declarativeness, as a characteristic of a programming language or a program,

does not seem to have an agreed upon definition, but this thesis will use that

of Barth, Nikhil and Arvind. That is, a declarative program describes what

to do, not how to do it [1]. A declarative program describes a function, not

how to compute it. A programming language is declarative inasmuch as it al-

lows the programmer to program in a declarative manner. Strictly speaking,

programming languages can not usually be classified as either declarative or un-

declarative but, rather, more or less declarative. However, there is a clear divide

with functional languages, like Scheme, on one side and procedural languages,

like C, on the other.

The desire to maintain declarativeness produces an immediate problem for

extending a functional programming language to allow for distributed program-

ming. Distributed programming is essentially about “how” a programmer wants

a program done. That is, by decomposing the problem into subproblems and

distributing the work among a network of nodes. Beyond this, the problems are
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a little more subtle but ultimately more meaningful. MPSCM must balance the

desire for overall declarativeness with a useful interaction between the program-

mer and the distributed environment, as well as account for practical concerns

of building this type of environment entirely on top of an existing one.

Referential Transparency

Referential transparency, like declarativeness, is a property of a programming

language or program that is generally associated with functional programming.

This property can be stated in several ways: either that “equals can be replaced

with equals” [11] or that a function call can be replaced with its return value

without changing the result of the containing function or program. Generally

speaking, referential transparency involves the elimination of side effects [11].

For example, if a function prints something to standard output or sets the value

of a variable that is used outside of the function, it is not referentially transpar-

ent. It is the second situation that is significant in MPSCM, as it is generally

more important and more to the point with respect to distributed program-

ming. Scheme is a programming language that allows for and encourages a high

measure of referential transparency in programs, but also contains facilities for

creating side-effects such as setting state variables.

In MPSCM, referential transparency is depended on as much as it is pre-

served, though both come into play. Referentially transparent programs are

easy to decompose for concurrent evaluation because it is guaranteed that all

dependencies are explicit in the definition of a function. Two function calls

to referentially transparent functions can be evaluated concurrently if neither

function call requires the result of the other in order to evaluate. This is not

generally true of functions that are not referentially transparent. Under the

stronger condition that a function not only does not mutate state variables but

does not reference them either, said function can be evaluated on a remote

machine without making any extra provisions, such as copying over variables.

Also, standard distributed computing constructs generally lack referential
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transparency. In a typical distributed programming environment, such as MPI,

each node has its own state variables. The approach taken in MPI is, generally,

that nodes communicate the values of these variables between the nodes as

appropriate, and use them to compute functions and eventually compile an

answer. With simple message passing functions added to Scheme, this approach

can be taken but is not a good fit. Also, this approach generally lacks referential

transparency because the sends and receives are experienced as side-effects and

the variable states must be tracked in the interim. MPSCM seeks an approach

that avoids this type of state-tracking as much as possible, and to make local

state variables on the individual nodes arbitrary to distributed computations.

This is a key goal of the higher-level functions in MPSCM.

1.1.4 Parallel Functional Computing

Parallel programming with functional languages in general, and Scheme and its

parent language LISP in particular, has a rich history including a number of

languages, academic papers, and even specialized machines [9]. There have been

many different approaches to this problem and several of them have been useful

in the design of MPSCM. While MPSCM uses MPI as the point of reference

for the basics of parallelization, earlier implementations of functional parallel

programming environments provide the point of reference and the inspiration

for the ultimate design and interface of MPSCM.

The parallelizing constructs discussed in M-Structures [1] and Mutilisp [15],

both written in the 1980s, provide an essential base for the style of parallel

programming that is drawn on in MPSCM. There are also several recent projects

that provide very sophisticated environments for distributed programming in

Scheme such as Termite Scheme [8] and Kali Scheme [5], which also provide a

point of reference for this project.
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Lazy Evaluation

At the center of many functional-style approaches to parallel functional com-

puting is lazy evaluation. Lazy evaluation is not necessarily a parallelizing

construct but the concepts are very much tied to each other. In lazy evaluation

an expression is not forced to evaluate until the return value is needed, or asked

for explicitly. When expressions are evaluated lazily more than one expression

can be computed at once and other operations can take place while waiting for

the evaluation of an expression. This is essential to parallel computing. Lazy

evaluation is the core concept of Multilisp’s future function [15] and a slight

variation, what is called non-strict evaluation, is used in M-Structures [1]. Some

modern functional languages, such as Haskell [12], use lazy evaluation implic-

itly, requiring no special instructions from the programmer or extra constructs

to do so. These languages are especially suited for concurrent programming.

MzScheme, like other Scheme implementations, is not such a language, and its

evaluation is strict by default. It does, however, contain some constructs that

are designed for lazy evaluation and others that can be used to design other

lazy evaluation constructs. The MzScheme delay function even shares some of

the terminology from Multilisp in its promise return value [6].

It is important to note that lazy evaluation is linked to the concept of

threaded computation. Lazy evaluation is basically equivalent to evaluating

a function in a new thread of control, synchronizing, and collecting the value in

an imperative program. This is at the root of lazy evaluation’s usefulness for

concurrent programming, but also makes it more suited to parallel processing

that occurs in a single dataspace, or in threads, rather than distributed process-

ing. To implement lazy evaluation remotely, a distributed environment such

as MPSCM must not only be able to evaluate expressions lazily, but also to

evaluate remotely and retrieve the value.



1.1 Background 15

Concurrent ML

Concurrent ML is an extension to the functional language Standard ML that

allows for concurrent programming. It is an interesting case study in functional

parallel and distributed computing because it uses very explicit parallelizing

constructs while maintaining key aspects of the functional approach as well as

the underlying, largely functional, base language. Concurrent ML uses threads

and synchronization constructs to create concurrent programs [14]. Instead of

designing the constructs around a concept of function evaluation, as in lazy

evaluation, standard process control and synchronization methods are used.

Concurrent ML fits this into the functionally-based framework of Standard ML

in a fashion that is powerful and usable. Such an approach, if used well by the

programmer, maintains the advantages of natural decomposability of functional

programs, while clearly displaying the parallelizing mechanisms. This type of

extension is also a reasonable choice for ML because, like Scheme and MzScheme

even more so, ML contains imperative and state changing functions in its core

language [6] [14]. This approach would be considered less declarative, in the

terminology of this paper, than the lazy evaluation approach and the paralleliz-

ing constructs are in what could be called an imperative style [1], though well

integrated into the functional framework of the base language.

Generally speaking, MPSCM is designed for a lazy evaluation approach to

concurrent programming. However, the underlying functionality of MPSCM

has much in common with Concurrent ML, in a simplified form. MzScheme is

generally more suited to the Concurrent ML approach to concurrent program-

ming because it has significant synchronization and threading constructs built

in and evaluates strictly. Because MPSCM is so tied to the underlying language,

as a set of library functions in the language, these characteristics will tend to

show through. Also, the basis in message passing, a very explicit form of paral-

lelization, further ties MPSCM to an explicit or imperative style. This will not

necessarily produce a lot of direct similarities to Concurrent ML, which was not

a major source in the development of this project, but it serves as a mainstream
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example of an alternative approach to parallel programming in functional lan-

guages and a point of reference for more or less imperative style parallelization

in a functional programming language.

1.1.5 Scheme and Education

The Scheme programming language is commonly used in education, especially

as an introduction to functional programming languages and even to computer

programming in general, famously as the language used in the introductory

programming course in MIT’s computer science curriculum, using Structure

and Interpretation of Computer Programs as a text [10]. Scheme is typically

chosen for this purpose because it does not bog down the the programmer with

low-level details [3] and for its clear syntax and semantics [17], which allow it

to be easily learned and simply expressive. While Scheme is suited for complex

applications as well, MPSCM focuses particularly on creating an environment

that preserves the ease of use of Scheme.

In the transition to distributed execution, MPSCM should provide an ap-

proach that does not mire the issue in details about the distributed environment.

At the same time, MPSCM should represent problem decomposition as clearly

as Scheme represents the problem itself. This approach is a departure from

declarativeness, at least in the sense that it is usually understood. By requir-

ing the programmer to focus on problem decomposition, MPSCM requires a

framework for how the problem must be solved or at least a knowledge of how

it can be broken up. The ideal distributed environment for Scheme, with re-

spect to maintaining declarativeness, would look exactly like standard Scheme,

but would automatically distribute work to remote nodes. This is impractical,

first of all, from a hardware perspective. Network speeds, particularly in net-

works that are not at the absolute cutting edge of high performance computing

make it difficult to efficiently distribute work in the general case. This is be-

cause the communication overhead that is associated with sending and receiving

data over the network is enough to significantly slow down the computation if
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distributing decisions are not made wisely. Since MPSCM is not designed for

high-performance computing, where extremely fast networks would be available,

communication overhead is of particular concern. Algorithmically decomposing

an arbitrary Scheme function may be feasible for a threaded multi-processor

environment, but in a distributed one it is only appropriate for a small subset

of functions or for a very specially designed base language. This is especially

critical in an environment like Scheme where many computations are quite small

and should not be distributed. Also, such an environment is outside the scope of

MPSCM, which is built on top of an existing Scheme implementation. Implicit

parallelization is most practical at the lowest levels of a programming language

and cannot easily be added to the top without modifying syntax. Still, this ideal

is kept in mind, and addressed in the design of MPSCM as possible and appro-

priate. It may not be possible to implement an effective distributed Scheme

that looks exactly like Scheme, but much can be done to make it look more like

Scheme than MPI.

As opposed to creating an environment where problem distribution is hid-

den, MPSCM works toward an approach which is declarative with respect to

problem decomposition. That is, that the program states how the problem is

to be decomposed, not how to decompose it. This serves as an effective in-

troduction to distributed programming and that a Scheme-based environment,

particularly one implemented in the fashion of MPSCM, provides a basis for this

that is meaningfully rooted in functional programming but generally applicable

to other approaches to distributed programming. Because MPSCM has its base

in message passing many of the lessons to be learned from it are applicable to

the MPI environment, even as they are very different in program structure. The

same issues of problem decomposition and distributed state apply, but MPSCM

takes an angle that emphasizes the advantages of functional programming in

those very areas.
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1.2 Motivation

MPSCM is based on ideas very similar to the essential constructs that appear

in some of previous implementations of distributed functional programming en-

vironments, but is not meant to be an equivalent environment. It is not nearly

as complete or robust as, for example, Termite Scheme. The first and original

goal of MPSCM is to use MzScheme build an MPI-like set of library functions

for building distributed programs and then analyzing the performance and ex-

pressivity of such an environment, as well as analyzing to what extent it is still

a meaningfully Scheme-like or MPI-like environment. The implementation of

typical functional style parallelization is essential to this investigation in order

to demonstrate how well such functions can be implemented. However, many of

the functions used in MPSCM are substantially different from those presented

in other implementations for several reasons.

First, the requirements of syntax and function definition in MzScheme and

the underlying message-passing framework, largely dictate the inner workings

and the interface of MPSCM. The second motivation behind MPSCM’s con-

structs comes from a distinct line of inquiry. The environment for MPSCM

looks both to previous academic research and to concepts in education for func-

tional programming languages and parallel programming. MPSCM’s constructs

should provide a meaningful base for an introduction to parallel computing in

functional programming languages and in general. This is not a pure distinction

from previous implementations, but rather a difference in emphasis.

MPSCM is also intended to add to the overall discussion of distributed pro-

gramming in Scheme, though not in the form of radical or profound change.

This area of discussion, while it is rich with existing research, is in many ways

not yet fully realized. Both in terms of an agreed upon standard, like MPI

for message passing, or for taking advantage of certain applications, education

in particular. MPSCM’s very specific approach to distributed computing al-

lows a unique perspective on some of the problems and solutions of distributed

computing in Scheme.



Chapter 2

Implementation

MPSCM is built in three layers, each built directly on the one below it. The

first layer is the communication layer, which is modeled after MPI sends and

receives. This layer provides the interface for connections between the nodes.

The first layer contains the functions MPSCM-send and MPSCM-recv as well as

the boot function, MPSCM-boot. The second layer of MPSCM consists of a sin-

gle function called MPSCM-eval. This function is a lazy evaluation construct

that serves as the basis for the style of distributed programming advocated in

MPSCM. The third layer is the top-level functions: MPSCM-let, MPSCM-map,

and MPSCM-branch. These functions are designed around traditional Scheme

constructs and programming styles, and are meant to provide a structured ap-

proach to distributed programming. The following sections provide an in-depth

description of the MPSCM implementation.

2.1 Initialization

MPSCM is initialized by the programmer from the MzScheme console using

the function call, MPSCM-boot. This function uses a combination of BASH

scripts and MzScheme library calls and can be thought of as an equivalent to

LAM/MPI’s lamboot [4], except originating from MzScheme’s REPL command

19
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environment instead of a standard UNIX terminal as the point of execution.

The computer attended by the programmer can be thought of as the master,

although the MPSCM protocol allows styles of distributed programming besides

master/worker. MPSCM-boot takes the file-name of a file containing a list of node

addresses as an argument. This list must start with the originating node, as

in LAM/MPI. Also, it takes a TCP port number, which will be used for all

communications, and the number of nodes to be used. If the number is less

than the number of nodes given by the list file, it will take that number from

the beginning of the list, if it is more, an error will be reported.

The originating node uses SSH via a BASH script to start MzScheme on

all nodes, and each node, including the master, executes a function called

MPSCM-init. Every node opens a tcp-listener and then connects to each

node with lower rank and accepts from each node with higher rank. This

creates a network of nodes where every node has a TCP input and output

port to every other node. This is accomplished with MzScheme’s tcp-connect

and tcp-accept functions [6]. Also, each node has a rank, given locally as

MPSCM-myrank, and that rank is associated with every port to and from that

node. Ranks are assigned, similarly to MPI, as integer values starting with 0

for the originating node.

Although MPSCM is designed for computers on a shared Linux domain able

to execute programs remotely using SSH, much of the infrastructure could be

adapted to a heterogeneous environment thanks to the portability of MzScheme.

The only aspect that relies on homogeneity is the boot script initiated by the

MPSCM-boot function.

2.2 Message Passing functions

In MPSCM, communication occurs via message-passing using MPSCM-send and

MPSCM-recv functions, which are substantially similar in conception to MPI’s

send and receive functions. MPI is, itself, a very lengthy and complicated stan-

dard. This is a result of its need to provide a robust and general standard for
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distributed computing [4]. MPSCM uses only two functions to approximate all

of MPI’s functionality. Send and Receive functions provide the basic function-

ality of message passing and are sufficient, not only for programming in an MPI

style, but also for implementing higher-level functions using message passing as

a base, the ultimate goal of MPSCM.

2.2.1 MPSCM-send

The MPSCM-send function is extremely simple. MPSCM-send takes, as arguments,

the rank of the addressed node, the data object to be sent, and an identifying

tag. It then packages the data object with the tag in a list and writes the

list to the TCP output port associated with the addressed node. MPSCM-send

is a non-blocking send, and all handling of the message on the sending end is

performed by the MzScheme library functions and the TCP implementation.

There are no guarantees or provisions made for sending of messages other than

those provided by TCP [2].

2.2.2 MPSCM-recv

All the complexity of the message-passing level occurs on the receiving end.

In early versions of MPSCM, the MPSCM-recv function consisted only of read-

ing the input port associated with the process from which data was expected.

MzScheme’s implementation of read makes this a blocking operation that waits

until data is written and then returns. This implementation is actually ac-

ceptable for many simple or specialized distributed programs and allows for a

lightweight backbone for message passing-based environments.

However, this approach is too simple for a distributed environment that as-

pires to general usability or comparability to MPI. It does not scale well to

complicated programs and does not provide enough flexibility for different pat-

terns of communication and execution. Such a simple approach to message

passing also produces problems in constructing higher-level abstractions for the

MPSCM library. Because of this, MPSCM uses a more intricate system built
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around receive buffers that store all incoming messages. MPSCM-recv takes a

rank and an identifying tag as arguments. It first checks the buffer for a mes-

sage with the specified tag and rank. If the message is not available, it waits

until it is received and then returns the data from the message. MzScheme

provides library functions for hash-tables and synchronization that make these

buffers quite practical to implement [6]. Background threads are started on

initialization of the MPSCM environment to handle the receive buffers. These

threads wait, using event-based synchronization, on each of the input ports for

incoming messages. When messages are received, they are then hashed in a

shared map that uses semaphores for mutual exclusion.

This is one area where the programming of the MPSCM library itself strays

particularly far from ideal functional programming. The use of buffers and mul-

tiple background threads is state-dependent, lacking in referential transparency.

This is a necessary practical consideration that is justified by the requirements

of the problem of creating a message passing interface and by the flexibility

that it allows the programmer using higher-level functions. At the lowest levels,

MPSCM is not significantly different from MPI, albeit much simpler, in terms

of structure, and the approach is, in some respects, C-like. Early attempts to

avoid this type of programming did not produce good results in either func-

tion or style. The ideal for the design of MPSCM is to provide a foundation,

much like the code behind a typical Scheme implementation, for a functional

programming environment. The MzScheme code in MPSCM plays the role of

a lower-level language providing the base for a higher-level one. MzScheme, as

with all Scheme implementations, has the flexibility to work in this style, and ul-

timately allows for a good mix of functional and imperative-style programming

in the MPSCM libraries.

2.2.3 Technical Limitations

MPSCM-send and MPSCM-recv can only send and receive objects that can be

written to MzScheme’s ports. These are the serializable objects, or those that
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can be represented as data in some static form. In MzScheme, this is a sepa-

rate group from first-class objects, which include several object types, such as

functions, threads, continuations, that can not be written to ports. Serializable

objects in MzScheme are similar to those in languages like C: numbers, charac-

ters, strings, etc. Lists and vectors are also included in the list of serializable

objects, as are quoted expressions.

2.2.4 Message Passing Examples

It is possible to write perfectly good programs in MzScheme using only the

MPSCM-send and MPSCM-recv functions. Scheme in general is flexible enough

to allow very C-like programming, and these functions allow for MPI/C-style

programs looking something like this:

(begin
(MPSCM-send proc-id ’Message tag)
<perform some computation>
(set! var (MPSCM-recv proc-id tag))
<perform final computation>))

Also, one can imagine an MPI-style parallelization in a somewhat more

functional style. Here’s a trivial program of only two nodes where node 0 sends

value to node 1, who sends back f of the received value:

;;worker snippet
(let ((received-val (MPSCM-recv 0 0)))

(MPSCM-send 0 (f received-val) 1))

;;master snippet
(begin

(MPSCM-send 1 value 0)
(MPSCM-recv 1 1))

;;combination, SPMD function
(define mpi-fun

(lambda (value)
(if (= MPSCM-myrank 0)
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(begin
(MPSCM-send 1 value 0)
(MPSCM-recv 1 1))

(let ((received-val (MPSCM-recv 0 0)))
(MPSCM-send 0 (f received-val) 1)))))

This type of programming has some appeal, particularly for a programmer

with some familiarity with both Scheme and MPI. However, it is generally dif-

ficult to deal with these sends and receives over an arbitrarily large network

of nodes. Also, the complication of pairing sends and receives involves more

“plumbing”[1] and concerns with sequence than what is desired in declarative

Scheme programs.

2.3 Higher-level functions

While MPI-style programming is not only possible but reasonably user-friendly

and expressive in MPSCM, it is ultimately not the desired application for this

project. MPSCM is intended to preserve the functional, or functional-like, ex-

perience provided by MzScheme. Because of this, MPSCM also provides higher-

level functions that are intended to help bridge this gap. These functions are

based on past approaches to parallelization in functional programming and on

commonly used standard Scheme functions. The goal of the higher-level func-

tions of MPSCM is, first, to create a method for remotely evaluating function

calls so that distribution can occur on the function-level instead of on the pro-

gram and data level, as in MPI. The second goal is to identify naturally de-

composable Scheme programming constructs and design distributed versions of

them that exploit this decomposability.

2.3.1 MPSCM-eval

The building-block of the higher-level functions is MPSCM-eval. This function is

meant to provide a way to evaluate a function on a remote node and then receive

the result. This is essentially a paired send and receive, but in a structured
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framework that is more fitting to the Scheme style. MPSCM-eval is a construct

for enabling distributed computing via lazy evaluation [1]. Multilisp’s future

type is a good point of reference [15]. Because functions are not serializable in

MzScheme, MPSCM-eval uses quoted expressions, which can be serialized, and

the Standard Scheme function eval as a workaround. This also gets around the

problem of MzScheme’s strict evaluation because the quoted expressions are not

evaluated until eval is called. MPSCM-eval is called with a quoted function call

as an argument, which is packaged into an extended function call. This extended

function call is an instruction to evaluate the original expression and send the

result back to the requesting node using MPSCM-send. The extended quoted

expression is then sent to the remote process with a special tag identifying it as

a command to be evaluated. Any time such a message is received the quoted

function is evaluated using the standard Scheme eval function in a thread and

nothing is stored in a buffer. The return value of the MPSCM-eval function

is a MzScheme construct called a channel. This construct has two pertinent

associated functions: channel-put and channel-get. channel-get blocks the

current thread of control until channel-put is called with some value in another

thread and then returns the value that is put into the channel [6]. The process

that calls MPSCM-eval will have a thread waiting, with MPSCM-recv, on the

return value. When the value is received, it is put into the channel. when

this value is needed it can be obtained by calling channel-get on the channel

returned by the MPSCM-eval function. The value will only be available once

because the channel is cleared when channel-get is called. MPSCM-eval can

also be called by a process using itself as the remote process, this will merely

evaluate the quoted expression in a thread and return a channel waiting on the

result.

MPSCM-eval is intentionally more like a thread-based parallelizing construct

than a distributed construct. A thread-like approach is inherently more friendly

to a functional programming style than a traditional message passing approach

because message passing is naturally imperative and state dependent. From

the programmer’s point of view, MPSCM-eval is very much like a thread with
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a structured method of obtaining a return value, which is patterned on the

MzScheme channel construct. This is driven home by the fact that when a

process calls MPSCM-eval with itself as the remote node, this is literally what

happens. MPSCM-eval provides a lazy evaluation construct for distributed com-

puting that retains the advantages of typical thread-based lazy evaluation.

The only element of programming with MPSCM-eval that directly references

the distributed environment is the assignment of a remote node. Since, for

referentially transparent functions, the processor on which the computation is

performed is arbitrary to the evaluation of the expression, MPSCM-eval can

also be called without a node assignment argument. When MPSCM-eval is

called in this fashion, it chooses a processor using the MPSCM library func-

tion MPSCM-get-next-proc!. The method of node selection currently used in

MPSCM-get-next-proc! is to iterate over processes with each successive call to

the function. This is done using the local state variable MPSCM-next-proc.

Distribution algorithms could be created and easily added to attempt to

provide optimal load balancing in general or for specific applications. Such

solutions have not been investigated in MPSCM as a means of providing optimal

efficiency. However, the feasibility of this approach is investigated in the method

MPSCM-get-load. This method obtains the current load of whichever node it is

called on using standard UNIX aux and ps functions called from MzScheme. By

calling this method with MPSCM-eval, one node can figure out the current load

of any or all other nodes and make distributing decisions appropriately. This

type of function could be extended to also check variables in a heterogeneous

network, such as processor power and number of processors on a given node.

This type of flexibility is ideal for MPSCM programming because it maximizes

the effectiveness of MPSCM parallelizations and because it can do so behind the

scenes, allowing the programmer to focus only on writing properly decomposed

functions. However, because MzScheme should be effective in the most simple

and general cases, high overhead load-distributing mechanisms are overkill. For

this reason, MPSCM uses the simple rotating approach to load distribution.

The primary rationale for the implementation of the receive buffers and
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threaded listeners used as the back end for MPSCM-recv is to allow for MPSCM-eval

messages to be evaluated in threads independently of each other and of the data

coming in through traditional message passing. This allows for an arbitrary

number of threaded MPSCM-eval calls to be evaluated throughout the network

and, as long as they are without side-effects, experienced much like threaded

function calls, or lazy evaluation, by the user. For this reason, MPSCM auto-

matically takes advantage of nodes with multiple processors without requiring

additional commands. A node with two processors can simply be sent two

subproblems and they will automatically be evaluated concurrently.

It is ideal for commands called with MPSCM-eval to not contain references

to local state variables so that the node on which it is evaluated is, indeed,

arbitrary. Programming in MPSCM is much friendlier when it is used in this

fashion, and this emphasizes the natural parallelizability of proper functional

programs. When this is done, an MPSCM-eval function can be called transparent.

That is, it is equivalent to the sequentialised version [13]. If the MPSCM-eval call

is replaced with eval, and the channel-get is removed, the result of the com-

putation is the same from the user’s perspective. However, as with Scheme in

general, MPSCM offers some flexibility in this respect. It has not been a point of

significant study, but MPSCM-eval could be used along with localized state val-

ues and specific node assignments to write effective distributed programs. Such

programs would be much like MPI programs, but with a particular structure to

communication that is more in the functional style.

A typical MPSCM-eval program:

(define MPSCM-eval-fun
(lambda (args)

;; bind a helper function for building a list of
;; channels
(letrec ((helper

(lambda (hargs)
(if (cond)

’()
;; call MPSCM-eval on some sub-function
;; and cons it to the recursive call.
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(cons (MPSCM-eval ’(f arg))
(helper

(iterating-function args)))))))
;; generate the solution by performing some
;; finalizing function on the list of channels.
(finalizing-function

(helper (setup-function args))))))

2.3.2 MPSCM-ceval

In addition to MPSCM-eval, there is the almost equivalent function provided

in MPSCM called MPSCM-ceval, or compose and eval. Instead of an entire

quoted function call, MPSCM-ceval takes a quoted function name and a list

of arguments. MPSCM-ceval then composes the complete quoted expression for

MPSCM-eval from the quoted function name and the list of arguments by consing

them together. This function is, rather obviously, not significantly distinct from

MPSCM-eval. It is intended as a convenience function to avoid some of the list

manipulation headaches caused by MPSCM-eval. It should be noted that any

functions in the list of arguments must be quoted and any function calls will be

evaluated prior to distribution, per Scheme’s rules for evaluation order.

A typical MPSCM-ceval program:

(define MPSCM-ceval-fun
(lambda (args)

;; bind a helper function for building a list of
;; channels
(letrec ((helper

(lambda (hargs)
(if (cond)

’()
;; call MPSCM-ceval on some sub-function
;; and cons it to the recursive call.
(cons

(MPSCM-ceval
’f (distributing-function hargs))

(helper (iterating-function args)))))))
;; generate the solution by performing some
;; finalizing function on the list of channels.
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(finalizing-function
(helper (setup-function args))))))

2.3.3 Top Level Functions

Using MPSCM-eval as a building-block, MPSCM includes additional parallelizing

mechanisms based on Scheme constructs and commonly used functions that can

be naturally parallelized.

MPSCM-map

MPSCM-map is a parallel version of the map function, commonly used in Scheme,

that maps a function on to each element of a list. MPSCM-map splits up the list

into a specified number of sub-lists, uses MPSCM-eval to map a quoted function

onto each of the sub-lists, and then recompiles the full mapped list. MPSCM-map

is available in either lazy or strict form. The default MPSCM-map is strict, as

is MPSCM-strict-map. The strict distributed maps return the mapped lists

directly. They are called strict because they are experienced by user programs

as a strictly evaluating function and because they do not require a function to

finalize the return value. However, each uses lazy evaluation, via MPSCM-eval,

to perform the mapping itself.

The alternate form, MPSCM-lazy-map, returns a list of channels representing

the MPSCM-eval map calls on each sub-list. MPSCM-lazy-map is used much like

MPSCM-eval, but, instead of finalizing with channel-get, a specialized function

called MPSCM-map-finalize is used to finalize all of the channels and create the

full mapped list. MPSCM-lazy-map has the same advantages and disadvantages

as MPSCM-eval in that it returns control to the user immediately but requires

the extra step of finalizing the value.

Each of these can be replaced by an equivalent call to a standard map func-

tion with the same result, although the MPSCM-lazy-map requires a call to

MPSCM-map-finalize. Because of this, MPSCM-map is an ideal MPSCM func-

tion, as it can be applied by the programmer with only parallelizing hints, with
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the choice to use MPSCM being the major decision, and without changing pro-

gram’s structure.

map is a naturally parallelizable function because each of the elements of the

list has the mapped function applied to it independent of the others. It is also a

commonly used function in functional programming and a parallel version can

be used interestingly and expressively.

MPSCM-map, especially the lazy form, could be handled in a more complex

manner to allow for pipelining of the original list’s data to the remote nodes and

for partial access to incomplete mappings, with elements becoming available

as they are needed. In general it is difficult to design an ideal solution for

pipelining, so I have chosen the most basic decomposition of the list: splitting

it into equal parts. Access to incomplete mappings is a fairly complex problem

that is outside of the scope of this paper. There is some room for flexibility and

experimentation in implementation of other versions of MPSCM-map and it may

be used as a starting point for more specialized solutions to similar problems.

A typical use of MPSCM-map:

(MPSCM-strict-map ’f lst)

;; or with MPSCM-lazy-map

(let ((a (MPSCM-lazy-map ’f lst)))
(<do whatever you want>)
(some-function (MPSCM-map-finalize a) args))

MPSCM-let

MPSCM-let is a parallel version of the Standard Scheme let construct where

the argument of each binding must be a quoted expression, which is evaluated

remotely using MPSCM-eval. As with a standard let, each of the expressions

must be independent of each other. There are two versions of MPSCM-let:

MPSCM-strict-let and MPSCM-lazy-let. The strict let binds the return values

of the evaluated expressions to each variable where the lazy let binds channels
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in the fashion of MPSCM-eval. As with MPSCM-map, the unqualified MPSCM-let

is the same as MPSCM-strict-let.

Typical functions using MPSCM-let and MPSCM-lazy-let:

(define MPSCM-let-fun
(lambda (args)

(MPSCM-let ((a ’(f1 a-args)) (b ’(f2 b-args)))
(f3 a b other-args))))

(define MPSCM-lazy-let-fun
(lambda (args)

(MPSCM-lazy-let ((a ’(f1 a-args)) (b ’(f2 b-args)))
(f3 (channel-get a) (channel-get b) other-args))))

MPSCM-let is based on the idea of parallel blocks from M-Structures [1] and

pblocks from Multilisp [15], where each expression in a block of expressions is

evaluated concurrently. However, MPSCM-let uses the existing let construct as

a basis rather than building an entirely new one. The let construct is, itself, es-

sentially parallelizable because each binding is independent of all other bindings.

This is underscored by the existence of let*, where this is not the case. The def-

inition of the let construct guarantees “exploitable concurrency” [18]. By using

a well-known Standard Scheme construct, MPSCM-let allows for parallelization

that makes sense to Scheme and to Schemers. This is also especially useful

as an instructive example of problem subdivision for distributed programming

because the decomposition is built into the construct itself.

Also, MPSCM-let is an excellent example of how MPSCM programs should

ideally relate to standard Scheme programs. First, an MPSCM-let program is

identical in structure to an equivalent Scheme program. With a strict MPSCM-let,

this can be demonstrated by replacing it with a standard let and removing

the quotes before the expressions. MPSCM-lazy-let requires additional calls to

channel-get for each of the bindings. Looking at the extremely general exam-

ple functions, we can imagine exactly what a Standard Scheme equivalent would

look like. However, this is not necessarily the way a programmer would choose

to write such a program in Standard Scheme. For example, in that context, it
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might be more reasonable to forgo the let altogether and evaluate f1 and f2

as arguments of f3 or even to write a separate function that is the equivalent

to the composition of the three.

MPSCM-let provides a construct that may occasionally be easily and effec-

tively applicable to existing Scheme programs, but generally will require the

programmer to make parallelizing decisions in the design process using an en-

vironment that is expressive and meaningfully Scheme-like. Also, the let con-

struct encourages a structured approach to parallelization in a way that parallel

blocks do not. The programmer must identify independently evaluatable sub-

expressions of appropriate computational complexity and use the MPSCM-let

construct to decompose and distribute them. The let construct itself pro-

vides the decomposition’s structure and distribution is handled implicitly by

MPSCM-eval. This again underscores the academic applications of this construct

and the MPSCM environment that are not present in an MPI approach.

MPSCM-branch

MPSCM-branch is a specialized construct designed for branching recursion that

distributes the branches, using MPSCM-eval, and combines the results with a

given function. In branching computations it is inefficient to distribute the

sub-problems at every branch unless each branch involves a great deal of com-

putation, which is often not the case. A solution-space search provides a good

example of a typical case where each branch often contains only trivial compu-

tation. Because of this, there should be some rule for when to distribute the

sub-problems and when to go ahead with computing them locally. A call to

MPSCM-branch, therefore, looks like this:

(MPSCM-branch conditional
combining-operator
’exp1 ... ’expn)

Where exp1...expn are functional expressions that are evaluated remotely if

the conditional evaluates to true and locally if it evaluates to false. After
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this, channel-get is called if necessary and the results are combined using the

combining-operator, which must be a function that can be applied to the

return values of the quoted expressions. sum and max are examples of typical

combining operators.

The MPSCM-branch function can be fairly easily implemented using if state-

ments and MPSCM-eval, but the creation of a construct specifically for this

situation is important for several reasons. First, by providing upper-level con-

structs that represent ideas that are essential to both Scheme programming

and to parallel programming, MPSCM encourages a structured approach to

these problems that takes advantage of the natural decomposability of typical

Scheme functions. Distribution of branching recursion is an essentially func-

tional method of problem decomposition that is useful for a wide variety of

problems and can be adapted to different programming environments, though

generally not so readily as with MPSCM-branch. Also, like the strict versions

of MPSCM-map and MPSCM-let, MPSCM-branch can be seen as equivalent to the

sequential version. This is a little more obscure in the case of MPSCM-branch

than with the other two functions because MPSCM-branch is contrived to fit the

MPSCM-eval framework rather than adapted from an existing function. However,

it is basically a wrapper for the combining-operator and evaluates equivalently

to:

(combining-operator exp1 ... expn)

In fact, while MPSCM-branch is named and designed for branching recursion, it

can be used to apply the combining-operator to an arbitrary set of quoted

expressions, somewhat like the MPI Reduce function in MPI [16], which combines

the value of every local instance of a given variable using one of a defined set of

combining operators. However, MPSCM-branch is used in a very different, much

more functional, context.
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2.4 The Distributed Environment

MPSCM should, as much as can be reasonably done, provide an environment

that is as close to the Standard Scheme experience as possible. While completely

hiding the fact that these computations are going on on multiple computers,

with their own dataspace, is not practical and ultimately not desirable given

our capabilities and framework, MPSCM must still provide some basic functions

that allow programmers to go about there state-based business in a comfortable

and useful way. MPSCM-eval-all and MPSCM-gload are MPSCM’s functions

for dealing with state across all nodes or “global” state. Also, the function

MPSCM-halt is used to stop MPSCM altogether.

2.4.1 MPSCM-eval-all

MPSCM-eval-all is the more general method for dealing with the distributed

environment. It is used to evaluate a quoted expression, using MPSCM-eval, on

every node. With MPSCM-eval-all the channels returned by MPSCM-eval are

simply lost, it is meant only as a maintenance function. It can be used as an

entry-point for an MPI-style SPMD program where each node is given a function

with conditional commands based on rank, perhaps, that produce a meaningful

final result. MPSCM, particularly for evaluating user functions, is built around

more of a Master/Worker model of designing programs, so MPSCM-eval-all

is deemphasized for SPMD programming. However, this could potentially be

developed into a useful approach.

2.4.2 MPSCM-gload

MPSCM-gload is the global load method. This is a convenience method that

is built directly from MPSCM-eval-all and merely evaluates a load call on all

nodes. Paths given to MPSCM-gload must be relative to the MPSCM-home-dir,

which is kept as a state variable on each node once the MPSCM libraries are

loaded. This function is essential so that MPSCM-eval can be called with user-
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defined functions.

2.4.3 Notes on Global State

Beyond the use of MPSCM-gload for creating a common library between the

nodes, MPSCM is not designed to handle global state. In fact, it is not de-

signed to deal with state at all, with the exception of the use of simple vari-

ables on the user-occupied node to conveniently keep track of values and hold

onto channels within the REPL environment. The higher-level functions are

designed specifically so that state complications that naturally arise from a dis-

tributed environment are discouraged and can be avoided.

It could potentially be interesting to experiment with MPSCM using global

defines and set!s to create a more developed and meaningful idea of global

state but that is not within the scope of this project. MPSCM adopts an idea

of distributed functional programming that shuns such notions and emphasizes

the expressivity and inherent parallelizability of a stateless approach to parallel

programming.

2.4.4 MPSCM-halt

The MPSCM-halt uses MPSCM-eval-all to call a function named MPSCM-fin on

all remote nodes and on the master. MPSCM-fin simply closes all of MPSCM’s

TCP ports, stops the receive buffer threads and, for the remote nodes, exits

MzScheme. All of the output generated during the remote MzScheme sessions

is received, and printed to the REPL console of the master, when MPSCM-halt is

called because that is when the boot scripts actually finish executing and their

output is available.
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Example Programs

3.1 Numerical Integration

Numerical integration, particularly using the trapezoidal rule, is often used as

an introduction to parallel programming because the decomposition is easily

derivable from the description of the algorithm. Two different examples of

numerical integration using MPSCM are included in Figures 3.1 and 3.2, one

distributed and one using only threads, along with a C/MPI example in Figure

3.3 to serve as a point of comparison between the two environments.

The function par-trap in Figure 3.1 is a simple distributed implementation

of numerical integration with the trapezoidal rule using MPSCM. The listed

function uses the MPSCM libraries and a standard Scheme function trap (not

listed):

(trap left-bound right-bound number-of-subdivisions f)

which approximates the integral of f from left-bound to right-bound using

the given number-of-subdivisions. The listed function, par-trap, takes an

additional parameter, nparts, which gives the number of sub-problems to break

the function into. Each sub-problem will be composed into a call to MPSCM-eval.

36



3.1 Numerical Integration 37

(define par-trap
(lambda (l r n f nparts)

;; compute parameters for the subproblems
(let* ( (steps-per-part (/ n nparts))

(step-size (/ (- r l) n))
(part-size (* steps-per-part step-size)))

;; helper function generates one subproblem call
;; and evaluates it with MPSCM-eval
(letrec ((helper

(lambda (p)
;; compute specific subproblem parameters
;; and build the quoted expression
(let* ( (start (* part-size p))

(finish (* part-size (+ p 1)))
(eval-list (list

’trap
start
finish
steps-per-part
’f))

;; call MPSCM-eval and hold the
;; channel
(chan (MPSCM-eval eval-list)))

;; recursive calls must be done such that
;; all MPSCM-eval calls are made before
;; waiting for any to evaluate
(if (= p 0)

(channel-get chan)
(let ((next-val (helper (- p 1))))

(+ next-val
(channel-get chan))))))))

(helper (- nparts 1))))))

Figure 3.1: A distributed solution for numerical integration in MPSCM using

the trapezoidal rule. Uses MPSCM-eval and a recursive helper function to create

and evaluate subproblems.
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(define thread-trap
(lambda (l r n f nparts)

(let* ( (steps-per-part (/ n nparts))
(step-size (/ (- r l) n))
(part-size (* steps-per-part step-size)))

(letrec ((helper
(lambda (p)

(let* ( (start (* part-size p))
(finish (* part-size (+ p 1)))
(eval-list (list

’trap
start
finish
steps-per-part
’f))

(chan (MPSCM-eval eval-list 0)))
(if (= p 0)

(channel-get chan)
(let ((next-val (helper (- p 1))))

(+ next-val (channel-get chan))))))))
(helper (- nparts 1))))))

Figure 3.2: A threaded solution for numerical integration in MPSCM using the

trapezoidal rule. Uses MPSCM-eval with node 0 as the assigned node to evaluate

locally.
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int main(int argc, char** argv)
{

//Declare all necessary variables
int myrank, nprocs, n, localn, i;
double l, r, value, h, locall, localr, totalvalue;

MPI_Status status;

//Initialize the MPI environment
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

//Get parameters from command line arguments
l=atof(argv[1]);
r=atof(argv[2]);
n=atoi(argv[3]);
h=(b-a)/n;

//Compute the parameters for this process’s
//suproblem
localn=n/nprocs;
locall=l+myrank*localn*h;
localr=locall+localn*h;

//Compute the subproblem using unlisted Trap
value=Trap(locall, localr, localn, h);

//"Master" waits for responses from "Workers"
//and sums the results
if (myrank==0)
{

totalvalue=value;
for(i=1; i<nprocs; i++){

MPI_Recv(&value,
1,
MPI_DOUBLE,
MPI_ANY_SOURCE,
0,
MPI_COMM_WORLD,
&status);

totalvalue+=value;
}

}

Figure 3.3: A distributed solution for numerical integration in C/MPI using the

trapezoidal rule. Subproblems are computed at each node, using MPI Comm rank

to differentiate, and sent to the master with MPI Send where the answer is

compiled and printed.
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//"Worker" processes send result to "Master"
else
{

MPI_Send(&value, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
}

//The result is printed to standard out of the "Master"
if (myrank==0)
{

printf("The value of the integral is %.16f\n",
n, totalvalue);

}

//Finalize MPI
MPI_Finalize();

}



3.1 Numerical Integration 41

This example is a typical and straightforward use of the MPSCM libraries

using MPSCM-eval to build a list of channels waiting on the completion of the

sub-problem. When the list is built, each channel is finalized with channel-get

and the sum of the results is returned as the approximation. The call to

MPSCM-eval is done without a specified node ID so the next one is selected

using MPSCM-get-next-proc!. Also notice that this function can be changed

to a purely threaded function by using 0 as the second argument to MPSCM-eval

as in thread-trap, shown in Figure 3.2. In the thread-trap example, each sub-

problem is executed locally in a thread. The same approach could be used to

perform the computation in threads on a remote machine, using the rank of

another node instead of 0.

A distributed solution for numerical integration programmed in C/MPI is

available in Figure 3.3. The C program depends on an unlisted sequential func-

tion for computing the trapezoidal rule, called Trap, that is essentially the same

as the unlisted Scheme function. Once past the syntax and program structure

of the two examples, it is worth noting that these programs are quite similar

in there approach to parallelization. They both decompose the problem in the

same manner prior to execution of sub-problems, and then sum the results.

Also, both problems are comparable in complexity: given a similar familiarity

with C/MPI and MzScheme with MPSCM, neither is particularly more or less

complicated than the other.

However, this example reveals many essential dissimilarities between the

C/MPI approach and the MPSCM-eval approach to parallelization. First, the

MPSCM version is explicitly decomposing and distributing the problem, whereas

in the C/MPI version distribution is, especially in this example, primarily a

product of the SPMD execution environment. This distinction is related to

the essential difference between the two environments: MPSCM distribution is

based on function evaluation, while MPI is based on data communication. In

MPI, the distributed evaluation happens at the program level by running the

parallel program on all nodes, which conceptually separates distribution from

the description of the program. Because of this, MPSCM more clearly repre-
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sents problem decomposition in terms of the problem, rather than in terms of

the distributed environment.

3.2 Map and Sort

(define map-and-sort
(lambda (ls)

(let* ( (gran (/ (length ls) 10))
(split-ls (split-list ls gran)))

(merge-all (MPSCM-map ’sort split-ls gran)))))

Figure 3.4: A novel approach to distributed sorting in MPSCM that uses

MPSCM-map to map a sort function to sublists.

The function map-and-sort in Figure 3.4 shows a novel approach to sorting

using MPSCM-map. It uses three standard Scheme functions that are not listed:

split-list which splits a list into a list of the specified number of sub-lists,

merge-all which merges a list of sorted lists into one sorted list, and sort

which sorts a list. Using these functions, MPSCM-map-and-sort splits up the list

passed as an argument and maps the sort function to each element of the list

of lists returned by split-list, using MPSCM-map. Finally, it merges the sorted

lists returned directly by the strict version of MPSCM-map.

This function is interesting for several reasons. First, once implemented, it

can be used in place of sort in any Scheme function, as long as the MPSCM

environment is initialized. This portability is a nice side-effect that is allowed by

the Scheme environment. The modularity of MPSCM is not totally unavailable

in an environment like MPI, but the ability to implement parallelization at the

function level is a gain in terms of usability. Also, the map-and-sort function

does not take any arguments other than the list itself. All of the parallelization

decision-making occurs automatically through the MPSCM-map function and in

the map-and-sort function definition, which decides on a granularity, given by

gran, the value passed to MPSCM-map.
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This function is also interesting in that it is, even for a Scheme programmer,

a decidedly off-the-wall approach to sorting. At the same time, it is essentially

appropriate to the MPSCM approach. The programmability of a function such

as map-and-sort is not a great accomplishment in itself, but it shows how

MPSCM encourages novel ways of thinking about parallelization within the

context of simple Scheme constructs. This function may itself be something of

a joke, but it is a compelling joke that emphasizes the connection between a

Scheme approach to programming and problem decomposition for distributed

computing.

3.3 Fibonacci

(define par-fib
(lambda (n)

(if (<= n 1)
1
(MPSCM-branch (> n 15)

+
(list ’par-fib (- n 1))
(list ’par-fib (- n 2))))))

Figure 3.5: An MPSCM function to find the nth Fibonacci number that uses

MPSCM-branch for branching recursion.

The MPSCM-branch function can be difficult to grasp because it is not directly

connected to a Standard Scheme construct or commonly used function. Because

of this, it is appropriate to investigate it with a simple example that is often used

as an introduction to recursion: the Fibonacci sequence. An MPSCM function

to find the nth Fibonacci number is given in Figure 3.5. This example is quite

straight-forward: the base case is coded as in a standard Fibonacci definition

and instead of recursive calls there is a call to MPSCM-branch. The condition

argument is (> n 15), so if par-fib is called to compute any Fibonacci number

greater than fifteen the recursion branches using MPSCM-eval to evaluate the
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recursive expressions. For n smaller than fifteen, the recursive calls to par-fib

are evaluated locally using eval. This number can be adjusted based on the

problem and the computing resources available to try and reach an optimal

balance between distributing work and communication and thread overhead.

The two expressions are quoted recursive calls for the n − 1th and n − 2th

Fibonacci numbers, which will be combined with the + operator. The use of the

list method to form the quoted expressions is necessary because (- n 1) and

(- n 2) must be evaluated prior to the calls to MPSCM-eval while the recursive

calls to par-fib must not. This complication is the same as the one addressed

by MPSCM-ceval.

This function is appealing because it is very similar to the typical standard

Scheme description of the Fibonacci sequence, where the MPSCM-branch call

would simply be replaced by:

(+ (par-fib (- n 1)) (par-fib (- n 2)))

Although, granted, the standard Scheme function would probably be given a

different name. Also, the distributed function clearly describes how the decom-

position takes place and is natural to the problem itself. The presence of the

conditional operator isolates problem decomposition and distribution decisions

to the call for parallelization and gives a simple method for adjusting granularity

in terms of the structure of the recursive solution.



Chapter 4

Performance

The primary goal of MPSCM is not to provide a competitive alternative to

quicker approaches to parallel programming, such as C with MPI, for high-

performance computing. Existing Scheme implementations and MzScheme in

particular are not currently competitive with C in this respect, particularly in

areas, such as pure number-crunching, where parallel programming is often used.

However, parallel programming is always about speed and MPSCM is no excep-

tion. MPSCM may not be able to compete with C for performance, but it does

provide good speed up over sequential MzScheme under normal circumstances.

MPSCM allows us to assess the performance capacities of MzScheme’s TCP/IP

functions, in particular, as well as some its the other advanced constructs. This

chapter will also include an evaluation of the performance of MPSCM’s higher-

level functions.

4.1 Comparison to MPI

Initial performance data was collected with a bare-bones early version of MP-

SCM that provided Send and Receive commands, a lá MPI, using only reads

and writes to TCP ports for communication and without buffers or advanced

synchronization constructs. Data from these comparative tests, using equiva-

45
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Figure 4.1: Plot of MPI quicksort timing data using variably sized integer arrays

and networks of 1-16 nodes. Sequential C is used for the single processor data.

Tabular data is available in Table A.1.
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Figure 4.2: Plot of Proto-MPSCM quicksort timing data using variably sized

number vectors with networks of 1-16 nodes. Standard MzScheme is used for

the single processor example. Tabular data is available in Table A.2.
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Elements Nodes

2 4 8 16

1024 0.178166 0.195590 0.073329 0.050911

4096 0.294670 0.314755 0.212968 0.144195

16384 0.399727 0.346393 0.339684 0.375757

65536 0.565072 0.475743 0.453099 0.062765

262144 0.555342 0.466856 0.408467 0.202023

1048576 0.555374 0.465875 0.424097 0.402039

4194304 0.597763 0.490818 0.457380 0.438062

Table 4.1: Speedup for MPI distributed quicksort relative to Sequential C quick-

sort. Speedup is given as Sequential Execution Time / Execution Time.

Elements Nodes

2 4 8 16

1024 0.517768 1.083323 1.361667 1.431535

4096 0.813840 1.044780 1.596558 0.776728

16384 1.008935 1.438315 1.758998 2.207607

65536 1.330426 2.022788 2.677692 2.685742

262144 1.309208 1.937149 1.240066 2.762406

1048576 1.382668 2.031565 2.571014 3.023777

4194304 1.375793 2.085849 2.583813 3.030176

Table 4.2: Speedup for Proto-MPSCM distributed quicksort, given relative to

Standard MzScheme quicksort. Speedup is given as Sequential Execution Time

/ Execution Time.
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lent distributed quicksort algorithms in C/MPI and Proto-MPSCM, is available

graphically in Figures 4.1 and 4.2 or in tabular form in Appendix A, Tables

A.1 and A.2. This data provides a baseline for assessing processing speed in

C versus MzScheme as well as an idea of communication costs for MzScheme’s

TCP/IP functions. The overall performance in MPSCM is orders of magnitude

slower than C/MPI, which is expected, but speedup, relative to single-processor

Scheme and with increasing numbers of computing nodes, is encouraging. Ta-

bles 4.1 and 4.2 show Speedup, given as Sequential Execution Time / Execution

Time, relative to single processor performance for all distributed data from

Tables A.1 and A.2. Speedup for the MPSCM example is not processor pro-

portional, it is never much better than half the number of processors. However,

it is important to note that distributed sorting is an inherently high overhead

affair, because it requires very large transmissions of data across the network,

and that quicksort is a very efficient function relative to the size of the data to

which it is applied. Also, the speed-up acquired by adding nodes in MPSCM

compares favorably to the C/MPI data. In fact, subproblem distribution in

C/MPI actually increases execution time in all examples shown. That MPSCM

provides significant speedup for a problem that is communication intensive and

for which it is typically quite difficult to improve execution time via subproblem

distribution, can be taken as an indication that MzScheme’s TCP functions can

handle the data distribution aspect of MPSCM.

Table 4.3 provides an alternate presentation of the MPSCM quicksort data

from Table A.2 that gives an interesting perspective on MPSCM’s performance

relative to standard MzScheme. This table gives the elements per second perfor-

mance for the Standard MzScheme example and the proto-MPSCM distributed

examples. This data shows a clear degradation of elements per second perfor-

mance for Standard MzScheme quicksort on vectors of increasing size. This is

a problem with many typical MzScheme solutions because of the use of deep

recursion and specialized data types. Distributed solutions limit this degrada-

tion by decreasing the maximum depth of recursion, and the data indicates that

the proto-MPSCM examples provide much more constant elements per second
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performance.

Elements Nodes

1 2 4 8 16

1024 111558.99 57761.67 120854.48 151906.25 159700.56

4096 97913.13 79685.62 102297.70 156323.94 76051.84

16384 81747.51 82477.96 117578.67 143793.72 180466.37

65536 58781.95 78205.06 118903.42 157399.98 157873.18

262144 60301.42 78947.08 116812.83 74777.74 166576.96

1048576 53574.46 74075.68 108839.98 137740.70 161997.23

4194304 49661.36 68323.77 103586.09 128315.66 150482.65

Table 4.3: Elements per second performance for Proto-MPSCM quicksort. Data

is taken from timing results in Table A.2.

4.2 Numerical Integration

Performance testing for the later versions of MzScheme focuses on speed-up

relative to equivalent Standard MzScheme functions rather than comparisons

to C/MPI. Data collected from execution of the numerical integration examples

discussed earlier, applied to the function f(x) = 4
1+x2 , will serve as a case-study

for this analysis. This data is presented graphically in Figure 4.3 and in tabular

form in Table A.3.

It became clear very early in the development and research of MPSCM that

MzScheme provides some idiosyncrasies in performance that make analysis more

complicated. For example, using the same Standard Scheme trap function used

as a helper function in the parallel examples as a benchmark, the timing results

in Table 4.3 do not, as expected, scale linearly with the number of subintervals

used in the approximation. In fact, execution time increases much more quickly.

This is, essentially, the nature of a declarative language, such as Scheme, where

a function describes what is to be done, but not the way it will be done [1].
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Figure 4.3: Plot of MPSCM numerical integration timing data for the function

f(x) = 4
1+x2 . Threaded and Distributed data is from the examples in Figures

3.2 and 3.1, and the Sequential data uses Standard MzScheme. The Distributed

data is collected using four dual-core machines that are each identical to the

ones used for the Threaded and Sequential data. Both parallel versions use

eight threads. Tabular data is available in Table A.3.
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Subintervals Speedup

Threaded Distributed

1000 11.7500 27.5122

1500 12.8560 32.4646

1000 19.1076 54.2803

2500 18.4979 49.2926

3000 23.4018 69.4545

3500 21.5244 59.6061

4000 28.0917 87.4566

4500 15.4270 65.9267

5000 30.9144 98.8301

6000 31.8666 104.3957

Table 4.4: Speedup relative to the Standard Scheme trapezoidal rule function

for the Threaded and Distributed MPSCM examples (Figures 3.2 and 3.1).

Speedup is given as Sequential Execution Time / Execution Time. Data is

taken from the timing results in Table A.3.
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Subintervals Speedup

1000 2.341463

1500 2.525253

1000 2.840764

2500 2.664773

3000 2.967914

3500 2.769231

4000 3.113253

4500 4.273460

5000 3.196898

6000 3.276024

7000 3.361885

8000 2.734606

9000 3.748856

10000 3.689307

11000 3.659921

15000 3.419386

20000 3.683941

30000 3.780513

Table 4.5: Speedup relative to the MPSCM Threaded trapezoidal rule function

(Figure 3.2) for the Distributed MPSCM example (Figure 3.1). Speedup is given

as Threaded Execution Time / Execution Time. Data is taken from the timing

results in Table A.3.
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The increase in execution time comes from MzScheme’s use of exact numbers

throughout the calculation, rather than inexact floating points. In any language

using floats, the computation would lose accuracy, rather than performance, as

the number of subintervals increased. Clearly, some changes could be made

to the description of the Standard Scheme numerical integration function that

would improve performance, including telling MzScheme to use inexact numbers,

but the essential problem remains. In MPSCM, decomposition can change the

computation being performed in ways that are not apparent in the function

description. This point is driven home by the timings for the Threaded version

of the numerical integration function, which were taken using eight threads on

a dual-core machine. Table 4.4 shows speedup for the Threaded and Distributed

functions relative to the Sequential using the data from Table A.3. Even for the

smallest example, the threaded function displays, not only better than processor

proportional speedup, but better than thread proportional speedup!

This property of MzScheme generally serves to make MPSCM paralleliza-

tion more effective at improving performance, because it limits the size of the

data used in intermediate function evaluations (by using smaller numbers, for

example). However, as much as these quirks may help MPSCM, they should be

kept out of performance measures as much as possible. MPSCM is not intended

to take advantage of quirks in the sequential execution of MzScheme functions

that are hidden deep in the background, but to provide a direct, functional-

style approach to exploiting the natural decomposability of Scheme programs

for distributed computation. MzScheme sequential arithmetical performance

will not be addressed in any more depth and there may be all manner of similar

and related issues that make this problem, and other questions of MzScheme

performance, even more complicated.

While there are some complications in evaluating the performance of MP-

SCM, the overall goal is clear. The performance analysis of MPSCM should

show that it is distributing work and aggregating data, through the use of the

MPSCM-eval function, without producing unreasonable overhead. Also, we need

to make sure that MPSCM provides the tools, in the form of the higher-level
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parallelizing constructs, to easily make programs that provide a worthwhile

performance boost over there non-distributed counterparts. These issues can

be easily addressed, even if it is difficult to completely explain execution time

relative to single-processor equivalents.

The question of the performance of the distributing mechanisms can be par-

tially answered by comparing the Threaded timing data to the Distributed data.

This comparison is given in Table 4.5. The Distributed data is from evaluations

of the par-trap function (Figure 3.1) using eight threads on four dual-core ma-

chines, each equivalent to the machines used in the Threaded and Sequential

examples. The Threaded data is taken from evaluations of the thread-trap

function (Figure 3.2), also with eight threads. Because the number of sub-

problems is the same in the Threaded and Distributed examples, and because

the problem decomposition is handled in the same manner, equivalent problems

are being evaluated in both instances. So, comparing performance for these two

examples should give us a good idea of how well the distribution scheme is work-

ing. Comparison of the timing data for the Distributed and Threaded functions

suggests that the distributed approach provides nearly processor proportional

speedup, in this case that would be ×4, but does introduce non-negligible over-

head. Also, there appear to be fluctuations in the speedup with the number of

steps, without converging to a particular value. This can be expected, to some

degree, on a non-dedicated local network where there may be some fluctuations

in traffic, but repeated executions have produced similar results. Analyzing the

distributed performance involves some of the same types of problems as ana-

lyzing Standard Scheme performance. Just as arithmetical functions in Scheme

are not always performing the same computation in the same number of steps

as the values change, transmission of MzScheme number data-types is not as

straightforward as C doubles, for example. It is expected that the communica-

tion overhead from the TCP reads and writes is not constant in the MPSCM

distributed implementation of numerical integration to the same degree that it

is in MPI.

The timing results for numerical integration with distributed MPSCM leave
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some concerns, as far as overhead, but are ultimately encouraging. Speed-up,

especially over the sequential version, is enough to suggest that MPSCM can

provide significant practical use in similar applications.

4.3 Map and Sort

Sadly, while there are a lot of good things to say about the map-and-sort

function, it is not at all effective for improving performance. This approach to

distributed sorting involves a lot of overhead, both with the list manipulation to

set up the problem decomposition and the very large communications required to

send the sublists over the network. MPSCM-map is most effectively used when the

mapped function is complicated and the size of the list elements is small. Testing

for map-and-sort showed it to be almost exactly equivalent in performance to

the sort function it is built on for all reasonable choices of granularity.

4.4 Fibonacci

When compared to the standard Scheme function described in the Examples

section, the MPSCM approach to parallelizing the Fibonacci function (Figure

3.5) not only does not give near processor proportional speed-up, but is drasti-

cally slower! The reason for this is perhaps more essential to the performance

problems with MPSCM than communication and arithmetic concerns: evaluat-

ing Scheme expressions with eval is much slower than applying the functions

directly. Using eval prevents Scheme’s interpreter from optimizing the code

and it must, instead, be evaluated as it is come upon. Because the par-fib

function has very little actual computation other than the recursive calls, this

overhead overwhelms the speed-up provided by distributing the work.

Because of this, the MPSCM-branch construct is basically useless, from a prac-

tical perspective, as a method of increasing performance for branching recursive

algorithms unless they contain a great deal of other computation and do not go

into deep recursion. It is possible to write specialized functions that distribute
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work in the same way, but don’t use eval when computing the recursive calls

locally, once the distributing condition is no longer true. However, this cannot

be readily adapted into a usable construct in the MPSCM-eval framework. This

is a fundamental problem in the MPSCM approach, and while it certainly does

not render it useless for improving performance, it adds significant overhead to

a wide range of problems.

4.5 Response to Performance

While MPSCM does not compare favorably to high-performance computing

environments and its higher-level functions introduce significant performance

concerns, it still has practical use. MPSCM is designed for a set of applications

and a class of programmers that is completely separate from typical applications

of MPI. Because of this, the performance of MPSCM must be addressed on

different terms.

Where MPSCM might pick up some performance advantage is in ease of

programming. While this could be argued about, there are certainly those who

find Scheme an easier programming environment than C, or anything else for

that matter. Also, MPSCM lends itself to certain types of problems in a way

that MPI does not. An MPSCM-like approach is particularly useful for small,

moderately computation intensive problems in the context of a large set of com-

putations. The Scheme REPL environment can be thought of as a sketch-pad or

blackboard in a way that a standard C-style programming environment cannot.

For example, it is quite practical to use a Scheme console in place of a calculator

even for extremely simple arithmetic. This is less true of the typical C envi-

ronment. MPSCM maintains much of this advantage, especially for problems

that fit its constructs. Also, using MPSCM-eval in the REPL can be useful as

a stand-alone construct, rather than a building-block for concurrent program-

ming. Using the MPSCM-eval function, computation intensive calculations can

be computed as asides while the programmer deals with other computations.

This ability to call on distributed resources with trivially simple function calls
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is absent in MPI. While it is certainly lacking in overall performance, in certain

situations MPSCM, or a similar environment, could be a very useful tool for

reducing execution time and overall time spent by the programmer.



Chapter 5

Further Discussion and

Conclusions

5.1 Parallel O/S

MzScheme is interesting in contrast to imperative languages like C not only in

the way commands are structured and expressed, but also in the actual envi-

ronment in which the programmer is working. The REPL interpreter, which is

the standard interface for Scheme and many other functional programming lan-

guages, is essentially different from the compiler/executable approach used in

C/MPI. In MPSCM, the MzScheme environment takes the place of the BASH

shell and process management and program execution are both handled by

MzScheme within its scope. From this, along with the use of function-level prob-

lem distribution, a sort of parallel operating system naturally emerges, where

the MPSCM infrastructure acts as an intermediary for distributed computing

resources.

This concept very much resonates with the ideas of some of the creators

of PLT Scheme as expressed in “Programming Languages as Operating Sys-

tems” [7], which describes the role of MrEd in managing the DrScheme GUI
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environment. In the designers’ description, the high-level Scheme language acts

as the platform for the GUI environment, what they describe as a “meta-circular

implementation that is virtually synonymous with LISP.” An ideal approach to

distributed programming in Scheme parallels, in many ways, DrScheme’s ap-

proach to GUIs. In the distributed environment, using an MPSCM-eval base

for parallelization, the local process interacts with the remote processes much

like a surrogate user interacting with another read-eval-print loop. In MPSCM,

the remote processes act very much this way, where “read” occurs over a TCP

connection, “eval” is eval and “print” is redirected as a return value. However,

there is a great deal of independence between the processes, which is unde-

sirable for capturing this effect entirely. The remote nodes are tied together

by the pseudo-REPL but are not literally tied together in the same way that

MrEd ties together nested windows, for example, such that real control and

interdependence is exerted. This is, in a sense, because it’s not possible. It

is unreasonable to expect that they can be tied together in the “same way.”

However, to hide the distributed aspects as much as possible, and provide a

comfortable and useful environment, these ties should be as strong as possible.

This is achievable, though perhaps difficult, in an MPSCM-like environment

that is built on MzScheme.

5.2 Evaluation of MzScheme

This project was intended as an experiment with MzScheme as much as a prac-

tical software creation. The original question was not “how can we make the

best functional or Scheme programming environment?” but “how can we use

these tools in MzScheme to do so?” Overall this was a success, MzScheme pro-

vides the communication and synchronization functions necessary to easily and

efficiently design necessary base functions for distributed computing. It also

provides syntax definition facilities, which were used in creating the MPSCM-let

construct. Above all, MzScheme simply has a lot of functionality: there may

yet be some MzScheme stones unturned that could lead to the development
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of even better distributed Scheme environments. Clearly, MzScheme is not a

high-performance computing environment, and MPSCM does not change that.

However, creating an environment that would compete with MPI in that respect

was never a realistic notion from a Scheme base. From a performance perspec-

tive, MzScheme reached the goal of enabling near proportional speedup, relative

to single processor execution, for functions with a sufficient level of parallelism.

Some improvements to MzScheme would have been of help to MPSCM. The

ability to serialize higher order objects to communicate over TCP would allow

more flexibility for distributing functional expressions and allow for more natural

syntax. Also, better performance of the eval function would make branching

recursion with MPSCM-eval and MPSCM-branch a viable option for improving

execution time.

5.3 Evaluation of Design

5.3.1 Bad News First

The difficulties with MzScheme were largely a result of the more general dif-

ficulty of building a distributed environment of MPSCM’s type on top of an

environment that was not designed to support it. It is important to note

that MzScheme easily and efficiently implements standard message passing and

threaded execution functions. An environment more similar to Concurrent ML

would provide less trouble than an environment like MPSCM. Since ML and

Scheme are similar languages, Concurrent ML is probably designed the way

it is for this reason. Both languages are well suited to an imperative style of

parallelization. Trying to implement a lazy evaluation approach to distributed

programming in MzScheme is essentially problematic because it is a strict eval-

uating language. Also, the problem of implementing implicit distributing func-

tions in a higher-level library poses some difficulties of syntax, particularly when

compounded with the lazy evaluation problem.

The result of these problems can be seen in the implementation of MPSCM-eval.
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This function has a lot to recommend it as a fundamental parallelizing function

both in its application and meaningful representation of functional distributed

programming. However, this approach also has some problems, in addition to

the performance issues outlined earlier. The chief issue is that it is a pain to

work with. Syntax is an essential problem in creating parallelizing and, espe-

cially, distributing functions for an environment not specifically designed for it.

This is true, in particular, for creating higher-level functions. All widely-used

high-level programming languages provide facilities for the transfer and commu-

nication of data in some fashion or another, making message-passing a simple

and natural extension. Syntax for this type of operation can be easily designed

to be what the programmer naturally expects because it is, after all, explicitly

the transmission of data. Where MPSCM has problems is that the expectations

for a function like MPSCM-eval are somewhere in between the expectations for

a message passing function and for a Standard Scheme function. The quoted

expression passed to MPSCM-eval is meant to be thought of like a function call,

but it is also a serializable data object and is supposed to be lazily evaluated

in a strict evaluation language. Both of these characteristics require it to be

conceptually separated from a standard function call. Using eval as the basis

for the building-block parallelizing function is handy in that it provides a fa-

miliar point of reference and mirrors what is actually going on: a command is

being sent to a remote REPL, much like the user typing a command. Also, eval

with quoted expressions allows for serialization and lazy evaluation. However,

this approach is clunky and inconvenient, especially when trying to build and

use higher-level functions. The eval function is a useful point of reference for

distributed programming, but building programs entirely out of evals is ineffi-

cient from an execution and from a programming standpoint. Requiring every

function call to be quoted gives MPSCM more of a learning curve than it should

really have.

Additionally, the lazy evaluation implementation is overly distracting in

its requirement to keep track of the returned channel and finalize it with

channel-get. For a construct like MPSCM-eval to work, particularly in the
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simple, educational, applications that it is generally best suited for, a system

of lazy evaluation more similar to the one in Haskell [12], where lazy evalua-

tion occurs implicitly, would be preferable. A compromise approach could also

be taken, where lazy evaluation must be explicitly asked for but finalization

happens implicitly, as required. This is not a disaster, because it fits into and

respects the MzScheme environment and provides the framework of a very useful

model for distributed computing, but the obstacles introduced here significantly

reduce the declarativeness and practical usability of MPSCM.

The strict evaluation functions: MPSCM-strict-map, MPSCM-strict-let,

and MPSCM-branch, are more attractive with respect to usability because they

can replace their Standard Scheme equivalents with no change in the outcome

of the function and do not require finalization. However, these functions often

require a change in program structure to be really effective, and they apply

directly to a relatively small portion of Scheme problems. The map and let

functions are not general enough to provide a complete approach to distributed

programming, at least not one that is substantially similar to Scheme in ap-

proach to problem solving. However, building strict-evaluation functions out of

MPSCM-eval functions finalized in an aggregating manner provides a promising

approach to programming in the MPSCM environment. Such functions would

not necessarily be as general as MPSCM-map and MPSCM-let, but could provide

a basis for increasing performance in a large number of specialized applications

where user functions could be programmed in a declarative style, without need

for finalization. In fact, some of the sample programs in this paper, numerical

integration and sorting, are good examples of this.

5.3.2 The Upside

As this paper has advocated the MPSCM approach to distributed programming

throughout, this section will be kept brief. While MPSCM has some problems

with both syntax and performance, overall it provides a nice environment for

distributed programming with many interesting and useful characteristics. The



5.4 Suggestions for Further Research 64

focus on simple and usable programming constructs has produced good results

that give a good starting point for further investigation. Though the compli-

cations of syntax hinder the educational usefulness of MPSCM somewhat, the

focus on easily understood and well-structured parallelizing functions based on

common Scheme programming constructs provides a good framework for the use

of a Scheme-based environment as a simple and instructive tool for distributed

programming. MPSCM demonstrates problem decomposition in a structured

and useful manner for a meaningfully general set of problems. Also, it balances

an understanding of transmission of data in a distributed environment and lazy

evaluation as a deliberate decision in parallel applications, with the encourage-

ment of good functional programming practice. This makes MPSCM useful as a

conceptual point of reference for all types of distributed programming environ-

ments, including imperative approaches like MPI/C, because the decomposition

process is well presented in the approach.

5.4 Suggestions for Further Research

5.4.1 Error Reporting

Error reporting on remote processes is a key shortcoming of the current MPSCM

implementation and simple additions in this area would make MPSCM much

more viable as a practical environment. This includes error checking in calls to

parallel functions, including checks that messages are serializable and checks to

MPSCM-let to verify that it is not being treated as a let*.

5.4.2 MPSCM for Heterogeneous Networks

MPSCM could be fairly easily modified to be useful in a network of nodes with

heterogeneous Operating Systems. The MPI-style approach of remotely starting

MzScheme on remote nodes could probably not be replicated for Windows, but

initialization could be handled with a separate application. Also, this could

include the ability to dynamically add nodes to the network. MzScheme and
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the majority of the MPSCM implementation allows for portability and it would

be useful to take advantage of this. A system that allows for flexibility in the

make-up and initialization of the distributed environment is appropriate for

MPSCM, which is meant to take advantage of available computing power in an

informal manner and not necessarily to operate on a specialized network.

5.4.3 Distributed Computing with Compiled Scheme Code

All performance testing for MPSCM was done using the MzScheme REPL in-

terpreter as the point of execution. It would be interesting to conduct similar

experiments with compiled MzScheme code, which can be created using mzc [6].

The use of compiled code, either in the MPSCM libraries or in user functions,

could provide an increase in performance, perhaps even without significant cost

in programmer time.

5.4.4 Syntax

Investigation of the syntax of the parallelizing functions in MPSCM would be

helpful to make it (or a related environment) more usable. This could be worked

on either from further investigation of MzScheme syntax definitions or more

work at lower levels to make a more specialized parallel environment based on

MzScheme or another MzScheme dialect.

5.4.5 MzLib

Making MPSCM into a proper MzLib library would make it fit better in MzScheme’s

system of additions [6].

5.4.6 Imperative Style Parallelizing Constructs

It would be interesting to investigate distributed programming in MzScheme

with an approach that is more similar to Concurrent ML [14], perhaps with a

base in MPSCM. MzScheme lends itself to an approach that uses more impera-
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tive style parallelization constructs, such as threads and messages, and has the

functionality to easily implement this type of construct.

5.4.7 Distributed Scheme and Education

Further investigation into the use of Scheme dialects with libraries for dis-

tributed programming as educational tools for distributed programming could

provide very useful results.

5.4.8 Performance Comparisons

It would be helpful to provide a more extensive set of performance comparisons

to other distributed programming environments, particularly other functional-

based programming environments.

5.5 Conclusion

MPSCM provides a rough implementation of distributed programming libraries

for Scheme. It demonstrates the feasibility of developing this type of environ-

ment as a library extension to MzScheme and presents an approach that, while

not without problems, provides significant promise as a distributed program-

ming tool, especially for an educational environment. MPSCM also takes ad-

vantage of the characteristics of Scheme that make it appropriate for concurrent

programming and useful as a language in general: its natural decomposability

and its ease of use. The distributed computing constructs in MPSCM provide

the basis for an interesting and useful approach to problem decomposition and

concurrent evaluation for a general set of problems. MPSCM should help to

encourage further investigation of the use of Scheme in this context.



Bibliography

[1] P. S. Barth, R. S. Nikhil, and Arvind. M-Structures: Extending a Parallel,

Non-Strict, Functional Language with State. In FPCA’91 — Conference on

Functional Programming Languages and Computer Architectures, volume

523, pages 538–568, Harvard, MA, 1991. Springer-Verlag.

[2] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly

Media, Inc., 2005.

[3] Harvey Brian. Symbolic programming vs. the a.p. curriculum. The Com-

puting Teacher, 18, February 1991.

[4] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster En-

vironment for MPI. In Proceedings of Supercomputing Symposium, pages

379–386, 1994.

[5] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order dis-

tributed objects. ACM Transactions on Programming Languages and Sys-

tems, 17(5):704–739, September 1995.

[6] Matthew Flatt. PLT MzScheme: Language manual. Technical Report

PLT-TR2006-1-v360, PLT Scheme Inc., 2006.

[7] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and

Matthias Felleisen. Programming languages as operating systems (or re-

venge of the son of the lisp machine). In International Conference on

Functional Programming, pages 138–147, 1999.

67



BIBLIOGRAPHY 68

[8] Guillaume Germain. Concurrency oriented programming in termite scheme.

In ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN workshop on

Erlang, pages 20–20, New York, NY, USA, 2006. ACM Press.

[9] Jr. Guy L. Steele and W. Daniel Hillis. Connection machine lisp: fine-

grained parallel symbolic processing. In LFP ’86: Proceedings of the 1986

ACM conference on LISP and functional programming, pages 279–297, New

York, NY, USA, 1986. ACM Press.

[10] Julie Sussman Harold Abelson, Gerald Jay Sussman. Structure and Inter-

pretation of Computer Programs. MIT Press, 1984.

[11] Paul Hudak. Conception, evolution, and application of functional program-

ming languages. ACM Comput. Surv., 21(3):359–411, 1989.

[12] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to

Haskell 98, 1999.

[13] Luc Moreau. A parallel functional language with first-class continuations

(programming style and semantics). Computers and Artificial Intelligence,

(14(2)):173–205, 1995.

[14] John H. Reppy. Concurrent ML: Design, application and semantics. In

Functional Programming, Concurrency, Simulation and Automated Rea-

soning, pages 165–198, 1993.

[15] Jr. Robert H. Halstead. Multilisp: A language for concurrent symbolic

computation. ACM Transactions on Programming Languages and Systems,

7(4):501–538, 1985.

[16] Marc Snir and Steve Otto. MPI-The Complete Reference: The MPI Core.

MIT Press, Cambridge, MA, USA, 1998.

[17] George Springer and Daniel P. Friedman. Scheme and the Art of Program-

ming. McGraw-Hill, Inc., New York, NY, USA, 1990.



BIBLIOGRAPHY 69

[18] Berna L. Massingill Timothy G. Mattson, Beverly A. Sanders. Patterns for

Parallel Programming. Addison-Wesley, 2005.



Appendix A

Additional Data Tables

Elements Time (s)

1 2 4 8 16

1024 0.000204 0.001145 0.001043 0.002782 0.004007

4096 0.000785 0.002664 0.002494 0.003686 0.005444

16384 0.003227 0.008073 0.009316 0.009500 0.008588

65536 0.017259 0.030543 0.036278 0.038091 0.274978

262144 0.066520 0.119782 0.142485 0.162853 0.329270

1048576 0.276221 0.497360 0.592908 0.651315 0.687051

4194304 1.199954 2.007406 2.444802 2.623541 2.739232

Table A.1: Quicksort timing data for C and C/MPI with variously sized arrays

and networks.
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Elements Time (s)

1 2 4 8 16

1024 0.009179 0.01772802 0.008473 0.006741 0.006412

4096 0.041833 0.051402 0.040040 0.026202 0.053858

16384 0.200422 0.198647 0.139345 0.113941 0.090787

65536 1.114900 0.838002 0.551170 0.416366 0.415118

262144 4.347228 3.320503 2.244137 3.5056420 1.573711

1048576 19.572310 14.155469 9.634107 7.612681 6.472802

4194304 84.4580910 61.388649 40.490998 32.687391 27.872342

Table A.2: Quicksort timing data for MzScheme and Proto-MPSCM with vari-

ously sized vectors and networks.
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Subintervals Time (ms)

Standard Threaded Distributed

1000 1128 96 41

1500 3214 250 99

2000 8522 446 157

2500 17351 938 352

3000 25976 1110 374

3500 44943 2088 754

4000 72589 2584 830

5000 146565 4741 1483

10000 1277777 35849 9717

15000 103645 30311

20000 273691 74293

30000 840030 222200

50000 4491266 1175034

Table A.3: Trapezoidal rule timing data for MzScheme and the MPSCM

Threaded and Distributed examples (Figures 3.2 and 3.1) applied to the func-

tion f(x) = 4
1+x2 , with various numbers of subintervals. The Distributed data is

collected using four dual-core machines that are each identical to the ones used

for the Threaded and Sequential data. Both parallel versions use eight threads.
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Quick Start Guide

This guide assumes that you are on a network that could run MPI (SSH per-

mission, common directory structure, etc.).

1. Obtain the following files:

• mp4.scm

• runscmmp

• runhelper

2. Move all files to the same directory. Open “mp4.scm” for editing and

change the define statement for MPSCM-home-dir to the fully qualified

path of the directory you put the files in.

3. In that directory, create a text file containing a list of available nodes.

Make sure the computer you’re currently at (or will be programming from)

is listed first.

4. Start MzScheme with the command mzscheme.

5. Load the libraries:

(load "mp4.scm")

6. Boot the MPSCM environment:
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(MPSCM-boot "<name of your list file>"
<available port #>
<# of nodes>)

7. Available commands:

• MPSCM-eval, returns a MzScheme channel datatype, which can be

finalized with channel-get:

(define chan (MPSCM-eval ’expression
[optional node argument]))

(channel-get chan)

• MPSCM-ceval:

(MPSCM-ceval ’f args [optional node argument])

• MPSCM-eval-all evaluates an expression on all nodes, return values

are lost:

(MPSCM-eval-all ’expression)

• MPSCM-gload loads a function definition file on all nodes. Path must

be given relative to MPSCM-home-dir:

(MPSCM-gload "file.scm")

• MPSCM-map, returns the mapped list directly.

(MPSCM-map ’function list nparts)

• MPSCM-lazy-map, returns a list of channels that can be finalized with

MPSCM-map-finalize:

(define val (MPSCM-lazy-map ’function list nparts))

(MPSCM-lazy-map-finalize val)
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• MPSCM-let binds the return values of the quoted expressions:

(MPSCM-let ((x1 ’(f1 args1)) ... (xn ’(fn argsn)))
(some-function x1 ... xn))

• MPSCM-lazy-let binds channels to the returned values:

(MPSCM-lazy-let ((x1 ’(f1 args1))
...
(xn ’(fn argsn)))

(some-function (channel-get x1)
...
(channel-get xn)))

• MPSCM-branch returns combining-operator applied to the evaluated

expressions. Evaluates remotely if condition is true:

(MPSCM-branch condition
combining-operator
’exp1
...
’expn)

8. The distributed environment can be halted with:

(MPSCM-halt)
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Library Code: mp4.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM State Variables

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Configuration

(define MPSCM-home-dir "")

(define MPSCM-lib-file "mp4.scm")

;; Variables initialized by MPSCM-init and boot scripts

(define MPSCM-listener ’())

(define MPSCM-io-list ’())

(define MPSCM-procls ’())

(define MPSCM-myname "")

(define MPSCM-myrank -1)

(define MPSCM-nprocs 0)

;; Automatic tag and next proc variables for MPSCM-eval

(define MPSCM-next-proc 1)

(define MPSCM-curr-eval-tag -1)

;; Semaphores and Maps for the Receive buffers

(define MPSCM-curr-eval-tag-semaphore (make-semaphore 1))

(define MPSCM-recv-map (make-hash-table ’equal))

(define MPSCM-recv-map-semaphore (make-semaphore 1))

(define MPSCM-end-semaphore (make-semaphore))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; MPSCM-eval functions
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;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-eval

;;

;; A method of lazy-evaluation using ’eval’, MzScheme’s ’channel’

;; construct, and paired ’MPSCM-send’ and ’MPSCM-recv.’

;;

;; parameters: cmd - a quoted command, as would be passed to

;; eval. All necessary functions must

;; be loaded on remote node (see

;; MPSCM-gload)

;; proc (optional) - the node to evaluate the

;; cmd at. If none is provided, one

;; is chosen using MPSCM-get-next-proc!

;; return: a channel that will eventually have the result

;; of the evaled cmd

;; side-effects: Maintenance to tag sequence, and next-proc

;; rotation. A thread waiting for the return

;; value. The idea is to have the illusion of

;; no side effects, for the user, but many are

;; involved

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-eval

(lambda (cmd . proc)

(let* (

(tag (MPSCM-get-next-eval-tag!))

;; create the channel that will be used

(ch (make-channel))

(eval-proc (if (null? proc) (MPSCM-get-next-proc!) (car proc)))

;; if the command is a procedure, quote it

(qcmd

(if (procedure? (car cmd))

(begin

(cons (quote (car cmd)) (cdr cmd)))

(begin

cmd)))

;; append "SEND BACK TO ME" to the command string

(ncmd (append (list ’MPSCM-send MPSCM-myrank)

(list qcmd)

(list tag))))

;; function creates a thread that sends out the command

;; and the waits to receive the response and put it in the

;; channel.

(letrec ((makethread (lambda ()

(if (= eval-proc 0)

;; If the proc is 0, evaluate here

(thread (lambda()

;;channel-put will cause a pending or future call to

;;channel-get to return the value that is put there.

;;see MzScheme channel documentation

(channel-put ch (eval cmd))))

(thread (lambda ()
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(begin

(MPSCM-send eval-proc ncmd "MPSCM-CMD")

(channel-put ch (MPSCM-recv eval-proc tag)))))))))

(begin

;; make the thread

(makethread)

;; return the channel

ch)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-ceval

;;

;; Composes a quoted function with a list of arguments (cons) and

;; sends it to MPSCM-eval.

;;

;; parameters: cmd - a quoted function-name

;; lst-args - a list of arguments to be use in the

;; function. All elements must be

;; synchronizable (functions must be

;; quoted)

;; proc (optional) - as in MPSCM-eval

;; return: A channel, as in MPSCM-eval

;; side-effects: See MPSCM-eval

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-ceval

(lambda (cmd lst-args . proc)

(if (null? proc)

(MPSCM-eval (cons cmd lst-args) (MPSCM-get-next-proc!))

(MPSCM-eval (cons cmd lst-args) (car proc)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; MPSCM-Map functions

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-map

;;

;; Maps the quoted function f onto the list ls, but does so

;; by spliting the list into MPSCM-nprocs parts, which are evaluated

;; with MPSCM-eval. MPSCM-map is a strict map, so after this

;; occurs, it waits on all the channels from the MPSCM-evals and

;; compiles the mapped list.

;;

;; parameters: f - a quoted function name

;; ls - the list to map onto

;; MPSCM-nprocs - the number of parts to split the map

;; into

;; return: the mapped list
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;; side-effects: standard side-effects associated with MPSCM-eval,

;; should be experienced by the user the same as

;; a standard map, aside from performance.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-map

(lambda (f ls nparts)

;;split up the list

(let ((splitlist (MPSCM-split-list ls nparts)))

;;call-remote makes all the MPSCM-eval calls by constructing

;;a map statement on each sublist

(letrec ((call-remotes

(lambda (sls n)

(if (< n nparts)

(let ((csls (car sls)))

(cons

(MPSCM-eval

(append ’(map)

(cons f ’())

(cons (cons ’quote

(cons csls ’())) ’()))

(MPSCM-get-next-proc!))

(call-remotes (cdr sls) (+ n 1))))

’())))

;; calls channel-get on all items is a list

(channel-get-all

(lambda (ls)

(if (null? ls)

’()

(cons (channel-get (car ls))

(channel-get-all (cdr ls)))))))

;; call the remotes, get the channels and reconstitute the list

(MPSCM-unsplit-list

(channel-get-all (call-remotes splitlist 0)))))))

;; MPSCM-strict-map is the same as MPSCM-map

(define MPSCM-strict-map MPSCM-map)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-lazy-map

;;

;; Maps the quoted function f onto the list ls, but does so

;; by spliting the list into MPSCM-nprocs parts, which are evaluated

;; with MPSCM-eval. Returns a list of channels, rather than the

;; final list, that can be finalized with MPSCM-map-finalize.

;;

;; parameters: f - a quoted function name

;; ls - the list to map onto

;; MPSCM-nprocs - the number of parts to split the map

;; into

;; return: A list of channels waiting that can be finalized

;; into the mapped list with MPSCM-map-finalize

;; side-effects: standard side-effects associated with MPSCM-eval

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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(define MPSCM-lazy-map

(lambda (f ls MPSCM-nprocs)

(let (

;; split the list into parts

(splitlist (MPSCM-split-list ls MPSCM-nprocs)))

;; a helper function that calls MPSCM-eval of map

;; onto the sublists and builds the list of channels

(letrec ((call-remotes

(lambda (sls n)

(if (< n MPSCM-nprocs)

(let ((csls (car sls)))

(cons

(MPSCM-eval

(append ’(map)

(cons f ’())

(cons (cons ’quote

(cons csls ’())) ’()))

(MPSCM-get-next-proc!))

(call-remotes (cdr sls) (+ n 1))))

’()))))

;;call the helper and return its value

(call-remotes splitlist 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-map-finalize

;;

;; Finalizes the return of lazy map

;;

;; parameters: ls - list of channels, or the return value of

;; MPSCM-lazy-map

;; return: A list representing the final value from

;; MPSCM-lazy-map, as though map were called

;; side-effects: channel-get on all channels from the lazy-map

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-map-finalize

(lambda (ls)

(letrec (

(channel-get-all

(lambda (ls)

(if (null? ls)

’()

(cons (channel-get (car ls))

(channel-get-all (cdr ls)))))))

(MPSCM-unsplit-list (channel-get-all ls)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; MPSCM-let

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-lazy-let

;;

;; Adapted from JRM’s ’Syntax-rules Primer for the Merely Eccentric’

;; bind-variables function. Like a standard let, but instead of

;; binding a variable to a value, binds it to the channel returned

;; by MPSCM-eval called on the command given it (lazy-evaluation).

;; The processor to be used by MPSCM-eval is determined by

;; MPSCM-get-next-proc! on a rotating basis. This is meant to be

;; like a let, not a let*, but will not properly report errors if

;; used improperly.

;;

;; This is a syntax object, not a function.

;;

;; Form:

;; (MPSCM-lazy-let ((x1 ’(f1 args1))

;; ...

;; (xn ’(fn argsn)))

;; (some-function (channel-get x1)

;; ...

;; (channel-get xn)))

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define-syntax MPSCM-lazy-let

(syntax-rules ()

((MPSCM-lazy-let () form . forms)

(begin form . forms))

((MPSCM-lazy-let

((variable value0 value1 . more) . more-bindings) form . forms)

(syntax-error "MPSCM-let illegal binding"

(variable value0 value1 . more)))

((MPSCM-lazy-let ((variable value) . more-bindings) form . forms)

(let ((variable (MPSCM-eval value (MPSCM-get-next-proc!))))

(MPSCM-lazy-let more-bindings form . forms)))

((MPSCM-lazy-let bindings form . forms)

(syntax-error "Bindings must be a list." bindings))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-strict-let

;;

;; Adapted from MPSCM-lazy-let. uses lazy-let to bind the channels

;; and then MPSCM-strict-let-helper to channel-get the channels

;; and bind the returns. As with lazy-let, this is meant to be like

;; a let, not a let*, but will not properly report errors if used

;; improperly.

;;

;; This is a syntax object, not a function.

;;

;; Form:

;; (MPSCM-strict-let ((x1 ’(f1 args1))
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;; ...

;; (xn ’(fn argsn)))

;; (some-function x1

;; ...

;; xn))

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define-syntax MPSCM-strict-let

(syntax-rules()

((MPSCM-strict-let bindings . forms)

(MPSCM-lazy-let bindings

(MPSCM-strict-let-helper bindings . forms)))))

(define-syntax MPSCM-let

(syntax-rules()

((MPSCM-let bindings . forms)

(MPSCM-lazy-let bindings

(MPSCM-strict-let-helper bindings . forms)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-strict-let-helper

;;

;; This is a helper syntax for strict-let, not of any use on its

;; own. Assumes that MPSCM-lazy-let has already bound the values

;; channels, and rebinds them to the channel-get og those channels.

;; This is admittedly odd, which is a product of the odd-ness of

;; the construct (from Scheme’s perspective) and my own unfamiliarity

;; with syntax objects.

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define-syntax MPSCM-strict-let-helper

(syntax-rules ()

((MPSCM-strict-let-helper () form . forms)

(begin form . forms))

((MPSCM-strict-let-helper

((variable value0 value1 . more) . more-bindings) form . forms)

(syntax-error "MPSCM-let illegal binding"

(variable value0 value1 . more)))

((MPSCM-strict-let-helper ((variable value) . more-bindings) form . forms)

(let ((variable (channel-get variable)))

(MPSCM-strict-let-helper more-bindings form . forms)))

((MPSCM-strict-let-helper bindings form . forms)

(syntax-error "Bindings must be a list." bindings))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;
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;; MPSCM-branch

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-branch

;;

;; Takes a condition (\#t or \#f) a combining operator (function

;; that can be applied to a list) and some number of quoted

;; functional expressions (must be callable with MPSCM-eval).

;; The expressions are evaluated locally if the conditional

;; is false and with MPSCM-eval if it is true. Then the

;; results are combined with the combining operator.

;;

;; parameters: condition - whether to distribute

;; comb - combining operator

;; exps - quoted expressions

;; return: The result of applying comb to the evaled

;; expressions.

;; side-effects: Standard side-effects associated with MPSCM-eval,

;; none from the user’s perspective.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-branch

(lambda (condition comb . exps)

(letrec (

;; calls MPSCM-eval on a list of expressions

;; returns a list of channels

(MPSCM-eval-list

(lambda (expressions)

(if (null? expressions)

’()

(cons (MPSCM-eval (car expressions))

(MPSCM-eval-list (cdr expressions))))))

;; evals a list of expressions

;; returns a list of return values

(eval-list

(lambda (expressions)

(if (null? expressions)

’()

(cons (eval (car expressions))

(eval-list (cdr expressions))))))

;; channel-get every item in a list and return a

;; list of the return values

(channel-get-list

(lambda (list-channels)

(if (null? list-channels)

’()

(cons (channel-get (car list-channels))

(channel-get-list (cdr list-channels)))))))

;; If the condtion is true, evaluate with MPSCM-eval, else

;; use regular eval

(if condition
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(apply comb (channel-get-list (MPSCM-eval-list exps)))

(apply comb (eval-list exps))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; MPI-style functions

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-send

;;

;; basic send function, sends a message composed of a tag and the

;; message itself. out and tag can be anny serializable values.

;;

;; parameters: procno - id of the process addressed

;; out - the message to be sent

;; tag - an identifying tag for the message

;; return: ’()

;; side-effects: writes composed message to the output buffer

;; associated with the identified process

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-send

(lambda (procno out tag)

(let (

;;prepare the message

(outbuff (cons out (cons tag ’())))

;;get the output port from the io list

(o (caddr (MPSCM-queryio procno MPSCM-io-list))))

(begin

;;write the message to the output port and flush the port

(write outbuff o)

(flush-output o)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-recv

;;

;; Receieve a message from a given proc number with a given tag.

;; Synchronizes with the recv-loop threads to make sure to get the

;; data if it’s there and when it comes, using semaphores and the

;; MPSCM-recv-map. Format of messages matches MPSCM-send. Blocks

;; until a message is received.

;;

;; parameters: procno - id of node to recv from

;; tag - tag to receive

;; return: The value from the message received

;; side-effects: Synchronization actions, removes received item

;; from map

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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(define MPSCM-recv

(lambda (procno tag)

;; get whatever’s in the map

(begin (semaphore-wait MPSCM-recv-map-semaphore)

(let ((obj (hash-table-get MPSCM-recv-map

(cons procno tag)

"MPSCM-NOTHING")))

;; if it’s nothing, hash a semaphor and wait on it

(if (equal? obj "MPSCM-NOTHING")

(let ((sema (make-semaphore)))

(begin

(hash-table-put! MPSCM-recv-map (cons procno tag) sema)

(semaphore-post MPSCM-recv-map-semaphore)

;; sync to the semaphore, decrementing when you get it

;; messages can only be received once

(sync sema)

;; return whatever’s in the map after the sync

(semaphore-wait MPSCM-recv-map-semaphore)

(let ((val (hash-table-get MPSCM-recv-map

(cons procno tag)

"MPSCM-NOTHING")))

(begin

;; put the semaphore back

(hash-table-put! MPSCM-recv-map (cons procno tag) sema)

(semaphore-post MPSCM-recv-map-semaphore)

val))))

;; if the object is a semaphor, wait on it, using sync

(if (semaphore? obj)

(begin

(semaphore-post MPSCM-recv-map-semaphore)

;; sync to the semaphore

(sync obj)

;; return whatever’s in the map after the sync

(semaphore-wait MPSCM-recv-map-semaphore)

(let ((val (hash-table-get MPSCM-recv-map

(cons procno tag)

"MPSCM-NOTHING")))

(begin

;; put the semaphore back, it will be reused if

;; the same tag is requested again

(hash-table-put! MPSCM-recv-map (cons procno tag) sema)

(semaphore-post MPSCM-recv-map-semaphore)

val

)))

;; if the message is already there, return it

(begin

(semaphore-post MPSCM-recv-map-semaphore)

obj)))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; Boot and Halt

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-boot

;;

;; Boot mzscheme on the first MPSCM-nprocs processors in the specified hostfile.

;; Must be called from the first computer on the list (this will be the

;; master). Uses shell-ex to run the boot scripts which will set up

;; the proc lists and run MPSCM-init on each remote node. Waits on

;; this to complete and returns control.

;;

;; parameters: hostfile - list of computer identifiers (standard

;; SSH rules apply), first must be

;; the calling node

;; port - the port number to be used for MPSCM

;; communication

;; MPSCM-nprocs - the number of procs to use from the list

;; of hosts, must be <= the length of

;; said list

;; return: none

;; side-effects: Lots! Initializes ports and listeners on all nodes

;; Sets the value of MPSCM’s host list.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-boot

(lambda (hostfile port MPSCM-nprocs)

(begin

(set! MPSCM-procls (MPSCM-create-procls hostfile MPSCM-nprocs))

;;spawn one thread to call init on this process

(let ((a (thread

(lambda () (MPSCM-init (car MPSCM-procls) port))))

;; and another to run the script

(b (thread

(lambda ()

;; Use shell-ex

(MPSCM-shell-ex

(string-append MPSCM-home-dir "runscmmp" )

(string-append MPSCM-home-dir hostfile )

(number->string port)

(number->string MPSCM-nprocs)

MPSCM-home-dir MPSCM-lib-file)))))

(thread-wait a)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-halt

;;

;; evaluate MPSCM-fin at every process. Ends the MPSCM session.

;;

;; parameters: none

;; return: none

;; side-effects: Closes all the ports, etc.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-halt

(lambda ()
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(MPSCM-eval-all ’(MPSCM-fin))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;

;; The Distributed Environment

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-gload

;;

;; The global load function. Loads a file (standard Scheme load

;; method) on all nodes. The file path should be given relative

;; to the MPSCM-home-dir. Uses MPSCM-eval-all

;;

;; parameters: filename

;; return: none

;; side-effects: Loads the file on all nodes

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-gload

(lambda (filename)

(MPSCM-eval-all (list ’load (format "~a~a" MPSCM-home-dir filename)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-eval-all

;;

;; parameters: a quoted command to be evaluated

;; return: ’()

;; side-effects: Uses MPSCM-eval to eval cmd at every node.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-eval-all

(lambda (cmd)

(letrec ((helper

(lambda (n)

(if (<= n 0)

(eval cmd)

(begin

(MPSCM-send n cmd "MPSCM-CMD")

(helper (- n 1)))))))

(helper (- MPSCM-nprocs 1)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-shell-ex

;;

;; Uses MzScheme subprocess function to execute an external program

;; as from a shell. Waits for the external program to complete.

;; This is used by MPSCM-boot to run the boot scripts.

;;

;; parameters: args - the arguments for the external program

;; return: the output of the program

;; side-effects: Sets the MPSCM-next-proc value for the next time
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-shell-ex

(lambda args

;; build the subprocess call using append, then eval it

(let-values (((a b c d) (eval (append ’(subprocess \#f \#f \#f) args))))

(begin

;; wait for subprocess to complete

(subprocess-wait a)

;; display stdout (max 100000 chars)

(let ((ret (read-string 100000 b)) (err (read-string 100000 d)))

(begin

;; display the output and the error from the subprocess

(display ret)

(display "\\n")

(display err)

(display "\\n")

;; close ports

(close-output-port c)

(close-input-port b)

(close-input-port d)

ret))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-get-next-proc!

;;

;; Determines the next proc for MPSCM-eval on a rotating basis and

;; sets up for the next call, using MPSCM-next-proc. This

;; could be replaced with another function to use more advanced load

;; balancing (see MPSCM-get-load for the skeleton of such an approach)

;;

;; parameters: none

;; return: The ID of the next proc to be used

;; side-effects: Sets the MPSCM-next-proc value for the next time

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-get-next-proc!

(lambda ()

(let ((ret MPSCM-next-proc))

(begin

(set! MPSCM-next-proc

(remainder (+ MPSCM-next-proc 1) MPSCM-nprocs))

ret))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-get-load

;;

;; This is an example of a function that could be used for load

;; balancing. MPSCM-eval allows the calling node to check the

;; current load on all other nodes as well as, perhaps, other

;; information (number of processors, etc) and use this in the

;; MPSCM-get-next-proc! logic. The MPSCM project has not involved

;; any investigation of these possibilities with the exception of

;; this function as a demonstration of feasibility.
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;;

;; parameters: none

;; return: A number auxed out of ps giving the load for

;; whatever machine this function is called on

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; string.ss needed for regex

(require (lib "string.ss"))

;; sums all the percentages for all processes running on the machine, uses ps

(define MPSCM-get-load

(lambda ()

(letrec

;; function to sum the nth item in a space separated string for

;; each string in a list

((sum-nth-of-each (lambda (ls n)

;; drop the last one, it’s " "

(if (null? (cdr ls))

0

;; split on spaces

(+ (string->number (list-ref (regexp-split "[ ]+" (car ls)) n))

(sum-nth-of-each (cdr ls) n))))))

;; get the output from ps

(let* ((ps-output (MPSCM-shell-ex "/bin/ps" "aux"))

;; parse on \\n

(ps-parsed (regexp-split "\\n" ps-output)))

;; return the sum

(sum-nth-of-each (cdr ps-parsed) 2)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-create-procls

;;

;; Create a list of nProcs computer names from a given file, path

;; should be fully qualified. Called by MPSCM-boot

;;

;; parameters: filename - path of the file to be used

;; nProcs - the number of procs to use

;; return: a list of computer names from the file

;; side-effects: none

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-create-procls

(lambda (filename nProcs)

(let ((fis (open-input-file filename)))

(letrec ((helper (lambda (is n)

(let ((toke (read is)))

(if (= n nProcs)

(begin

(close-input-port is)

’())

(if (eof-object? toke)

(begin

(display (string-append

"The provided file does not contain "

(number->string nProcs)

" processes. Please update the file or "
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"use a different number of processors.\\n\\n"))

(close-input-port is)

’())

(begin

(let ((str (symbol->string toke)))

(cons str (helper is (+ n 1)))))))))))

(helper fis 0)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-get-next-eval-tag!

;;

;; Get the next available tag for MPSCM-eval pairings. Set

;; MPSCM-curr-eval-tag to a new value. All MPSCM-eval tags are

;; negative numbers, which should not be used in MPSCM-send calls.

;;

;; parameters: none

;; return: the next eval tag (one less than the previous)

;; side-effects: Sets the MPSCM-curr-eval-tag value as one less

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-get-next-eval-tag!

(lambda ()

(begin

(semaphore-wait MPSCM-curr-eval-tag-semaphore)

(let ((ret MPSCM-curr-eval-tag))

(begin

(set! MPSCM-curr-eval-tag (- MPSCM-curr-eval-tag 1))

(semaphore-post MPSCM-curr-eval-tag-semaphore)

ret)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-init

;;

;; Initialize the MPSCM communication ports for a given node and

;; starts the recv-loop threads (buffer management), returning

;; control to master node (originating) and leaving control in

;; recv buffer threads for workers

;;

;; parameters: procname - the name of this node (as it appears

;; in the proc list)

;; port - the port that MPSCM is using

;; return: ’()

;; side-effects: initializes the MPSCM-io-list and starts the recv

;; buffer threads.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-init

(lambda (procname port)

(begin

;;set the identifying info for this node

(set! MPSCM-myname procname)

(set! MPSCM-myrank (MPSCM-reverse-index procname MPSCM-procls))

(set! MPSCM-nprocs (length MPSCM-procls))

;;set the listener
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(MPSCM-set-port! port)

(letrec

;;helper functions to build the list of paired input ports

;;each node connects to all nodes lower than it and waits

;; on all higher nodes (determined by id, or place in list)

((connect (lambda (n pls)

(if (< n MPSCM-myrank)

(let ((cls (connect (+ n 1) (cdr pls))))

(cons (connect-one (car pls) port) cls))

’())))

(connect-one (lambda (proc port)

(let-values (((i o) (tcp-connect proc port)))

(cons (MPSCM-reverse-index proc MPSCM-procls)

(cons i (cons o ’()))))))

(accept (lambda (n pls)

(if (null? pls)

’()

(if (<= n MPSCM-myrank)

(accept (+ n 1) (cdr pls))

(begin

(let-values (((i o) (tcp-accept MPSCM-listener)))

(cons (cons n (cons i (cons o ’())))

(accept (+ n 1) (cdr pls))))))))))

;;set the MPSCM-io-list using helper functions

(set! MPSCM-io-list

(append

(connect 0 MPSCM-procls)

(accept 0 MPSCM-procls))))

;;check if this is the master/originating node

(if (not (= MPSCM-myrank 0))

;; workers give worker loop the thread of control

(MPSCM-worker-loop)

;;master runs it in the background

(thread (lambda () (MPSCM-worker-loop)))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-start-recv-buffer

;;

;; Start a thread running MPSCM-recv-loop for each remote node.

;;

;; parameters: none

;; return: A list of threads running MPSCM-recv-loop

;; side-effects: Those of MPSCM-recv-loop for each one

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-start-recv-buffer

(lambda ()

(letrec ((start-for-processes (lambda (n)

(if (= n MPSCM-nprocs)

’()

;; skip if it’s you

(if (= n MPSCM-myrank)

(start-for-processes (+ n 1))

;; call MPSCM-recv-loop in a thread

(cons (thread (lambda () (MPSCM-recv-loop n)))
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(start-for-processes (+ n 1))))))))

(start-for-processes 0))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-recv-loop

;; To be run in a thread. Loops on the input port of one node

;; and adds anything received to the buffer to be accessed by

;; MPSCM-recv. Runs until killed.

;;

;; parameters: procno - id of the proc to recv from

;; return: does not return

;; side-effects: Reads input ports and puts data in the

;; MPSCM-recv-map

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-recv-loop

(lambda (procno)

;; read the in buffer

(let ((msg (MPSCM-query-in procno)))

(begin

;; cadr off the message tag

(let ((tag (cadr msg)))

;; check to see if the message is a command

(if (equal? tag "MPSCM-CMD")

;; if it is a command, just eval it in a thread

(thread (lambda () (eval (car msg))))

;; hash the message on (procno.tag)

(begin

;; get the semaphore

(semaphore-wait MPSCM-recv-map-semaphore)

(let ((current-contents

(hash-table-get MPSCM-recv-map

(cons procno tag)

"MPSCM-NOTHING")))

(begin

;; put the message in the hash table

(hash-table-put! MPSCM-recv-map

(cons procno tag) (car msg))

;; give it back

(if (semaphore? current-contents)

(semaphore-post current-contents))

;; semaphore-post

(semaphore-post MPSCM-recv-map-semaphore))))))

;; loop, until killed

(MPSCM-recv-loop procno)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-worker-loop

;;

;; This is the loop to be run by all processes to handle io for

;; MPSCM. With the master process, this method is started in

;; a background thread, but in the workers, it’s the main thread

;; of control.
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;;

;; parameters: none

;; return: ’()

;; side-effects: Starts recv buffers an then waits until the

;; MPSCM-end-semaphore is posted, at which point

;; it kills all the recv-buffer threads and

;; returns

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-worker-loop

(lambda ()

(letrec ((kill-all-threads

(lambda (lst-threads)

(if (null? lst-threads)

’()

(begin

(kill-thread (car lst-threads))

(kill-all-threads (cdr lst-threads)))))))

(let ((lst-proc-recv-threads (MPSCM-start-recv-buffer)))

(begin

(sync (semaphore-peek-evt MPSCM-end-semaphore))

(kill-all-threads lst-proc-recv-threads))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-query-in

;;

;; Method used in receive threads to check incpming messages

;;

;; parameters: procno - id of process to check input from

;; return: value read from the input port associated with

;; the given node (from the MPSCM io list)

;; side-effects: same side-effects as ’read’, clears the port

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-query-in

(lambda (procno)

(read (cadr (MPSCM-queryio procno MPSCM-io-list)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-fin

;;

;; Finalizes MPSCM on the current node

;;

;; parameters: none

;; return: ’()

;; side-effects: abandons ports, closes listeners, and sets the

;; end semaphore to stop the buffer threads

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-fin

(lambda ()

(begin

(semaphore-post MPSCM-end-semaphore)
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(MPSCM-abandon-all)

(tcp-close MPSCM-listener))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-queryio

;;

;; Gets the nth item in an MPSCM-io-list of port pairs

;;

;; parameters: n - index of port pair to be retrieved

;; ls - list of ports

;; return: port pair (i o)

;; side-effects: none

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-queryio

(lambda (n ls)

(if (null? ls)

ls

(if (= (caar ls) n)

(car ls)

(MPSCM-queryio n (cdr ls))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-abandon-all

;;

;; abandon all tcp ports in use by MPSCM using MPSCM-abandon-io

;;

;; parameters: none

;; return: ’()

;; side-effects: abandons the io port list for MPSCM

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-abandon-all

(lambda ()

(begin

(MPSCM-abandon-io MPSCM-io-list))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-abandon-io

;;

;; parameters: iols - list of paired ports ((i o) (i o) ... )

;; return: ’()

;; side-effects: Abandons all ports in the list.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-abandon-io

(lambda (iols)

(if (null? iols)

’()

(begin

(tcp-abandon-port (cadar iols))

(tcp-abandon-port (caddar iols))

(MPSCM-abandon-io (cdr iols))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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;; MPSCM-set-port!

;;

;; Sets the listener for MPSCM on the given port, used in MPSCM-init.

;; Uses the MzScheme tcp-listen function.

;;

;; parameters: port number

;; return: ’()

;; side-effects: sets the value of MPSCM-listener

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-set-port!

(lambda (port-number)

(if (null? MPSCM-listener)

(set! MPSCM-listener (tcp-listen port-number 4 \#t \#f))

(begin

(tcp-close MPSCM-listener)

(set! MPSCM-listener (tcp-listen port-number))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-wait

;;

;; Calls thread-wait on every member of a list of threads, returns null

;; when all threads are finished.

;;

;; parameters: threadls - list of threads

;; return: ’()

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-wait

(lambda (threadls)

(if (null? threadls)

’()

(begin

(thread-wait (car threadls))

(MPSCM-wait (cdr threadls))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; MPSCM-split-list

;;

;; basic split list using take and drop

;; the last sub-list will be the smallest instead of the largest

;; if mod <> 0 because that process is the last to get it’s sublist

;; (slower anyway). used in the MPSCM-map functions

;;

;; parameters: ls - a list

;; n - the number of parts to split it into

;; return: ls as a list of n lists, containing the elements

;; in order

;; side-effects: none

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define MPSCM-split-list

(lambda (ls n)

(let ((real-n (min n (length ls))) (size (floor (/ (length ls) n))))

(letrec (

(take
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(lambda (lst num)

(if (or (null? lst) (= num 0))

’()

(cons (car lst) (take (cdr lst) (- num 1))))))

(drop

(lambda (lst num)

(if (or (null? lst) (= num 0))

lst

(drop (cdr lst) (- num 1)))))

(split

(lambda (lst count)

(if (= count 1)

(list lst)

(let ((tooken-list (take lst size))

(dropped-list (drop lst size)))

(append (list tooken-list)

(split dropped-list (- count 1))))))))

(split ls real-n)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Utility Functions

;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;basic reverse index method

(define MPSCM-reverse-index

(lambda (val ls)

(letrec ((helper (lambda (val ls n)

(if (null? ls)

-1

(if (equal? val (car ls))

n

(helper val (cdr ls) (+ n 1)))))))

(helper val ls 0))))

;; rebuild a list that has been split up

(define MPSCM-unsplit-list

(lambda (ls)

(if (null? ls)

’()

(append (car ls) (MPSCM-unsplit-list (cdr ls))))))

;; basic list flatten to correct after split

(define MPSCM-flatten-list

(lambda (ls)

(if (null? ls)

’()

(if (pair? (car ls))

(append (flatten-list (car ls)) (flatten-list (cdr ls)))

(cons (car ls) (flatten-list (cdr ls)))))))

;; apppends the take to drop

;; created to allow split list in O(n) car/cdr/cons
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(define MPSCM-take/drop

(lambda (ls n)

;;use a for the drop portion

(let ((a ’()))

(letrec

((helper

(lambda (ls n)

;; if everything’s tallied off

(if (or (= n 0) (null? ls))

(begin

;; set the drop

(set! a ls)

;; return null

’())

;; recursive call

(cons (car ls) (helper (cdr ls) (- n 1)))))))

;; append the return of the helper to its side effect set of a

(append (list (helper ls n)) (list a))))))



Appendix D

Boot Script: runscmmp

#!/bin/bash

# Requires that the first entry in the processes file be

# the master process.

# checks if correct number of args passed in

if [ $# -ne 5 ] # if [ num_args <is not equal> 4 ]

then

echo "usage: $0 <file of host machines>"

echo "<port no> <nprocs> <home directory> <library file name>"

exit 1

fi

# sets hosts to be the contents of the file that was passed in

hosts=‘cat "$1"‘

# loop iterator

count=0

for h in $hosts

do

if [ $count -eq $3 ] # basecase; reached the total number of

then # processes given

exit 0

else

if [ $count -ne 0 ] # if not the first entry, send command

then

/usr/bin/ssh -n $h $4/runhelper $h $2 $1 $3 $4$5 &

sleep 1

98
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echo "Process initialized on $h"

fi

fi

count=‘expr $count + 1‘ # increment counter

done

exit 0



Appendix E

Boot Script: runhelper

#! /bin/sh

#|

exec /usr/bin/mzscheme -qr "$0" ${1+"$@"}

|#

(load (vector-ref (current-command-line-arguments) 4))

(define MPSCM-procls

(MPSCM-create-procls

(vector-ref (current-command-line-arguments) 2)

(string->number

(vector-ref (current-command-line-arguments) 3))))

(MPSCM-init

(vector-ref (current-command-line-arguments) 0)

(string->number (vector-ref (current-command-line-arguments)

1)))

(exit)

exit 0
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