
Postmodern Software Development
HUGH ROBINSON1,3, PAT HALL 1, FIONA HOVENDEN1 AND JANET

RACHEL2

1Computing Department, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
2Department of Innovation Studies, University of East London, London, UK

Email: H.M.Robinson@open.ac.uk, P.A.V.Hall@open.ac.uk, F.M.Hovenden@open.ac.ukand
J.Rachel@east-london.ac.uk

We discuss the ‘software crisis’ as a social and cultural phenomenon, arguing that it can be
viewed as (one more) manifestation of postmodernism. We illustrate our argument with a range
of examples taken from software engineering, demonstrating software engineering’s roots in (and
commitment to) modernism and the nature of itsfin de sièclepredicament. We argue that current
attempts within software engineering to respond to the software crisis have not been adequate and

that a new, more humble, approach to software development is required.

Received October 2, 1996; revised September 30, 1998

1. INTRODUCTION

In this paper we look at software development and its crises
as a cultural phenomenon, and consider the relationship
of these ‘crises’ to that general cultural movement termed
‘postmodernism’. We explore the modernist roots of
software development, the ways in which this influence
permits certain aspects of software development and inhibits
others, and the ways in which the notion of ‘crisis’ is
deployed to maintain a need for salvation. Finally, we
consider ways in which software development has broken
out of the modernist mould and whether postmodernism
has anything to offer this process. We suggest that
software development has to become a more locally
negotiated phenomenon, embracing a holistic picture of
local constraints and resources, and thereby becoming
a more responsive technology. Such a reconsideration
of the nature of software development implies a change
to the software engineering curriculum to incorporate a
consideration of the epistemological and socio-historic ideas
that we outline below.

2. SOFTWARE, WEREWOLVES AND CRISES

It is one of the canons of software engineering that there
are problems with the development of software. On this
much there has been widespread agreement since early in the
history of the development of software. These difficulties
were focused on over 25 years ago at the historic NATO
workshop on Software Engineering [1] in 1968, and later
discussed in Brooks’s [2]The Mythical Man-Month. The
term ‘software crisis’ was coined to embrace all supposed
ailments afflicting the production of software and this
software crisis was seen to be a dominant problem to be
addressed by the profession—it was like a werewolf that
needed slaying with a silver bullet [3, 4].

3Corresponding author.

Of course, there have been many attempts to slay the
werewolf or, at least, to discover the talismanic sign that
would ward off its evil afflictions. The history of software
development is, in the large part, a history of salvationary
devices that have come (full of a high promise of deliverance
and redemption) and gone (like yet another lover who has
failed to match up to expectations). At various times,
the salvationary device has been structured programming,
relational databases, logic programming, knowledge-based
systems, CASE technology, formal methods, object-oriented
technology and so on. These salvationary devices have
been the subject of grand passions and have attracted
financial support from national and transnational structures.
There has been, for example, the United Kingdom Alvey
programme of the 1970s and 1980s and the succession of
Esprit rounds funded by the European Community. Similar
initiatives have taken place in the USA and in Japan.

Yet each salvationary device has failed, for the werewolf
still stalks the landscapes of software. It is a sign of the times
that a serious but popular magazine—Scientific American—
can run an article by a staff writer entitledSoftware’s chronic
crisis [5], cataloguing failures that range from Denver’s
baggage handling system to the Clementine satellite. The
lead page of the article has the following paragraph:

To veteran software developers, the Denver
debacle is notable only for its visibility. Studies
have shown that for every six new large-scale
software systems that are put into operation,
two others are cancelled. The average software
development project over-shoots its schedule by
half; larger projects do worse. And some
three quarters of all large systems are ‘operating
failures’ that either do not function as intended or
are not used at all. [5, pp. 72–73]

Indeed, in the popular imagination, software has a very
realfin de sìeclepredicament, with the perceived inability to

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

364 H. ROBINSON et al.

handle the millennium date change and consequent fears of
apocalyptic chaos.

Paradoxically, software engineering is both the victim and
the perpetrator in this crisis. Ever since the coining of
the term ‘software engineering’ [1], software engineering
has constituted itself as being in crisis. A crisis demands
attention and resources. It sets agendas that help define
the discipline that deems itself in crisis. However, some
incredulity must be exercised about this notion of permanent
crisis,4 as suggested by the study of Glass [6].

What lies behind this perceived failure? Was it that the
technical solutions were not appropriate, that technically the
software failed? An answer that is sometimes produced—
by software engineers—is that the technical success need
not be questioned (and that it makes no sense to question
the technical success). Rather, the failure is seen to lie with
the methods and tools which have been used to construct
the software: it is these methods and tools which have
not proved acceptable to human users and therein lies the
cause for failure. Such an answer is not uncommon and has
considerable appeal to certain constituencies within software
engineering (human–computer interaction, for example).

However, such an analysis of failure leaves the business
of software developmentper se untouched and seeks
rectification in matters which have been predefined as
somehow separate from software engineering. That is, such
an analysis seeks to (re)define the technical as that which
does not fail. We would like to re-establish the constitutive
relationship between subject and method. We now offer an
alternative analysis of software development and software
engineering, emphasizing their essentialmodernistnature,
with the predicaments that inescapably arise from that. This
paper then goes on to present a postmodern5 account of/for
software engineering.

3. SOFTWARE ENGINEERING AS MODERNISM

Modernism is a set of epistemological positions, epitomized
by the ‘Enlightenment’s ideals of perfection and the notion,
inspired by modern science, of the infinite progress of
knowledge and an infinite advance toward social and moral
betterment’ [8], where the progress of science seemed to
be revealing a universal truth about the world. That is,
the triumph of reason over religion, myth, craft, etc. is
modernism writ large. A classic exposition of this position
is given by Galileo [9].

SALVIATI. If what we are discussing were a
point of law or of the humanities, in which
neither true nor false exists, one might trust in
subtlety of mind and readiness of tongue and in

4We are reminded of the fable of the shepherd boy who cried ‘Wolf!’
and the attention which that brought, but only on the first few occasions.
Crying ‘crisis’ is rather like crying ‘(were)wolf’, except—it seems—you
can never cry (were)wolf too often in software engineering.

5There is no single spelling of the name of the movement: it may be
‘postmodern’, ‘post-Modern’ or ‘Post-Modern’. Jencks [7] gives a brief
account of the variations, commenting that the various spellings ‘differ
slightly, like the changing aliases of a criminal desperately wanting to be
captured’.

the greater experience of the writers, and expect
him who excelled in those things to make his
reasoning most plausible, and one might judge
it to be the best. But in the natural sciences,
whose conclusions are true and necessary and
have nothing to do with human will, one must
take care not to place oneself in the defence of
error;. . .

A summary is given by Hamilton [10], with the following
ten characteristics:

1. Reason—primacy of reason and rationality as ways of
organizing knowledge. . .

2. Empiricism—. . .all thought and knowledge. . . is bas-
ed on empirical facts. . .

3. Science—. . .key to expanding all human know-
ledge. . .

4. Universalism—. . . reason and science could be applied
to any and every situation. . .produces general laws. . .

5. Progress—. . .condition of human being could be
improved. . .ever-increasing

6. Individualism—starting point for all knowledge and
action

7. Toleration—. . .all human beings are essentially the
same. . .

8. Freedom—an opposition to feudal and traditional
constraints. . .

9. Uniformity of human nature—. . . the principal charac-
teristics of human nature were always and everywhere
the same.

10. Secularism—. . .secular knowledge free of religious
orthodoxies. . .

Modernism is also about ‘conquest—the imperial regu-
lation of land, the discipline of the soul, and the creation
of truth’ [11]. Modernism lays the world bare, stripped
of myth and mystery, as a rational enterprise, ordered and
reliable. Knowledge of this rational world is unproblematic
and can be gained by the methods of that defining paradigm
of rational knowledge—science: ‘Everything that can be
thought at all can be thought clearly. Everything that can
be put into words can be put clearly.’ [12]. Modernism is
linked with the idea of progress, of history as the progression
of human society from an uncivilized, barbaric state to a
civilized, cultivated state that is typified by the ideals of
Western liberal democracy. These strong and exclusive
themes that run through modernism—rationality, control,
progress, etc.—have been seen as defining features by
postmodernist thinkers and have been termed metanarratives
or grand theories [13].

It is our contention that software development and
software engineering are very strongly rooted in modernism.
For example, structured development methods can be seen
to have antecedents in the Taylor/Ford models of early
modernist industrial production.6 The future-directedness
of the software industry, and the search for the next

6Murray [14] gives the four basic principles of Fordism as: standardized
products; repeated tasks having potential for automation; unautomated tasks

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 365

‘silver bullet’, emulate the modernist commitment to
progressiveness and a break with history. We show further
examples by referring to the writing of some of the leading
figures in software development. We should emphasize
that our choice is in no way intended to be invidious: the
choice was almost at random, coloured by our own technical
interests and by the highly articulate way in which the
writings represent ideas.

Let us start with consideration of a paper by one of the
most influential academic leaders of software engineering,
C. A. R. Hoare of the Programming Research Group at
Oxford University. In a paper [15]Programming: Sorcery
or Science? published in the leading journalIEEE
Software, he looks forward to a move from the Dark Ages
into the Enlightenment. He states that ‘the programmer
of today shares many attributes with the craftsmen of
yesterday’ through apprenticeship and experiential learning,
and ‘shares many attributes with the high priest’ with
software manuals taking the role of sacred works. Hoare
then considers ‘the rise of engineering’ and, moving from
third person to first person, looks forward: ‘we would
like to claim that computer programming has transcended
its origins as a craft, has avoided the temptation to form
itself into a priesthood, and can now be regarded as a
fully fledged engineering profession’ [15, p. 7]. He looks
forward to a continuing flow of standard text books which
‘promises to transform the arcane and error-prone craft of
computer programming to meet the highest standards of a
modern engineering profession’ [15, p. 8]. The process
of software development would be characterized by its
use of mathematics, producing ‘a complete, unambiguous,
and provably consistent specification for the entire end
product’ [15, p. 8] and ‘mathematical proof that if each
of the components meets its specification, then when all
the components are assembled, the overall product will
meet the overall specification agreed to by the client’
[15, p. 9] so that ‘we hope to eliminate the so-called
‘system integration’ phase of many current projects, in
which bugs are painfully detected and laboriously removed
from the interfaces between the components’ [15, p. 10]. In
conclusion, Hoare states,

And I believe that in our branch of engineering,
above all others, the academic ideals of rigor
and elegance will pay the highest dividends
in practical terms of reducing costs, increasing
performance, and in directing the great sources of
computational power on the surface of a silicon
chip to the use and convenience of man.

This is the proclamation of an ideal worthy of the best of
the Enlightenment!

At the time of Hoare writing this article the practice
of software development was already well established
in looking to conventional engineering for its salvation,

analysed using work study methods, to enable the easy training of workers
and their easy replacement; and production lines with the work moving to
the workers.

through the adoption of quality systems and engineering
standards such as those characterized by the UK standard
BS5750.

Hoare, of course, was not alone in his modernist advocacy
of mathematical rigour and elegance. During the 1980s,
for example, work on database systems (and, to a lesser
extent, information systems generally) became dominated
by the notion of a formal conceptual schema that would
capture and represent the essence of (what was regarded
as) some muddled and contextual ‘real-world’ situation,
in a manner directly inspired by the logical atomism of
the early Wittgenstein ([16] gives a detailed account). It
was seen as quite inappropriate to use natural language to
describe this conceptual schema: ‘. . . natural language fails
the criteria. While rich and contextual, suiting the real
world, it allows ambiguity and inaccuracy. It cannot be
subjected to rigid rules of mechanistic logic’ [17]. Using
these ‘rigid rules of mechanistic logic’ would allow the
true nature of reality to be represented, rather than the
seeming world of appearances, as Vermeir [18] claims:
‘conceptual information analysis or conceptualisation. . . is
concerned with the problem of precisely and unambiguously
representing the deep semantic structure of a given
situation (“Universe of Discourse”) in some formal system’.
Rationality and logic were seen to be all-embracing, to be
the metanarrative by which the world could be articulated
and quantified, as evinced by Steel’s [19] choice of title for
a paper at a prestigious conference on database semantics:
A minimal conceptual schema for life, the universe and
everything.

Let us now continue through the modern era of software
development with an extended quotation from Lehman [20],
writing under the intriguing titleUncertainty in computer
applications and its control through the engineering of
software. In this quotation we have italicized a number
of terms to emphasize the prescriptive, deterministic and
mathematical nature of the view of software development
being offered. Lehman gives an account of the software
engineering agenda as:

Recognition of the need to define and follow a
disciplinedprocess is perhaps the most important
advance in system development of recent years.
To achieve it one first needs to develop aprocess
model(Lehman and Stenning, 1985; Potts, 1981;
Wileden and Dowson, 1986; Dowson, 1987) to
define asystematicandcoherentpath from formu-
lation of an application concept via realisation of a
usable system to its subsequent evolution. Process
models may be generic or specific. Whether
they can reasonably be consideredalgorithmic is
a matter of some controversy (Osterweil, 1987;
Lehman, 1987b). Models are developed by first
identifying the technical and management activ-
ities required, the extent of information capture
and storage and the interfaces, relationships and
dependencies between all these. Together they
provide thestructure and compositionof the basic

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

366 H. ROBINSON et al.

process. Given this, one then selects or develops
methods toexecute technical developmentactivi-
ties. The introduction of defined and disciplined
methods permits the application ofcomputer
based development tools. These provide mech-
anised support for individual activities and their
systematic control. If appropriately conceived, the
totality of methods and tools provides support for
all aspects and stages of system evolution. True
overall effectiveness will, however, be achieved
only if data representation, methods and tools can
and are integrated to providefull and coherent
lifetime support. Even then, a process is only as
good as is therigour of its application.

This is why techniques and tools tofacilitate and
control planning and managementof a group and
its activities, theproject, mustbe included when
planning and implementing integrated lifetime
development support. Equally, one requires both
to support management of the emerging software
and systemproduct during development, its
subsequent release to users and its evolution. Such
product related function is exemplified by the
need for management of component variants and
versions, system configuration and fault fixing.

Elsewhere he writes of the need for training and
education:

Technical personnel not educated in the new
technology ab initiomust learn that they cannot be
allowed to follow a development process of their
own choosing. They must accept constraints in the
letter and the spirit; faithfully and reliably follow
documentation and quality assurance standards
and procedures. To do this, they must understand
and have true appreciation of the new technology
and the reasoning that underlies it. Forsuccessful
exploitation understanding andacceptanceis,
indeed,necessary at all levels, managementand
operational.

All of this, we would submit, fits completely within the
modernist agenda, of the application of science to solve
human problems.

4. . . . AND ITS MODERNIST BAGGAGE

A key component within this commitment by software
engineering to modernism is that of instrumental rationality:
software engineering is viewed as a rational artefact that is
deployed by professional experts to solve discrete problems
in institutional settings. This instrumental rationality is
unquestionable (that is, it is part of an underlying belief)
because it is the product of the metanarrative. For example,
as we have observed elsewhere [21], software engineering
embodies a view of the world as being composed of
unitary problems, each capable of rational solution via the
application of the technology. Whilst accepting that these

problems are an articulation of the genuine needs of real
people in a world suffused with the full complexity and
richness of human life, software engineering nevertheless
chooses a rubric with terms such as ‘problem domain’
or ‘user requirements’ to describe where it begins its
activities. Software engineering constructs the world as
being composed of problems, with an existence that is
distinct from the methods and tools of software engineering.
These problems are conceived of as being consistent, precise
and capable of specification—the requirements of the user.
These requirements are objective and separate from the
methods and tools that will be applied to them, as will be
the solution—the final, delivered system that is a product of
the application of the methods and tools.

Such a grand theory as instrumental rationality is not
without baggage that becomes part of both software
engineering and the institutional settings in which it
is deployed. Instrumental rationalityqua software
engineering, demands that people be viewed in a particular
way. Software engineers are conceived as the professional
expert whilst the consumers of the product of the engineers’
labour are conceived as the users (or, occasionally, as the
client, although this term would more properly be reserved
for the management purchasing software artefacts for use
by its staff). The roles and relationships that come with
this expert/user distinction are not those of equals: the
professional expert enjoys an epistemologically privileged
position in comparison to that of the user (as in the
‘deep semantic structure’ of the Vermeir quotation, above,
for example). Consequently, the user’s experience and
knowledge of their world is devalued and denied. Such
a view of the world places an emphasis on apparently
enduring and objective truths, and discounts local context,
circumstance and expertise. Thus, when faced with any
perceived mismatch between the technology and the users’
circumstances, there is an impetus to deny the authenticity
of users’ knowledge, re-affirm the appropriateness of the
technology and confirm the perceived mismatch as being
more apparent than real. That is, if only the technology
were more appropriately understood, applied and presented,
then the perceived mismatch—any real problems—would
disappear!

This also indicates the reverse aspect of the modernist
commitment to universalism and tolerance. Where there
is a commitment to both rationality and universalism there
can only be one acceptable rationality. To maintain
this position, modernism needs to monopolize notions of
rationality—what is not modern, therefore, is irrational.
Such universalism requires uniformity—‘all men are equal’,
as long as everyone behaves like a certain kind of man, she
or he will be regarded as an equal. This is a social contract
which requires the adoption of a certain kind of identity. To
be concerned with gender, racial or class differences, for
example, is to be un-modern. Where users, or even members
of the development community, disagree with the ‘rational’
solution, this is not seen as an aspect of contextually situated
knowledge to be taken into account, but as an ‘irrational’
response, which can therefore be ignored.

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 367

5. THE BREAKDOWN OF SOFTWARE’S
MODERNISM

We contend that software engineering exhibits symptoms of
breakdown, with an acceptance amongst leading advocates
that it has failed to deliver the promises of high rationality.
We have already cited examples of such an acceptance (as
reported by Gibbs [5], for instance) and the trend away from
using structured methods may be seen as further example. It
is also interesting to note, in this context, Hoare’s reported
[22] admission that the use of mathematical proof has been
overstated as the touchstone by which competent software
may be produced. Coupled with this lack of confidence
in success is a preoccupation with Messianic approaches
and cults that offer the promise of concluding the project
of modernism within software engineering. Despite a
recognition within the profession that, probably, a software
engineer’s stone does not exist [3] there continues to be
the belief that such a salvationary device is within software
engineering’s grasp [4].

As before, we support our contention by looking at key
writings. The view that software development should be
solely underpinned by mathematics, depends on a view of
mathematics and science as being unproblematic. That is,
they are the very epitome of a detached, dispassionate and
rational activity. This view of mathematics and science
would be challenged by many current philosophers and
sociologists of mathematics and science. For example,
studies of mathematicians reveal that the concept of an
agreed proof is sometimes illusory: mathematicians make
mistakes (or, at least, believe that other mathematicians
make mistakes). For example, empirical studies by
MacKenzie [23] have shown that: ‘Although mathematical
proof is being sought precisely because of the certainty it
is ordinarily held to grant, constructing proofs of computer
systems correctness again turns out to be no simple
“application” of mathematics. It involves negotiating what
proof consists of.’ This supports the contentions made in
DeMillo et al. [24]. Science, it can be argued [25], proceeds
as much by constructing facts as by discovering them and
there can be bitter dispute over what are the ‘facts’ that
cannot be resolved by appeal to observation.

A deep concern about the use of proof in the development
of software was raised by Fetzer [26], in the premier
computing journal, theCommunications of the ACM. Fetzer
was a philosopher, spending a postgraduate fellowship in a
computing department. His paper was confrontational in its
title—Program verification: the very idea—and proceeded
to attack the idea of formal proof of correctness from various
angles. Regarding the notion that the act of proof itself is a
social process, he asked:

. . . if program verification, like mathematical
validation, could only occur as the result of
a fallible social process, if it could occur at
all, then what would distinguish programming
procedures from other expert activities, such
as judges deciding cases at law and referees
reviewing articles for journals? [26, p. 1048]

Further, he distinguished deductive methods from inductive
methods,

For results in logic and mathematics fall within
the domain of deductive methodology and require
demonstrations. Lawful and causal claims fall
within the domain of empirical inquiries and
require inductive warrants. [26, p. 1050]

and argued that the verification of operational programs was
more like applied mathematics:

Algorithms, rather than programs, thus appear
to be the appropriate candidates for analogies
with pure mathematics, while programs bear com-
parison with applied mathematics. Propositions
in applied mathematics, unlike those in pure
mathematics, run the risk of observational and
experimental disconfirmation. [26, p. 1057]

leading to the conclusion that

As Einstein remarked, insofar as the laws of
mathematics refer to reality, they are not certain;
and insofar as they are certain, they do not refer to
reality. [26, p. 1060]

The operational performance of these complex
systems should never be taken for granted and
cannot be guaranteed. [26, p. 1062]

In other words, certainty about the products of software
development was not achievable, at least not by reference to
mathematics. Proof within a mathematical system does not
necessarily entail proof within the ‘lifeworld’ system that the
mathematical system is modelling.

This attack on the rationalist stance of computing was
echoed in another leading journal—theComputer Journal—
again by an outsider making a temporary sojourn within
computing. In 1986 Leith considered the other end of
the connection between formal computational systems and
the world, between the system and the application domain,
critically appraising the use of logic programming in the
formalization of law in a paper [27] also confrontationally
titled—Fundamental errors in legal logic programming. He
expressed his concerns as follows:

I wish to criticise the use of logic programming in
the law, not from the computer science perspective
but from the position outside the usual domains
of computing. For most of the claims made
for logic programming are not made in terms
of computer science goals (e.g. computational
efficiency, efficient usage of memory, etc.) but
arise from the relationship of logic programming
to the extra computational world—for example the
legal world.

and then went on to carefully consider the treatment of
the British Nationality Act within logic programming by
Kowalski and colleagues at Imperial College, concluding

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

368 H. ROBINSON et al.

I would argue that the problems of logic pro-
grammers are the result of a false epistemology:
they see the world in terms of a computational
model and fail to stand outside that model. Thus,
whenever they attempt to apply their model to the
real world, they will always fail. For the world is
not a logical world.

Both papers have very similar concerns about the
way formal mathematical systems are used to describe
phenomena in the world. These formal systems must be
connected to that world at some point and this connection
demonstrates their (non-formal) validity. It is at these points
of connection that problems may occur, for this is where
the implications of the epistemologies of the system and the
world connect. The system’s success depends upon whether
these epistemologies collide or co-operate.

At around the same time as these papers were published,
a number of significant failures of computing systems
began to emerge. For some time Peter Neuman had been
running a column ‘Risks’ inSoftware Engineering Notes,
to which people posted reports of entertaining nonsenses
like systems issuing invoices for $0.00 and insisting that
the corresponding payment for $0.00 occurred in order
to avoid legal action. Computing professionals realized
that computing systems could be in error, with disastrous
consequences, and professional committees began to look
at these ‘Safety Critical’ systems. In 1986 concern
emerged that the failure of the Therac-25 radiation treatment
equipment in the US was attributable to software. The
Institute of Radiologists in the UK wrote to the British
Computer Society and concern, already active there, became
more focused.

The Therac failure led to several deaths. It provides
a useful case study because, although no official accident
investigation was ever carried out [28], a detailed report
was compiled from several sources by Leveson and Turner
[29]. There were a number of programming errors that
led to the system failing, one in particular occurred when
operators became proficient, worked rapidly and made an
error in data entry that they had to redo. The errors were
made by an engineer who had never been formally trained in
the production of software, but the system was not designed
to cope with such a use case. Leveson and Turner [29]
concluded that the problem was larger than a single cause:

Most previous accounts of the Therac-25 accidents
blamed them on a software error and stopped
there. This is not very useful and, in fact, can be
misleading and dangerous. If we are to prevent
such accidents in the future, we must dig deeper.
Most accidents involving complex technology are
caused by a combination of organisational, man-
agerial, technical, and, sometimes, sociological
or political factors. Preventing accidents requires
paying attention to all the root causes, not just
the precipitating event in a particular circumstance
[29, p. 41]

This conclusion on the multiplicity of co-factors at work
in software-based system failures7 indicates that developing
software is about more than writing bug-free code. It is
an amalgam of various analytical, design, implementation,
predictive and managerial activities, embedded in dynamic
social systems, replete with already developed sites of co-
operation and conflict.

6. POSTMODERN SOFTWARE DEVELOPMENT
PRACTICE

We have seen that the modernist narrative of software
engineering is breaking down and that, quite appropriately,
there is strenuous activity to repair the breakdown from
within the modernist narrative. However, some people have
attempted to break away from the modernist tradition, to
develop software in different ways, ways which might be
termed ‘postmodernist’.

Postmodernism can be thought of as a reaction to
modernism—characterized by the triumph of reason, for
example in ‘the French Enlightenment’s ideals of perfection
and the notion, inspired by modern science, of the infinite
progress of knowledge and an infinite advance toward social
and moral betterment’ [8]—a reaction in which the old
confidence has disappeared (Huyssen [30] writes of ‘the
Exhaustion of the Modernist Movement’). Hassan [31] has
characterized this by 11 definiens, listed here without the
elaboration given by him: indeterminacies, fragmentation,
decanonization, self-less-ness and depth-less-ness, unpre-
sentable and unrepresentable, irony, hybridization, carni-
valization, performance and participation, constructionism
and immanence. The overall theme of Hassan’s [31] essay
was that of pluralism: pluralism is seen as important in
legitimating other voices within the postmodern world,
feminists and gays and ethnic minorities, for example, by
explicitly dispersing the authority of the authorial voice.

Lyotard has defined the postmodern as ‘incredulity
towards metanarratives’ [13], which might be regarded
as suspicion towards universal explanations or themes.
Jameson [32] articulates this breakdown of metanarratives
as ‘the transformation of reality into images’ and ‘the
fragmentation of time into a series of perpetual presents’ [32,
p. 125]. Modernism is a finite and limited project where, as
Smart [11] writes:

the pursuit of unshakeable foundations for analytic
truth constitutes a fruitless project, one that
will continue to remain incomplete in so far as
the metaphysical presuppositions at the heart of
Western philosophy are themselves problematic.

and, as characterized by Bauman [33], it is

an inherently and irreparably controversial project,
torn apart right through its heart by incompatible,

7As Leveson [28] indicates, this is not just a problem that faces
the software industry. Similar problems occur in the more traditional
engineering aspects of the aeronautics and nuclear industries, for example.
However, software is our business, and our concern, here.

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 369

demands/promises/hopes of autonomy and order,
emancipation and normativity, freedom and disci-
pline.

So philosophers studying modernism predict its demise,
where the grand narratives and unitary notions of epistemo-
logical authority begin to break down.

We have seen in the previous section a need for incredulity
towards the metanarratives of software engineering, the
use of mathematics and methodologies. We now consider
themes and practices within software development which
might be termed postmodern. Importantly, the account
we give below reflects our interests and preoccupations
and should not be taken as any exclusive prescription for
what is postmodern—other authors have written in a way
which broadly echoes and articulates our concerns (see the
collection of Floydet al. [34] or Bjerkneset al. [35], for
example).

6.1. Hard and soft

Computing and software development have arisen out
of diverse disciplines, from mathematics and electrical
engineering, to cognitive psychology and management
science. This diversity gives rise to a variety of approaches
and positions within software development, but such variety
is often hidden by the modernist move to create universal
explanations. A universalizable solution, for example,
requires a universalizable problem definition.

We argue that the hard/soft division is one such
universalizing move, where ‘hard’ is the preferred form
of problem definition and solution, and ‘soft’ is the
problematic. The distinction between hard and soft is
often taken to mean the difference between the definite
information that is regarded as the stuff of the software-
based system, and the uncertain, ‘woolly’ information that is
regarded as the stuff of the people-based application domain.
However, all software development is application-driven, to
some degree or other, and therefore has to take account of
contextual influences.

Hard systems are those that are intended to have precise
function, either in the solving of clearly articulated scientific
problems or through being embedded into larger engineering
artefacts like aircraft or nuclear power stations, or as systems
software. It is failures of these hard systems that we focused
on above but, as the quotations indicate, proponents have
been vigorous in defence of their beliefs.

By contrast, soft systems approaches ([36], for example)
are concerned with the social situation of the system
and have particularly been associated with applications
where there has been a strong commercial imperative.
The functions of the system are typically determined by
some surrounding human system and that leads to greater
uncertainty. They are often called ‘information systems’,
emphasizing the human view of the data stored in the
system. Problems with information systems may be seen
in terms of ‘resistance’, rather than failure—as argued
by Symons [37]. For various reasons a system may
not be acceptable to an organization and its members.

Symons advocates an ‘interactionist approach’ in which
both technical and human aspects are taken into account,
reporting that this approach ‘assumes no common purpose in
IS development, recognising that participants have different
motives and interests’ [37, p. 186]. Various other paradigms
of software development have been suggested ([38], for
example) all of which could be applicable, and which
is applicable will depend upon factors such as national
and company culture and the nature of the system being
developed. Many approaches require the reconciliation of
the needs of multiple stakeholders in the system, introducing
a form of pluralism into software development.

6.2. Consultative software development

The move towards forms of pluralism in development can
be illustrated by what is often regarded as the problem of
requirements. This can be stated as follows. To create a
software product we need a specific statement of what that
product is intended to do. Determining the requirements
of the situation, or the requirements of the end users, is
regarded as the way to get this specific statement. Where
the development community come up with the requirements
themselves, there is a strong likelihood that the lack of
domain knowledge will mean that the software will fail to
address aspects of the application situation, and that the
software will be unacceptable to users. However, it is also
often the case that users cannot appreciate what can be
done with the technology and may have either unrealistic
expectations about the proposed system or, alternatively,
request something that is technologically uninteresting to
produce. Apart from these possible conflicts, there are also
the problems of dynamism. Many domains change all the
time. The more sophisticated the software intervention—for
example, decision support, as opposed to payroll system—
the more dynamic the situation is likely to be. It is also the
case that introducing a new software-based system into any
situation is likely to change it, so that the requirements that
were apparent before the introduction of the software may
be changed by that introduction. At the same time, however,
no tractable software project can proceed without some
definite starting statement of intent. And, in the interests of
producing a software artefact within a specified time frame,
requirements cannot be continually changed. Software
development is constituted as a goal-directed activity and as
such cannot deal with too much movement of the goal posts.

One major problem with the modernist approaches in the
development of software was the belief that requirements
could be fully specified, up front. This can be seen in
the strictly sequential phased development of structured
methods, such as SSADM [39]. This accords with
beliefs that there isa rational solution, expressible in
an unambiguous requirements document, that transcends
developer/user conflicts or domain dynamism. It is based
on an older model of science (pre-‘New Physics’, for
example), which holds that there exists a unique reality
which is there for us to discover and this discovery
could be made by anybody working anywhere. Lyotard

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

370 H. ROBINSON et al.

parodies this as ‘mephistophilean functionalism of sciences
and technologies’ and claims that ‘. . . there is no reality
unless testified by a census between partners over a certain
knowledge and certain commitments’ [13]. There is
now strong evidence to support the importance of social
processes in the construction of scientific theory (for
example, [40]) and a retreat from the idea of a unique
reality waiting to be discovered. These movements in
science and technology studies leave us with a spectrum
of ontological and epistemological positions. These range
from the single, discoverable, knowable reality of early
Enlightenment science and early Modernist computing, to
the mild relativism that states there are many experienced
realities, but only one (at any time) which works for specific
purposes ([41], for example), to the extreme relativism that
states that there are no knowable realities, and that we are
always dealing with illusion and surface appearance (see
[42], for example).

As modernists, we have to choose a position towards
the ‘single reality’ end of the spectrum, and argue for
its truth above all others; as postmodernists we can play
with all of them. The hard systems approach tends more
towards the ‘single reality’ end of the spectrum, but there
has been increasing recognition of the problems with this.
One line of response in computing has been a pursuit of
pluralism, to ‘triangulate’ the requirements by determining
a number of perspectives or viewpoints of the requirements
(for example, [43]). In the modernist version of this, the
various viewpoints would be reconciled to produce a single
consistent statement of requirements (for example, Mullery
[44]), but others, like Nuseibehet al. [43], would not
necessarily require this.

Another line of response is to recognize that the
requirements are implicit in the world and the way to
proceed is to allow these to emerge as the development
of the system proceeds. Brooks in his ‘No Silver Bullet’
paper [3] attributed the problem primarily to ‘complexity’
and, while he argues that no single cure exists, is keen on
the use of ‘great designers’. Curtiset al. [45] come up
with a similar idea, pointing out how important the lead
designer (software architect) is, as well as the problem
of communication implicit in Lehman’s uncertainty. One
response to the problems has been to build prototypes, an
approach discussed by Brooks [3]. But the use of prototypes
is subtle.

Following a prototyping approach (for example, [46])
is one way of allowing requirements to emerge. The
general idea is to build a prototype focusing on part of
the perceived need and use this to focus discussions with
the intended beneficiary(ies). This leads to changes and a
new prototype, and so the prototype may develop through
many cycles into the system that is eventually put into
service. In practice the use of prototypes may be formalized
and adopted by modernist methodologies, perhaps given
confident names like ‘Rapid Application Development’,
effortlessly transmuted and reified by the acronym ‘RAD’.

However, whilst each of these solutions has moved away
from the ‘single reality’ end of the spectrum, they still

carry a specific part of the modernist heritage. This can
be seen in the determination of what constitutes relevant
knowledge. To explore this we need to ask where the locus
of power is situated—who determines which of the emergent
requirements are the important ones, for example?

The notion that there is a single right answer that anyone
(correctly trained) will be able to discover has been replaced
by the notion that particular people, deploying particular
‘expert’ knowledge, will be able to determine the most
appropriate answer (putting our faith in ‘great designers’, for
example). Even the apparently pluralist positions have to be
examined closely in practice to determine what respective
weighting is given to which views. There may be ways
in which the human user, although considered important in
the approach, can become submerged within a modernist
hijack. For example, prototyping is important in managing
the expectations of both developers and users, but can also
become a technical lever which helps to ‘configure the user’
[47]. Furthermore, there is the danger of ‘tokenism’.

6.3. Consultative development and the perils of
configuring the user

One of the more visible fields in which the role and influence
of modernism can be seen is in architecture. However,
there is a strong postmodern movement within architecture
(see [48], for example). One way in which this movement
has manifested in architecture has been consultation (for
example, [49]). The concomitant of this in computing is
called participation.

In ‘participative development’ user representatives par-
ticipate in the software development process, typically as
members of the development team. This arose out of
socio-technical approaches to computing, championed by
Mumford [50]. Clement and Van den Besselaar [51] survey
these, arguing that:

The focus of participatory design (PD) is not only
the improvement of the information system, but
also the empowerment of workers so they can
codetermine the development of the information
system and of their workplace.

They conclude:

The experiences from the projects reported here
offer some encouragement and guidance for
further development of PD. The basic tenets
of PD are seen to work in a variety of
settings. Researchers report that users have
become better informed about the nature of
information technology and more self-confident in
taking initiative with it. Several of the computer
systems that have resulted appear to function
well from the user’s perspective and are still
in operation. Systems development approaches
specifically suited to supporting PD activities are
also gaining acceptance. However, PD is still
characterized by isolated projects with few signs

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 371

that it leads to self-sustaining processes within
work settings. While in part this reflects short-
term project aims, the reasons for this appear
mainly to do with organizational inertia and
resistance. The main challenge now for PD is to
deal effectively with the political and ideological
aspects of the broader organizational contexts
on which PD initiatives depend for their long-
term survival. The dilemma remains that without
organizational reform in the direction of greater
democratisation at all levels, the knowledge and
commitment that PD can stimulate in users will
ultimately reinforce patterns that limit the growth
of their capabilities and thus undermine further
initiative. The projects evaluated here suggest that
an increased and positive role for management
PD would be useful. A careful involvement with
management, without abandoning the desirability
of an independent perspective, could open up
important possibilities for PD. Only by giving
participation the meaning of full engagement in
vital organizational affairs is the process likely to
flourish.

As identified by Clement and Van den Besselaar, the main
factor preventing the self-sustaining uptake of PD is the
‘inertia’ of organizational culture. If there are political
inequities in an organization then PD will not work, it will
become a form of tokenism and be recognized as such,
losing credibility. There are many subtle ways in which
some participants may not be able to express their views and
therefore not participate fully [21]. To expect equality of
input, and, more particularly, equality of representation in
the final product, would be naive. But what is important is
that the inequities that do exist are not structural. By this we
mean that the suggestions or votes that carry the day, or the
views represented in the final product, do not always come
from the same subgroup within the PD team, for example,
managers or designers. If the opportunity to contest any
suggestion is not available to all participants then PD can
be said to be tokenistic. If the locus of power lies primarily
with the development, then participation can be said to have
been bestowed. This, we submit, is oxymoronic. Such
a situation assumes agiven value differential between the
technical expertise of developers and the domain expertise of
users. This assumption, in itself, can be seen as modernist.
It is associated with the modernist concern to delineate a
progressive elite, with all the hierarchical power structures,
claims to dominant knowledge and value differentiated
expertise that this implies.

One major result of this is the phenomenon we can
call ‘configuring the users’. In Woolgar’s original
formulation [47] this phrase indicates both the search for
the ‘right’ user—the ideal user implicit in the minds of the
developers—but also the subtle working upon the users,
whereby the user comes to believe that the system being
delivered by the developers is the system s/he really wants.
The result of this work is a satisfied user—‘the configured

user is a happy user’. Whilst acknowledging that decisions
have to be made, expectations managed and requirements
settled, and also acknowledging that many developers would
see the advantage of the ‘configured user’, there is a major
problem. This is the problem that always results when
one group is structurally validated over another and it is
the problem of responsibility. In the modernist world of
identifiable experts, dominant knowledge and hierarchical
power structures, the responsibility always lies with those
who have power. The rest are infantilized. However,
developers often (and increasingly?) feel that they are being
cast as the ‘bad guys’, duping innocent users into accepting
systems they do not want. The only way to avoid this binary
division is for users to accept some responsibility for the
choices that are made. However, responsibility cannot be
assumed where there is no power. In order to inculcate
mutual responsibility, power needs to be shared.

6.4. Trust and risk

The paper by Lehman [20], quoted extensively above, comes
from the hard systems camp. After a highly abstract analysis
he concludes ‘The outcome of software system operation in
the real world is inherently uncertain with the precise area
of uncertainty also unknowable.’ [20, p. 12]. The rest of his
paper is spent arguing even more vigorously for modernist
software engineering methods, though his conclusions are
cautious:

. . . uncertainty in the detailed properties of
software and its behaviour when executing and,
therefore, in computer application is inescapable.
This fact is a challenge to society in general;
. . . Uncertainty will always be there. It is the
responsibility of prime movers to ensure that
society is not unnecessarily exposed through
thoughtless application. To avoid this, they
and society at large must be informed of the
threat. . . . Rigorous enforcement of advanced
software technology, systematic application of
disciplined methods and mechanization can make
a fundamental contribution to this end. Their
widespread, if not universal, adoption must be
accepted as an urgent societal priority [20, pp. 24–
25].

As we saw above, Lehman, Brooks and others end
by putting their trust in the dissemination of information
and in the action of prime movers. In other words, in
communication and in people. However, as we also saw
in the previous section, if unchallenged, the influence of
the hierarchical structure in modernism entails a reliance
upon an elite, developing and disseminating information,
whilst responsibility is implicitly placed in the hands of the
‘great designers’. But if risk is to be fully appreciated, by
society at large, and responsibility to be shared between
developers and users, is this hierarchical model useful? Can
responsibility be taken without an understanding of risk or
an acceptance of uncertainty?

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

372 H. ROBINSON et al.

For high integrity and safety critical system we must be
very confident that we can trust ourselves and our society to
the proposed system. To be able to do this it would seem
desirable that we can guarantee that the system will work
perfectly or, at least, that we give a figure for the probability
of error. To be able to achieve this, it could be argued
that technology must not follow science and the arts into
the postmodern and that technology should choose to use
those parts of science for which a rational modernist agenda
is appropriate. This may mean choosing technologies for
which all the appropriate theories have been worked out—as
is seen in recent moves to only build safety critical systems
using ‘safe’ subsets of languages like Ada, for example.

But we have seen that this is problematic. We need to
consider other options. Of course computing systems are
not the only place where complex decisions are required—
the whole ecological movement, for example, is concerned
with this. Giddens [52] has examined this in depth, seeing
many of the dilemmas of modernism as arising from the
growth in complexity, where the complexity arises not from
the uncertainties in the external physical world, but from the
world of people and their science and technology.

The UK Health and Safety Executive works to a principle
of As Low As Reasonably Possible (ALARP) for risks,
accepting that not all risks can be measured quantitatively or
with certainty—the important thing is that the risk is judged
to be low and that processes are in place that are driving
down the risk [53]. However, this is entirely dependent
upon our being able to ascertain what the risks are in
the first place. Leveson’s [28] assertion that the failures
of software-based systems arise from a multiplicity of co-
factors indicates that modernist analyses, which look for
single and universalizable causes (or individual saviours)
are not helpful. The full complexity of the system and its
situation need to be taken into account and to do this we
need multiple voices and multiple approaches.

This foregrounds the importance of people in the
development process, but not just as a bridge into user
requirements as envisaged by the participatory development
agenda. The hopes placed in the lead designer and software
architect by Brooks [3] and Curtiset al. [45] also depend
too much on the single hero and the single voice. Playing
more than lip service to pluralism in development means
encouraging teams that flourish across the divisions of
manager, user and developer.

Is eradicating risk modern or postmodern? Would it be
more postmodern to live with risk—to accept uncertainty?
This would alleviate the problems cited in Leveson [28]
about the dangers of dumbing down the user (for example,
[28, pp. 22–23]) or the complacency engendered by having
a ‘good system’ (the case of Chernobyl [28, p. 647]). Does
minimizing risk lead us to act more rashly? Is this what leads
to the kind of user complacency about system failure that
was a tragic feature of the Therac-25 cases? The eradication
of risk and uncertainty—or the belief that this should be
possible—are, we argue, modernist notions, that elide a
belief in the exploitation of ‘nature’s regularities’ (see [41])
with a belief in dominion and control.

7. SOFTWARE DEVELOPMENT AND
POSTMODERNISM—WHAT IS THE
RELATIONSHIP?

We are now past the point (late 1980s and early 1990s) where
postmodernism may have been regarded as an obligatory
passage point. However, this passing means that many of
the notions of postmodernism are now part of our culture.
In this sense we may argue that software development needs
to take account of ideas which are already influencing work
in the field. This is an argument about making explicit
those influences which may currently be implicit. The other
argument for making such notions conscious is that we can
then explicitly ask about the usefulness that postmodernism
might hold for software development.

Postmodernism is a descriptive theory, enabling us to
comment on what is observed and to relate observations
from disparate parts of human activity. It does not claim
to have the predictive power to tell us what will happen or
the prescriptive power to tell us what to do. Nevertheless,
we can look at the social trends that postmodernism
highlights and comment on those things that have happened
in the development of software as instances of the same
phenomena.

We have seen that the development methods of software
have been grounded in modernism and the Enlightenment,
but that this has led to conflicts and contradictions, and a
notion of ‘software crisis’ as the modernist metanarrative
has broken down. These problems are by no means limited
to software development and have been repeated across high
technology and architecture, for example. We have also seen
a number of ‘standard’ responses to the crisis of modernity
and how these also appear in software development. We
have considered, for example, arguments for greater rigour
and control, but also the acceptance that much of this
involves placing our trust in ‘great designers’. We have
looked at Leveson’s argument that it is a mistake to attribute
software failures to single causes. We have also considered
the democratization of development, with such approaches
as participative development. Each of these cases manifests
a different relationship to postmodern thought (although
none of the authors cited have, or maybe would, make
this connection with their work). For example, placing
our trust in the communication of information and the
competencies of designers to mobilize the rigour required
to ensure safe systems may be seen as an opening out of
the traditional formalist positions, which never addressed
contextual concerns. However, advocating that trust be
placed in the competencies of ‘great’ individuals negates the
notion of a shared responsibility, supports the concentration,
rather than the distribution of power, and sets up a ‘fall-
guy’ to blame if things go wrong, thus allowing the power
structure to remain unchallenged. Arguing against the
‘single cause’ explanation of software failure, however, does
challenge such power structures and considers the broad web
of responsibility that even software intended as the product
of a single great designer may have. It insists that all
software products are more properly considered ‘systems’

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 373

in order to make this clear. Participative development falls
somewhere between these two positions. It is an approach
that can only replicate the power distributions already
present in an organization, and so its ability to employ
postmodern strategies is dependent upon what values and
beliefs have already colonized the context. Choosers and
users of software and systems are still regarded as very
separate from the developers in the participative design
approach. As we have seen above, lip service can be paid
to participative design in ways that make it appear that
views are being canvassed when, in fact, resistance is being
annexed. In an earlier paper [21] we identified the ways in
which various stakeholders in a participative design situation
had been co-opted or otherwise invalidated from making
any counter-suggestions to those intended by the project
manager. The user representatives, for example, had both
been saved from redundancy by being offered jobs using the
new system once it was up and running. Given the primacy
attributed to technical knowledge, users can be intimidated
about making their views known and developers can use this
situation to convince users that they really want what the
developer wants to supply them with—thus ‘configuring’
them. The reason that this can be the case is that there
is still an implicit value differential between the views of
the choosers and users and those of the developers. Until
that divide can be undone users will always be vulnerable
to the possibility of being configured and until developers
realize that the reconstruction of the social space that occurs
when a system is introduced or changed is as much our
responsibility as the technical success, then we will only
be doing part of our job. In any development situation
we need to identify stakeholders in such a way that the
given or assumed variations in importance between them are
not accepted at face value. We also need to challenge the
assumptions that govern notions of relevant and irrelevant
knowledge so that users, choosers and developers pool their
resources rather than competing for dominance.

A major aspect of postmodern thinking is the chal-
lenging of privileged (meta)narratives and privileged
(meta)narrators. Privileged narratives are those stories
within our social world which are deemed more important
than any others. In software development there has
traditionally been a privileging of technical information and
related values over social information. In deconstructing the
assumptions we bring to our work we need to question the
very notion of a technical/social divide. A major problem
with such divides is that different constituencies become
associated with each side and often identify themselves
by associating positive characteristics with their own side,
whilst attributing negative characteristics to the other. For
example, users may regard developers as overpaid ‘cow-
boys’ who do not appreciate the problems with users’
work and offer technical solutions that are not helpful.
Developers may regard users as technological na¨ıfs who
cannot understand what technology can do for them, but
also do not really know what they want. In each case both
groups are validating their own expert knowledge at the
expense of other expert knowledge, rather than attempting

to understand the inputs of both and exploit the benefits of
different perspectives.

Once the assumptions of value differentials have been
questioned, the automaticdroit de seigneurof the dominant
narrative no longer works. This allows the voices of the
disenfranchized to be heard and it allows things to be said
that were previously censored as irrelevant. Above all, it
fosters communication.

However, for there to be no dominant narrative makes
life all the more complex. Everything has to be locally
negotiated and predictive ability may be constrained. This
automatically makes the deployers of previously dominant
knowledge less powerful than they once were and it is very
easy for another group, and dominant narrative, to slip into
the vacuum as a substitute. This often gives us the same
problem in reverse, such as an anti-technology backlash.
Under postmodernism the vacuum would not be seen as
such, rather the space created would provide room for the
previously unheard to be heard. For software developers
who thrive on certainty, predictability and control, the
concept of variable values, locally negotiated, may seem
particularly challenging. How does anything get done? How
do we know if it’s right? If there are no generic laws laid
down will we not be in danger of re-inventing the wheel,
creating local systems that cannot communicate beyond their
local network or creating limited systems, baroque in their
narrow application domains, but not reusable?

However, we have already fallen prey to each of these
possibilities: many projects fail to get enough done to be
successful; the complexity of current systems ensures that
total formal predictive proof that the system is correct is
impossible; squabbles over the best way of doing things
(languages, tools, methods, etc.) and the competitiveness
encouraged in our society facilitates both the re-invention
of the wheel and the creation of systems that do not talk to
each other. As for limited systems, whilst some application
domains are similar and respond well to generic packages,
very many are locally varied. To be really useful many
off-the-shelf packages have to be customized. Software
development is part of a richly varied social world and as
such, if it is to respond to that world, we need to accept
locally produced variety in software.

Harding [54] uses the term local knowledge systems
(LKS) to describe locally produced sets of beliefs, practices
and resultant artefacts. For her work this facilitates a
symmetry of analysis in studying Western and non-Western
science. We feel that it is a useful concept to adopt
in software development such that we can identify, for
example, users and developers as having two distinct LKS
that need to be combined to produce one artefact. Mobilizing
this concept to inculcate symmetry enables us to break
the positive/negative attributions of divides such as the
social/technical.

Another, more explicitly postmodern, strategy we can
use is to recognize our own hybridity. This enables us to
avoid identifying too strongly with any dominant narrative
or group. Multiple narratives will not remain stable, but will
change and cross-fertilize. This phenomenon has been noted

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

374 H. ROBINSON et al.

in studies of postcolonialism (for example, [55]). This is a
very positive outcome of conflicting narratives, Ashcroftet
al. noting ‘hybridity and the power it releases’ [55, p. 207].
Bhabha [56] writes of hybridity as a ‘third space’ where ‘we
may elude the politics of polarity and emerge as the others
of ourselves’. To allow other narratives, to listen to other
voices, to distribute power, creates space both for innovation
and for responsive technology. It also allows a shared
responsibility that can exploit the benefits of difference,
instead of requiring that responsibility be held in specific,
standardized ways, by specific standardized individuals.

The crucial issue here is one of communication. Good
communication and collaboration can only occur when all
inputs are deemed equally valid, when all perspectives on a
situation are encouraged and this, it is argued here, is only
possible when assumed values are deconstructed, multiple
narratives are heard and development becomes a multi-
partnered enterprise where the partners are open to the
hybridization of themselves. The deconstruction undermines
the rigidity of thinking that currently characterizes software
development, seeing vitality, rather than chaos, in doubt. It
encourages a greater fluidity of thinking through claiming
that rules, values and perspectives are all negotiable and
that which is currently regarded as irrelevant may in fact be
crucial. The energy of doubt and the fluidity of negotiation
also create space for innovation. The views expressed here
are that the postmodern ethos can offer some emancipation
to the process of software development. In questioning the
accepted rules and values and, crucially, not offering any
others in their place, software development has to become a
more locally negotiated phenomenon. The rules you follow
are the ones that are suggested by the situation at hand. This
requires a holistic picture of local constraints and resources,
enabling a more responsive technology to be developed.

Conceiving such a future implies a change to the way
in which software developers are educated and to current
conceptions of what might constitute a software engineering
curriculum. We modestly suggest a place in that education
and curriculum for a consideration of the epistemological
and socio-historic ideas that we have sketched above, for—
as we have argued—they are the very stuff of software
development.

REFERENCES

[1] Nauer, P. and Randell, B. (eds) (1969)Software Engineer-
ing—Report on a Conference Sponsored by the NATO Science
Committee. Scientific Affairs Division, NATO, Brussels.

[2] Brooks, F. P. (1975)The Mythical Man-Month. Addison-
Wesley, Reading, MA.

[3] Brooks, F. P. (1986) No silver bullet—essence and accidents
of software engineering. In Kugler, H.-J. (ed.),Information
Processing 86, pp. 1069–1076, North-Holland, Oxford.

[4] Cox, B. J. (1990) There is a silver bullet.Byte, 15, 209–218.

[5] Gibbs, W. W. (1994) Software’s chronic crisis.Scientific
American, 271, September, 72–81.

[6] Glass, R. L. (1994) The software-research crisis.IEEE
Software, 11, November, 42–47.

[7] Jencks, C. (1992) The post-modern agenda. In Jencks, C.
(ed.),The Post-Modern Reader. Academy Editions, London.

[8] Habermas, J. (1992) Modernity: an unfinished project.
In Jencks, C. (ed.),The Post-Modern Reader. Academy
Editions, London.

[9] Galileo, G. (1632)Dialogue Concerning the Two Chief World
Systems—Ptolemaic & Copernican. University of California
Press, Berkeley and Los Angeles, 1967.

[10] Hamilton, P. (1992) The enlightenment and the birth of social
science. In Hall, S. and Gieben, B. (eds),Formations of
Modernity. Polity Press, Cambridge.

[11] Smart, B. (1990) Modernity, postmodernity and the present.
In B. S. Turner (ed.),Theories of Modernity and Postmoder-
nity. Sage, London.

[12] Wittgenstein, L. (1961)Tractatus Logico-Philosophicus.
Routledge and Kegan Paul, London.

[13] Lyotard, J.-F. (1984)The Postmodern Condition: a Report on
Knowledge. University of Minneapolis Press, Minneapolis.

[14] Murray, R. (1992) Fordism and post-Fordism. In Jencks, C.
(ed.),The Post-Modern Reader. Academy Editions, London.

[15] Hoare, C. A. R. (1984) Programming: sorcery or science?
IEEE Software, 1, April, 5–16.

[16] Robinson, H. M. (1988) Reading formalities: the influence of
logical atomism.Proc. ISTIP ’88, 28–30 March, Sunningdale.

[17] Maddison, R. N. and Stanczyk, S. K. (1988) Time in
information systems and its impact on modelling processes
and data.Inform. Software Technol., 30, 12–22.

[18] Vermeir, D. (1983) Semantic hierarchies and abstractions in
conceptual schema.Inform. Syst., 8, 117–124.

[19] Steel, T. B. (1985) A minimal conceptual schema for life, the
universe and everything. In Steel, T. B. and Meersman, R.
(eds), Proc. IFIP WG 2.6 Working Conf. on Database
Semantics, 7–11 January, Hasselt, Belgium. North-Holland.

[20] Lehman, M. M. (1989) Uncertainty in computer applications
and its control through the engineering of software.Software
Maintenance: Research and Practice, 1, 3–27.

[21] Low, J., Johnson, J., Hall, P., Hovenden, F., Rachel, J.,
Robinson, H. and Woolgar, S. (1996) Read this and
change the way you feel about software engineering.Inform.
Software Technol., 38, 77–87.

[22] Peltu, M. (1995) Safety in numbers.Computing, 12 January,
p. 34.

[23] MacKenzie, D. (1993) Negotiating arithmetic, constructing
proof: the sociology of mathematics and information
technology.Social Studies Sci., 23, 37–65.

[24] DeMillo, R., Lipton, R. and Perlis, A. (1979) Social processes
and proofs of theorems and programs.Commun. ACM, 22,
271–280.

[25] Collins, H. M. and Pinch, T. J. (1993)The Golem: What
Everyone Should Know About Science. Cambridge University
Press, Cambridge.

[26] Fetzer, J. H. (1988) Program verification: the very idea.
Commun. ACM, 31, 1048–1063.

[27] Leith, P. (1986) Fundamental errors in legal logic program-
ming.Comput. J., 29, 545–552.

[28] Leveson, N. G. (1995)Safeware, System Safety and
Computers. Addison-Wesley, Reading, MA.

[29] Leveson, N. G. and Turner, C. S. (1993) An investigation of
the Therac-25 accidents.IEEE Comput., 26, 18–41.

[30] Huyssen, A. (1992) Mapping the post-modern. In Jencks, C.
(ed.),The Post-Modern Reader. Academy Editions, London.

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

POSTMODERNSOFTWARE DEVELOPMENT 375

[31] Hassan, I. (1992) Pluralism in postmodern perspective.
In Jencks, C. (ed.),The Post-Modern Reader. Academy
Editions, London.

[32] Jameson, F. (1983) Postmodernism and consumer society. In
Foster, H. (ed.),Postmodern Culture. Pluto Press, London.

[33] Bauman, Z. (1995) Savoir: the cul-de-sac of pouvoir. InThe
Times Higher Education Supplement, 12 May.

[34] Floyd, C., Züllinghoven, H., Budde, R. and Keil-Slawik,
R. (1992)Software Development and Reality Construction.
Springer-Verlag, Berlin.

[35] Bjerknes, G., Ehn, P. and Kyng, M. (1987)Computers and
Democracy—a Scandinavian Challenge. Avebury, Aldershot.

[36] Checkland, P. (1981)Systems Thinking, Systems Practice.
Wiley, Chichester.

[37] Symons, V. J. (1991) Impacts of information systems: four
perspectives.Inform. Software Technol., 33, 181–190.

[38] Hirschheim, R. and Klein, H. (1989) Four paradigms of
information systems development.Commun. ACM, 32, 1199–
1216.

[39] Ashworth, C. and Goodland, M. (1990)SSADM: A Practical
Approach. McGraw-Hill, London.

[40] Latour, B. and Woolgar, S. (1986)Laboratory Life:
The Construction of Scientific Facts(2nd edn). Princeton
University Press, Princeton, NJ.

[41] Harding, S. (1991)Whose Science? Whose Knowledge?
Open University Press, Milton Keynes.

[42] Baudrillard, J. (1995)The Gulf War Did Not Take Place.
Indiana University Press, Bloomington, IN.

[43] Nuseibeh, B., Finkelstein, A. and Kramer, J. (1996) Method
engineering for multi-perspective software development.
Inform. Software Technol., 38, 267–274.

[44] Mullery, G. (1979) CORE—a method for controlled re-
quirements specification.Proc. 4th. Int. Conf. on Software

Engineering, Munich, pp. 126–135. IEE.
[45] Curtis, B., Krasner, H., Shen, V. and Iscoe, N. (1987) On

building software process models under the lamppost.Proc.
9th Int. Conf. on Software Engineering, March, Monterey,
CA, pp. 96–103. IEEE Computer Society.

[46] Sommerville, I. (1992)Software Engineering(4th edn).
Addison-Wesley, Wokingham.

[47] Woolgar, S. (1991) Configuring the user: the case of usability
trials. In Law, J. (ed.),A Sociology of Monsters: Essays on
Power, Technology and Domination. Routledge, London.

[48] Jencks, C. (1993)Architecture Today. Academy Editions,
London.

[49] Collins, J. (1992) Post-modernism as culmination. In Jencks,
C. (ed.), The Post-Modern Reader. Academy Editions,
London.

[50] Mumford, E. (1983)Designing Human Systems For New
Technology: the ETHICS Method. Manchester Business
School Press, Manchester.

[51] Clement, A. and Van den Besselaar, P. (1993) A retrospective
look at PD projects.Commun. ACM, 36, 6, 29–37.

[52] Giddens, A. (1990)The Consequences of Modernity. Polity
Press, Cambridge.

[53] Rimington, J. D. (1993) Coping with technological risk: a
21st century problem.The CSE Lecture, The Royal Academy
of Engineering, 22 November.

[54] Harding, S. (1998)Is Science Multicultural: Postcolo-
nialisms, Feminisms, and Epistemologies (Race, Gender, and
Science). Indiana University Press, Bloomington, IN.

[55] Ashcroft, W., Griffiths, G. and Tiffin, H. (eds) (1995)The
Post-colonial Studies Reader. Routledge, London.

[56] Bhabha, H. (1988) The commitment to theory.New
Formations, 5, 5–23; reprinted in [55] as Chapter 35, Cultural
diversity and cultural differences, pp. 206–209.

THE COMPUTER JOURNAL, Vol. 41, No. 6, 1998

