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Abstract

Computing systems are becoming increasingly mobile, with users interacting
with many networked devices, both �xed and portable, over the course of a
day. This has lead to the emergence of a new paradigm of computing, the
context-aware system. A user's context can be described as their relationship
to computing devices, colleagues and the surrounding physical environment.
Applications using such a system are made aware of changes in the physical
and computing environment, and adjust themselves accordingly. For example,
with knowledge of the locations of people and equipment, a suitable nearby
display can be determined to deliver a message to a mobile user.

Context-aware systems are currently ad-hoc in nature, typically developed
around a particular technology and oriented towards supporting a particular
type of application. Current location systems are similarly ad-hoc with no no-
tion of abstraction above a particular locating technology. Furthermore, little
analysis has been conducted into the application requirements of a location sys-
tem. This general lack of systems design makes current approaches di�cult to
extend and generalise.

This thesis proposes a systems architecture for the support of context-aware
applications. It is asserted that such an architecture requires three main areas
of capability. Firstly, a context-aware system needs to monitor the physical
environment and make this information available in a uniform way. Secondly,
location information requires higher-level management together with a repre-
sentation of static parts of the physical domain. Further, support is required
to enable complex, asynchronous monitoring of spatial areas. Thirdly, applica-
tion support is required to access distributed sensor and location services, so
facilitating the simple speci�cation of context-aware scenarios.
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Chapter 1

Introduction

Computing systems are becoming increasingly mobile, facilitated by advances
in wireless networking, battery technology, the emergence of low-powered and
low-cost portable devices, wider deployment of standard communications tech-
nology and changes in user working patterns. During the course of a day mo-
bile users may interact with many di�erent mobile and stationary computers in
many di�erent locations and situations. Interaction with computers is no longer
restricted to a set of desk-bound devices. A new set of hardware types have
emerged, such as networked multimedia peripherals, low-cost high-resolution
displays able to be deployed anywhere on a network, and voice-controlled de-
vices. Conventional o�ce based systems such as telephony and environmental
control systems are increasingly being integrated into computing infrastruc-
tures.

Due to these developments, a new paradigm of computing interaction has
emerged: this is termed context-aware. A context-aware system is one in which
applications have knowledge of their surrounding physical and computing envi-
ronment. This environment is composed of people, mobile and �xed computing
devices, and such things as doors, walls, desks and chairs.

This thesis proposes an architecture for supporting context-aware applications
within a typical indoor environment such as an o�ce or home. This architecture
is called CALAIS, a Context And Location Aware Information Service.

1.1 Context-Awareness

Examples of context include the group of people a user is currently with, the
types of equipment and communications technology available, and a user's phys-
ical location. For example, a mobile user may wish e-mail to be delivered au-
tomatically at the earliest possible opportunity, removing the need to return
periodically to the personal desk-top to check for new mail. As the user moves,
a context-aware e-mail delivery application needs to know the identity of equip-
ment near the user and its suitability for delivering e-mail. Once an unused and
suitable item of equipment is nearby, the user can be alerted and the e-mail

1
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delivered. Another example is that of a user attempting to contact a colleague.
A suitable context-aware application may determine that the colleague is in a
meeting, implied by the fact that other users are present in the same room. The
contact attempt may therefore be postponed until the colleague is alone. Once
alone, the application may then determine whether video-phone equipment is
deployed and unused near the colleague. If not the telephone may be used as
an alternative communication device.

Context-awareness leads to:

� Automation

For example the automatic logging in of users to computer systems, and
the redirection of telephone calls. Interaction with computing devices is
simpli�ed and made more casual.

� Adaption

An application may alter its behaviour depending upon the types of equip-
ment available and the status of a user's surrounding environment.

� Personalisation

Users may specify the behaviour of an application within certain contexts.
Ideally a user's personalised computing environment should be available
wherever the user may be.

Context-awareness is a user-centric view of computing. The computing sys-
tem dynamically and non-intrusively adapts itself to a user's circumstances,
reducing the focus on individual computing devices. By the application of
context-awareness a single device can exhibit di�erent semantics in di�erent
contexts. This enables the interactive complexity of a device to be reduced,
in turn reducing its physical size and power consumption. Context provides a
powerful tool to prime users and equipment prior to interaction.

1.2 Location Information

Knowledge of the location of users and equipment is a prerequisite for the sup-
port of context-aware applications. Locating physical objects is itself a distinct
research area which involves the development of location hardware devices, soft-
ware storage structures, and mechanisms to enable location-based querying.

Location devices may give a location directly, such as in the case of Global
Positioning System (GPS) receivers. A location device can also take the form
of a tag, attached to a user or device which periodically communicates with a
�xed receiver infrastructure. With knowledge of the positions of receivers, the
location of the tagged object can be determined. Location may also be inferred
by using, for example, electronic access-cards, or by monitoring the interactive
use of equipment where the location of this equipment is already known. As
far as the user is concerned, the gathering of location information should be as
non-invasive as possible.
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Location information used in isolation is of only partial use. It may be used
together with information about the domain in which it is gathered to enable its
graphical visualisation or its presentation in a human readable form, for example
\the surgeon is located in the operating theatre". Of particular relevance to
context-aware applications is knowledge of the physical objects in the immediate
vicinity of a target object, such as a person. Many applications are not interested
in the absolute location of an object, but only its relative location to those
objects nearby. This is termed co-location.

A mobile location device can not only give a location, but may also provide
authenti�cation of the identity of a user or device. Users conventionally au-
thenticate themselves using a user-name and password. With authenti�cation
provided by location devices interaction can be enabled without user inter-
vention and can thus be more casual, an important requirement for a mobile
system.

1.3 Environmental Awareness

Location is only one example of environmental sensing. Many other aspects of
a typical domain can also be monitored. Some examples are:

Networked device use: the interactive use of a mobile or �xed computing device
such as a workstation or telephone.

Cameras: by examining video from cameras, movement can be sensed.

Doors: it can be determined whether doors are open or closed.

Light and heat levels: within each room, light and heat levels can be sensed.

The gathering of this information enables additional context to be derived from
the environment. Many of the above will be sensed using hardware devices,
some using software. Some context-aware applications will need to augment
this sensory information with other, persistent information, perhaps stored in a
database. For example, in order to determine whether a particular device can
accept a video-phone session, the capabilities of equipment need to be known.

Applications may use this sensed information is a variety of ways. Some exam-
ples are:

� Workstation usage: if a workstation is already being used interactively,
another nearby workstation is chosen automatically to enable the presen-
tation of an application.

� Telephone status: an attempt at contacting a person by telephone is de-
layed until the telephone handset nearest to the person is replaced.

� Avoiding disturbance: a visit to an o�ce is postponed because the occu-
pant is using a video-phone.
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� Light level: lights are turned on when the ambient light level is not su�-
ciently high.

1.4 Target Environment

In order to develop and evaluate the CALAIS architecture a speci�c indoor
target environment is considered. This will provide requirements for aspects of
the system and provide a test-bed for implementation.

The main target environment considered is that of the Olivetti and Oracle
Research Laboratory (ORL) in Cambridge. To a lesser extent parts of the Uni-
versity of Cambridge Computer Laboratory are also considered. Both these do-
mains consist of a number of oors, corridors, o�ces and meeting rooms. Both
have a rich computing environment and are already equipped with a number of
technologies suitable for the construction of a context-aware environment.

1.5 Research Aims

The research resulting in CALAIS will focus on the following main areas:

� Sensing technologies

A set of suitable sensor technologies are considered which will enable
location and contextual information to be gathered from the target envi-
ronment.

� Data delivery

Sensor systems produce widely varying types of information. General
mechanisms are considered which aim to abstract sensor hardware and
software. This will allow the delivery of sensor information within a dis-
tributed system and ensure simple addition of future sensor devices.

� Location information management

Location devices are considered, together with a canonical representation
of a location. Requirements for the management of this information,
and application query interfaces are examined. Furthermore, methods of
representing the static environment, consisting of such things as walls and
doors, are considered.

� Application support

Many context-aware applications will require information from multiple,
distributed sensor systems and other resources. Consideration is given to
methods of reducing in complexity the building of such applications.
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1.6 Dissertation Outline

Chapter 2 reviews previous research into location and context-aware systems.
This encompasses location sensing technologies, current approaches to the sup-
port of mobile applications, active database systems, methods of location man-
agement and asynchronous event systems.

Chapter 3 presents a critique of this related work and determines the require-
ments the CALAIS should ful�ll.

Chapter 4 presents a method of abstracting sensor system technologies based
upon an event paradigm. A set of deployed and prototype sensing technologies
suitable for the monitoring of a dynamic environment are presented. These
technologies provide the experimental data used in this thesis.

Chapter 5 proposes a method for building sensor driven services within a dis-
tributed environment. Further consideration is given to the event paradigm
and an approach to building services using this model. Database support for
persistent information is presented and pertinent issues relating to a distributed
environment considered.

The design and implementation of a location data management system is pre-
sented in chapters 6 and 7. Issues considered include the integration of multiple
location devices, ways of representing the location and orientation of phys-
ical objects, application query interfaces and performance requirements. A
lightweight system is presented which aims to implement the requirements iden-
ti�ed. An approach to the representation of the static spatial domain, such as
rooms and doors is also considered. The functional capabilities and performance
of this system are then evaluated in chapter 8.

Chapter 9 describes an approach to the creation of complex context-aware ap-
plications using multiple sources of sensor information. A set of implemented
examples is described which aim to justify this approach.

Finally, chapter 10 presents a summary of this research and indicates areas of
possible future work.
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Chapter 2

Related Work

This chapter presents an critical overview of previous work pertinent to this
thesis. Shortfalls in this work are collated in chapter 3 which then identi�es a
set of requirements for CALAIS.

2.1 Location Technologies

A context-aware environment requires knowledge of the locations of people and
equipment. This section presents a review of some relevant technologies.

2.1.1 Active Badges

ORL have made a signi�cant contribution to the area of location aware systems
through the development of the Active Badge[WHFG92, HH94]. Active Badges
are worn about the person and communicate a unique identi�er approximately
every 10 seconds using an infra-red transmission. Infra-red does not penetrate
solid surfaces such as walls. Sensors placed at �xed positions within a building
receive these infra-red signals and through software make the sightings available
to services and applications.

Active Badges have a range of approximately �ve metres. Therefore one sensor
per room is usually su�cient, resulting in the Active Badge system giving room-
scale location. In large or irregularly shaped rooms the number of sensors can
be increased to ensure full coverage. In these cases the granularity of location
is potentially smaller than a room but is usually interpreted at the room-level.

Such room-scale location has proved to be very useful in working environments
where cooperation with colleagues is necessary. One popular application dis-
plays a view of this data indicating the room a person is currently in and the
person's nearest telephone extension. Such information provides not only meth-
ods of contact such as which o�ce to walk to or which extension to telephone,
but also gives hints about the person's present activity. For example, if a per-
son is alone in an o�ce a user may feel it is convenient to contact them. If,

7
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however, other people are also in that o�ce, contact may be delayed until the
person is alone.

Active Badges are also equipped with two buttons which, when pressed, im-
mediately transmit an infra-red signal which additionally contains information
indicating which button was pressed. This facility allows the badge to be used
as a simple input device.

A variation of the Active Badge, the equipment badge, has also been designed
to attach to items of equipment. It is assumed that equipment is less mobile
than people and therefore these badges transmit approximately once every 10
minutes, extending battery life to around �ve years and therefore reducing
system maintenance.

A number of Active Badge applications have been developed. The Active

Map[War95] annotates graphical oor plans of ORL with Active Badge infor-
mation from people and equipment. The topology of the o�ce environment and
location information has also been used to determine the nearest printer to a
speci�ed user. In addition, badges have been used as an authenti�cation device
to allow admittance to parts of a building and a car park. Another example
of an application controllable with an Active Badge will be described in more
detail in section 2.6.1.

Active Badges have been successfully deployed within a number of academic
and industrial laboratories. Their small size makes them convenient to wear
and to attach to devices. The main drawback is that only room-scale location
is possible.

2.1.2 Electromagnetic Tracking

Electromagnetic tracking systems such as those produced by Ascension
Technology[ATC97] are capable of resolving the location and orientation of a
tracked object with very high spatial and temporal resolution. Magnetic �elds
are emitted by a single transmitter to track the position and orientation of a
number of sensors. A location error of 1 millimetre is typical within an area of
approximately four metres and up to 120 sightings per second can be obtained.

This type of technology is commonly used in the computer animation industry,
where the movement of human subjects is determined by the attachment of
such devices to various parts of the body. These systems are expensive and
only operate within a constrained area of a few metres and are therefore not
suitable for wide-scale deployment.

2.1.3 Optoelectronic Tracking

A system described in [Azu93] uses optical sensors built into a head mounted
unit. These sensors are sensitive to infra-red beacons built into a room's ceil-
ing. With knowledge of the positions of these beacons and which beacons are
currently in view, the location and orientation of the user's head can be deter-
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mined. The system is highly accurate, resolving locations within millimetres
and orientation to within a fraction of a degree. However the system is costly
to deploy and the head mounted unit large and unwieldy. It is not designed for
wide-scale deployment or for tagging equipment.

2.1.4 GPS

Global Positioning System (GPS)[AL94] receivers use highly accurate time sig-
nals, transmitted by a number of satellites, to determine their position to within
a few metres. By additionally using Doppler e�ects, the instantaneous velocity
of the receiver can also be determined. However GPS transmissions are blocked
by buildings and therefore cannot be used indoors.

2.2 Location Information Management

To deliver information from location devices to applications and to enable the
maximum bene�t to be gained from its gathering, software storage structures
are considered necessary to provide higher-level management. Some of the
work presented below has been directed towards context-aware system support,
whilst other work considers more general hierarchical structures for use within
wider-scale cellular systems.

2.2.1 Dataman

The Dataman project[IB94] at Rutgers University has investigated various as-
pects of mobile computing, and in particular data management issues arising
in mobile, wireless environments. It is asserted that the mobility of users and
services and its impact upon data replication and migration will be one of the
main technical problems to be resolved. Although much of the work relates
to data management within a wide-area cellular network, some of the issues
that are explored are pertinent to context-aware systems. One of these relates
to scaling, and the interest of remote clients in a domain's location data. A
hierarchy of location servers is described, reproduced here in �gure 2.1.

Users are assumed to be highly mobile and to move regularly between location
server domains. It is suggested that each user will be permanently registered
under one of the location servers. This will be known as their home server.
Location updates will be propagated to the home server which will hold the
authoritative database of locations. A client wishing to contact a user will
always start by contacting their home server to �nd their current location.

Separately in [IB92] a strategy is described for the querying of data with a spa-
tial constraint. It is assumed that the cost of providing a database with up-to-
date knowledge is too high and thus a database will have imprecise knowledge.
Therefore queries which do not necessarily need the most up-to-date knowledge
are satis�ed, whereas in the case of queries which require greater accuracy,
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Base station

Mobile object

Wireless link

Location server

Figure 2.1: Server Hierarchy

further demand paging of the user's home service is required.

This work su�ers from the reliance placed upon the home server. As every
change in the mobile user's location is propagated to the home server and
some types of query also rely on the home server, reliability of this server as
well as the network connections to it is essential. If either the server or network
connection fails, the location of the mobile which it supports will be temporarily
unavailable.

In a later Dataman paper, Welling[WB97] recognises the need for applications
to be made aware of changes in the networked computing environment, such
as the connection of a hardware component or the running down of a battery.
An architecture is proposed which allows applications to be noti�ed of such
environmental changes. To illustrate the bene�ts of such a system the Pinemail-
reader was modi�ed. This version of Pine is intended to run on laptops which
have a cellular modem link in addition to the ability to connect to a tethered
network. The system produces an event when the computer is connected or
disconnected from the tethered network. Pine receives this event and changes
its mail dispatch behaviour by batching mail messages when untethered and
sending messages immediately when tethered. This illustrates an application
reacting to a change in context.

2.2.2 Hierarchical Location Management

Krishna et al[KVP94] also describe a hierarchical system for location informa-
tion management. A hierarchical tree based scheme is used, similar to that used
in Dataman. Leaf nodes represent base stations and internal nodes represent
location servers. In Krishna's scheme each location server maintains informa-
tion regarding mobile hosts residing in the subtree beneath it. Updates and
searches are supported. Each location server keeps a table of 3-tuples. These
consist of:

� A mobile host identi�er. This is unique and also provides the address of
the host's home location.
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� A forwarding pointer. This identi�es which location server the host has
moved to.

� A time-stamp. The time the last forwarding took place.

Base stations maintain a similar structure for each host contained within its
cell. By using these forwarding pointers various update strategies can be used,
varying in expense and e�cacy. Periodically the forwarding pointers are col-
lapsed and a single pointer created. Searching is conducted by progressively
moving up the tree until a location server is found which contains a record for
the required host.

Host behaviour, expressed in terms of communication frequency and mobility,
is not normally known to the designer of a location server hierarchy. Thus a
set of dynamic extensions are made to the model which assume that the past
history of the system will reect future behaviour. The basic idea is to alter the
search and update strategies based upon the mobility pro�le of the host. Such
an approach is shown to lead to a more e�cient model and implementation.

2.2.3 A Location Service Design

Leonhardt[Leo95] states that the provision of location information is an impor-
tant resource for mobile systems. A system providing such information must
minimally provide facilities to:

� �nd the location of an object;

� �nd all the objects at a given location.

Leonhardt goes on to describe a hierarchical model consisting of location do-
mains containing a set of overlapping location zones which in turn contain a set
of cells. The size of these cells determines the granularity of the location sys-
tem. It is asserted that such an architecture allows the integration of multiple
sources of location information. Location domains are themselves arranged in
a hierarchy to allow hand-over and roaming.

Although this architecture appears promising, little detail is provided and the
implementation is undeveloped. Evaluation of this work's worth is therefore
di�cult.

2.2.4 Integration of Location Hints

Rizzo et al[RLU94] comment that di�erent location systems such as the Active
Badge, system login information and personal location diaries are normally
used in isolation. A location system is proposed which attempts to combine
information from as many sources as possible, forming a master location system

(MLS), controlling a set of slave systems.
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Two main issues are identi�ed relating to how information from di�erent sources
should be combined:

� Uncertainty. Any location system will necessarily give uncertain output,
largely due to the fact that sightings are reported in a discrete, not a
continuous manner. Active Badges transmit every 10 seconds and their
transmissions can be obscured, for example, by clothing. If the last sight-
ing reported is 1 second ago, this is assumed more valuable than a sighting
30 seconds ago, by which time the user may have left the room. A con�-
dence value is associated with each reported location. This depends upon
the reliability of the technology involved and the habits of the user.

� Corroboration and conict. Two slave location systems may return the
same, or a di�erent location for the same user. Con�dence values are used
by the MLS to resolve these potential conicts. Suggestions are made for
a corroboration function, although it is unclear how these would work in
practice.

The model requires the correspondence between di�erent location systems to
be made explicit, for example that a particular workstation is contained in a
particular room. These relationships are encoded allowing the MLS to correctly
resolve sightings from various location servers.

2.2.5 Active Maps

Schilit describes the active map server (AMS)[ST94] which publishes the po-
sitions of tracked physical objects. Each AMS supports a set of spatial con-
tainers arranged in a hierarchy. This hierarchy might represent a building and
the rooms contained within it. Schilit suggests that each AMS should serve a
well-de�ned geographic area, such as a building, thereby taking advantage of
user `locality of reference'. User movements will be common within an AMS
domain and less common between domains.

Location is supported in terms of containment, provided by Active Badges and
cell-based radio, both which provide room-scale location. Distance between
containers is supported by the construction of a graph enabling the shortest
path algorithm to be applied. The distance between two physical objects in
di�erent containers can then be approximately determined. Applications can
subscribe to an AMS and receive noti�cation when objects of a particular type
move. A one-o� query interface is available to execute a container based query.

The nature of the AMS allows the objects in any container within its hierar-
chy to be determined. However no discussion is presented of software storage
structures which will allow such queries to be executed e�ciently. Also, no
indications are made of the performance of the system and how many objects
can be supported. Finally, no provision is made for the support of �ne-grain
location information.
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2.2.6 GIS

A Geographic Information System (GIS)[Wor95] is an information system en-
abling the representation, analysis and visualisation of geographically referenced
data. A GIS works with large scale spatial areas, such as a city or country. It
allows the representation of geographic entities such as terrain contours, rivers,
forests, roads and houses. Analysis can then be conducted using this informa-
tion. Examples of queries are:

� Find the shortest road route between towns A and B.

� Find all locations on a sand deposit and within 500 metres of a major
road.

� Find regions of forest felled in the last �ve years.

The last example involves a temporal aspect and requires the GIS to time-
stamp information and be able to execute temporal queries. This recognises
that geographical information is not static but changes regularly.

A GIS will typically use a database management system at its core. This system
may be general purpose, for example Postgres[vOV91], or more specialised, for
example Smallworld[The96]. The system used must support spatial types to
represent geographic entities and methods of indexing these spatial types so
allowing fast access to the data held.

Although both deal with spatially referenced data, a GIS di�ers in a number
of ways from a location management system suitable for use within a mobile
environment. One major di�erence is that data stored within a GIS typically
has a long lifetime, perhaps only changing over a period of years. Secondly,
although fast querying facilities are desirable for interactive use, it is not nec-
essary that a GIS responds in real-time, as opposed to a mobile system where
real-time noti�cation of location changes is essential.

2.3 Environmental Sensing

The gathering of location information is an important example of environmental
sensing. This section describes some approaches to monitoring other aspects of
the physical environment.

2.3.1 The Interactive O�ce

The aim of the interactive o�ce[HL94] is to provide information about a user's
context by the use of a range of sensors embedded within the physical environ-
ment. The primary motivation cited is to prevent unwelcome interruptions, for
example, a telephone call or a knock at an o�ce door when in a meeting. By
publishing information about a user's context it is envisaged colleagues will be
able to interact with each other more sensitively.
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Prototype hardware enables the system to detect whether doors are closed,
whether chairs are in use, the sound level in a room, movement through door-
ways and �ne grain movement around, for example, a desk.

This information is gathered and evaluated in software using a rule-based sys-
tem which enables pre-de�ned actions to be triggered. An example application
area is telephone system control. If, for example, a meeting is taking place in a
particular o�ce and a call is put through to that o�ce, the telephone only rings
once although the connection persists until the caller terminates it. The occu-
pants are thus alerted with the minimum of disruption and can either answer
the call or ignore it.

2.3.2 Monitoring Computer Use

With knowledge of a computer's location and the identity of the user of that
computer, the location of the user can be estimated. In [ST93] and [Leo95]
a set of networked Unix workstations are monitored using the rusers daemon,
which publishes the user-ids of the people currently logged-in to a machine. It
is unclear however how applications may gain access to this information, nor
how this information may be used.

2.3.3 An Application Interface

Schilit[Sch95] tackles the problem of communicating changes in the software
and physical environment to Unix applications. Consider a Unix shell. De�ned
within the shell are a set of environment variables, containing information such
as the name of a default printer. These variables are typically de�ned once, and
their values persist until the shell terminates. Applications invoked by the shell
will also use these variables, often reading their values on startup. A `printer'
variable, for example, will normally hold the name of the nearest printer and
have its value set at application invocation. If an application and user are
mobile and move location, the value of the printer variable will no longer be
appropriate.

A dynamic environment server manages a set of objects, similar to traditional
environment variables. An application can register an interest in changes to a
managed object. When the object's value changes the application is informed.
A system may employ any number of environment servers which will publish
information from sensors and other data sources. Applications can therefore
re-con�gure themselves dynamically as the system resources in their vicinity
change.

2.3.4 SPIRIT

The SPIRIT (SPatially Indexed Resource Identi�cation and Tracking)[ASH97]
project at ORL aims to build an authoritative resource database holding in-
formation about many aspects of the networked computing environment. The
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database represents entities such as workstations, Active Badges, telephones,
people and network peripherals. Most entities have both static and dynamic in-
formation associated with them. Static information, such as a name, will change
infrequently, whereas dynamic information, such as the location of an Active
Badge, will change often. The information associated with a workstation, for
example, includes processor type and speed, the type of network interface, spare
disk capacity and CPU load.

Clients of the SPIRIT database may include a load balancer requesting CPU
load information, a visualisation application querying Active Badge information
and a system administrator requesting a list of equipment of a particular type.

An Oracle V7 database management system is used as the primary data store.
This provides facilities such as backup and recovery mechanisms, query optimi-
sation and indexing. A declarative language allows the production of a database
schema and a remote procedure call interface. The latter allows an application
to use the SPIRIT system without having knowledge of SQL.

A critisism of the SPIRIT project is its reliance on a centralised DBMS. Al-
though the information sources are distributed over a local area network, all
information is propagated to the central database. This leads to scalability
problems when the amount of monitoring or the number of applications using
the system increases. Also, a heavyweight DBMS is not necessarily the most
suitable technology for handling rapidly changing data, due to the overheads
necessary in ensuring the consistency and durability of each update.

2.4 Ubiquitous Computing

Ubiquitous computing is a paradigm �rst described by Weiser[Wei93]. The mo-
tivating critique is that current computing systems are computer-centric, that
the computer itself becomes the focus of work, rather than simply a tool to aid
work. The goal in ubiquitous computing is to augment the everyday environ-
ment with computers that will integrate seamlessly with a person's habits and
work patterns. Weiser considers that ubiquitous computing is the opposite of
virtual reality in that in does not attempt to replace the normal world, but
rather to integrate with it.

An initial prototype system is described, consisting of three types of computing
device: tabs, pads, and boards. A tab can be compared to a Post-it note. It
can be held in the palm of the hand and consists of a small pressure sensitive
screen and an infra-red transceiver. Pads are larger, are controlled with a pen
and have a 64Kbit s�1 wireless link. Boards mount on walls and connect to a
wired network. A board can can be considered the electronic equivalent of a
whiteboard.

An example of an application using these devices[EHC+93] explores a ubiq-
uitous computing approach to energy management and environmental control
within the PARC lab. A tab can, using infra-red information, discover which
room it is currently in. A person can then use the tab to change various envi-
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ronmental settings within that room, such as temperature, humidity and light
levels.

2.5 Augmented Reality

Within an augmented reality environment the user is typically equipped with
one or more devices, possibly worn about the person. An example is a head-
mounted display. The user moves within the real world and virtual reality
techniques are used to augment the user's conventional view with additional
context-aware information.

2.5.1 Knowledge Based Generation

Work by Feiner[FMS93] concentrates on knowledge-based generation of three-
dimensional virtual worlds that complement a user's view of the real world.
The system uses an illustration system in association with a see-through head-
mounted display. An example application task is that of printer maintenance.
The printer is equipped with sensors which inform the system about the printer's
physical state, for example whether the paper tray is open. This information
is then used to decide whether to project images of the printer onto the head-
mounted display. If the user is looking at the printer, and the printer tray is not
open, the system will project an image of the open paper-tray, thus indicating
its function and how to gain access.

2.5.2 Wearable Computing

Starner et al[SMR+97] describe wearable computers which use head-up displays
to overlay graphics, text and sound onto the wearer's normal view of the physical
world. In one example, the editor emacs is projected using the head-up display
so the image overlays the user's view of the real world. Pull-down menu options
are displayed as usual along the top. By mounting a video-camera on the user's
head which transmits its output by radio for remote processing, the user's �nger
is recognised and its position interpreted in the same way as the position of a
mouse pointer on a conventional display. The user can therefore select menu
options and carry out other mouse-oriented functions.

Another example describes a museum scenario. Again, the user wears a head-
up display and a camera. Physical markers encoding a unique binary pattern
are placed upon objects of interest. When a marker is recognised, the text,
graphics or video behind the hyper-link is projected onto the head-up display.

2.5.3 Situated Information Spaces

A variation on augmented reality are situated information spaces[Fit93], which
use hand-held rather than head-up displays. The idea is that a user equipped
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with a tracked palm-top computer will receive information based upon their
proximity to objects within the real world. For example a user may `browse'
the space near a fax machine. By browsing the in-tray, information about
received faxes will be displayed on the palm-top. Another example is that of
interaction with paper-based displays such as maps. The palm-top acts as a
window on to the map by displaying relevant information about the map area
the the palm-top is currently positioned near. A zoom control on the palm-top
allows access to more detailed information. Such a system could be used in
a library, where electronic information would help guide users to the written
publication they require. The tracking unit used is a 6D device, giving x, y,
z positional coordinates as well as the pitch, yaw and roll orientation of the
palm-top device. However this device can only work within a 1 metre cube,
thereby severely limiting its application.

2.6 Context-Aware Applications

2.6.1 Teleporting

Teleporting[BHR94] is a method of making an X-windows user interface mobile
by enabling it to relocate between displays. In conventional X systems, once an
X client application has started and initially connected to an X server, it cannot
break this connection and reconnect to another server. Relocation requires the
termination and restarting of an application.

Teleporting addresses this problem by providing a proxy X server which for
each user relays communication between clients and real servers. When dis-
play relocation is required, the proxy server manages the disconnection and
reconnection to real servers. Clients are unaware of this change. A teleport X
session can be materialised and de-materialised, to and from a display, using
simple commands.

Teleporting has proven valuable within the environment of ORL, where collab-
orative work is common. A familiar scenario is where a user visits a colleague's
o�ce to discuss a problem. The user may materialise their teleport session on
their colleague's display so enabling them to explain the problem more conve-
niently.

A teleport session can be controlled with the buttons of an Active Badge. A
press of the side button informs the proxy server that the user wishes to ma-
terialise their teleport session. By the use of equipment badges indicating the
location of equipment, the proxy server can �nd a list of nearby displays, which
then uses simple heuristics to select a display on which to materialise. Such
control illustrates well the importance of knowledge of co-located objects at a
user's location.

A recent derivative of teleporting is described by [WRB+97] and termed the
virtual network computer (VNC). The motivation for this work is to enhance the
power of teleporting by reducing the dependence upon access to an X equipped
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machine. Advantage is taken of the proliferation of the World Wide Web and
Java equipped browsers, so making the teleporting system globally available
using the Internet. A Java applet provides an interface to the user's proxy
server at their home domain, rendering X clients on the browser, and passing
on mouse and keyboard interaction to the proxy server.

2.6.2 Mobile Agents

Bacon et al[BBH97] describe a framework for building location-oriented mul-
timedia applications. In contrast to teleporting, where an application's user
interface moves, mobile agents use application code and execution state which
can move from one host to another. This di�ers from process migration systems
in that no operating system support is required, allowing system independence.
An interpreted language is used. Execution of this can be halted, its state saved,
and the code and state moved to another machine. Execution can then restart.
Location information, from Active Badges, is available. By monitoring the lo-
cation of a user, and also having knowledge of the equipment available nearby,
running applications can move in response to user mobility. Multimedia appli-
cations have provided a testbed for these techniques. A mobile agent manages
the application and when a user moves the agent reconnects the application to
new multimedia endpoints, such as cameras and displays.

2.6.3 Stick-e Documents

Brown[Bro96] describes a framework for creating context-aware applications.
A stick-e document is composed of a set of stick-e notes, each resembling a
page of HTML. Each stick-e note consists of content, and the context in which
it will be triggered. Consider a mobile user carrying a PDA equipped with
location sensing hardware. The user can place a stick-e note at a physical point
of interest. When the user returns to that position in the future, the stick-e
note will be triggered, the user being informed of this by the PDA. A stick-e
note can therefore act as the electronic equivalent of a Post-it note. Some other
examples of context that could trigger a stick-e note are given: the adjacency of
a person to other physical objects and when the temperature is below a certain
level.

The stick-e note approach o�ers a useful general mechanism for the creation
of context-aware applications. Further work appears to be required on system
aspects, that is the management of location information and the delivery of
contextual information to applications.

2.6.4 Memory Protheses

Lamming et al[LBC+94] contend that the execution of everyday tasks, such as
�nding �les, recalling events at a meeting and the remembering of appointments,
can be eased by the use of a set of applications they term memory protheses.
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Electronic organisers and personal digital assistants are critisised as being little
more than sophisticated notepads. A memory prothesis, on the other hand,
will be sensitive to a person's surroundings and actions, and will silently record
information about context enabling recall at a later time.

Pepys[NEL91] is a precursor of the memory protheses work. Pepys involves
recording the movements of people around the Xerox-EuroPARC laboratory
using Active Badges. By recording the time spent in a place and the people
also present, a movement diary can be built up. In use, such diaries prove useful
in enabling people to recall events such as \what people were at the meeting at
10.15am on July 19th?"

More recently other types of data have been captured, such as video footage,
handwritten notes and document use, both paper and electronic. Lamming et
al identify a set of system requirements for protheses support. These include:

� sensing of the environment: location information, whether a door is open
or closed, telephone activity etc.

� automatic data capture: as much data should be captured as possible as
it is not known a priori which items of data are important.

� manual annotation: where appropriate a user should be able to enter an
explicit record.

� privacy: traditional diaries are regarded as con�dential. A prothesis
should be treated in a similar way.

2.6.5 Computing Personae

Banerji et al[BCK93] describe the concept of mobile computing personae. The
idea is that a user will have a single computing persona, which will present
itself in di�erent ways, depending upon the equipment that the user is currently
working with. For example the user may specify that an e-mail client is always
displayed. The type of e-mail client, whether graphical or text-based, will be
chosen by the persona to match the equipment available.

Such a concept has many implications, for example, a particular application
operating within a persona may require a co-located set of computing devices
of certain types. Also, for a persona to be compatible across platforms, informa-
tion about equipment and software capabilities needs to be available. Banerji
describes a resource representative which enables clients to �nd out the ca-
pabilities of equipment. Equipment exports information about itself to the
representative such as operating system type, memory size and communication
connections, and clients may then query the representative. A persona manager

is responsible for creating and maintaining personae. A persona can be seen as
a view of resources, a way of abstracting machine speci�c applications.
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2.7 Event Management and Composition

Changes within computing systems can be modelled as events: atomic, asyn-
chronous occurrences at distinct points in time. Examples of events include a
hardware peripheral interrupting a processor, an update to a database, and an
Active Badge sighting.

Much research e�ort has been focused on the role of events within active
database systems [GJS92, CM93, WC96]. This has been within the context of
the event-condition-action (ECA) rules used in such databases. The action of an
ECA rule is triggered when the event is detected and the appropriate condition
satis�ed. Chakravarthy[CKAK94] states that methods of event speci�cation
have applicability in any application area where asynchronous occurrences are
required to trigger an action.

A system will typically have many sources of events. A client may be interested
when a particular sequence of these events occurs. For example \tell me when
user Giles is seen in room 501 and he is active at workstation scallop." Such
event composition could be left for applications to deal with in an ad-hoc way.
Research has however been conducted into how best to generally provide such
facilities. Various languages for expressing composite event semantics have been
proposed such as those presented in [GJS92, Bat94, BBHM95, Hay96]. Bacon
et al[BBHM95] also incorporate concurrent monitoring of composite events, as
well as noting the importance of time.

2.7.1 Distributed Events

Within a distributed software environment the sources of events are usually
termed services. A client application may then contact the service and request
to be informed of all events that the service is responsible for.

Schwiderski[Sch96] explores aspects of event service distribution and the prob-
lems this causes. For example, each machine within a distributed system has
its own clock. If these clocks are not synchronised then di�culties arise in
evaluating time-based composite event expressions where the constitute events
originate from di�erent source machines. Network delays may also result in the
incorrect temporal delivery of events to a client.

2.8 Review

This chapter has given an overview of related work relevant to context-aware
systems.

Devices used to gather location information (section 2.1) are varied in nature,
producing many di�erent types of location data. The importance of location
information within a context-aware environment has been demonstrated by the
development of the Active Badge and resulting applications (sections 2.1.1,
2.6.1, 2.6.2, 2.6.4).
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Approaches to the management of location information (section 2.2) were de-
scribed. These are currently simple and are typically designed for a particular
location technology. Support for multiple technologies, and di�erent granulari-
ties of location information has not been considered.

Attempts have been made to monitor the dynamic environment (section 2.3).
The resulting information has been used in a variety of application areas (sec-
tions 2.4, 2.5) together with location data.

A potential data delivery mechanism exists in the form of an asynchronous
event model (section 2.7). Work has also been described which aims to support
applications requiring information from multiple distributed sources.
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Chapter 3

Analysis and Requirements

This chapter provides a review and critique of the related work presented in
chapter 2. Following this, a set of requirements for CALAIS are identi�ed.

3.1 Review and Critique of Related Work

3.1.1 Applications

Applications provide the motivation for context-aware and location system sup-
port. A number of application areas have been identi�ed. The functionality of
these can be summarised as follows:

� Locating tracked objects

A user �nds the location of a particular physical object in order to interact
with it, for example, the location of the nearest workstation. Tracking ob-
jects enables graphical visualisation of an environment, perhaps updated
as objects move.

� Spatial querying

An application �nds the objects within a particular spatial region, for ex-
ample a room. Alternatively it may �nd the nearest object of a particular
type to a speci�ed location.

� Automated application control

Applications and user interfaces are automatically triggered and moved
from one device to another, based upon the location of a user and the
capabilities of equipment. Environmental sensing information is also used
to trigger applications, such as the re-routing of telephone calls.

� Augmented reality

Information from a wide range of sensors and location devices is used to-
gether with visualisation technology to augment the user's view of the real
world, for example the printer maintenance example described in section

23
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2.5. Sensor information comes from the user and from the surrounding
environment.

3.1.2 Sensor Systems

A context-aware system needs to gather information about the user's environ-
ment. A set of embedded sensor technologies and location tracking devices have
been developed to facilitate this. These include systems to monitor such things
as chair use, door status, temperature, light levels, movement through door-
ways and user location. Whilst the devices which provide this information are
interesting, little consideration has been made to how information from these
systems is delivered to applications.

Sensor systems have typically been built in an ad-hoc way with the interface
de�ned by the developer. The application writer therefore requires detailed
knowledge of a number of technologies and applications become complex and
non-extensible.

3.1.3 Location Information

Software approaches for managing location information within a context-aware
system have typically centred upon a particular technology, such as Active
Badges. Other approaches to location information management have concerned
themselves with wider area cell-based networks and GIS systems. Cell-based
systems are mainly concerned with migration from one cell to another and
how a location system can be managed in a hierarchy. In general, location-
based querying is not supported. GIS systems in contrast, are concerned with
directly supporting spatial information and allowing sophisticated querying to
be executed. However this sophistication leads to high complexity and poor
interactive performance.

Drawbacks with current approaches can be summarised as follows:

� Restrictive view of location information

Typically a container (room) based view is taken of location informa-
tion, often being motivated by the use of Active Badge technology. This
presents problems when other types of location technology are used which
produce �ner-grain location information.

� Simple physical object representation

Physical objects are typically represented as being located within some
space. There is no notion of the size of spatial extent of the object itself,
that is its length, width and height. With container based technology this
view presents few problems, but it is not su�cient when dealing with �ner-
grain location systems. The representation of the orientation of physical
objects is also an unexplored issue. This is required to enable some types
of location based queries to be evaluated, such as \is the user facing the

workstation screen?"
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� Rudimentary application interfaces

Current systems support the querying of a particular container-based
space, discovering the names of objects within that container. Typically,
it is also possible to �nd the location of a particular object, the query
returning the name of the container the object is within.

Applications typically have to poll the location management system to
be informed of updates. Asynchronous call-back mechanisms have been
developed but these are system speci�c and only apply to the movement
of objects, rather than movement within speci�ed spatial areas.

� Static environmental representation

Little use has been made of information encoding the static physical en-
vironment, such as walls and doors. It has only been used as an aid
to visualisation and has not been used to increase the sophistication of
querying facilities.

� Performance

Context-aware applications often have to respond in real-time. This im-
poses restrictions on the design and complexity of applications and sup-
porting systems. Current designs appear to have taken no account of
performance.

3.1.4 Client Interfaces

Current approaches require applications to have knowledge of individual sensor
system interfaces, supported by a number of operating systems. Little inves-
tigation has been made into how to ease the building of applications which
require access to multiple event sources. The semantics of such composite event

applications are currently hard to de�ne.

Methodologies exist for the handling of composite events, originally developed
within database systems. This work has been generalised to allow the handling
of multiple events within distributed systems. These approaches potentially
o�er semantic richness whilst allowing applications to be built easily.

3.2 CALAIS Requirements

From a consideration of the problems with current approaches to context-aware
systems, a set of requirements for CALAIS can be identi�ed.

3.2.1 Sensor System Interfaces

Applications rely on receiving information from a variety of sensor systems, con-
structed using a range of hardware and software. A standard approach should
be applied to the construction of interfaces to these sensor systems and a sin-
gle paradigm of data delivery used, enabling accessibility within a distributed
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system. This will simplify the task of application development and make the
system extensible, allowing the simple integration of future sensor system tech-
nologies.

3.2.2 Location Information Management

Location information will be produced from one or more sensor systems. To
gain full advantage of this information, higher level management is required
to enable the execution of spatial-based queries. A single model of location
should be used, enabling the use of many types of location device within a
single system. This model should allow the representation of physical objects
themselves and their relative orientations.

Static environmental information, such as that representing walls, oor and
doors, should also be integrated. This will add to the semantic richness of the
location model and will allow account of these human dividing spaces to be
made in the evaluation of location based queries.

Applications should be able to monitor not just the movements of named ob-
jects, but also to be able to specify interest in regions of space. Activity within
these spaces should be communicated to the application as it occurs, without
the need for the application to repeatedly re-submit a query. Application access
to these facilities should be similar to that provided to sensor systems.

3.2.3 Provision of Persistent Resources

A context-aware system is highly dynamic. However, some examples of persis-
tent resources required are:

� Sensor system naming and typing information.

� Environmental information encoding static aspects of the physical envi-
ronment.

� Physical object names, dimensions and capabilities. A context-aware ap-
plication may choose to use an item of equipment based upon one of its
capabilities, such as whether it can deliver audio.

3.2.4 Client Facilities

Applications require naming facilities in order to initiate contact with sensor
and persistent services. Also, the use of a distributed system raises the issues
of distributed time and network delays, which must be resolved on a system-
wide basis if applications are to receive correctly ordered changes in the sensed
environment.

As an application writer, the building of an application using information from
multiple sensor systems, persistent resources and location management sys-
tems, is inherently complex. Constructing an application should be simpli�ed,
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enabling full functionality to be preserved, but hiding the complexities of the
underlying system. This requires the provision of client libraries which enable
access to the full range of CALAIS resources.

3.2.5 Performance

Context-aware applications will often operate with real-time constraints. An
application may be made ine�ective if it does not react to changes in context
within a short time period, typically dependent upon levels of mobility. Perfor-
mance must therefore be considered in the construction of CALAIS components.

3.3 Chapter Summary

A set of requirements for the CALAIS architecture have been identi�ed. Figure
3.1 gives an overview of these components, built around a distributed system.

Sensor
System

Location
Management

Sensor
SystemSystem

Sensor

Distributed

System

Context-aware

Dbase

Dbase

Persistent
Resources

Description of
physical objects

environment
Model of office

application distributed service access
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Figure 3.1: CALAIS Architecture Overview
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Chapter 4

Sensor Systems

The e�cacy of a location and context-aware system is dependent upon the
quality of information gathered from monitoring the environment. The sources
of this information can be generally termed sensors, which periodically report
changes in the physical and computing environments.

This chapter will describe a set of deployed and prototype sensor systems which
provide the experimental data for this thesis. As will be shown, the sensor
systems use a wide-range of hardware and software, and the interfaces to each
is ad-hoc in nature. Chapter 5 presents an approach for the abstraction of these
interfaces and details the available output from each sensor system.

4.1 Active Badge System

The functionality of the Active Badge system[WHFG92, WH92, HH94] was
briey described in chapter 2. Here the system will be described in more detail.

The system consists of a set of badges worn by users, a set of sensors per-
manently �xed to walls, and a software architecture enabling the gathering of
sightings and the dissemination of these to applications.

Badges and sensors communicate by using infra-red (IR) with a data rate of
9600 baud. These two features allow transceivers to be small, cheap and low-
powered. The frequency of infra-red used does not pass through, but reects
o�, walls and doors. Each receiver de�nes an infra-red zone, the size of which
is dependent upon the sensitivity of receivers and the power output of badge
transmissions. Receivers are wall-mounted and an IR-zone approximates to a
hemisphere �ve metres in diameter. Most rooms can be represented with a
single IR-zone. This results in the Active Badge system generally giving room-
scale location.

29
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Active Badges

Active Badges are worn about the person and transmit approximately every 10
seconds. Power consumption is reduced by the use of a light dependent resistor
which increases the transmission interval when the badge is in darkness. Badges
can operate for up to one year using a single set of batteries.

The badge is equipped with two buttons, two LEDs and a small loudspeaker.
When a button is pressed, the badge transmits immediately with additional
information specifying which button was pressed. The badge can also receive
signals during a small time window after each transmission. The transmission
received may activate the loudspeaker or illuminate an LED. By using these
facilities the badge can act as a simple control and paging device.

Badges are also equipped with a radio sensor and are designed to transmit im-
mediately when a a radio �eld is encountered. Low-powered radio transmitters
which transmit a pulse-width modulated signal using one of a set of widths can
be placed around doors and desks. The badge transmits additional information
in its payload identifying which one of the set of radio frequency intervals it
has detected. By using this information and using colouring to distribute radio
transmitters, �ner grain location can be obtained.

Equipment Badges are designed for less mobile objects, typically equipment.
These are physically smaller and transmit only. The infra-red signal is only
transmitted approximately once every �ve minutes. Typical battery life is �ve
years thereby reducing maintenance overhead. The equipment also has sockets
enabling two digital inputs to be monitored. The input values are encoded
within the periodic transmission.

Sensor Network

Sensors are distributed at �xed positions throughout a building, typically
mounted on walls. Normally a single sensor is used per o�ce but more may be
used if the o�ce is large, or the room topology would prevent a badge trans-
mission being received by a single sensor. Figure 4.1 shows an arrangement of
sensors and how these are connected to a general purpose computer network.

Sensors are connected directly to a simple wired network which also provides
a power supply. This enables ease of installation in inaccessible places. The
sensor network is then interfaced to a general purpose computer network so
allowing ease of data access.

Software System

Existing system software provides application interfaces, naming services and
the ability to exchange information with other sites equipped with Active Badge
systems. The software is implemented using the Advanced Network Systems
Architecture (ANSA) Testbench[APM90], a platform for building distributed
systems. A naming service allows a textual name to be associated with badge
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Figure 4.1: Layout of Badge Sensor Network

and sensor identi�ers enabling clients to provide more readable user interfaces.
An exchange server enables information to be exchanged between sites, for
example between the Computer Laboratory (CL) and ORL. Time-stamps are
applied to badge sightings as they are received from the sensor network. Clients
gain access to badge information by registering with the badge server software.
Sightings are then communicated to the client asynchronously using a remote
procedure call (RPC).

4.1.1 Deployment

The Active Badge system has been deployed at several academic and industrial
sites. It is also available as a commercial product.

Badge information used in the context of this thesis comes from two sites, ORL
and the CL. Sensors are deployed throughout both sites. Approximately 60
people and 150 items of equipment are equipped with badges.

4.2 Ultrasound Badge System

The Active Badge system has demonstrated that an o�ce based location de-
vice, suitable for tracking people and equipment, is useful. Research has been
recently conducted at ORL leading to the development of a �ner-grain location
system using ultrasound[WJH97].

By measuring the time at which a single source of sound reaches a known �xed
point, multilateration can be used to determine accurately the position of the
source.



32 CHAPTER 4. SENSOR SYSTEMS

Components of the ultrasound badge system are shown in �gure 4.2.
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Figure 4.2: Ultrasound Badge System

This consists of a set of ultrasound receivers �xed on the ceiling of a room,
and a radio transmitter. Each physical object to be tracked is equipped with
a badge, consisting of an ultrasound transmitter and a radio receiver. Several
times per second a signal is transmitted on the radio channel indicating which
badge should transmit an ultrasound signal. All badges decode this signal and
the badge addressed transmits an ultrasound pulse. This is then received by the
ceiling receivers. Software is used to calculate the distance of the badge from
each receiver and therefore the badge position. The output from this system is
a three-dimensional position accurate to within approximately 0.1 metres.

Typically each badge will be told to transmit on a round-robin basis. However
the badge of a highly mobile object can be `targetted' by the system and told to
transmit more frequently. By using this facility the relative mobility of objects
could be established beforehand, or be calculated dynamically by determining
the rate of movement of each object.

4.2.1 Deployment

The ultrasonic badge system has been deployed in one room at ORL.



4.3. WORKSTATION ACTIVITY MONITORING 33

4.3 Workstation Activity Monitoring

People working in a computer-rich organisation spend signi�cant amounts of
time working with a computer directly. Such use can be monitored and the
following information determined:

� when a workstation is busy;

� the identity of a person using the workstation;

� the approximate location of a person using the workstation if the location
of the workstation is known (or vice versa).

Activity implies context. If a person is active at a machine it may imply they
are busy. The machine may also provide a conduit for communication, such as
by video-phone or e-mail. The method of contact will depend upon the capa-
bilities and network connectivity available to the machine. In addition, activity
monitoring can also be used to control applications. For example, an applica-
tion may begin to monitor a workstation when a user's teleport (section 2.6.1)
session materialises. When monitoring has determined that the workstation
has been idle for a time, the teleport session may be de-materialised.

Workstation activity information has been gathered experimentally in previous
work[Leo95, Sch95]. These systems have used the Unix rusers system. This
enables the users who have a login session on a machine to be determined.
However this is unsuited to a distributed environment as a user can login to
a machine remotely. Furthermore the system proposed here provides direct
support for ORL's teleporting system.

4.3.1 Monitoring X-Windows Activity

The approach taken here recognises that X-Windows[Nye92] is the standard
workstation user interface used both at ORL and the CL. In addition teleporting
is widely used.

The xmonitor daemon monitors a given X-Windows equipped workstation for
mouse and keyboard activity. Periodically this activity is reported to an xmon-
itor marshaller which receives data from many xmonitor processes, providing
applications with a central point of access to xmonitor information. This is
illustrated in �gure 4.3. Once xmonitor has sent an activity noti�cation to
the marshaller it waits a time (default 10 seconds) before monitoring again.
This prevents applications being overloaded with activity information when,
for example, a user is typing fast.

The user identi�er of the person using the machine can also be determined.
Normally this will be the user-id of the person logged in to the machine itself.
However, other users may teleport to a machine. xmonitor recognises when tele-
porting occurs and correctly reports activity noti�cations as originating from
the owner of the teleport session.
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4.3.2 How xmonitor Works

Each X-Windows equipped workstation runs an instance of xmonitor. At boot
time machines start xdm, an X client which allows users to login. xmonitor
is started after xdm, allowing it to connect to the root X session and begin
monitoring immediately even if no person is actually logged in.

Xmonitor monitors for three types of X event: those produced when windows
are created, when the mouse is moved in or out of a window, and when a key
is pressed. Keyboard and mouse events are bound to a particular X window.
By recording the ownership of windows, xmonitor can determine whether a
keyboard or mouse event originated from the workstation's root X session or
from a user's teleport session. In this way the correct user-id can be attached
to the activity noti�cations.

4.3.3 Deployment

xmonitor has been deployed on X-Windows capable Unix workstations through-
out ORL. This results in a total of approximately 25 machines monitoring a
user-base of 50 people.

4.4 Door Position

Doors are a convenient way of making a room accessible and secure. Whether
a door is open or closed may be of interest to a security application, or one
ensuring �re-door regulations are met. The position of a door may also imply
context about the occupant within an o�ce. If fully open, the individual may
be indicating that visitors are welcome. If ajar, the occupant may appreciate a
knock and pause before a visitor enters. If shut, the occupant may be implying
they are busy and do not wish to be disturbed.
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4.4.1 Providing Door Status Information

A magnetic reed switch is placed on the door frame with a magnet placed at the
corresponding position on the door. With this equipment it can be determined
whether the door is open, or closed. When the door is shut the reed switch will
be closed and when the door is open, the reed switch will be open.

The reed switch is connected to the parallel port of a PC running Windows
NT which in turn is connected to an Ethernet network. Using an appropriate
device driver the status of the reed switch can be determined using software.
This can then be passed on to applications. This process is illustrated in �gure
4.4.

Windows NT PC

Reed switch

Magnet

Application Application

Parallel Port Device Driver

Figure 4.4: Door Status Service Structure

4.4.2 Deployment

The door of room Au501 in the CL has been equipped with a reed switch and
magnet.

4.5 Telephone Handsets

Telephones can form both a source of information and an application area.
Computer Telephony Integration (CTI)[Wal96] is an emerging and broad ap-
plication domain which attempts to integrate computer communications with
telephone networks. Amongst others, some basic aims of CTI are:

Screen based telephony: using a computer to make and monitor telephone calls.

Call based data selection: using telephone call information to display appropri-
ate data relevant to the caller and callee pair.

Data transfer: transferring data from a telephone to a computer application
and vice versa.
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At present, the telephone-PBX in use at ORL does not allow the monitoring of
the system state, nor the control of telephony devices by computer. To consider
the impact of a limited form of CTI, magnetic reed switches are placed in the
bodies of ordinary telephones. Magnets are placed in the handsets. The reed
switches are connected to a Windows NT PC which makes this information
available to applications in a similar way to the door sensor described in sec-
tion 4.4. When the reed-switch is closed the handset is present on the base.
When the switch is open this indicates the handset is raised, thus implying the
telephone is in use.

Using this information, an application can determine whether or not to initiate
contact with a user. If the user's telephone is found to be in use, an alternative
contact method may be selected. Alternatively, an attempt at contact may be
delayed, as the user is assumed to be busy.

4.5.1 Deployment

Two telephones have been equipped with a reed switch and magnet. These are
both present in room Au501 in the CL. One telephone is an ORL extension,
the other a CL extension.

4.6 Motion Detection

Medusa[WGH94] is a peer to peer architecture for controlling networked mul-
timedia devices. The Medusa architecture consists of an ATM network, a set
of multimedia peripheral modules, such as cameras and loudspeakers which are
connected directly to the network, and a set of software modules which enable
video and audio streams to be displayed, bu�ered and analysed.

To build applications, Medusa modules are connected together. For example,
the elements of one-half of a video-phone application would include a source
video feed from a camera module, a bu�ering module to smooth network jitter,
and a sink module that would receive and display the networked video. Appli-
cations in daily use at ORL include a video-phone, a video-mail system and a
terrestrial television viewer.

Figure 4.5 shows a typical arrangement for a Medusa equipped workstation.
The workstation screen itself provides the video output. A camera is mounted
above the workstation and another to the side of the workstation. Loudspeakers
and microphones are also provided. All are connected via hardware interfaces
to the ATM network. A database maintains relationships between peripherals
so applications can, for example, determine which cameras and speakers to use
when starting a video-phone session on a particular workstation.

Medusa modules can also provide non-interactive functionality such as face
recognition, hand tracking and motion detection. It is this latter functionality
that is made use of here.
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Figure 4.5: Typical Medusa Setup

4.6.1 Detecting Motion from Video

Figure 4.6 shows schematically how video motion information is propagated to
applications. The server is responsible for constructing a motion detector for

Application Application

Detection

Server

Motion
Events

Camera
Named

Video
Stream

Motion
Detection

Motion

Figure 4.6: Motion Detection System

each camera by constructing appropriate Medusa modules and streams and �t-
ting these together. The motion detection module uses block-matching motion
estimation to produce motion vectors. If a motion vector is produced which is
above a prede�ned threshold the server is informed. This motion information
may then be communicated to applications.

4.6.2 Deployment

Motion information is available from 20 ORL cameras.
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4.7 Summary

This chapter has described a diverse set of sensor devices suitable for monitoring
aspects of a dynamic o�ce-based environment. All have been deployed to some
degree. At present, applications must use ad-hoc techniques to gain access to
the information.

The representation and processing of this information is one of the the central
themes of this thesis. Attention is now turned to architectural issues which
enable each sensor system to be given a generic interface and also attempt to
ease the task of building event-driven services and applications.



Chapter 5

Event Service Architecture

This chapter presents a general paradigm of distributed data delivery, which
is suitable for the abstraction of the sensor systems presented in chapter 4. It
is described how this paradigm is used, together with a standard distributed
systems architecture, to build CALAIS event services, which provide uniform
interfaces to heterogeneous sensor systems. Together with persistent resources
these form the basic components of CALAIS.

5.1 Events and Event Service Requirements

Two main options exist to distribute information from sensor systems to inter-
ested clients:

� Polling

The client periodically polls the sensor system by submitting an enquiry
regarding the state of one or more of the managed sensor devices.

� Asynchronous events

The sensor system informs applications whenever a new sensor reading is
available. This information may be distributed by multicast, or by call-

back. In the former case, every item of sensor information is distributed
to all applications which then discard unsuitable items. In the latter
case, the application explicitly registers with the sensor system providing
a reference to a call-back handle. The sensor system then invokes each
call-back handle, parameterised with the sensor reading, every time an
item of sensor system information is available.

Polling is not suitable for the delivery of sensor system information. It is waste-
ful of system resources both in terms of computation and network bandwidth.
Furthermore an application must decide how regularly to poll, which assumes
the application has prior knowledge of the sensor system characteristics.

Asynchronous delivery is the preferred option. Multicast is simple, but is also
wasteful of network bandwidth and requires the application to determine the

39
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type of each event as it is delivered and discard those it is not interested in. The
most suitable method of information delivery is that provided by the registration
and call-back event paradigm. Information is sent to applications only when
new information is available. No prior knowledge of sensor system behaviour
is required by the application and the application only receives those types of
event it is interested in.

5.1.1 Event De�nition

Generally:

An event of class E has a set of attributes a1; a2; :::; an and a time-
stamp t

Each event is of a particular class. Each event class may have zero or more
attributes, such as the user-id associated with an Active Badge sighting. Each
event is a discrete occurrence, that is it occurs at a speci�c point in time. Every
event therefore has an associated time-stamp. This allows temporal comparison
of events, based upon the time at which the event occurred rather than the time
at which the application received noti�cation of an event. This is an important
requirement as the delivery of events within a distributed system may be subject
to delay.

5.1.2 Event Service Requirements

As illustrated in chapter 4, sensor systems are implemented using a variety of
technologies, and each has an ad-hoc interface. This places an unnecessary
burden on the application developer. Event services should have a standard
interface which can be added to any existing sensor system, providing generic
registration and call-back facilities. This interface should be straightforward to
de�ne and integrate, and enable distributed access. These requirements result
in event services having the structure shown in �gure 5.1.

5.2 A Standard Distributed Architecture

CORBA (Common Object Request Broker Architecture)[OMG95], de�ned by
the OMG (Object Management Group) is the distributed systems architecture
used for CALAIS. The motivations for choosing CORBA are:

� OMG interface de�nition language (IDL) provides a standard interface to
systems implemented using di�erent operating systems and implementa-
tion languages.

� Location transparency of distributed components.

� Wide availability within the target environment.
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Figure 5.1: Generic Structure of an Event Service

CORBA is a object-oriented, peer-to-peer architecture; the distinction between
clients and servers made in other distributed system architectures, such as DCE1

is not made. However for the duration of a method invocation, the calling object
can be termed the client and the object receiving and performing the method
invocation the server.

CORBA consists of three architecture areas: the object request broker, object
services and common facilities. Parts of the �rst two are pertinent to this thesis
and therefore are now briey described.

The Object Request Broker

The object request broker (ORB) functions as a communications infrastructure,
transparently relaying object requests across distributed heterogeneous comput-
ing environments. Both clients and servers communicate with the ORB when
setting up a method invocation. Client and server objects may exist within the
same address space, on the same machine or on di�erent machines. The ORB
allows applications transparent access to objects, irrespective of their relative
physical location.

Two methods exist for CORBA objects to communicate: static interfaces, de-
�ned using an IDL, and the dynamic invocation interface (DII).

OMG IDL is a programming language independent syntax for describing appli-
cation interfaces. IDL is compiled into programming language dependent stubs
which enable the application to talk to the ORB. Both the client and server
need access to these stubs and thus the application developer must have access
to the corresponding IDL.

1The Open Software Foundation's Distributed Computing Environment.
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By using the DII, an application does not require a priori knowledge of an
object's interface. Static IDL is not used. Rather an application accesses a
system database of known interface signatures and then performs a generic
method invocation to a server which has implemented the required object type.
Such a facility is useful to applications which may not know in advance the
interface of an object they wish to communicate with.

By the use of an interface language, CORBA hides the implementation of an
object. It is therefore suitable for abstracting away the details of a sensor sys-
tem. An application need not know how an sensor system is implemented, what
software and hardware is involved and which operating system it is supported
by.

Object Services - Naming Service

Object services comprise a set of system service interfaces which provide com-
monly needed facilities for application and system developers. These services
are collectively known as the Common Object Service Speci�cation

(COSS)[OMG96]. The naming service is of particular interest here.

To initiate contact with a CORBA object, which perhaps provides access to a
CALAIS event service, an application must obtain an address for that object.
Such an address will typically encode the name of the machine where the object
is located and other addressing information. This address may change often, for
example, when the process providing the object is restarted. The solution is to
associate a name with such an address and enter this information into the COSS
naming database which applications may then query. A name is multi-level, for
example CALAIS/sensors/active-badge. Each time the service providing such
a named object is started, the corresponding object reference is exported to the
naming service. An application can then fetch the object reference and then
contact the object directly.

5.2.1 Inter-ORB Communication

As part of the CORBA 2.0 speci�cation the OMG have de�ned the Internet

Inter-ORB Protocol (IIOP). This enables ORBs from di�erent vendors and
residing within di�erent Internet domains to communicate. An application
supported by one ORB can communicate with an object supported by another
ORB in the same way as it would communicate with a local object. This further
extends object location transparency.

5.2.2 Local System Setup

At ORL where most of the implementation work within this thesis has been
carried out, CORBA is present on multiple Unix platforms, Windows NT and
ORL's locally developed operating system, ATMOS. The CORBA 2 implemen-
tation omniORB is one developed locally at ORL. omniORB uses IIOP as its
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native transmission protocol. A COSS naming service is also available.

Other implementation work has been carried out at the CL, again using CORBA.
Here the ORB implementation used has been IONA Technology's Orbix. By
using IIOP technology, objects at ORL and the CL can communicate.

5.3 The Structure of CALAIS Event Services

The structure of an event service is illustrated in �gure 5.2.

Event and Template Storage

Registration
De-registration

Call-back Synchronous
Querying

Filtering

Sensor System

Application

Figure 5.2: Structure of an Event Service

Each CALAIS sensor system is extended with a CORBA interface, speci�ed in
IDL. This IDL provides a description of the attributes of the event class and
speci�es the client interfaces to each event source. The resulting event services
provide a standard set of interfaces and facilities.

5.3.1 Registration and Call-back

As previously stated, a registration and call-back paradigm is adopted for the
delivery of events. The event service provides interfaces to allow an application
to register and de-register, and an interface to deliver events to applications
using call-backs.

Event Templates

A client may not be interested in every event that a service o�ers. Consider
the xmonitor event source, previously described in chapter 4, which produces
activity events from workstations. A client may only be interested in events
from a particular workstation. It is convenient if event occurrences can be
�ltered.
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Event �ltering could be performed by a client using a provided library of suitable
routines. However this approach will result in all events being delivered to every
client. To reduce this wasted network bandwidth and the resulting increase
in client complexity, each event service performs �ltering before the event is
delivered. To perform this �ltering the service holds an event template for each
client. This template is provided by the client at registration time. If, for
example, the client is interested in xmonitor events but only those produced by
workstation `scallop' the following event template may be given by the client:

workstation name workstation domain user-id

scallop cam-orl.co.uk *

The * indicates a wild-card and will match any attribute value. Before an
event service noti�es an event occurrence to a client it compares the event to
the appropriate template. Only if it matches is the client noti�ed.

By default, event attributes are tested against a template using an equivalence
operator to determine whether an attribute is exactly the same as the corre-
sponding template attribute. The equivalence operator used will be determined
by the type of attribute. Using equivalence is not suitable in all circumstances
however, and therefore other types of binary operator can be chosen when con-
structing an event service.

5.3.2 Time-stamps

Each event has an associated Unix style time-stamp consisting of the number
of seconds and micro-seconds since 1st January 1970.

5.3.3 Storing and Querying Events

Events are discrete temporal occurrences. An event can be considered a report
in the change of an object's state. Some event services will produce events at
regular intervals, others irregularly. Furthermore the mean frequency of event
reporting will di�er from service to service.

In many circumstances it is not appropriate for an application to wait for the
next event from a service, and it may require to know directly the last event
that occurred which matches a particular event template. Consider for example
an application which displays a person's unread e-mail on a workstation when
they walk into a room. A condition for the e-mail to be displayed is that the
workstation is not currently active. Activity events, made available by the
xmonitor event service, are only produced when a workstation is active and
therefore the application must query the event service to �nd out when the
last activity event occurred for that particular workstation. Only if the event
occurred more than a time interval T ago will the e-mail be displayed.

The approach taken here is to make an attribute of a service's event class
primary. Then, for each di�ering value of this primary attribute the most
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recent corresponding event is stored. For example, for the xmonitor service,
the primary attribute is workstation name. Thus for each workstation the most
recent corresponding activity event is stored.

A synchronous interface is provided to the event service which takes an event
template as an argument. Using this, the stored events are queried and those
which match the template are returned immediately.

It can be argued that a greater depth of state should be available. However,
if required, an event history can easily be created by a client which registers
with the appropriate event service and then simply records each event as it
is received. Current work within the CL is investigating a novel database ar-
chitecture for the storage of events[BS98]. This allows the replay and o�-line
analysis of event histories.

Service Persistence

Depending upon the frequency of the event class a service supports, it may be
appropriate to make an event service persistent, that is store each most recent
event on a permanent medium such as disk. If the service then fails recovery
is possible. Using a persistent store is only suitable for event services where
the frequency of events is low, for example in the case where an event may
only occur once every hour. It is less suitable for services where the event rate
is high, for example where several events occur per second, as not only would
the persistently stored events be overwritten quickly after recovery, but the
frequent writing of event records to disk will cause an extra and unnecessary
system load.

5.3.4 Dynamically Discovering an Event Interface

Each event service also o�ers a generic interface to the events it o�ers. This
type-less interface allows an application to be written which does not know a

priori the class of events which it is interested in receiving. Also, an application
which does not have access to an event service's IDL can use this interface. By
accessing an event class repository, a service which maintains a database of
event classes known to the system, an application can receive the name of the
event, a description of the event's class, and an object reference enabling it to
contact the type-less interface of the event service.

This process can be compared to CORBA's DII (which is not currently imple-
mented in omniORB) which similarly allows dynamic binding to object inter-
faces.

Figure 5.3 shows the process by which an application dynamically discovers the
class of an event. The application contacts the event repository and issues a
request for information about a particular event class name. It then receives a
description of the event class, that is how many attributes the event has and
the types of these attributes. It also receives an object reference which the
application can then use to contact the event service directly.
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Figure 5.3: Dynamically Discovering an Event Class

The event class repository is in fact an event service like any other, although
lacking the type-less interface. The event repository therefore o�ers call-back
and query interfaces. An application such as a browser displaying information
about an organisation's event services, may register interest in additions and
updates to the repository's database. The repository is an example of an event
service which requires persistence.

5.4 Building Event Services

CALAIS event services all share the same common features. Each has a regis-
tration and de-registration interface and passes data to clients using call-backs.
Each stores a set of recent events available for querying. All that di�ers between
services is the event class that it o�ers to clients. By recognising these com-
mon features it is possible to produce service implementations automatically
by providing a generic server library.

Figure 5.4 shows schematically the process of building an event service. The pro-
cess starts by the service developer declaring an event class in IDL. This is then
augmented by declarations for the standard interfaces. Using this IDL, CORBA
stubs are produced and program code generated to handle data management
tasks. The service developer must supply a template comparison function and
an interface to the low level system which actually produces the events.

By the use of appropriate tools this process can be automated. This leads to
signi�cant reductions in the time taken to develop an event service.

Constructed Event Services

This technique of constructing event services is applied to each event source
described in chapter 4. IDL for each event service can be found in appendix A.
Table 5.1 shows each event class, with its name and associated attributes.
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Figure 5.4: Building a CALAIS Event Service from Components

5.5 Database Support Services

CALAIS system components and applications require support from database
system resources. These di�er from event based sources of information in that
the data held typically changes infrequently. Also, such resources may come
from databases that already exist and currently provide support for other sys-
tems.

Some examples of required information resources are:

1. Equipment capabilities: information about equipment such as its type,
network interface, screen size, available input devices etc.

2. User preferences: examples include the circumstances under which a user
is able to receive e-mail and take phone calls, the name of their o�ce, and
an event expression which when satis�ed leads to an application being
invoked.

3. Layout of the physical environment: location aware services need access
to information about the physical environment. This may include where
doors and o�ces are situated and the location of stairs.

Such databases may deal with less volatile information, but may still be re-
garded as sources of events. A particular type of change to a database entry
may be de�ned as an event class and interested clients may then receive such up-
dates by registering in the usual fashion. Many traditional DBMSs have a form
of event call-back termed a trigger[WC96]. Such triggers may also be de�ned
as event classes which inform an application of the change itself, or simply that
a change has taken place. The latter method may be used where a database
is of su�cient complexity to require interrogation using a query language such
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Active Badges

Event Source

Ultrasound Badges

ABadge

user-id:

room domain:

button click:

room-id:

user domain:

badge type: either ‘person’ or ‘equipment’

identifies the room which the badge is within

either ‘side’, ‘middle’, or ‘no-click’

the domain of the room

identifies the user’s domain

identifies the owner of the badge

Event Class Event Attributes

UBadge badge identifier:

x,y,z:

coordinate system:

uniquely identifies the badge

a 3D coordinate relative to a coordinate system

WSactivity
Activity Monitoring

workstation-id:

workstation domain: the domain of the workstation

the user identifier of the person using the workstation

Door Position Door door identifier:

door domain:

status:

the name of the door.

the domain of the door
either ‘opened’ or ‘closed’

Telephone Phone telephone-id:

telephone domain:

status:
the name of the telephone’s domain

either ‘pick-up’ or ‘put-down’

Motion Detection Motion camera identifier:

domain:

uniquely identifies the camera

the camera’s domain

the host name of the workstation where activity occurred

the coordinate system identifier

user-id:

the extension number of the telephone

Workstation

Handset Status

Table 5.1: Event Class Attributes

as SQL. It is inappropriate and inexible to attempt to de�ne every type of
database update or query as an event class.

5.6 Component Summary

Figure 5.5 shows the components of CALAIS presented so far. Details of the
location service and composite event detection are given in later chapters. A
description of database services used will also be given where appropriate.

5.7 Distributed Time

Two issues regarding time within a distributed system are of interest:

� No global time

Each machine within a distributed system has its own clock. Each clock
may drift at varying rates.
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Figure 5.5: CALAIS Components

� Network delay

Messages sent between machines will incur a delay dependent on machine
and network loads.

5.7.1 Clock Synchronisation

Consider an application receiving events from two di�erent services. These
services will typically be running on di�erent machines, each of which has its
own clock. If no clock synchronisation is performed the application will be
unable to determine an ordering of events. A number of approaches have been
developed to address this situation.

The Global Positioning System (GPS)[AL94] transmits Universal Time Coordi-
nated (UTC) signals which have an accuracy of between 0:1�10ms. Commonly,
clocks are synchronised within the local area using the Network Time Protocol
(NTP)[Mil91]. This achieves an accuracy of below 100ms even in wide area
networks.

A pragmatic approach is taken towards clock synchronisation here. At both
sites used in development (ORL and the CL) NTP is used. Indeed an NTP
server at one domain peers with another server at the other domain. This
ensures that time-stamps generated within the two domains will be synchronised
to within 10ms.

Schwiderski [Sch96] points out that some distributed systems require high ac-
curacy time-stamps to be applied to events. An example cited is a distributed
debugging system producing up to 500 events per second. In the application
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domain considered here such high frequencies will not occur and therefore a
time-stamp accuracy of 10ms is considered adequate.

5.7.2 Network and Registration Delay

The transmission of an event over a network may cause a delay in its delivery.
Consider an application receiving two events a and b, from two event services
A and B. The event a, dispatched to an application before event b, may in fact
arrive at the application after b due to network delays. The application may
therefore not respond as expected.

Another problem is that registration with an event service is not instantaneous.
Therefore it is possible that between the time at which an application initiates
registration and the time at which registration is complete, an event occurs
which is not issued to the application.

These problems are both non-trivial to solve. Both will be considered further,
and appropriate solutions proposed, in chapter 9, where client support for deal-
ing with multiple event sources is discussed.

5.8 Naming and Inter-domain Issues

It has been shown how event services can be built to provide uniform interfaces
to applications. Howevever, the use of multiple event services may still be hin-
dered due to one event service naming a semantically equivalent event attribute
in a di�erent way to another service. CALAIS uses system independent nam-
ing. Therefore each event service is responsible for converting internal, system
dependent names, to their system independent equivalents.

People, for example, are represented by their system login name. This is unique
within a domain. Consider, for example, the Active Badge and xmonitor event
services. xmonitor directly produces events with a system login user-id. The
low-level Active Badge system directly produces a badge-id. In the case where
a badge is monitoring the location of a person, both these identi�ers refer
to a person. In the case of the xmonitor event service, people are already
represented with a user-id. For the Active Badge event service, conversion is
performed between badge-ids and user-ids by adding a middle layer between
the event source interface, described in section 4.1, and the CALAIS client
interface. This maintains a lookup table of badge-id, user-id pairs. A similar
approach can be applied to other types of object.

5.8.1 Inter-Domain Working

It is beyond the scope of this thesis to consider in detail the naming and infor-
mation exchange issues that must be solved to enable the mobility of physical
objects between multiple administrative domains. Although consideration of
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these issues has been made in the design of CALAIS, the separate domains of
ORL and the CL are generally treated as parts of the same domain.

To enable inter-domain working, a method must exist for the distribution of
object names and object attributes to di�erent domains, thereby allowing an
object to identify itself when it enters a domain. This relies on the object itself
internally containing naming information which is globally unique.

Three possible approaches for the distribution of object names and attributes
are:

� Explicit representation within each domain.

The identities of mobile objects are added in each domain the object is
likely to encounter. This information exchange is likely to be managed by
a system administrator.

� Federated naming scheme.

Each domain exists in a hierarchy, in a similar way to DNS[Moc87]. An
update in one domain causes the update to be progressively propogated
throughout the hierarchy, eventually reaching every other domain.

� Agent scheme.

The unique address provided by the mobile object entering a domain
will trigger an agent. The agent will then attempt to contact a home

domain[IB94] to obtain the attributes of the object.

5.9 Summary

This chapter has described a CORBA based framework to provide CALAIS
components with a uniform communications infrastructure. A methodology
has been described for the building of event services from generic components.
Each event service o�ers standard interfaces to applications. These interfaces
allow registration and state querying. Both typed and type-less interfaces are
provided. An event trading service is presented which enables event classes and
services to be discovered dynamically. The requirement for access to database
information was identi�ed and an indication given when the event model is
suitable for propagating database updates to applications.
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Chapter 6

Location Service

Requirements

This chapter identi�es the requirements that a location service, suitable for the
management of location information, must ful�ll. The design and implementa-
tion of the location service is then described in chapter 7.

6.1 The Signi�cance of Location

Location is a well known everyday notion. The location of physical objects may
be described in a variety of ways:

� \The desk is in the study".

� \Giles is near the window."

� \The workstation is at coordinate x; y; z".

� \The ship is at longitude R and latitude S."

� \The screen is oriented at 12 degrees."

Location information within the context-aware domain has been considered ear-
lier in this thesis in chapter 4, which described the Active Badge and ultrasound
location systems. Used directly, this information is of only partial use. With
knowledge of the location of the object, and some sense of the structure of the
location domain, a user can physically �nd the object and then interact with
it.

However, many more applications become possible when knowledge of the loca-
tion of many objects is available. Consider the following example. A software
agent is responsible for the timely delivery of video-mail to a user. To carry
out its function the agent tracks the location of the user and determines the
items of equipment that are nearby, perhaps within a distance of 2 metres.

53
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The equipment list is narrowed by the application determining which items of
equipment are capable of delivering both video and audio. Once a suitable
item of equipment has been found, the agent can then attempt to deliver the
video-mail.

What is signi�cant about this example is that the application is not interested
in knowledge of the absolute position of the user or equipment. Rather, it is
interested in the names of those objects which are nearby, or co-located[Nel96]
with the user.

The responsibility for evaluating co-location queries could rest with applications
which would gather and analyse location data in ad-hoc ways. However it is
asserted that all applications can bene�t from a set of common features and
these should be provided by a location service.

6.2 Requirements

6.2.1 Location Information Integration

A location service should be capable of integrating multiple types of location
information. To have the widest applicability, three spatial dimensions must be
supported. This leads to a requirement for a generic view of location informa-
tion. A location can be de�ned as follows:

A location is the name of a coordinate system, a position within this
coordinate system and an error in this position.

Within a three-dimensional Cartesian coordinate system the position and error
will be represented by two triples. The �rst (x; y; z) represents the object's po-
sition. The second (xe; ye; ze) represents the maximum error in each dimension
relative to this position.

Using this de�nition the following sources, amongst others, of location informa-
tion can be represented:

� Active Badges;

� Ultrasonic devices;

� Manual measurement.

Ultrasonic devices and manual measurement give a position directly. Active
Badges however, directly give a position within a container, an infra-red zone
(see section 4.1) which is typically regular in shape. This information is termed
a containment:

A containment, given by the name of a container, indicates the pres-
ence of an object at some unspeci�ed position within the container.



6.2. REQUIREMENTS 55

A containment can be represented as a location by specifying the position to
be at the centre of the container, and the error equal to the distance from this
position to the edges of the container. Thus the location speci�es the position
of the object at the centre of the container, but indicates by the error that the
true position may be anywhere within the container. This is illustrated in �gure
6.1.

y

xe

e

Container

Figure 6.1: Position and Error Representation in a Container

Each location sensing system will typically operate within its own coordinate
system. The ultrasonic badge gives a position relative to the room in which
it is installed. Manual measurement of the position of objects will typically
be done relative to a room or part of a room. To enable the positions of ob-
jects within di�erent coordinate systems to be compared, each item of location
information requires transformation from a sensing coordinate system to the
location service's own coordinate system.

6.2.2 Physical Object Representation

All physical objects have a non-zero, �nite, spatial extent. Together with its
location, an object's extent determines how it will interact with other objects.
These extents should therefore be represented within the location service. In
a computer graphics system, where objects are required to be realistically ren-
dered, the spatial entity used to represent an object would typically be a com-
plex one. However in a location service where no rendering is required, where
location sensors are limited in accuracy and where application requirements are
less exacting, it is possible to use a simpler representation.

Non-Physical Objects

Objects stored by a location service do not necessarily have to exist physically.
Examples of such objects are:

� A radio �eld.

� The audible range of a telephone.

The location of such objects will typically be derived from the location of a
physical object. In the case of a radio �eld this might be the location of a radio
transmitter.
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Knowing those objects co-located to such non-physical objects may be impor-
tant for some applications. For example, an application may wish to know
when a particular person is in audible range of a telephone, in order to redirect
a telephone call.

6.2.3 Types of Query

It is asserted that context-aware systems are interested in three types of location-
oriented query:

1. where is object A?

2. what objects are within spatial region R?

3. what objects are within spatial region R, where R is de�ned relative to
the position of object A?

For some applications the ability to synchronously execute the above types
of query is not su�cient. In a similar way to earlier discussions of polling
versus call-back in the context of event services, the polling of a location service
by regular query submission is ine�cient. Applications may need to respond
quickly to a change of context and polling may result in a delay as well as an
unnecessary increase in system load.

Therefore, for each of the query types described above an asynchronous equiv-
alent is also required. These can be expressed as follows:

1. keep me informed where object A is.

2. keep me informed of the objects within spatial region R.

3. keep me informed of the objects within spatial regionR, whereR is de�ned
relative to the position of object A.

6.2.4 Orientation

In addition to a position, physical objects also have an orientation. By rep-
resenting this the results of location based queries can be enhanced with in-
formation about the relative orientations of objects. In some circumstances,
interaction with physical objects is only appropriate when the target object
and the interacting object are oriented with respect to each other in a particu-
lar way. For example a person may only interact with a workstation when the
person is in front of, and facing, the screen.

Generally orientation can be represented with a normal vector de�ned in re-
lation to a particular object face[Fra91]. Operations such as the dot product
can then be applied, for example, to determine the angle between two normal
vectors and thus �nd their relative orientation.
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Orientation complicates the method by which location information is gathered.
To determine an orientation in two-dimensions, the position of two distinct
non-collinear points on the object must be measured. For a three-dimensional
orientation three such measurements are required. To measure the orientation
of mobile objects therefore requires multiple location devices per object and
greater software complexity to interpret the multiple location sightings. A
�ne granularity of location information is required to determine orientation
accurately.

6.2.5 Performance and Scale

This section attempts to identify a set of performance requirements a location
service must ful�ll. These can then be borne in mind during design and im-
plementation. The quantitative aspects of this are inevitably imprecise, and
should be interpreted only as orders of magnitude.

Real-time Response

A context-aware system is a live, event-driven system operating in real-time.
Many applications must respond to an event quickly to be e�ective. A typical
application operating within a mobile environment will require a response time
of not more than 1 second.

Although the issue of guaranteeing real-time response to applications is beyond
the scope of this thesis, steps should be taken to minimise query latency.

Scale

The number of physical objects which the location service must represent will
have a direct impact upon performance. It is therefore important to attempt
to estimate this number. This will be done for the domain of ORL.

ORL contains a sta� of approximately 50. Each person is currently equipped
with an Active Badge. Equipment badges are used on approximately 130 items
of equipment. Imagine if the number of objects to be monitored increases ten-
fold. This may include more items of equipment such as telephones and even
such things as books. This estimate leads to a requirement for the location of
approximately 2000 objects to be supported. Typically, sets of objects will be
updated at di�erent rates, depending upon their rate of mobility. A �gure of
500 updates per second may be realistic.

Further to this, the number of applications requiring query facilities must be
considered. As the number of objects tracked increases and the location in-
formation resource becomes larger, it is logical that the number of queries will
increase. Again, to produce an order of magnitude, it can be assumed that one
query per tracked object will be active at any one time. This therefore produces
a requirement for 1000s of queries to be handled. Many of these will require
asynchronous call-backs, triggered when an update is performed.
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Summary

The performance estimates given here should be borne in mind in the develop-
ment of a location service. The handling of thousands of operations per second
implies that a model and implementation need to be highly e�cient.

6.2.6 CALAIS Integration

The location service must integrate with other components of the CALAIS
architecture. It will be a client of location sensing services and act as a service
to applications interested in issuing location queries. As with other services,
CORBA interfaces will be available. In chapter 8, it will be shown how the
results of location queries can be integrated into the event paradigm and so
enable convenient access for applications.

6.3 A Spatially Equipped DBMS

To explore the implementation requirements of a location service it is worth
considering if a commercial data processing system, equipped with spatial ca-
pabilities, could be used to realise a location service.

Illustra[Ill95] is a database management system which can handle spatial data
directly. Illustra1 is the commercial version of Postgres[SRH90]. It is termed an
object relational system and uses an extended version of SQL (Structured Query
Language)[Can93] to provide a limited amount of object oriented functionality
in addition to standard relational facilities.

Illustra has a meta layer which stores information concerning known data types,
functions and indexing methods. This meta layer makes Illustra extensible and
new types, functions and indexing methods, provided within libraries, can be
added, thereby extending the system's functionality. Illustra terms these li-
braries datablades. Datablades are available which provide specialist function-
ality for the management of two- and three-dimensional spatial data. These
provide a set of geometric types, such as rectangles, circles and polygons, and
functions, such as intersection and containment. Furthermore, spatial indexing
is provided by use of an R-tree data structure.

Other relevant facilities which Illustra provides are:

� Server execution of user-supplied functions. User-de�ned functions which
use database facilities normally reside in a separate client process which
communicates with the database server via a network. If required, how-
ever, a function can be dynamically loaded into the server process and
then invoked remotely. This is suitable for functions which are used often

1At the time of writing Illustra Information Technologies is now part of Informix Software.

Illustra itself is no longer available but its technology has been used in Informix's Universal

Server.
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and where performance is a priority. It is this facility that enables Illustra
to be extended with datablades.

� Support for asynchronous noti�cation of events. Illustra supports the
ECA (event-condition-action)[WC96] model. Rules can be de�ned on
database tables and an event de�ned which will be invoked when an ac-
tion occurs. This can notify a remote client which is waiting for event
occurrences.

Illustra also supports standard DBMS facilities such as transactions and recov-
ery mechanisms.

The combination of the above facilities make Illustra appear very suitable to
act as the core of a location service implementation.

Illustra Evaluation

Illustra must show that it can cope with a high update rate. To evaluate
Illustra's performance characteristics, a database was de�ned suitable for the
storage of Active Badge information, including a table suitable for holding
raw sighting information consisting of approximately 10 attributes. In use this
would be updated many times per second. An initial sighting was inserted into
the table for approximately 50 badges and an Active Badge feed created which
updates the table with the most recent sighting from each badge. The results,
shown in table 6.1 were produced on a Sun SPARC machine with a 50Mhz

processor, 10ms seek time disk, and 128Mb of main memory.

no index with index

update 101ms 109ms

search 28ms 28ms

Table 6.1: Illustra Update and Search Performance

These results show the time required for an update or search, with and without
a single B-tree index having been de�ned on the primary attribute badge id.
Each update causes a disk write. No datablade extensions are present.

Conclusion

Unfortunately these results indicate that Illustra is not suitable to be considered
as the storage and indexing technology for a location service. The 101ms update
time with only 50 tuples present in the table means only 10 updates can be
performed per second, ignoring any other work the database system may have
to perform. It is unclear why Illustra's performance in this simple example is
so poor. The search results indicate an upper limit of 28ms on the time taken
for query compilation and the determination of the correct tuple to update.
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The remaining 73ms required to perform an update indicates the transaction
processing system may be causing the performance bottleneck.

It appears a general purpose DBMS lacks the performance required. An alter-
native, lightweight, approach is described in the following chapter.



Chapter 7

Location Service Design

The use of a general purpose DBMS, equipped with spatial processing facili-
ties, to realise the location service, was rejected due to the poor performance
encountered. In a response to this a lightweight method of location information
management is now proposed, aimed at providing high performance.

A method of representing the location of physical objects using a simple geomet-
ric shape is �rstly described. Then, suitable indexing technologies are reviewed
and the most appropriate method chosen. An approach to representing the rel-
ative orientations of objects is presented, followed by methods of representing a
domain's static environment. It is then described how powerful spatial queries
can be evaluated and how this functionality is made available to applications.

Figure 7.1 summarises the proposed architecture of the location service.

Event
Service

Event
Service

Applications

Service
Location

Physical object

Query Storage

Object Locations

Indexing

Representation
of the physical
environmentdescriptions

Figure 7.1: Proposed Location Service Architecture

61



62 CHAPTER 7. LOCATION SERVICE DESIGN

7.1 Physical Object Representation

In the following discussion, without loss of generality, two-dimensional termi-
nology is used.

The aim of the location service is to represent the locations and spatial extents
of physical objects, thereby allowing the execution of location based queries.
This internal representation will minimally consist of the name of the object
and a spatial entity representing its position and extent.

An internal representation of minimum bounding rectangles (MBRs), aligned to
coordinate system axes, is proposed. An MBR is the smallest rectangle which
can completely contain an object. As rectangles are simple, manipulation is
e�cient, and as will be seen, rectangles can also be used directly with index-
ing technology thus further enhancing performance. It is asserted that axis-
alignment is a minor restriction, and an aligned MBR is capable of providing a
good approximation to the real extent of a physical object.

Figure 7.2 shows a schematic view of an o�ce and the set of objects contained
within it, the spatial extent of each represented using an MBR.

1

E1

E4

E P3
2

2

P

E

Figure 7.2: Object Representation within an O�ce

Two people, P1 and P2, and various items of equipment, E1 to E4, are depicted.
The equipment might consist of desks or computers. Each one of these MBRs
is aligned to the coordinate system axes. The MBR's extent and position is
derived from a database holding the dimensions of physical objects, and its
location from some location event source.

Now consider �gure 7.3 which illustrates how a spatial search might be con-
ducted. In this scenario an application wishes to know the objects that are
within a distance of 2m of person P1. A circle is shown, centred at P1's centre-
point and of radius 2m. Depending upon the way in which the query is evalu-
ated, the query may return those objects that intersect, or are wholly contained
within, the search extent.
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Figure 7.3: Object Interaction with Searching

7.1.1 Handling Location Errors

Each item of location information is composed of a position and an associated
error. When the position is matched with the object being located this forms a
spatial extent formed by the position, the extent of the object and knowledge of
where the location device is positioned on the object. Consider �gure 7.4. The

original object MBR

location error

extent of stored MBR

Figure 7.4: Handling Errors

error of the location is represented by the dashed rectangle. This error extent
is added to the spatial extent of the object itself, resulting in the MBR which is
actually stored, shown by the dotted rectangle. A spatial query will therefore
return a set of candidate objects which may satisfy the search predicate. As will
be described, the results of a query can be �ltered by the application specifying
a maximum acceptable error.

7.1.2 Record Attributes

Each physical object has an associated object record stored within the location
service. This has the following attributes:

� the name and type of the object;

� an MBR representing the object's spatial extent and position;

� the maximum error in the position of the object in each dimension;

� an MBR used in spatial searching formed from the addition of the MBR
representing the object's extent and the maximum error in the object's
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position;

� the time-stamp of the location report.

A single record will be held for each object. This will contain the most recent
location information available for that object.

7.2 Indexing Technologies

The query types, outlined previously in chapter 6, require object records to
be searched by name, and by spatial position. The number of objects being
handled is large and therefore indexing is required to enable fast searching
and updating. Spatial indexing is a well-researched area and is used in many
application domains such as computer graphics and GIS.

Spatial data has multiple attributes, one for each dimension. These attributes,
although representing orthogonal dimensions, do have dependencies between
them expressed in Euclidean space by the Euclidean metric. Worboys[Wor95]
illustrates by example that a traditional uni-dimensional indexing technique is
not capable of indexing satisfactorily multi-dimensional dependent data. A type
of index is required that can take advantage of ordering in two or more dimen-
sions. Range searches in particular will bene�t from an organisation which leads
to those entities which are near one another in space, being near one another
within the index. The following discussion is based on Worboys' classi�cation of
raster, point and complex spatial objects. Again, two-dimensional terminology
is used but the principles equally relate to three-dimensional objects.

7.2.1 Raster

A raster is an array or grid of cells, commonly referred to as pixels. Rasters
are capable of representing many spatial objects: a point may be represented
by a single cell, and a connected area by a set of contiguous cells. A widely
used structure for holding raster data is the region quadtree. It is based on the
repeated subdivision of a raster into four equal-size blocks until each block is of
a preset minimum size. An example of such a decomposition is shown in �gure
7.5.
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Figure 7.5: Space Decomposition Using a Quad-tree
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The advantages of the region quadtree are that it takes advantage of the multi-
dimensional nature of the data and it has variable resolution, only increasing
tree depth in places where necessary detail is required. However a small trans-
lation in the raster may result in a large change to the quadtree structure - this
results in ine�ciencies for the representation of spatial objects in a context-
aware system, the positions of which are dynamic in nature.

7.2.2 Point-Based

A spatial shape can be represented by one or more representative points. This
may be the centroid of the shape, or in the case of a rectangle for example, the
(x; y) coordinates of the two diagonally opposite corners. This second represen-
tation can be indexed using a k-d tree[Ben75]. The k-d tree is a k dimensional
search tree where, at each level of the tree, a di�erent coordinate is tested to
determine which branch of the tree to take. In two dimensions, for example, x
coordinates would be compared at the root (level 0) and even levels, and the
y coordinate at odd levels. Two rectangles intersect when their projections on
the x axis and y axis both intersect.

7.2.3 Complex Objects - Rectangles

Rectangles in particular have been the focus of a signi�cant amount of re-
search into indexing techniques. A thorough review of this work is presented in
[Sam88].

The R-tree[Gut84] is a multi-dimensional extension of the B-tree, the latter
commonly used to index uni-dimensional data. In an R-tree, leaf nodes contain
the MBRs associated with the actual objects being indexed. Internal nodes
hold the smallest MBR that contains all rectangles in its subtree. Like the
B-tree the R-tree is self-maintaining and has O(log n) insert, delete and search
complexity. A simple example of R-tree decomposition is shown in �gure 7.6.
A variant of the R-tree is the R+-tree[SRF87]. This tackles a problem with the
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Figure 7.6: Space Decomposition Using an R-tree

conventional R-tree structure, in that non-leaf, container rectangles may over-
lap. Ine�ciencies may therefore arise when searching for objects as the search
may need to be performed in more than one subtree, even though the object



66 CHAPTER 7. LOCATION SERVICE DESIGN

will only be found in one of them. The R+-tree does not permit overlapping
container rectangles. It achieves this by decomposing object MBRs if necessary.
As Samet[Sam88] describes, this results in an increase in the height of the tree,
but searching times are decreased. However insertion times are increased as an
object may have to be decomposed and inserted into many subtrees.

7.3 Location Service Core

Figure 7.7 illustrates the core of the location service.
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Figure 7.7: Basic Architecture of the Location Service

A single record is held for each object, which holds the last reported location of
the object. To ensure high performance, records are held in main memory and
are never written to a secondary store. The durability of data is not ensured
therefore in the event of a system failure. This is acceptable because:

� A single record is held for each object. Location data is highly dynamic
and therefore the lifetime of a record is short.

� The location service can request information stored at location event ser-
vices at initialisation.

� It is estimated that a single location record, together with an associated
index entry, requires approximately 200 bytes. With the continuing fall in
the price of RAM it is realistic to expect hundreds of megabytes of RAM
to be available, so enabling millions of objects to be stored.
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7.3.1 Indexing

Searching may take place by spatial area or object name. Two types of index are
used to support this. A standard R-tree is selected to support spatial searching
for the following reasons:

� Direct mapping between location service object representation and index
primitive (MBR);

� direct support for range queries;

� O(log n) complexity;

� its low cost insertion and deletion operations compared to, for example,
the quad-tree and also the R+-tree;

� self-maintaining.

Indexing by name enables the location of a object to be rapidly found. This is
straightforward as name data is uni-dimensional. Furthermore a sophisticated
self-maintaining structure such as a B-tree is not essential, as object names are
relatively static, compared to the highly dynamic spatial data. A hash index is
selected and an appropriate hashing function determined which provides good
data distribution with a wide variety of names.

Both the R-tree and hash indices are held in main memory.

7.3.2 Coordinate Systems

The location service uses a single, three-dimensional Cartesian coordinate sys-
tem. This enables all objects to be available in a search without the need for
any internal coordinate transformations. The origin of the coordinate system
will be at some reference point in the physical spatial domain, for example, the
bottom corner of a building. It is not important where this actually is, provided
an application needing to interpret object coordinates has access to this origin
position.

Physical objects are represented using the three-dimensional equivalent of a
rectangle, a cuboid, de�ned using two (x; y; z) coordinates. These represent the
cuboid's opposite corners.

7.3.3 Interfacing to Location Sources

Each source of location information must be interfaced to the location service.
This interface translates from the representation of location used within the
location source to the canonical form used in the location service (section 6.2.1).
Coordinate system transformation is also required. For example the Active
Badge location service gives locations in terms of containment within an infra-
red zone. The interface therefore requires knowledge of the extents of infra-red
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zones expressed within the single coordinate system used by the location service.
Also each interface must have knowledge of the dimensions of the objects being
located and knowledge of the positions of sensor devices on each of these objects.
Figure 7.8 shows the components of a typical interface.

devices

Interface

Details of location source
coordinate systems

positions of location

Location Source

Location Service

Object dimensions and

Figure 7.8: Location Service Interface

The databases holding coordinate system and object dimension information
may be provided by any convenient mechanism, such as a general purpose
DBMS. The maintenance of these will typically be a task carried out by a
system administrator on a periodic basis. The mechanism used for interfaces
for the Active Badge and ultrasound location sources is a disk-resident at �le
with a CORBA interface.

7.3.4 Performing an Update

When an object is seen by the location service for the �rst time an insert occurs.
An object record is created and an entry made in the hash and R-tree indices.
Thereafter, each time the object is seen an update is performed, replacing the
current object record with the new data. This update is performed as follows:

1. Find the object's current record using the name as a key into the hash
index.

2. Use the current indexed MBR to perform a deletion from the R-tree.

3. Update the object record.

4. Determine the new indexed MBR by adding the error to the object's
spatial extent.

5. Insert the new MBR into the R-tree.

This describes the basic updating process. Extensions which handle asyn-
chronous query evaluation will be described below.
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7.4 Representing Orientation

Section 6.2.4 outlined the way in which the orientation of objects may be repre-
sented and used. The approach to orientation taken here is one that �ts closely
with the axis-aligned MBR model of object representation presented so far.

Physical objects can be considered to have one or more active sides. One
of these sides is typically oriented towards another object when interaction is
taking place. Examples of active sides are the front of a person or the side of a
monitor containing the screen; a chair with a back may have four active sides
(considering three-dimensions), the back and bottom excluded.

Consider �gure 7.9. This illustrates a set of objects within a room, represented
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Figure 7.9: Active Sides of Objects

as before with MBRs. The active sides of each object are shown by bold lines.
Each object has a single active side, apart from b which has all sides denoted
as active.

An active side can be represented by two points. This encodes in two-dimensions
a line and in three-dimensions a plane. By itself this enables determination
of the axis along which an active side is oriented, but does not indicate the
direction along this axis, positive or negative. To enable determination of this,
the opposite side to the active side is also represented.

Now consider �gure 7.10. The shaded area contains those objects which may
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Figure 7.10: Determining Facing Objects
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be considered to face the target object X. A facing object must �rstly have an
active side aligned on the same axis as an active side of the target object within
the shaded area. Objects b, c, d and e qualify. The direction of each object
must also be then examined. The direction of the active sides of objects b and
e, within the shaded areas, are the same as X and are therefore not facing. The
direction of objects c and d are opposite to that of X and therefore do qualify
as facing objects.

The spatial area in which to examine for facing objects can be determined in a
number of ways. The strategy used in �gure 7.10 is to examine an area bordered
on one axis by the active side and extending to the limits of other axes. An
alternative and stricter policy is illustrated along with the original method in
7.11.
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Figure 7.11: Alternatives for Facing Area

This stricter method ensures only those objects which are directly facing the
target object are found. The decision on which method to use can be left to
the application which can specify a choice when initiating execution of a query.

7.4.1 Expressing Orientation

The orientation of an object is expressed relative to the orientation of a target
object. Primarily, applications are interested in whether objects are facing the
target object. An application will receive an enumerated type for each object
describing how the object is oriented with respect to the target object. The
value of this enumerated type may be one of the following:

1. facing: any active side of the object is oriented on the same axis, and
directed in the opposite direction, relative to any active side of the target
object.

2. not-facing: condition 1 does not hold and the object has an active side.

3. unknown: the object has no active sides.

Here, only those objects facing the target object are determined. By extending
the paradigm it would be possible for other types of orientation to be expressed,
for example above, below and behind.
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7.5 Query Evaluation

The location service provides rich spatial querying capabilities, in particular
the asynchronous monitoring of spatial regions.

7.5.1 Spatial Queries

To execute a spatial query an application provides a rectangle and a ag in-
dicating whether intersection or containment should be used as the selection
criteria. The rectangle is used to index the R-tree. The list of object records
with an indexed MBR which intersect, or are contained within, the search rect-
angle are returned to the application as a result. These are ordered with respect
to distance from the centre of the search rectangle.

The application may also submit a �lter which the location service applies to the
query result. This is used in the same manner as the event templates described
in chapter 5. In this context it may be used, for example, to �lter records which
have a location error above a certain threshold.

Proximity Query

A spatial query can also be submitted, relative to a target object. Instead of the
application submitting a rectangle de�ning the space within which the search
should take place, it submits a maximum distance in each dimension.

The location of the target object is �rstly found and its centre point calculated.
The search extent is then determined using this centre point and the application
supplied distance. The error in the location of the speci�ed object is also taken
into account by the addition of this to the search extent. The search is then
executed by searching the R-tree with the resulting rectangle.

After the set of objects intersecting the spatial extent has been found, the
orientation of each one of these objects relative to the target object can be
determined. Firstly, the orientation region containing potential facing objects
is calculated. This is dependent upon the policy selected by the application.
Each object is then examined in turn:

� If the object has no active sides it is denoted unknown.

� An object is denoted facing if the following two conditions hold:

1. If at least one of the object's active sides intersects the orientation
region.

2. If at least one of these active sides lies on the same axis as the target
object's active side and the direction of the active side is opposite to
that of the target object's active side.

� If not yet denoted the object is now denoted not-facing.
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This process is repeated for each active side of the target object. The result
of this is that each object originally found in the spatial search now has an
orientation associated with it, relative to the target object.

Registering a Spatial Query

To provide asynchronous query capability an application can register interest
in a region of space. This is a powerful technique, enabling the location service
to notify the application whenever an object is seen intersecting or contained
within this space.

The application submits to the location service a rectangle describing the region
of space, a containment/intersection ag, an optional event template and a call-
back handle. A unique identi�er is returned to the application which it can
use at a later time to de-register. A search is immediately performed within
this space and the object records satisfying the search are returned to the
application. In addition the location service creates a search entity consisting
of a unique identi�er and the search rectangle. The search entity is distinguished
by its type. The search entity's rectangle is inserted into the R-tree.

These search entities are used in the following way. When an object's position
is updated, the MBR representing its current location is �rstly found. A search
then takes place to �nd those search entities intersecting, or contained within
this MBR. Similarly, after the MBR representing the new location has been
inserted into the R-tree, a search is again performed to �nd those search entities
intersecting or contained within this new MBR. Two lists of search entities now
exist. The �rst is used to inform applications that the updated object has left
the speci�ed spatial area. The second is used to inform applications that the
updated object has entered the speci�ed spatial area. To prevent unnecessary
call-backs the application associated with the search entity is only informed
once if an object intersects a spatial area before and after an update. This
search entity mechanism provides a simple and e�cient way of implementing
event-driven spatial searching.

Registration of a proximity query is also supported. The search entity is de-
termined by the centre point of the named object, the error in the object's
location and the application provided distance. This is then inserted into the
R-tree and call-backs take place as described above. In addition the search
entity is re-inserted whenever the location of its bound object is updated. The
new search entity will then intersect or contain a new set of objects. These are
determined and the application informed.

7.5.2 Name Queries

An application may wish to �nd the current location of a named object. It
submits a name and type to the location service. This (name; type) pair is used
as a key into the hash index previously described. The index returns a pointer
to the object's record which is in turn returned to the application as the result.
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Name Query Registration

An application may be interested in being informed whenever the location
record for a named object is updated. It therefore registers with the loca-
tion service and provides a call-back handle for the location service to store and
later invoke. The current record for that object is returned along with a unique
identi�er which the application can use later to de-register. The call-back is
then amended to a list of such call-backs attached to the object. When the
object record is updated the call-backs associated with it are invoked with the
contents of the new record.

7.5.3 Summary

Figure 7.12 summarises the relationship between object records, bound name
queries, bound proximity queries, search entities, and the R-tree index.

Entity
R-tree
index

Object

Record

call-back

list of
proximity
queries

list of name queries

Application

Search

Search

Entity

Figure 7.12: Relationship of Indexed Object Records

7.6 Representing the Environment

The term environment is used to describe static parts of a typical spatial do-
main, such as walls, oors, doors, windows, stairs etc. The layout of buildings
may change but does so infrequently.

By representing the environment, the functionality of the location service can
be extended and further types of query answered such as:

� what objects are within room R?

� what is the distance between rooms R1 and R2?

� what objects are within 10m walking distance of object x?

� is the screen visible from location L?
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Here, a method of representing rooms and the connections between these rooms
is presented.

7.6.1 Representation of Rooms

Arti�cial human environments, for example homes and o�ces, are typically
made up of a set of interconnected rooms. These may vary in size - some may
be small, others may be considered \open-plan". However constructed, the
design inuences the context-aware environment in terms of the way people
operate, particularly when interacting with a physical object.

Consider the following scenario, illustrated in �gure 7.13.

s

C

P

r
A B

x

Figure 7.13: Necessity for Clipping

Two rooms, A and B, and a corridor, C, are depicted. Person P is currently
within room A. An application wishes to know those objects within a distance
x of person P . The MBR approximation to this query is shown by the dashed
rectangle. If this query is evaluated as previously described, objects r and s are
both returned from the search.

At �rst sight this result is satisfactory. However the wall between rooms A
and B prevents the objects P and s interacting. An application may quite
reasonably expect the system to take account of this restriction. In fact the
requirement that physical barriers are handled during the evaluation of a query
is the general case for physical objects, as it can be assumed that physical
interaction is the aim. Non-physical objects however, such as radio �elds, are
not inhibited by walls and therefore in this case no account of such physical
barriers is required.

Clipping

A solution to this problem is to ensure the search is restricted to within the
container formed by the room. Clipping is used. Clipping is a well known
technique, widely used in computer graphics and windowing systems. The basic
idea is that given two geometric shapes, one is clipped to the other. Typically
the shape used to clip is a rectangle, as illustrated in �gure 7.14.

If clipping is applied to the example in �gure 7.13, then P 's search extent will
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Clip

Figure 7.14: Clipping in Practice

be clipped to the wall between A and B. The result of this query will not
therefore include object s. Whether clipping is applied or not can be speci�ed
by the application when submitting a query.

Clipping can also be applied to object spatial extents. This ensures that an
object with a positioning error, perhaps positioned close to a wall, does not
appear within two containers at the same time. Clipping of an object's extent
is applied when the position of the object is being updated, prior to MBR
insertion into the R-tree index.

Clipping may add signi�cantly to both the algorithmic and computational com-
plexity of the system. However, as will be described, by restricting the repre-
sentation of rooms to collections of rectangles, the resulting clipping algorithms
can be made as e�cient as possible.

7.6.2 Internal Representation

The spatial extent of a room is represented by a set of non-overlapping rect-
angles. This enables an e�cient clipping algorithm to be used. In most cases
a single rectangle can be used to represent a room. However in the case of
a non-rectangular shaped room it can be approximated with more than one
rectangle. Figure 7.15 shows an example decomposition.

Figure 7.15: Use of Rectangles to Approximate a Convex Polygon Shaped Room

The container rectangles are stored in a separate R-tree index within the loca-
tion service. Containers are not stored in the main index, along with the object
extents, as containers are not required to be returned when a spatial search is
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executed. A separate structure speeds up access to the containers.

When a query is submitted clipping can be speci�ed. The query search extent
may straddle several containers. To decide which container the extent should
be clipped to, the extent's centre point is determined. It is then straightforward
to determine which container holds this point. This container is then used to
clip the search extent before searching takes place.

Where multiple rectangles represent a container clippingmust take place against
each one. This results in a search for each component rectangle. A simple nam-
ing scheme facilitates the cross-referencing of rectangle components. For exam-
ple the centre point of the spatial extent may be contained within `Au501:2;5'.
`Au501' indicates the container name (normally the name of the room). The
su�x `:2;5' indicates that this is the second rectangle of �ve. A hash index
allows the quick retrieval of other container components. Clipping and search-
ing may then take place on each component. The objects returned from each
search are grouped together.

7.6.3 Searching by Container Name

An application can specify a search, providing a container name as a key. The
container is then found and a search within this takes place. In this way an
application can ask \what objects are in this room?", which is convenient and
intuitive.

7.6.4 Communication Between Containers

The representation of containers allows the clipping of search extents leading
to better support for physical objects. This is an important result. However
containers are rarely totally closed but are joined together. This communication
is typically provided by a doorway.

Consider �gure 7.16. This shows part of the CL, namely oor 5 of the Austin
building. Floor 5 consists of two rooms, 501 and 502, and a short corridor that
is termed 5-landing. Rooms 501 and 502 have doors leading to 5-landing. Three

A

501

502 5-landing

Figure 7.16: Austin Building, Floor 5
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containers are constructed, one for each room. Each container is represented
by a single rectangle.

The unclipped query extent is shown by the dashed rectangle. As the centre
of this extent is within 501, clipping reduces this to a search extent wholly
within 501. The object A will therefore not be returned by the query evalua-
tion. To enable queries to extend through room interconnections, a new spatial
entity is introduced which represents these points of interconnection between
one container and another.

Junctions

Room interconnections are represented by junctions. These are positioned at
the borders between containers and are the only type of object that may si-
multaneously be within two or more containers at the same time. Figure 7.17
shows oor 5 with junctions added. In a three-dimensional system junctions

Junctions501

502 5-landing

Figure 7.17: Floor 5 with Junctions

are two-dimensional. Typically they will be the width and height of a doorway
but have no thickness.

Junctions are inserted into the main system R-tree at initialisation. When a
query is executed a junction may be returned as a result. If the application has
speci�ed that searching should be extended, junctions are interpreted and a
new search takes place in the adjoining container. The objects found from this
new search are then grouped with those already found. The search continues
until no new junctions are found.

This results in a search based upon \walking distance" and user accessibility.
The search area is repeatedly reduced based upon the distance between the
centre of the search area and the position of the junction.
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Search Algorithm Detail

The junction search algorithm is given an initial search rectangle S. It operates
as follows:

1. Determine container C which holds the centre point of S.

Clip S to C resulting in Sc.

2. Search R-tree index for those objects that intersect/are contained within

Sc. Add objects found to result set.

3. For every junction J found in search:

(a) If J is a member of the set of junctions already seen, stop.

(b) Add J to junction set.

(c) Determine the centre point of intersection between J and S.

(d) Construct new search rectangle Sn based upon Sc and the position

of J.

(e) Determine containers that J intersects.

(f) Recursively invoke search algorithm with Sn.

This algorithm is illustrated in �gure 7.18.
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Figure 7.18: Searching using Junctions

Rooms and corridors are depicted by solid lines, and search extents by dashed
lines. The original search extent is labelled A. Its centre is at point 1. After
clipping, the search is conducted and a junction is found, centred at point 2.
r is the distance in one-dimension between points 1 and 2. s is the size of
the original search extent in the same dimension. The size of the new search
extent is calculated by subtracting r from s. This is done for each dimension.
A search is then conducted using the resulting search extent, B. This is done
in each of the containers in which the junction exists. In the second search,
another unseen junction is found, centred at point 3. A new search extent is
constructed, C, and another search is executed.
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7.6.5 Environment Database

Information about containers and junctions is considered to be part of the
static environment. As such, responsibility for maintaining this information
will typically lie with a system administrator, and updated when, for example,
a room is partitioned forming two smaller ones. Updates may be facilitated by
the use of a graphical tool.

Two databases are maintained, both with CORBA interfaces, to allow the lo-
cation service to initialise itself at start-up. Sample �les which provide this
support are shown in appendix B.

7.7 Application Interface

Location updates and synchronous and asynchronous search queries are ac-
cessed through CORBA interfaces. Here, three of these interfaces, de�ned using
IDL, are described.

7.7.1 Update Interface

long update(in cuboid_object object_record, in long clipping_flag);

This interface is used by location sensor interfaces to update an object's posi-
tion. cuboid object is a composite data type consisting of:

� identi�er - the object's name;

� type - the object's type;

� location - consisting of two points together de�ning a cuboid. This rep-
resents, in three-dimensions, the MBR of the object's spatial entity;

� error - a single point representing the maximum error in each dimension;

� time-stamp - an integer representing the time at which the location sight-
ing occurred.

clipping flag indicates whether the object's MBR should be clipped prior to
its index insertion.

7.7.2 Search by Name Interface

long location-of(

in string identifier,

in string type,

out cuboid_object object_record,

out string container_id

);
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This interface (described in section 7.5.2) enables the return of the location of
the object with name identifier and type. The latest record for the object
is returned in object record with also the name of the container the object is
currently within.

7.7.3 Registration Interface

long event-spatial-search(

in cuboid search_area,

in long clipping_flag,

in long enter_leave_flag,

in long contain_intersect_flag,

in long orientation_area_flag,

in search_callback callback_object,

out cuboid_object_seq current_objects

);

This interface (described in section 7.5.1) takes a search area and inserts a
search entity into the R-tree. This search area is monitored and each time an
object enters or leaves the search area the location service invokes the call-back
provided by the application.

The interface takes as parameters:

� search area - a cuboid specifying the extent of the search object;

� clipping flag - should clipping to a container be applied to the search
area;

� enter leave flag - should the application be informed only when a new
object enters or leaves the spatial area;

� contain intersect flag - whether objects should just intersect or be
wholly contained within the search area;

� orientation area flag - how the spatial area to search for qualifying
active sides is to be calculated;

� callback object - a reference to a CORBA object used to perform call-
backs;

� current objects - this is an array (CORBA sequence) of objects inter-
secting the spatial area at the time of registration.

7.8 Summary

The design and implementation of a location service has been described. Each
physical object is represented using a simple geometric shape, a three-
dimensional, axis-aligned, cuboid. This provides, in most cases, a su�cient
approximation to the size and location of a real object and allows the use of
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simple, and therefore e�cient, manipulation algorithms. This will ensure per-
formance requirements are met. Approaches to implementation were described
and a lightweight method adopted using an R-tree index. The process of query
evaluation was then detailed. Two aspects of environment representation were
also discussed and extensions made to the system to allow querying to take
account of this representation. Finally aspects of the CORBA application in-
terface were described.

The following chapter presents an evaluation of the location service in terms of
functionality and performance.
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Chapter 8

Location Service Evaluation

This chapter evaluates the location service, �rstly by case-study to assess its
capabilities, and then quantitatively by measuring its update and search per-
formance.

8.1 The Location Service in Use

The location service should be capable of representing a realistic situation and
supporting context-aware applications. Its ability to support the following will
be shown:

� Location information integration: multiple sources of location information
must be supported.

� Environment representation: the static environment must be adequately
represented.

� Applications support: the asynchronous monitoring of spatial areas and
other query facilities must be available.

Evaluation will consist of a worked case-study, typical of the targeted system
domain. The rooms and corridors of oor 1 at ORL are encoded using contain-
ers and junctions. Three location systems are used to provide the positioning
of static and mobile objects. Objects and rooms are represented in three di-
mensions.

8.1.1 Representing the Location Domain

Floor 1 of ORL is illustrated in �gure 8.1, annotated with room names. This
plan has been derived from original architectural plans. The coordinates of
rooms are converted to metres and are relative to a �xed point on the building.

83
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Figure 8.1: Floor 1 of ORL

Containers

Rooms are represented by containers, which are axis-aligned cuboids. Figure
8.2 shows the containers required to represent the rooms.
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Figure 8.2: Floor 1 Containers

Most of the rooms are represented by a single container. The exceptions are
R107, which requires two containers and the Hall which requires three. A
single container is used to represent the oor itself. For reference the container
information for oor 1 is presented in appendix B.

Junctions

Junctions are used to represent the interconnections between rooms. In the
case of oor 1, all rooms except one are connected to the Hall. The exception is
room R107a which is connected to R107. Each room has a door and therefore
the positions and dimensions of doors give the correct positions and dimensions
of junctions. Junction positioning is shown, with containers, in �gure 8.3.

The junction information for oor 1 is also presented in appendix B. This
completes the representation of oor 1.
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Figure 8.3: Floor 1 Junctions and Containers

8.1.2 Location Sources

Three sources of location information are used:

Active Badges: the system is deployed throughout oor 1. Users and some
types of equipment are equipped with Active Badges.

Ultrasonic Badges: R107 is partially covered by the ultrasound positioning
system.

Manual Measurement: positions of equipment which move rarely can be
measured manually.

Any object has its location reported by at most one of the above systems. The
interfaces of the system to the location service are now described.

Active Badge System

R107 R108 R110

R112
R113

R114

R107a R105

Hall Hall

H
al

l

R109 R111

R101
R104 R103R106

R107

Figure 8.4: Floor 1 Infra-red Zones

Recall that each Active Badge receiver de�nes the extent of an infra-red zone.
Most rooms can be represented with a single IR-zone. To cover a large, or
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irregularly shaped room, a number of infra-red zones are required. The approx-
imate IR-zones formed on oor 1 are shown in �gure 8.4 by dotted rectangles.
These zones are approximated to cuboids for representation within the location
service.

These IR-zones dictate the level of granularity of information obtained from
the Active Badge system. The location service requires an input in the form
of a cuboid, and error. The CALAIS Active Badge system interface derives a
suitable position of an object from the infra-red zone that the object is seen
within. If it is seen in more than one zone concurrently, an arbitrary choice of
zone is made. The object's position is de�ned to be the centre of the zone. The
appropriate cuboid is formed from this and the object's dimensions, assuming
that the sensor is positioned at the centre of the object. The error is equal
to half the size of the infra-red zone, minus the extent of the object. This is
illustrated in �gure 8.5.

error x

Object

error y

Extent of Infra-red
Zone

Extent of

Figure 8.5: Error Derived from an Infra-Red Zone

The dotted rectangle indicates the extent of the cuboid indexed, equivalent to
the size of the infra-red zone. The location service therefore receives sightings
of objects which are typically positioned at the centre of a room, but with an
error implying the object may have been seen anywhere within that room. The
cuboid which is indexed for each object has therefore the same dimensions as
the infra-red zone it is seen within.

Location Service

CALAIS
Badge Service

Insertion

IR Zone

Database Lookup

Database

Lookup

Cuboid and Error
Conversion to

Object Dimensions

Badge Events

Figure 8.6: Active Badge Interface

Figure 8.6 shows schematically how the Active Badge system is interfaced to
the location service.



8.1. THE LOCATION SERVICE IN USE 87

Ultrasonic Positioning

The ultrasonic system is in prototype form and therefore only covers a small
area of oor 1, speci�cally part of room R107. Nevertheless, because it provides
�ne-grain location information, it forms an important part of the evaluation.

Ultrasound badges are available for tagging people or equipment. They enable
a three-dimensional position to be calculated. The cuboid expected by the
location service is therefore created based upon this position and the size of the
object. The badge location is again assumed to be at the centre of the object.
The error is constant for each sighting and is 10cm in each dimension. Figure
8.7 shows the relationship between the location sighting, the dimensions of the
object and the error.

(10cm)
error y

error x (10cm)

Figure 8.7: Error Associated with an Ultrasound Badge Sighting

The dotted rectangle indicates the extent of the cuboid actually indexed.

Figure 8.8 shows how the ultrasound system is interfaced to the location service.
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Figure 8.8: Ultrasonic Badge Interface

Manual Measurement

For evaluation purposes it is helpful to include the location of some objects
which can neither be tagged by an Active Badge, or by using ultrasound. The
positions of these are determined either by temporarily positioning an ultra-
sound badge next to the object, or by the use of a electronic tape measure.
Orientation of some devices is also determined.
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The locations of objects determined in this manner are inserted into the location
service once only, when it is �rst started. A location error of 10cm is used to
allow for manual measurement errors.

8.1.3 Database Resources

Object Dimensions Database

A database is maintained holding details of object dimensions. A lookup is
performed using a CORBA interface, by the location source interfaces, prior to
an update to the location service. The object dimensions retrieved are used, as
previously described, with the location position error, to determine the actual
cuboid to be indexed for the object.

Object Capabilities Database

Another interface is provided to a database holding information concerning
the capabilities of equipment. This enables an application to determine those
types of equipment which are capable of delivering particular functionality.
This database is simple in format and consists of a set of name, type and
capability string pairs. The string encodes a set of capabilities delimited by
commas. By using the interface to this database an application can determine,
for example, if an item of equipment is capable of displaying a teleport session.
The application submits the name and type of the item of equipment, and a
string, such as `teleport'. It is then determined whether this string matches a
substring within the appropriate item's capability list and this result is then
communicated to the application.

8.1.4 Query Evaluation

The aim of the location service is to provide support for context-aware ap-
plications. To illustrate its e�ectiveness a set of example applications are now
presented. The operation of each application is described, together with the ad-
ditional information resources required, such as the object capabilities database.
The location service interface which the application uses in each case is indi-
cated.

1. Where is object with name X and type Y ?

Using the interface location-of, an application can specify a name and
type of object and be returned the coordinates of the cuboid specifying its
size and position, the container in which the cuboid is positioned, and the
error in the cuboid's position. The location service searches by name and
type and returns the time, location, error and container of the object's
last sighting.
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For example:

`bean,NT' was last seen at time 872270257 576272

location: (26.85, 19.1455, 1.35), (27.15, 19.4455, 1.65)

container: R101

error: 1.21364, 2.00909, 1.35

2. What are the names and locations of objects in room R?

A spatial query is required. The application must �rst �nd the coordi-
nates of the containers that represent the room. It obtains these from
the environment database described in section 7.6.5. It then uses the
spatial-search interface to search each of the room containers in turn.
The result might be:

2 objects returned

`parsnip,DOS' was last seen at time 872280547 849660

location: (13.7591, 25.125, 1.35), (14.0591, 25.425, 1.65)

error: 0.940909, 1.175, 1.35

`okra,solaris' was last seen at time 872280797 252324

location: (13.7591, 25.125, 1.35), (14.0591, 25.425, 1.65)

error: 0.940909, 1.175, 1.35

Such a query may be issued on a regular basis by a system administrator
to maintain an inventory of equipment. By examining the time-stamps it
could also be used to determine whether any people were currently using
a room.

3. Keep me informed of the locations of objects of type `person'.

The application registers interest in changes in location of the object type
person, using interface event-location-of. This is done by providing
an appropriate object template and a call-back interface reference. Each
time an object of this type changes position, the application is informed.
This is the asynchronous equivalent of example 1. Such a query might be
used by a graphical viewer, displaying current locations of people.

Sample output may be:

`gjn,person' was last seen at time 872271001 676772

location: (26.85, 19.1455, 0.0), (27.15, 19.4455, 2.0)

container: R101

error: 0.1, 0.1, 0.1

then at a later time:

`jdp,person' was last seen at time 872271002 453234

location: (19.244, 18.96, 0.0), (19.744, 19.46, 2.0)

container: R111

error: 0.1, 0.1, 0.1
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4. Where is the nearest object of type `printer' to the current location of

person `gjn'?

This is a relative proximity query and uses the proximity interface. The
application must specify an object name and type, and a spatial region.
This will be in the form of an x, y and z extent relative to the current
location of person `gjn'. This will determine the maximum range over
which the spatial query will be executed.

Additionally the application must indicate using binary ags whether the
query should use clipping, junction traversal and whether the objects
returned should be wholly contained within, or just be intersecting, the
search area.

The nearest object can be found easily by the application as all the objects
satisfying the query will be returned in an array, ordered by distance
from the originating object `gjn'. This type of query determines relative
orientations, the target object being `gjn'. However in this example no
object active sides have been encoded, leading to all orientations being
described as `unknown'.

Figure 8.9 shows the positions of printers on oor 1. Consider �rst that
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Figure 8.9: Printer Locations on Floor 1

the application is indiscriminate and wishes the query to cover most of
the oor. An (x; y; z) region of (�15m;�7m;�3m) is chosen. Such a
search region, centred at the position of `gjn' is partially shown.

(a) With Clipping. The query returns the following:

`nuclear,printer' was last seen at time 872532618 142974

location: (4.5, 19.5182, 0.7), (4.9, 19.9182, 1.1)

container: R107;2

error: 0.1, 0.1, 0.1

orientation: unknown

As clipping is required, the centre of the search region is found. This
is of course at the position of `gjn'. The container enclosing `gjn' is
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then determined. The search region is clipped to this container and
the search then executed. In this case in fact, the container enclosing
`gjn' is one of the three (see �gure 8.2) which represent room R107.
This situation is recognised, the other containers determined, and a
clipped search performed within each.

(b) Without Clipping. On this occasion the query returns the following:

`neutron,printer' was last seen at time 872534028 545454

location: (10.5, 19.56, 0.7), (10.9, 19.96, 1.1)

container: R108

error: 0.1, 0.1, 0.1

orientation: unknown

`nuclear,printer' was last seen at time 872532618 142974

location: (4.5, 19.5182, 0.7), (4.9, 19.9182, 1.1)

container: R107;2

error: 0.1, 0.1, 0.1

orientation: unknown

`phaser,printer' was last seen at time 872534026,175754

location: (24.0909, 23.3273, 0.5), (24.4909,23.7273,0.9)

container: F1HALL;2

error: 0.1, 0.1, 0.1

orientation: unknown

The printer `neutron' is the nearest to `gjn', indicated by it appearing
�rst in the returned array of results.

(c) With Junction Traversal. Now consider if the application wishes to
extend the search to other containers but retain clipping. In this
case the application is interested in printers within approximately
15m traversal, or \walking distance", from `gjn'. The following is
returned:

`nuclear,printer' was last seen at time 872532618 142974

location: (4.5, 19.5182, 0.7), (4.9, 19.9182, 1.1)

container: R107;2

error: 0.1, 0.1, 0.1

orientation: unknown

`neutron,printer' was last seen at time 872534028 545454

location: (10.5, 19.56, 0.7), (10.9, 19.96, 1.1)

container: R108

error: 0.1, 0.1, 0.1

orientation: unknown

In this case the search, conducted using the algorithm described in
section 7.6.4, does not extend far enough to encompass `phaser'. This
is because the traversal distance from `gjn' to `phaser' is further than
the point to point distance.
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`nuclear' is the nearest printer in this case as it appears �rst in the
results array.

5. Inform me when object X is in room Y .

The application must give the location service a spatial region and a call-
back interface reference to be invoked whenever an object is seen in this
region.

For example, consider if the application wishes to know when person `gjn'
is seen within the room R106. Firstly the R106 container is looked-up in
the environment database. Then the region formed by this container and
a call-back interface reference are given to the location service together
with a template specifying the name and type of objects of interest.

Call-backs may occur as follows:

`gjn,person' was last seen at time 872544957 484152

location: (10.9182, 25.125, 0.0), (11.2182, 25.425, 1.80)

container: R106

error: 0.872727, 1.175, 1.35

and another 10 seconds later:

`gjn,person' was last seen at time 872544967 518234

location: (10.9182, 25.125, 0.0), (11.2182, 25.425, 1.80)

container: R106

error: 0.872727, 1.175, 1.35

8.1.5 An Extended Example - Promiscuous Teleporting

Context aware applications will often submit queries of the form:

Keep me informed of the objects within spatial region R, where R
is de�ned relative to the position of object A.

For example, inform me of all NT workstations within 1m of person `gjn'. In
this case the location service is given an object name and type, a relative search
extent of 1m on each axis, and a call-back interface reference. The interface
event-proximity is used. Every time an object sighting within 1m of `gjn' is
reported, a call-back with the object sighting is performed. Also, each time the
location of `gjn' is reported, the record for each object within 1m of the new
location is reported using a call-back. Relative orientations will also be given
expressed in the manner described in section 7.4.1.

This interface is used to build an application termed promiscuous teleporting.
Recall the teleport system. A user can move their X-based applications between
displays. This is done manually or under control of an Active Badge. As an
extension of this, a user may have a number of applications which they wish



8.1. THE LOCATION SERVICE IN USE 93

constant access to. Examples may include an e-mail reader, a Web browser,
an active diary and a weather indicator. The user would like such applications
to `pro-actively' follow them wherever they are and be displayed on the near-
est appropriate device. The performance of the teleport system is suitable for
supporting such a mobile application, typically taking less than 5 seconds for
materialisation to occur. This chapter discusses the location requirements of
such applications. Chapter 9 shows how further requirements for this applica-
tion can be satis�ed.

Basic Semantics

The basic semantics of promiscuous teleporting can be described as follows:

Whenever the user is within X metres of equipment capable of ac-
cepting a teleport session, materialise their promiscuous teleporting
session on the nearest display.

When no such display is available, de-materialise the teleporting
session, if it is not already de-materialised.

Each user has a promiscuous teleporting agent which uses the location service
to discover devices close to the user. It must then �nd out whether any of these
devices are able to accept a teleport session by using the equipment capability
database. Once a suitable device has been found, teleporting takes place. The
nearest device is used. If two devices are at the same distance, one is arbitrarily
chosen. If the orientation of a device is known, this is also used to determine its
suitability. If no such devices exist within the distance required, the teleport
session disappears from view until a device close enough is available.

How it Works

The agent �rstly registers interest with the location service in location events
occurring within Xm of the user. For example, 2m of user `gjn'. Most of oor
1 is not covered by ultrasound and it is desirable that the system is operable
over the whole oor. Taking this into account a maximum error of �3m is
speci�ed. Active Badge information may therefore be used. Equipment must
be within the same room as the user, therefore clipping is enabled. Junction
traversal is not enabled as `line-of-sight' proximity is required. Orientation
information is also returned, and where the orientation is known this can be
used to discriminate between equipment.

All equipment within the range from the user is reported. To �nd out whether
the equipment is capable of teleporting, the object capability database is con-
sulted. In this case the capability submitted will be the text string `teleport'.

More than one piece of equipment, capable of displaying a teleport session, may
be returned by a call-back. The items in the call-back are sorted by proximity -
the �rst one in the list is the nearest, and therefore by examining the list from
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beginning to end and choosing the �rst piece of equipment with the required
capability, the nearest piece of suitable equipment will always be chosen.

Each time the location of `gjn' is updated, a call-back occurs. Only those objects
newly intersecting the derived search extent are reported. Similarly, when an
object is no longer intersecting this spatial extent, a call-back is performed to
indicate this.

Promiscuous Teleporting in Operation

Consider the equipment setup illustrated in �gure 8.10. The extent of the
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Figure 8.10: Equipment Capable of Accepting a Teleport Session

ultrasound system is shown by the dotted rectangle.

`dasheen`, `chestnut' and `abalone' are workstation displays which can accept
teleport sessions. `dasheen' and `chestnut' are monitored using ultrasound.
Furthermore their orientation is also encoded, although for simplicity this is
done manually and not using multiple ultrasound devices. Each of these displays
has a single active side, shown in �gure 8.10 by a bold-line.

`abalone' is monitored using a badge. `arling' is a video-tile, a dumb graphics
terminal with a pen I/O device which can also accept a teleport session. `gjn'
is monitored using an ultrasound badge within R107, and an Active Badge
elsewhere. `gjn' has all six sides denoted as active, thereby allowing relative
orientation of `chestnut' and `dasheen' to be determined.

The user, `gjn', is moving from o�ce to o�ce on oor 1. As `gjn' enters the
proximity of any of the above devices his teleport session is materialised. For
`abalone' and `arling', this occurs when `gjn' enters R107a or R112, as both
devices are monitored using badges. In R107, �ne-grain location information is
available. Also the orientations of `chestnut' and `dasheen' have been encoded.
As `gjn' moves around the room he will be at times closer to `chestnut' or
`dasheen'. Due to the 3m error threshold, both display names will be reported
back but will be ordered in terms of distance from `gjn'. Furthermore relative
orientation information will be returned. In the cases where such information is
available and where the display is indicated to be facing, the teleporting session
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will be materialised. This will occur, however `gjn' is oriented, as all six sides
of the representative cuboid are denoted active. In cases where orientation is
indicated to be not-facing, the session is de-materialised. The shaded area in
�gure 8.10 indicates a region which is greater than 3m from either workstation.
When `gjn' is within this region the teleport session is also de-materialised.

8.1.6 Summary

This qualitative evaluation section has shown that the location service is capable
of delivering rich functionality to applications. The following capabilities have
been used:

� Representation of one oor of a typical o�ce domain.

� Integration of multiple sources of location information.

� Querying by object name and type.

� Querying by spatial region.

� Querying by spatial region, determined relative to a named object.

� Queries using clipping and junctions, enabling account to be made of the
static environment.

� Asynchronous monitoring of spatial regions.

8.2 Location Service Indexing Performance

The performance aims of the location service were previously described in sec-
tion 6.2.5. These can be summarised as follows:

� 500 updates performed per second;

� 2000 queries and call-back search entities held.

Evaluation of location service performance is presented in two parts. The R-
tree index is a key factor in determining performance. It is therefore examined
in isolation. Secondly, the location service is evaluated as a whole.

To briey summarise, an R-tree is an O(log n) structure, used, in three di-
mensions, to index axis-aligned cuboids. It is a derivative of the B-tree and
thus taken account into its design is the ability to operate e�ciently with a sec-
ondary storage medium such as disk. The implementation within CALAIS is
memory-resident. Experiments were conducted on a Sun UltraSparc, 168 MHz
machine with 4Gb of main memory. Code was analysed using a pro�ling tool
and where possible optimisations then performed. Timings were determined
using a Unix pro�ling timer, which measures the CPU time taken by a process
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and by the system on behalf of the process. Such a time is therefore indepen-
dent of other load on the machine. Each experiment was conducted 10 times
to allow standard deviations, plotted as error-bars, to be calculated.

8.2.1 Determining the Size of an Indexing Node

Consider the way in which an R-tree works. Each internal node holds a number
of records, n, making the tree an n-ary structure, where n is normally deter-
mined by the size of the internal record structure and the operating system's
page-size. This is to ensure that when a node is accessed, each record within
that node is read into memory from secondary storage for maximum e�ciency.
n determines the height H of the tree. H = logn(x) where x is the number of
objects indexed.

In a memory resident system paging is not an issue. However an appropriate
value for nmust still be determined. Consider the e�ect n has on the functioning
of the index. For a �xed number of records, as n increases in size, the height of
the tree decreases and vice versa. As navigation through the tree takes place,
entries within each node are examined sequentially. Thus as n increases in
size, the amount of computation at each node to determine which subtree to
navigate next is increased, and the amount of recursion in descending the tree is
decreased. Thus the value of n is a trade-o� between recursion and intra-node
computation.

The value of n which is most suitable will depend upon the particular machine
architecture and the e�ciency of its run-time system and language compilers.
To determine n for the target architecture, a number of objects, with randomly
chosen extents, are indexed. 1000 updates are then performed, and a mean
update time calculated. This task is performed for a range of values of n. The
results obtained are shown in �gure 8.11. This shows the results with 1000
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and 10000 objects in the index. Other index sizes were used but not illustrated
for clarity. In all cases the minimum update time was achieved when n = 5.
Similar results were obtained on a DEC Alpha machine running Digital Unix.
The performance of the R-tree in this case was maximised with n = 6. This
result con�rms that assertion that the optimal value of n is dependent upon
machine architecture.

All further results use the Sun UltraSparc machine and therefore a node-size of
5 is adopted for the remainder of this evaluation.

8.2.2 Object Density

Object density is de�ned as the number of objects intersecting a unit of space.
Consider, in three dimensions, if a 4 � 4 � 4 coordinate system is indexed and
each object within it has unit size 1 � 1 � 1. If 10 objects are present, each
randomly positioned, the mean density will be 10

64
= 0:156. In general the object

density is given by:

object density =
number of unit sized objects

coordinate system volume

As the number of objects increases, the density increases. As the coordinate
system size increases, the density decreases. The density may range from 0 to
I, where I is the number of objects indexed.

The object density will have an e�ect on the performance of the index. When
conducting a search, a cuboid is used as a search extent and all objects found
which intersect (or are contained within) this returned as a result. As the
object density increases, more objects will intersect any given search area. More
branches of the tree will therefore require descending, and the search will take
a longer time.

Now consider updates which involve a delete and insert. Recall that each in-
terior node holds a cuboid which contains those cuboids held in its subtree.
When searching for the record to delete, the currently indexed cuboid is used
together with the containment operator. A single unique path will therefore be
traversed, irrespective of the object density. The cost of the succeeding insert
is only dependent upon the height of the tree. Therefore update performance
will not be a�ected by the object density.

To justify these arguments some experiments are conducted. 1000 randomly
selected unit sized objects are indexed. 10000 searches and then updates are
performed. This experiment is repeated for varying object densities. The results
are shown in �gure 8.12. The graph clearly shows that as the object density
increases, the search time also increases. However changes in object density
have, as predicted, no e�ect on update performance.

It can be concluded from these results that the density of indexed objects has a
signi�cant e�ect on searching performance. To attempt to calculate the object
density within a deployed system, the estimate of 2000 objects within ORL
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Figure 8.12: E�ect of Object Density on Update and Search Performance

can be used. Assume each is on average 0:5m cubed. The dimensions of ORL
are approximately 30m � 14m � 12m = 5040m3. The mean object density is
therefore 0:4 objects per m3. This object density �gure will be used in the next
parts of the evaluation.

8.2.3 Index Size
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Figure 8.13: E�ect of Index Size on Update and Search Performance

The more objects are indexed, the greater the time taken to perform a search
or update. A constant object density implies that a large total spatial volume
is being indexed. Figure 8.13 shows how search and update performance alters
as the number of objects indexed increases. Unit sized objects and search areas
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are used, with an object density of 0.4. As expected the time taken for a search
and update increases as the index size is increased.

The R-tree index shows itself able to easily cope with large numbers of objects.
With 4096 objects, approximately 5000 updates or searches per second can be
performed.

8.2.4 Searching Performance

The �nal graph shown in �gure 8.14 shows the relationship between search
volume as a percentage of the total coordinate system volume, and search speed.
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Figure 8.14: Search Performance

At 100% every object indexed will be found by the search. At 50% approx-
imately half will be found. Two plots are shown, one with an index size of
1000, the other with an index size of 5000. The results �t with what may be
expected. In doubling the search volume the number of objects returned in the
search will approximately double. Not only will tree traversal time increase, but
also the time taken to assemble the resulting objects for the calling application.
Furthermore search times for an index size of 5000 are approximately �ve times
that for an index of size 1000.

Consider one of the ORL oor plans illustrated in section 8.1. Assume most
queries will be clipped to room containers. An estimate can then be made of a
typical maximum search percentage. Room R107 takes up approximately one
quarter of oor 1 and therefore 1

12
of the whole building. The resulting volume

is � 8%. With such a search volume and an index containing 2000 objects,
approximately 3000 searches per second can be performed.
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8.2.5 Summary

This section has provided an evaluation of the R-tree index used within the
location service. It has shown that indexing performance is dependent upon the
number of objects indexed, the density of those objects within the coordinate
system, and the size of the volumes typically searched.

8.3 Location Service Performance

This section will examine the performance of the location service as a whole.
The R-tree index is the heart of the system. However, the location service
is responsible for handling the registration and de-registration of queries, in-
dexing objects by their name as well as spatially, and performing event-driven
queries. All this is accessed by clients using CORBA interfaces. Performance
will therefore be lower than the raw performance of the R-tree.

Clients performing operations on the location service may be located on the
same machine, or on a di�erent machine communicating with the service over a
network. Evaluating the speed of a network is not of concern here and therefore
clients in this evaluation, whether performing an update or search, are located
on the same machine and therefore can communicate with the location service
using inter-process communication.

8.3.1 Updating

Updating of physical object positions is the basic function the location service
must support. Objects are updated by name. A name and type are submitted
with the new position. To update the index record associated with the object,
the system must delete the old record. For this the old position is required.
Firstly therefore, a search within the hash index is performed using the name
and type pair as the key. The record found is then used to perform a deletion
from the R-tree. The new position for the object is then inserted.

After the update has been performed, a search is executed to determine whether
any search entities intersect the object just inserted. If so, a call-back needs to
be performed.

To summarise, an update consists of the following operations:

1. Searching the hash index.

2. Deletion of old record from the R-tree.

3. Insertion of new record into the R-tree.

4. Search for search entities.

Figure 8.15 shows update and search performance as the number of objects
stored is altered. As before, an object density of 0.4 is used. Each object is of
unit size.
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Figure 8.15: Location Service Update and Search Performance

Search performance is considerably higher than update performance. This is
necessarily so as a search is a single operation compared to the four operations
required for an update, one of which is a search. Compare the update perfor-
mance for 4096 objects shown in �gure 8.15 to that shown in �gure 8.13 which
represents raw R-tree performance. The �gures are � 0:5ms and � 0:2ms re-
spectively. The additional cost of searching and updating the hash index and
performing a post-insertion search, as well as the CORBA interface overhead,
accounts for the di�erence in time.

8.3.2 Evaluating Queries

Figure 8.16 shows the time taken to perform an update with a set of unit sized
search objects registered with the location service. This illustrates the update
performance of the location service when, in the post-update search, search
objects are encountered and an application call-back is therefore required. Each
call-back executed here is terminated at the point at which communication
takes place with the appropriate application. Network communication cost is
therefore ignored.

The number of physical object extents is �xed at 4096. With an increasing
number of search extents registered, it it more likely that a post-update search
will encounter one or more search objects, thus causing a call-back to occur.
With 4096 search extents registered each update will trigger, on average, one
call-back.

Over 1000 updates can be performed per second, with 4096 search extents
registered. This result demonstrates that event-driven query evaluation, a fun-
damental aspect of the location service, is cheap to perform.
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8.3.3 Performance Conclusions

Recall that chapter 6 identi�ed the performance requirements of the location
service, when handling 2000 objects, to be:

� 500 updates per second;

� several thousand query evaluations per second.

The substantive conclusion which can be drawn from �gures 8.15 and 8.16 is
that the location service implementation meets, and exceeds, these require-
ments.



Chapter 9

Composite Event Management

This chapter presents a client-based approach allowing applications to more eas-
ily handle communication with event services. Motivations are �rstly discussed,
and a language suitable for the expression of composite events is proposed. This
is followed by a discussion of which individual event occurrences should be used
in the evaluation of a composite event. Methods of examining event state and
the integration of time events are also discussed. Aspects of an implementation
are described which proposes solutions associated with the distributed event
model.

Following this, a qualitative evaluation is made of the composite system pro-
posed. Performance indications are also made.

9.1 Motivations

A composite event is an asynchronous occurrence which is triggered

by the occurrence of multiple simple or composite events.

Many applications require access to two or more event sources. Consider an
application which wishes to execute an action when it receives an Active Badge
sighting and a workstation activity event for the same user, within a time period
of �ve seconds. The application must create one call-back interface for each of
the two event services. When call-backs occur, communication must take place
between the two call-back interfaces to ascertain whether both events have
occurred within the time limit.

The observation here is that to implement a conceptually simple application
is non-trivial. Also, the handling of multiple distributed event sources raises a
number of other issues including the naming of event services, distributed time
and network delays. Each application should not be expected to handle these
issues independently and this leads to the need for a generic set of composite
event services.

103
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9.2 Requirements

A system suitable for the handling and composition of events from multiple
sources must include the following facilities:

� Ease of use: an application's behaviour may be dependent upon two or
more event sources. Building an application using conventional means
is complex. Straightforward methods of registration, call-back and the
interrogation of event class attributes should be provided. Expressing a
complex composite event should be made simple.

� State lookup: each CALAIS event service stores state. Many applications
need access to this information, therefore integration of state lookups is
required. This facility can also be used to access database resources.

� Timers: the relative time that two events occur is important to many
applications. Interest may be expressed in knowing when an event a, then
an event b occurs, but only if b occurs within time t of the occurrence of
a. Provision must therefore be made for time events.

� Client or server based: a composite event system should be available as a
library, to be linked with an application at compile time. In this way the
computation associated with composite event evaluation is distributed.
In addition, a composite event service should be available to those appli-
cations which run on unsupported architectures, or do not have access to
the appropriate composite event library.

� Distribution issues: event services typically run on multi-tasking machines
connected to a local area network. A client of an event service is therefore
exposed to processing and network delays. Such delays may result in
events from di�erent services arriving at a client in an incorrect temporal
order. Furthermore di�culties are raised in producing a temporal order
as each machine has its own clock. Solutions to these problems need to
be provided.

9.3 A Language for Expressing Composite Events

A convenient way for applications to use event facilities and express event com-
positions, is to use a declarative language. This section proposes the basic
elements of such a language.

An example of a composite event (CE) expression is as follows:

badgeclick -> ABadge(A, B, C, D, E, 'SIDE');

This expression is given the name `badgeclick' and consists of the single event
class `ABadge', corresponding to the CALAIS Active Badge event service. This
event class takes six parameters. In this expression �ve parameters are variable
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names and the sixth a literal string. Generally an event class has the form
N(a1; : : : ; an) where N is the name of the event class and a1; : : : ; an are its
formal parameters where n � 0. The arrow, ->, is a follow-by operator and its
semantics will be explained below. The semi-colon terminates the expression.

If the evaluation of the CE expression is satis�ed, the evaluation is said to
accept. The result of the evaluation is the set of events which caused the CE to
accept. This is termed the event path.

9.3.1 Basic Operators

Basic operators of the CE language are now described. In the initial examples,
all event classes are shown with no arguments. If a is an event class, ta denotes
the time at which the event of class a occurred.

Follow-by

The follow-by operator is the most fundamental and important operator for
building composite event expressions. Consider the following:

eg1 -> a() -> b();

This expression is named eg1 and comprises a followed-by b. Follow-by expresses
a temporal relationship. The CE eg1 will occur if an event of class a and an
event of class b occur where tb � ta. Other classes of event are not considered
and play no part in the evaluation.

Each CE expression starts with a follow-by operator. By de�nition, the expres-
sion starts evaluation at time zero, and thus, in the above example, a() will
always match on the the �rst event of class a encountered. Such syntax allows
control over how events are processed, as will be explained further in section
9.4.

Disjunction

Disjunction can alternatively be termed exclusive or. It is denoted by a pipe,
|. For example:

eg2 -> a() | b();

eg2 will occur if an event a or an event b occurs. The result of an accepting
evaluation will be the event which occurs �rst.
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Conjunction

Conjunction can also be termed and. Conjunction is denoted by a caret, ^. For
example:

eg3 -> a() ^ b();

eg3 will occur when both events of class a and b have occurred. a may oc-
cur before b or vice versa. Conjunction can alternatively be expressed using
disjunction and follow-by:

eg3 -> a() ^ b() � eg3 -> (a() -> b()) | (b() -> a())

Without

The without construct is used to terminate a CE evaluation if a particular event
occurs. Without is denoted with a hyphen, -. For example:

eg4 -> a() -> b() - c();

eg4 will occur if an a is seen followed-by a b with no intervening occurrence of a
c, that is when ta � tb < tc. If an event of class c is seen between the occurrence
of a and b the evaluation is said to reject.

9.3.2 Operator Precedence

The precedence of operators within the CE language are as follows, highest
precedence shown �rst. Those grouped together have equal precedence and are
evaluated from left to right.

| (disjunction), ^ (conjunction)

- (without)

-> (follow-by)

Parentheses can be used to overcome operator precedence.

9.3.3 Variable Instantiation and Matching

Each event class has a set of attributes. Recall that a client, when registering
with an event service, can submit an event template. The service then commu-
nicates to the client only those events which match the template. The template
can include null attributes which act as wild-cards and which therefore match
against any value of an attribute.

A CE system must include facilities to enable an application to gain access to
these attributes. The solution is to allow the use of variables and literals within
CE expressions.
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Consider again the `badgeclick' example given previously:

badgeclick -> ABadge(A, B, C, D, E, 'SIDE');

The event class ABadge has six attributes. Five of these attributes are given
variable names, A to E. The sixth attribute is a literal, a string enclosed within
single quotes. The variable names are initially uninstantiated and are equivalent
to a null value. Any attribute values are therefore acceptable, which instantiate
the variables. The sixth attribute is a literal and must match the value of the
event attribute. Evaluation continues until a badge event occurs which matches
that speci�ed.

Variable Matching

Consider now the following CE expression, which monitors for user activity
from an Active Badge followed-by activity from the same user at a workstation:

useractivity -> ABadge(A, P, C, D, E, F) ->

WSactivity(X, Y, P);

Here, the variable P is of interest, appearing as the second parameter of ABadge
and the third parameter of WSactivity. For each of these event classes, P
represents the user-id of the person causing the event. This CE expression
�rstly matches upon a badge event from any user. It will then match upon a
workstation activity event, but only if the now instantiated contents of variable
P match with the user-id produced from WSactivity. Variables are scoped over
the entire CE expression.

The use of variables in this way o�ers a useful way of correlating between di�er-
ent events, reducing the number of CEs that are triggered and thereby reducing
the burden on the application to analyse event paths after an evaluation has
accepted.

An Example

eg5 -> a(X) -> b(Y) | c(Y) - d(X);

This means A, followed-by B or C, without an intervening D. This expression
is correct in terms of operator precedence but parentheses can be used for clarity
reasons. Using parentheses the above becomes:

eg5 -> a(X) -> ((b(Y) | c(Y)) - d(X));

All the event classes used in the expression take variables as parameters. At
the beginning of evaluation all variables are uninstantiated. When an event of
class a occurs, the variable X is instantiated with the corresponding attribute.
This attribute value is used in the monitoring of event class d. Concurrently
event classes b and c are monitored. The attribute of the one occurring �rst, so
causing the expression to accept, will instantiate the variable Y .
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9.4 Parameter Contexts

Parameter contexts were �rst described in [CM93] and the concept re�ned in
[CKAK94]. The aim is to overcome a problem with conventional composite
event detection. Consider the following CE expression:

eg6 -> a() -> b();

eg6 occurs when an event of class a is followed-by an event of class b. Consider
now the following event stream, where each succeeding event occurs at a later
time than its written predecessor. ni denotes the ith event of class n:

a1; a2; b1; a3; b2; a4; a5; b3; b4

Two a events, a1; a2, are seen followed-by a b event. At this point the evaluation
accepts. A question is raised: which event of class a should be used in the
composition? Put more generally, which component events of an event stream
should form the parameters (or event path) of a composite event? A exible
strategy is proposed here which allows the application itself to specify a method
for the evaluation of events and then enables the interrogation of the resulting
event paths.

In [CKAK94], �ve evaluation methods are identi�ed, termed contexts. A brief
description of these di�erences will su�ce here. In the most general case, termed
the unrestricted context, every possible event combination is created. The
above example would produce (a1; b1), (a2; b1), (a1; b2), (a2; b2), (a3; b2), (a1; b3),
(a2; b3), (a3; b3), (a4; b3), (a5; b3), (a1; b4), (a2; b4), (a3; b4), (a4; b4), (a5; b5); in
fact all instances of a() -> b() where ta � tb.

Contexts are introduced to reduce this large number of accepting evaluations.
A context describes which events should be used as constituents of a composite
event. If the recent context is used, three composite events would occur, with
the event pairs (a2; b1), (a3; b2), (a5; b3). In contrast, the chronicle context
produces the event pairs (a1; b1), (a3; b2), (a4; b3). The di�erence between the
two is that the recent context overwrites an event with a more recent one of
the same class, whereas the chronicle context uses the �rst event seen of each
class. Other types of context have also been described which provide additional
alternatives.

Applications are inevitably restricted if a single, or set of pre-de�ned parameter
contexts is used. To enable exibility another follow-by operator is introduced.

An Alternative Follow-by Operator

By default, the CE system described here uses the chronicle context. To add
the exibility required another follow-by operator is introduced, denoted by
=>. This allows multiple instances of the same CE expression to be evaluated
concurrently. To explain this process a set of variations of expression eg6 will
be used together with the event stream shown above.
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Consider �rstly eg6 itself which uses the -> operator only. The events forming
the resulting composite events can be expressed as follows:

eg6 -> a() -> b() results in:
(a1; b1)
(a3; b2)
(a4; b3)

This shows that three composite events result from the event stream. The use
of the -> operator allows only a single evaluation of a particular expression to
be active at any one time. Only when an evaluation �nishes can another start.

Now consider the following example which introduces the => follow-by operator:

eg7 => a() -> b() results in:
(a1; b1)
(a2; b1)
(a3; b2)
(a4; b3)

The => operator allows more than one evaluation of the CE expression to be
active concurrently. Evaluation proceeds in the following way. a1 occurs and the
�rst evaluation thread then monitors for an event of class b. Then, a2 occurs.
The => operator allows another evaluation thread to start. Two evaluations are
now active concurrently, both monitoring for an event of class b. b1 occurs and
is used in each of the active evaluations. Two composite events occur with the
event pairs (a1; b1) and (a2; b1). Another evaluation starts when a3 is seen.

a1

a4

a3

a2
b1

b1

state

b

b

2

3

Acceping state

=> follow-by

-> follow-by

intermediate

start state

Figure 9.1: Evaluation of CE Expression

This can more compactly be expressed with a state diagram expressing stages
of evaluation, as shown in �gure 9.1. This illustrates graphically how the eval-
uation progresses. When an event occurs, evaluation moves from one state to
another on a follow-by arc (labelled with the event that occurred). Multiple
=> operators may originate from a single state. Only one -> operator may
originate from a single state.
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Consider the next example, eg8 -> a() => b(). This produces four evalua-
tions:

a1

b1

3

2

b

b4

b

eg8 -> a() => b() results in:
(a1; b2)
(a1; b3)
(a1; b4)

This evaluation will never terminate, but will repeatedly accept when an event
of class b is seen.

The �nal variation is eg9 => a1 => b1. This produces 13 accepting evaluations,
forming the unrestricted context.

eg9 => a() => b() results in:
(a1; b2)
(a1; b3)
(a1; b4)

(a2; b1)
(a2; b2)
(a2; b3)
(a2; b4)

(a3; b2)
(a3; b3)
(a3; b4)

(a4; b3)
(a4; b4)

These examples demonstrate that the appropriate use of the two follow-by op-
erators allow the application exible control over which events are used in the
evaluation of a composite event.
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Conjunction Operator

The conjunction operator, ^, can be considered a macro as it is de�ned in terms
of follow-by and the disjunction operator. This expansion should be altered,
depending upon the follow-by operator used prior to the conjunction operands.

Therefore, for the => follow-by operator:

eg10 => a() ^ b() � eg10 => (a() => b()) | (b() => a())

This ensures the appropriate parameter context semantics are retained.

9.5 State Lookups

As described in section 5.3.3, each CALAIS event service stores a limited
amount of state regarding events it processes. It may not be possible, or suit-
able, for an application to wait for the next event of a particular class, and
therefore the ability to query this state is integrated into the CE language.

By pre�xing an event class name with the operator state, the event monitoring
request is modi�ed into a state lookup. For example:

eg11 -> a(X) -> state b(X);

The evaluation will wait for an event of class a to occur. It will then immediately
lookup the most recent event of class b. This lookup uses the same attribute and
parameter matching rules as for events. If the lookup satis�es the attributes
given, the evaluation accepts (as in the above example) or proceeds to the next
stage of evaluation. As state is used, the evaluation does not have to satisfy
the conventional time predicate, that tb � ta.

state c(A,B) where both parameters are initially uninstantiated, will return
the most recent event of class c with the variables instantiated. state c('xyz',

B), where one or more parameters are instantiated, will return the most recent
event which has matching attributes.

Although a state lookup can be used to replace any conventional event moni-
toring request, the semantics of the evaluation are altered. If the lookup is not
satis�ed the CE evaluation rejects, rather than remaining active until the event
expression is satis�ed.

Accessing Databases

State lookups can be used to access static, non-event driven database resources.
The database must have an appropriate interface providing the standard state
lookup facilities required by event services. This provides a simple and conve-
nient way to access databases from within a CE expression.
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9.6 Timers

As discussed previously, time is an important element in the management of
events. The time at which each constituent event occurs is part of the result
of each composite event. The application is therefore free to inspect these time
results and reject those composite event results which do not satisfy timing
requirements. However it is convenient if time constraints can be expressed
within a composite event expression.

To derive the types of timer required, state diagrams are used. These are
illustrated in �gure 9.2, where a represents a simple or composite event.

at

t

t

a

reject reject

3) 4)

ta

a

1) 2)

Figure 9.2: Types of Timer

1. There has been no a for time t.

If the timer expires, evaluation proceeds. If an event of class a occurs,
the timer is reset and another a is monitored for. The language notation
used to represent this is a(),t

2. This provides no extra functionality and is equivalent to simply monitor-
ing for a. No language support is therefore provided.

3. An a must occur within time t.

If the timer expires, evaluation of the monitoring thread rejects, indicated
by the reject state. Language notation: a() < t

4. An a must not occur within time t.

If an a occurs before the timer expires, the monitoring thread evaluation
rejects. Language notation: a() > t

These timer primitives can be used with simple or composite events. In the
case of a composite event the timer is initialised when the monitoring for the
�rst constituent simple event begins. For example, the expression (a -> b) <

t will accept only if an a followed-by a b occurs within time t.
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9.6.1 Use of Timers with State Lookups

The semantics of timers change when used in conjunction with state lookups.
For example, the expression state a() < t will accept only if a matching event
occurred less than time t in the past. Therefore instead of the time constraint
being applied to a future occurrence it is applied to a past occurrence. The use
of an expression such as state a(),t is not permitted as the semantics of this
timer only make sense when dealing with future events.

9.7 Operating Within a Distributed Environment

9.7.1 Distributed Time

Recall from chapter 5 that distributed CALAIS components are synchronised,
using NTP, to within 10ms. A description of an approximated time base[Kop92]
is also made use of here. This assumes that all clocks are synchronised to within
a time granularity �. With this knowledge and the assumption that each clock
has a granularity smaller than �, two events can be ordered if they occur 2�
or further apart. If they occur less than this they are considered concurrent.
A more detailed discussion of this issue is presented in [Sch96]. With clocks
synchronised to within 10ms, this is the value adopted for �.

In some applications where event rates are very high and it is common that two
events arrive within 2�, or 20ms, of each other, di�culties would be caused
with the evaluation of temporal CE expressions. It is envisaged that this will
not be common in the domain considered here. To enable correct treatment,
the application is informed within its call-back if the given event ordering may
be incorrect. The application can then decide on what action to take.

9.7.2 Network Delays

Consider two events, A and B, with time-stamps tA and tB where tA < tB. Due
to network delays tB may arrive before tA. Let the expression being monitored
for be A - B. In this case the expression will incorrectly reject, as B arrives
before A.

Various approaches have been taken to solve this problem. In [SR90] bu�ering
of events is performed for a time tmax, where tmax is the maximum anticipated
delay throughout the system. A heartbeat protocol is described in [Hay96] which
consists of servers periodically informing clients of pending events. Here an
application oriented approach is taken. When a CE expression is submitted
for evaluation, an additional parameter can be given which speci�es the length
of time events should be bu�ered, to allow re-ordering, before being consumed
in the expression evaluation. An application that has no requirement that a
correct temporal ordering is maintained can specify a delay of zero. In this
case events will be consumed immediately. An application that is concerned
with correctness will specify a bu�ering delay high enough to allow appropriate
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re-ordering but low enough to maintain adequate system response.

9.7.3 Registration Delays

The CE system must register with the services that provide the events speci�ed
in the CE expression. There are a number of possible registration strategies.
Consider the expression a() -> b(). One approach is to register on demand

with each service. Registration for event class b will take place after an event of
class a has occurred. Registration incurs a delay and therefore it is possible that
an event of class b will occur between the occurrence of a and the registration
in b. It will therefore be missed.

One solution, proposed in [Hay96], is a pre-registration approach. A client
informs a service that it wishes to receive events from the service in the future.
The service then bu�ers events until the client registers again. This approach
ensures events are not lost, but requires additional complexity in the event
server and also requires the client to register twice.

The approach taken here is to immediately register interest in all event services
contained within the CE expression. Using the example above, many b events
will be received by the client. After the consumption bu�ering delay these can
be disposed of. This approach increases the number of events communicated
to clients but ensures no events are lost, and also simpli�es the construction of
both services and clients.

9.8 Implementation Considerations

9.8.1 Application Interface

An application may use the CE system either by communicating with a service,
or by using a CE library within the application process. Both are equivalent in
terms of functionality.

In a similar way to other CALAIS components, the CE system uses CORBA
interfaces. The location transparency of CORBA objects mean that the appli-
cation can use the same interfaces, whether using the CE system as a library,
or as a remote service. This method also allows the CE system to be used with
any application language capable of communicating with CORBA.

The application submits an expression as a string, together with a reference
to a call-back object. The CE system uses the call-back object to notify the
application when the composite event occurs. Also passed in the call-back is a
data structure which holds details of the class names, associated parameters,
and time-stamps of the events which caused the CE to accept. This event path
can be interrogated by the client. This process is illustrated in �gure 9.3.

Typically the contents of the event path will be used by the application to
determine its succeeding behaviour.
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Figure 9.3: Submission of CE Expression

9.8.2 Initialisation

Whether the composite event system is operating as part of a client process
or as a service, initialisation is required before it can accept a composite event
expression for evaluation.

The initialisation process interrogates the event class repository, described pre-
viously in section 5.3.4. From this it receives a description of event classes that
have been registered with the system. This includes the name of the event
class, a description of its attributes and an interface reference. This informa-
tion enables a submitted expression to be parsed and error checked, and the
appropriate services to be contacted.

9.8.3 CE Monitoring

Once initialisation is complete, the CE system begins the monitoring of incom-
ing events. This monitoring system, illustrated in �gure 9.4, consists of three
parts, operating within separate process threads.

The CE evaluation thread concurrently evaluates each CE expression submitted
to the system. A number of evaluations may also be active at the same time for
a single CE expression. As each new event is received, it is determined whether
it satis�es any part of an active evaluation, and whether it can initiate a new
evaluation. When an evaluation accepts, the calling application is informed
with the resulting event path, and internal garbage collection is performed.

Concurrent with event monitoring, two other process threads exist. One is
responsible for producing timer events, the speci�cation of which are submitted
by the evaluation thread. The other thread manages bu�ering and re-ordering
of incoming events. When the application supplied bu�ering delay has occurred,
the events are propagated to the suitable evaluation control thread.
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Figure 9.4: CE Monitoring Threads

9.9 Composite Event System Evaluation

This section will evaluate how the proposed composite event system can be
used to build applications. A set of simple examples is �rstly given, with a brief
description of each and the way each is evaluated. In a similar way to chapter
8, an extended example is then described in detail. Finally, the performance of
the CE system is briey evaluated.

9.9.1 Composite Event Examples

As described previously an application may use the composite event system in
two ways. Recall that the calling application submits the CE expression and a
reference to a call-back object to be invoked when the expression is satis�ed. An
application may link at compile time with the CE library and then bind locally
to the appropriate CORBA object. Alternatively an application may bind to
a remote CE service and submit its CE expression. The former distributes
computational load, the latter is of greater convenience to applications. The
following examples use this �rst method.

1. Active Badge application control.

The functionality of the Active Badge as a control device can be extended
by monitoring for a number of button presses within a certain time period.
For example:

twoclicks => ABadge('PERSON',name,domain,room,room-domain,'SIDE') ->

ABadge('PERSON',name,domain,room2,room-domain,'SIDE') < 5.0;
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This expression �rstly monitors for any badge event from a badge asso-
ciated with a person where the side button has been pressed. The initial
=> follow-by operator allows multiple evaluation threads to be active at
the same time, therefore allowing multiple badges to be monitored. The
second part of the expression then monitors for another badge event from
the same badge. Evaluation accepts only if the second event occurs with
5 seconds of the �rst. If the timer expires the evaluation is rejected.

Such an expression may be used to launch an application or to indicate
when a person does not wish to be disturbed.

2. User Activity

By monitoring workstations it is possible to infer whether a user is active.
Consider the following CE expression:

giles-active -> WSactivity(host,'ORL','gjn') ^

ABadge('PERSON','gjn','ORL',sensor,'ORL',click);

This monitors for workstation activity caused by `gjn' and badge events
from `gjn'. Badge events are used to help validate the correctness of the
information. If `gjn' is seen to be active at a workstation and is in the
building, it is more likely that this reported activity will be correct, rather
than the report referring to activity by some other user at a workstation
where `gjn' happens to be logged on.

a ^ b means that the CE will �re if both the events a and b occur, in any

order. Note that there is no time constraint within which the two events
must occur. This may prove problematic. For example, consider if the
last badge sighting produced for `gjn' was at 9am. If workstation activity
is then reported at 3.30pm a CE will occur comprising these two events.
An application may not wish to initiate an action based upon these tem-
porally remote events. To address this problem either a time constraint
must be introduced into the CE expression or the application must itself
examine the time-stamps on the events comprising the composite event.

To do the former the CE expression would need re-writing as:

giles-active -> (WSactivity(host,'ORL','gjn') ^

ABadge('PERSON','gjn','ORL',sensor,'ORL',click)) < 20.0;

This expression will only accept if a workstation activity and badge event
are seen within a time window of 20 seconds.

3. Security Monitoring

The ability to monitor the environment enables security applications to be
implemented. Each member of sta� at ORL wears an Active Badge. The
absence of badge events gives a strong indication that no one is present
in the building. Consider the following CE expression:

security -> ABadge('PERSON',name,domain,room,'ORL',click),600.0 ->

(Motion(camera,'ORL') | Door(name,'ORL',status)) -

ABadge('PERSON',name2,domain2,room2,'ORL',click2);
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This expression initially monitors for badge events. After a period of 600
seconds (10 minutes) in which no badge events have occurred anywhere in
the ORL building, video motion and door activity are monitored for. The
CE accepts if either one of these events occurs without a badge event. The
application may then, for example, inform a member of security personnel
that unauthorised movement has been seen within the building.

4. A Context-Aware Telephone Directory

A commonly used application at ORL is one displaying Active Badge
information which also shows a user's nearest telephone. This acts as
a dynamic telephone directory. A convenient application is one which
displays this telephone directory when a telephone handset is picked-up
on the nearest display.

To facilitate this, consider the following CE expression:

phone-dir => Phone(handset,'ORL','PICKUP') =>

(Proximity('EQUIPMENT',handset,'2.0','1.0','EQUIPMENT',name) -

Phone(handset,'ORL','PUTDOWN')) ->

state WSactivity(name,'ORL',userid) > 60.0;

This �rstly looks for any telephone that has been picked-up. It then waits
for a proximity event indicating that a piece of equipment is within 2m
of the telephone. Finally, a state lookup is made to determine whether
the equipment has been idle for at least 60 seconds. The CE will reject
if, after the initiating phone 'pickup' event, the same phone's handset is
put back down.

Note the use of the => follow-by operator, placed after the initial `Phone'
event. This enables the evaluation to deal with multiple proximity events,
some of which may occur when unsuitable items of equipment are seen
near the telephone, and where the resulting activity lookup fails.

This example requires proximity to be de�ned as an event type. This is
described below in section 9.9.2.

5. Seminar Monitoring

The following example demonstrates how a seminar may be monitored.
Consider a seminar room which is normally kept locked (possibly to pro-
tect valuable equipment or to prevent non-seminar use). The seminar
organiser will typically arrive a few minutes before to prepare, leaving the
door open to welcome attendees. The door will be closed as the speaker
starts indicating that the seminar should not be disturbed. The following
CE expression monitors this scenario:

seminar -> Door('seminar-room','ORL','OPEN') =>

ABadge('PERSON',name,domain,'seminar-room','ORL',click) ->

Door('seminar-room','ORL','CLOSE');

A set of events will occur when the seminar room door is �nally closed.
By examination of the event paths the application can determine those
seen within the seminar room, between the time at which the door was
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initially opened and the time it was closed. This therefore could be used
by the seminar organiser to record who attended, or by a tea-person to
organise su�cient provisions for the number of people.

9.9.2 An Extended Example

To illustrate how event monitoring and composition may be used within a
real application, promiscuous teleporting, described earlier in chapter 8, will
be considered again. A problem with the present system is that each user's
teleporting agent only pays attention to nearby devices and whether they are
capable of accepting a teleport session.

This is not su�cient. For example, consider if user A is near a teleport capable
display. If this display is currently being used by user B it is inappropriate if
user A's promiscuous teleporting session materialises.

Access to Proximity Events

The promiscuous teleporting example given in section 8.1.5 used the appropriate
native CORBA interface of the location service. By modelling proximity as an
event this interface may be accessed within a CE expression.

To do this a CALAIS event service is built using the proximity interface of the
location service as the low-level event source. The event interface is e�ectively
a wrapper around the location service. The proximity interface provides the
following interface:

Proximity(object_type, object_identifier, distance, error,

matching_object_type, matching_object_identifier)

object type: the type of the object the proximity query is to be bound to;

object identi�er: the name of the object the proximity query is to be bound
to;

distance: the distance from the object the spatial query will extend to. The
single distance is applied in each dimension;

error: the maximum acceptable spatial error;

matching object type: the type of the objects that will be matched by the
query;

matching object identi�er: the identi�er of the object the query is to match.

Thus Proximity('PERSON', 'gjn', '2.0', error, type, id) will match on any ob-
ject that is seen within 2m of person `gjn' with any error.

State lookup functionality will be provided by a wrapper around a query in-
terface to the location service rather than by using the default CALAIS event
store mechanism.
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Monitoring Teleport Sessions

To monitor teleport sessions, another new event type is introduced. This has
the following interface:

Teleport(display_type, display_id, userid, teleport_id, action)

display type: the type of the display the session has teleported to;

display identi�er: the identi�er of the display the session has teleported to;

userid: the user-id of the person owning the teleport session;

teleport identi�er: the teleport session identi�er;

action: 'MATERIALISE' or `DEMATERIALISE'.

Thus, whenever a teleport session materialises or de-materialises to, or from a
display, an event is produced indicating the name of the relevant display and
the person owning the teleport session.

Publishing New Event Services

Once a new event service has been created, its address can be entered into the
CALAIS event type repository. At CE system initialisation (section 9.8.2) the
new event type template can be read, and the event service is then available to
applications.

A CE Expression

The following expression adds some intelligence to the promiscuous teleporting
application:

promiscuous => Proximity('PERSON','gjn','2.0','1.0',ws_type,ws_id) ->

(state Teleport(ws_type,ws_id,userid,

teleport_id,'DEMATERIALISE') |

state Teleport(ws_type,ws_id,userid,

teleport_id,'MATERIALISE') > 60.0)

This expression �rstly monitors for proximity events, speci�cally those objects
which are seen within 2m of user `gjn' with a location error of less than 1m. For
each proximity event received, state lookups are used to ascertain whether the
display is currently idle and no teleport session is present, or the teleport session
was materialised more than 60 seconds ago. If either of these cases is true the
composite event evaluation accepts, invoking the application's call-back object.
The application can then teleport the appropriate session to the display.
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9.9.3 CE System Performance

The CE library has been implemented on the DEC Alpha architecture, running
Digital Unix. CE evaluation proves to be e�cient. Within a single application
process and on the receiving of a single event, approximately 400 separate event
evaluations can be performed per second. This level of performance ensures that
the real-time requirements demanded by many applications will be met.

9.9.4 Wider Application of Composite Events

So far, the examples given have shown the CE system being applied within
a particular application domain. However the event paradigm and composite
event evaluation have broad application in many domains. Two examples are:

1. Home Device Control

The television volume is required to be muted if the telephone or the door
bell rings.

tv-mute => television(TVID, 'ON') -> (telephone-rings(PHONEID) |

door-bell(DOORID)) - television(TVID, 'OFF');

This expression starts monitoring when a television is switched on. It
monitors independently for each television. The CE accepts when a tele-
phone or door-bell rings without the television being switched o� �rst.

2. Fire Alarm Evacuation

When a �re-alarm activates, it is helpful to monitor the people seen inside
the building and leaving to determine whether anyone is in di�culty. The
following expression is helpful:

fire -> FireAlarm('ACTIVATE') => PersonSeen(P) ->

FireAlarm('DEACTIVATE') - PersonLeaves(P);

Monitoring starts when the �re-alarm is activated. Each time a person
is seen within the building (using an Active Badge for example) a new
monitoring thread is started. The CE accepts when the �re-alarm is de-
activated (when the �re-brigade arrives for example) only if the person
has not been seen leaving. When the �re-alarm is de-activated a set of
call-backs will occur, one for each person seen within the building but not
seen leaving.

9.10 Summary

A composite event system and associated language have been presented as a
method of binding di�erent event sources together and to allow applications
to conveniently express their interest in events. A set of examples has demon-
strated its e�ective use within the target application domain. In addition some
scenarios from other potential application domains were described.
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Chapter 10

Conclusions

10.1 Summary

This thesis has proposed CALAIS, an architecture suitable for the support of
context-aware applications operating within a typical indoor, o�ce domain.

Chapter 1 outlined the research area and identi�ed the bene�ts to applica-
tions that context- aware monitoring of the environment can provide. Current
approaches, and related research were reviewed in chapter 2. Related work in-
volves location sensing systems, strategies for the management of the resulting
data, and approaches to the sensing of the physical environment. Application
areas were also identi�ed, together with strategies for the delivery of data to ap-
plications. Chapter 3 described shortcomings in current approaches which then
lead to the motivations for the research described in this thesis. The following
requirements were identi�ed:

� An abstracted view of information produced by sensors monitoring the
environment. Current approaches utilise ad-hoc interfaces to sensor tech-
nology. These make applications di�cult to construct and prevent exten-
sibility.

� Generic model of location information. Location information will be pro-
duced by a range of location sensing devices. Current approaches are
typically designed around a single technology.

� Location information management, enabling the asynchronous monitoring
of spatial regions. Current application interfaces are rudimentary and
typically do not allow spatial querying.

� Representation of the static physical environment to enhance location-
based querying capability.

� Integration of access to persistent resources, such as those representing the
capabilities of mobile equipment and the layout of the physical domain.
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� Application support enabling access to multiple sources of environmental
monitoring information. This facilitates the rapid prototyping of context-
aware applications.

These areas provide the focus of later chapters.

Chapter 4 presented a set of deployed and prototype sensor systems suitable
for the monitoring of an o�ce environment. The output from these formed
the experimental data used in this thesis. Chapter 5 proposed a exible ab-
straction of a sensor system which enables sensor information to be delivered
asynchronously to applications. The CORBA distributed systems architecture
was used to enable communication in a distributed environment and the ab-
straction of interfaces away from supporting hardware and software. Automated
tools were described which enable the implementation of an event system from
a declaration of its interface.

Chapter 6 identi�es the facilities required in a location service. These were:

1. Integration of information from multiple location sensor sources.

2. Support for spatial queries executed both synchronously and
asynchronously.

3. Support for representing the orientations of objects.

4. The representation of room boundaries and the connections between
rooms.

5. High performance spatial indexing enabling the management of thousands
of physical object locations.

Chapter 7 described the implementation of a location service with the required
facilities. This resulted in a lightweight, high-performance system with powerful
querying capabilities. An evaluation of this system was presented in chapter 8.
This illustrated the use of a number of deployed location sensor systems and
demonstrated, by example, the query facilities available, as well as showing that
the implementation can handle the representation of thousands of objects and
the execution of thousands of queries per second.

Attention was turned to application support in chapter 9. A simple, exi-
ble and powerful language was proposed which enables applications to easily
specify context-aware scenarios. The run-time system handles the delivery of
events from multiple, distributed sensor systems, and deals appropriately with
issues such as network delays. Again, a set of examples were described which
demonstrated the worth of the approach.

10.2 Potential Further Work

The area of context-aware systems is a broad one and still largely undeveloped.
This thesis has explored some of the technologies necessary to practically realise
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such a system in a typical target domain. It is envisaged that some appropriate
areas for future work are:

� Location technologies

A new ultrasound location technology[WJH97] has been used within the
experimental part of this thesis. It is currently in prototype form, and
experience so far suggests it may eventually replace, or at least augment,
the deployed Active Badge system. Its e�ectiveness requires wider de-
ployment and a substantial user base. This will allow a more realistic
determination of its capabilities and, moreover, will expose previously
unconsidered application areas.

� Event storage

CALAIS event services store a small amount of state, su�cient to support
applications needing to know most recent events. The storage of greater
numbers of past events may be necessary for some types of application,
such as time and motion studies, stock-market analyses and dynamic re-
source allocation schemes which may attempt to predict an event based
upon previous occurrences. Re-enactment of \a sequence of events" would
also be possible.

� Persistent storage of location information

The data structures used to support the proposed location service are
all held in main memory, which is volatile. Although this was done to
ensure a high level of performance, much system state would be lost if
the machine on which the service was running failed. Investigation into
a lightweight, disk based system may therefore be appropriate. This will
result in the issues of concurrency and transaction management needing
to be addressed.

� Scalability

The evaluation of the location service presented in chapter 8 concludes
that it is suitable for handling thousands of objects and hundreds of up-
dates per second. A single location service, consisting of a single spatial
index is considered for a single domain. However, very large domains,
with high numbers of objects, may cause the performance limit which can
be handled by a single location service to be exceeded. In these circum-
stances the use of multiple services would be required, perhaps arranged
to present a single logical service. A hierarchical scheme is likely to be
suitable, with a physical domain divided into sub-domains, each covered
by a single service. A hand-o� protocol would facilitate the movement
of objects between sub-domains. Spatial queries spanning more than one
sub-domain would inevitably be more costly to execute than those span-
ning a single domain.

� Inter-domain Working

The issue of inter-domain working has not been addressed in detail by
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CALAIS. However, its importance as a requirement for a system support-
ing mobility has been recognised. Inter-domain issues such as naming and
the distribution of mobile object attributes need to be addressed.
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Appendix A

Event Source IDL

A.1 Generic Interfaces (register.idl)

typedef sequence<string> string_sequence;

typedef sequence<long> long_sequence;

interface event_callback_object {

oneway void event_notify(in string event_attributes, in long secs,

in long usecs);

};

interface event_object {

long event_register_client(in event_callback_object callback_obj,

in string event_attributes);

long event_report_state(in string signature,

out string_sequence state,

out long_sequence secs_seq,

out long_sequence usecs_seq);

long event_deregister(in long client_num);

};

A.2 Active Badge

#include "register.idl"

typedef struct badge_data_object_ {

long sighting_type;

string id;

string id_domain;

string room_id;

string room_domain;

long click;

} badge_data_object;

typedef sequence<badge_data_object> badge_data_object_seq;

interface badge_callback_object {
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oneway void notify(in badge_data_object data, in long secs,

in long usecs);

};

interface badge_server_object {

long register_callback(in badge_callback_object callback_obj,

in badge_data_object signature);

void report_state(in badge_data_object signature,

out badge_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};

A.3 Ultrasound Badge

#include "register.idl"

typedef struct ultrasound_data_object_ {

string id;

float x, y, z;

string coordsys;

} ultrasound_data_object;

interface ultrasound_callback_object {

oneway void notify(in ultrasound_data_object data, in long secs,

in long usecs);

};

interface ultrasound_server_object {

long register_callback(in ultrasound_callback_object callback_obj,

in ultrasound_data_object signature);

void report_state(in ultrasound_data_object signature,

out ultrasound_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};

A.4 Workstation Activity Monitor

#include "register.idl"

typedef struct xmonitor_data_object_ {

string id;

string host_domain;

string userid;
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} xmonitor_data_object;

interface xmonitor_callback_object {

oneway void notify(in xmonitor_data_object data, in long secs,

in long usecs);

};

interface xmonitor_server_object {

long register_callback(in xmonitor_callback_object callback_obj,

in xmonitor_data_object signature);

void report_state(in xmonitor_data_object signature,

out xmonitor_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};

A.5 Door Monitoring

#include "register.idl"

typedef struct door_data_object_ {

string id;

string domain;

long value;

long secs;

long usecs;

} door_data_object;

typedef sequence<door_data_object> door_data_object_seq;

interface door_callback_object {

oneway void notify(in door_data_object data, in long secs,

in long usecs);

};

interface door_server_object {

long register_callback(in door_callback_object callback_obj,

in door_data_object signature);

void report_state(in door_data_object signature,

out door_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};
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A.6 Telephone Handset Monitoring

#include "register.idl"

typedef struct phone_data_object_ {

string id;

string domain;

long status;

} phone_data_object;

typedef sequence<phone_data_object> phone_data_object_seq;

interface phone_callback_object {

oneway void notify(in phone_data_object data, in long secs,

in long usecs);

};

interface phone_server_object {

long register_callback(in phone_callback_object callback_obj,

in phone_data_object signature);

void report_state(in phone_data_object signature,

out phone_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};

A.7 Motion Detection

#include "register.idl"

typedef struct motion_data_object_ {

string id;

string domain;

} motion_data_object;

typedef sequence<motion_data_object> motion_data_object_seq;

interface motion_callback_object {

oneway void notify(in motion_data_object data, in long secs,

in long usecs);

};

interface motion_server_object {

long register_callback(in motion_callback_object callback_obj,

in motion_data_object signature);

void report_state(in motion_data_object signature,

out motion_data_object_seq state

in long secs, in long usecs);

long deregister(in long client_num);

};
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Container and Junction

Database Entries

B.1 ORL Floor 1 Containers

# container name; min x,y,z max x,y,z coordinates of container in

relation to domain origin

R101 21.090909 23.909091 0.0 29.727273 27.818182 3.0

R103 18.090909 23.636364 0.0 21.090909 26.909091 3.0

R104 15.363636 23.636364 0.0 18.090909 26.909091 3.0

R105 12.454545 23.636364 0.0 15.363636 26.909091 3.0

R106 9.636364 23.636364 0.0 12.454545 26.909091 3.0

R107a 7.000000 23.636364 0.0 9.636364 26.909091 3.0

R107;1 7.000000 18.818182 0.0 9.636364 23.636364 3.0

R107;2 1.000000 18.818182 0.0 7.000000 26.909091 3.0

R108 9.636364 18.818182 0.0 12.454545 22.000000 3.0

R109 12.454545 18.818182 0.0 15.363636 22.000000 3.0

R110 15.363636 18.818182 0.0 18.545455 22.000000 3.0

R111 18.545455 18.818182 0.0 21.090909 22.000000 3.0

R112 22.818182 16.818182 0.0 25.272727 19.727273 3.0

R113 25.272727 16.818182 0.0 28.727273 21.727273 3.0

R114 22.818182 19.727273 0.0 25.272727 21.727273 3.0

F1HALL;1 9.636364 22.000000 0.0 21.090909 23.636364 3.0

F1HALL;2 21.090909 21.727273 0.0 29.727273 23.909091 3.0

F1HALL;3 21.090909 16.818182 0.0 22.818182 21.727273 3.0

B.2 ORL Floor 1 Junctions

# junction name; coordinates of junction in relation to domain

origin

R101 24.545455 23.909091 0.0 25.545455 23.909091 3.0

R103 19.454545 23.636364 0.0 20.181818 23.636364 3.0

R104 16.363636 23.636364 0.0 18.090900 23.636364 3.0

R105 12.818182 23.636364 0.0 14.454545 23.636364 3.0

R106 9.636365 23.636364 0.0 11.272727 23.636364 3.0

R107a 7.909091 23.636364 0.0 8.954545 23.636364 3.0
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R107 9.636364 22.181818 0.0 9.636364 23.454545 3.0

R108 9.636365 22.000000 0.0 11.272727 22.000000 3.0

R109 12.727273 22.000000 0.0 14.454545 22.000000 3.0

R110 16.272727 22.000000 0.0 17.090909 22.000000 3.0

R111 19.363636 22.000000 0.0 20.090909 22.000000 3.0

R112 22.818182 18.545455 0.0 22.818182 19.545455 3.0

R113 25.727273 21.727273 0.0 26.636364 21.727273 3.0

R114 24.090909 21.727273 0.0 24.818182 21.727273 3.0

`

B.3 ORL Floor 1 IR-Zones

# name of originating badge place, coordinates of IR zone

R101 21.090909 23.909091 0.0 29.727273 27.818182 3.0

R103 18.090909 23.636364 0.0 21.090909 26.909091 3.0

R104 15.363636 23.636364 0.0 18.090909 26.909091 3.0

R105 12.454545 23.636364 0.0 15.363636 26.909091 3.0

R106 9.636364 23.636364 0.0 12.454545 26.909091 3.0

R107a 7.000000 23.636364 0.0 9.636364 26.909091 3.0

R107;1 7.000000 18.818182 0.0 9.636364 23.636364 3.0

R107;2 1.000000 18.818182 0.0 7.000000 26.909091 3.0

R108 9.636364 18.818182 0.0 12.454545 22.000000 3.0

R109 12.454545 18.818182 0.0 15.363636 22.000000 3.0

R110 15.363636 18.818182 0.0 18.545455 22.000000 3.0

R111 18.545455 18.818182 0.0 21.090909 22.000000 3.0

R112 22.818182 16.818182 0.0 25.272727 19.727273 3.0

R113 25.272727 16.818182 0.0 28.727273 21.727273 3.0

R114 22.818182 19.727273 0.0 25.272727 21.727273 3.0

F1HALL;1 9.636364 22.000000 0.0 21.090909 23.636364 3.0

F1HALL;2 21.090909 21.727273 0.0 29.727273 23.909091 3.0

F1HALL;3 21.090909 16.818182 0.0 22.818182 21.727273 3.0


