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ABSTRACT. Various questions about adjoints, absolute values and polar de-
compositions of operators are addressed from a constructive point of view.
The focus is on bilinear forms. Conditions are given for the existence of an
adjoint, and a general notion of a polar decomposition is developed. The
Riesz representation theorem is proved without countable choice.
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1. INTRODUCTION

Let H be an inner product space over the real or complex numbers. An opera-
tor is an everywhere defined linear transformation from H to H. If H is finite-
dimensional, then every bounded operator has an adjoint, a theorem that can be
proved in general using the Law of Excluded Middle. In the constructive frame-
work of this paper, however, it cannot be shown that every bounded operator on
an infinite-dimensional Hilbert space has an adjoint. In order to explain this by
means of a Brouwerian example, we need a lemma whose proof is a straightforward
application of the Cauchy-Schwarz inequality.

LEMMA 1.1. Let (an),(Bn) be sequences of complex numbers such that
o oo

o0
3 |an|? converges and Y |B,|? is bounded. Then . |a, (| converges.
n=1

n=1 n=1

A BROUWERIAN EXAMPLE . Let (a,) be a binary sequence with a; = 0
and at most one term equal to 1, and let (e,) be an orthonormal basis of an
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infinite-dimensional Hilbert space. Lemma 1.1 enables us to define a bounded
operator () such that Qe, = a,e; for each n. That is

Qx = < i anxn>el.
n=1

If @ has an adjoint, then either ||@Q*e1|| > 0 or else ||@*eq|| < 1. Since
(Q%e1,en) = (e1,Qen) = an,

we see that a,, = 1 for some n in the first case, and a,, = 0 for all n in the second.
Thus, the proposition

FEvery bounded operator on a separable Hilbert space has an adjoint,

entails the nonconstructive limited principle of omniscience (LPO), a countable
form of the law of excluded middle:

For each binary sequence (ay,), there exists n such that a, =1 or else a,, =0
for all n.

In this paper, beginning with a choice-free proof of the Riesz Representation
Theorem, we study conditions that are equivalent to the existence of an adjoint,
beginning with a general result about when a bilinear form can be written as
(xz,Ty), a result that leads to a simple proof that a compact operator has an
adjoint.

The usual definition of the absolute value of an operator, and the proof
of the existence of the polar decomposition, both depend on the existence of an
adjoint. As there is no guarantee that an adjoint exists, it is desirable to define
the absolute value, and to construct a polar decomposition, without reference to
an adjoint. In Section 4 we give adjoint-free definitions of the absolute value and
of polar decompositions, and show that if the absolute value of an operator T has
approximate polar decompositions, then 7" has an adjoint.

Background in constructive mathematics is available in [1], [2], [4], or [7].
In particular, the basics of constructive Hilbert space theory may be found in
Chapter 7 of [2]. We do not restrict ourselves to separable Hilbert spaces, as is
traditional in constructive mathematics; nor do we assume the countable axiom
of choice. In order to deal with arbitrary Hilbert spaces, we need a couple of
definitions.

An orthonormal basis for an inner product space is a set of pairwise orthog-
onal unit vectors that generate a dense subspace. Examples of this are provided
by taking an arbitrary discrete set S, and considering the space of complex val-
ued functions on S with finite support. This space has a natural inner product
structure, and a basis consisting of those functions that are 1 on one element of
S and 0 on the others. The completion is a Hilbert space, L?(S), with the same
basis, which need not be separable. This definition is more traditional, even in the
separable case, than the sequential one in [1] and [2] where basis elements must
be allowed to be zero to achieve sufficient generality.

The second definition concerns sums over arbitrary index sets. If (r;);cr is a

family of nonnegative real numbers, then we define Y r; to be sup > r;, where F
iel F ieF
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ranges over the finite subsets of I. This agrees with the standard definition when
I is the set of positive integers.

The following notation for inequalities involving suprema will be convenient
(see also [6]). If X is a subset of R, and «, 8 € R, then

a<supX <0

means that a < z for some z € X, and that z < g for all z € X, even if the
supremum of X is not known to exist. For example, if T is an operator on H, then
|IT|| < 1 means that ||Tz| < 1 for all unit vectors z, and ||T|| > 2 means that for
each € > 0 there is a unit vector x such that ||Tz|| > 2 —e. Other such notations
will be used in the obvious, analogous ways. If S and T are operators on H, and
a > 0, then ||S] < a||T|| means that if || T|| < ¢, then ||S|| < ae, and if ¢ < |||,
then c¢/a < ||T||.

2. LINEAR FUNCTIONALS

The space H' of bounded linear functionals on H is not quite a normed space
because a bounded linear functional f need not have a norm. However, the state-
ment || f|| < r has a meaning — namely that |f(z)| < r|z| for all z in H. Also,
the convex sets (closed balls) S, = {f : || f]| < r} satisfy:
(i) So = {0},

(ii) eSr C Sl

(iii) S, 4+ Ss C Syts,
and define a uniform structure on H'.

There is a natural embedding v : H — H’ taking y to the linear functional

(-,y) whose norm is equal to |ly||. The Riesz representation theorem says that if
f € H' has a norm, then f € v(H). A proof of this is given in Section 2.3 of [2].

We give a direct proof here that avoids the countable axiom of choice and the prior
verification that ker f is located if f is nonzero. First we have a lemma which will
also be used later.

LEMMA 2.1. Let H = Hy & Hs be a decomposition of an inner product space
H into orthogonal subspaces. If f is a linear functional on H, then

IFI1Z = [LF1IE + 1113

where || f; is the norm of the restriction of f to H;.

Proof.
112 = sup [f(w)]®*=  sup  |f(ur)+ fluz)®
flull=1 lua 12+ (uz2=1
= sup |y f (ur) + aa f (ug) 7,

llwa |1 =]uz | *=1
o1 |*+]az] =1
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where the last equality holds because we may restrict to nonzero u; and us. In the
last supremum, we may further restrict to u; and ug such that f(u;) and f(us2)
are nonzero, so we may assume that oy f(u1) and as f(us) are positive. Hence

sup lay f(ur) + aaf(uz)]> = sup  (ayf(ur) + azf(u2))’.
llug [IP=luz|*=1 Jlui||?=1
loes |24z | 2=1 a?4a2=1
fui)>0

The supremum on the right, for fixed u;, is realized when

ai = f(ui)/\/ f(ur)? + f(u2)?,

SO

IFIZ = sup (f(w)*+ F(u2)®) = 1T+ [I£]5- o
q7=1
o
It is important to observe that the norms in Lemma 2.1 need not exist as
real numbers; the equation is an equality of expressions involving suprema.

THEOREM 2.2. Let f be a linear functional on a Hilbert space H. If f has
a norm, then f = (-,y) for some (necessarily unique) element y in H.

Proof. As H is complete, it suffices to show that f is in the closure of v(H).
Given ¢ > 0, we construct y € H such that || f — v(y)|?> < 26. Either ||f|*> < 26
or ||[f||? > 0. In the former case take y = 0. In the latter we may assume that
[If]l = 1. Pick y so that |y|| = 1 and f(y) > 1 -3 (so f(y) < 1 is real). Let
H = H, & Hy, where H; is the span of y, and Hs is the orthogonal complement
of y. Then

|(f = vy)(ey)| = lellf(y) — 1] < |elé,
so || f —v(y)|l1 <4, in the notation of Lemma 2.1. By Lemma 2.1,

L= 12 = 112+ 1F13 > (1= 8) + I £113
SO

1f = vl = II£13 < 26 - 62
By Lemma 2.1 again,
I =v@IP =1 — v+ 1 — v} <6*+20- 0% =20,
Let B be a bilinear form, and let

|B|| = sup |B(z,y)l.
2| <1
llyll<t

We say that B is left (respectively, right) representable if there exists an operator T,
necessarily unique, such that B(z,y) = (T'z,y) (respectively, B(z,y) = (x,Ty))
for all x and y. Note that, in either case, ||B|| = ||T'||; so, in particular, B is
bounded if and only if T is bounded. Note also that an operator T" has an adjoint
if and only if the (left representable) bilinear form (Tx,y) is right representable.
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THEOREM 2.3. Let B be a bilinear form on a Hilbert space. Then B is right
representable if and only if the linear functional B(-,y) has a norm for each y.

Proof. Denote the unique z such that B(-,y) = (-, z) by Ty. It is readily
checked that T is an operator. The converse is trivial. 1

COROLLARY 2.4. Any compact operator on a Hilbert space has an adjoint.

Proof. Let T be a compact operator and consider the bilinear form B(z,y) =
(Tx,y). Because T is compact, the linear functional B( -,y ) has a norm for each
y, hence B(-,y) = (-, T*y) for some bounded linear operator T*. 1

We give a criterion, in terms of the convergence of a series, for when a
linear functional on a Hilbert space with an orthonormal basis has a norm. First
we require a lemma about an arbitrary bounded linear mapping between Hilbert
spaces.

LEMMA 2.5. Let E be an orthonormal basis of a Hilbert space H, and Pg
the projection on the span of the finite subset F C E. LetT : H — K be a bounded
linear mapping. Then ||TPp|| < ||TPg|| if F C F', and

IT[| = sup [|TPp.
F
In particular, T has a norm if and only if sup | T Pr|| ezists.
F

Proof. Note that T Pr has a norm, since it is a compact operator. If F' C F”,
then || TPr| < ||T'Pr/|| because the supremum is over a smaller set. Clearly

1T = sup [[Tz| > sup [[TPrz|=|TPr|.
[ES] 2| <1

As T is bounded, T Prx — Tz for each z in H, so
||l = sup ||Tz| =sup sup |TPpx| =sup|TPp|. B

lzll <t Fojlell<t F

THEOREM 2.6. Let E be an orthonormal basis of a Hilbert space H, and f
a bounded linear functional on H. Then

oL E@F =117

In particular, f is bounded by ¢ > 0 if and only if the finite partial sums of
S 1f(e)]? are bounded by ¢*, and f has norm c if and only if

ecl
2
sup > 1f(e)l
F finite ©€F
exists and equals c2.

Proof. For F a finite subset of F, let Pr be the projection on the span of F.
It follows from Lemma 2.1 that

1£Pe|? =D If(e)l*.
eeF
The result now follows from Lemma 2.5. 1
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3. THE EXISTENCE OF ADJOINTS

We are interested in conditions equivalent to the existence of an adjoint. In this
connection, we refer the reader to the work of Ishihara ([5]).
Note that if 7% is an adjoint of T', then

ITl= sup (Tl = sup [ T"3)| = 1T
llyll=1 llyll=1
THEOREM 3.1. Let E be an orthonormal basis of a Hilbert space H, and let
B be a bounded bilinear form on H. Then the following are equivalent:
(i) The linear functional B(-,y) has a norm for each y in H (in other

words, B is right representable).
(i) > |B(e,e")|? converges for each e’ € E.
eck
(iii) > |B(e,y)|? converges for each y € H.
eck
Proof. Theorem 2.6 shows that (i) is equivalent to (iii). Clearly (iii) im-
plies (ii).
Now assume (ii), and let ¢ > 0 be a bound for B. The linear functional
B(-,¢') is bounded by ¢, so 3" |B(e,¢’)|?> < ¢2, by Theorem 2.6.
ecE

Given z € H and ¢ > 0, choose a finite subset F’ of E such that ||z —
> xe€|| < e, where s = (z,€’). Then, using (ii), choose a finite subset F' of

e’€F’
> Y IBle )P <e.

FE such that
e'€F € E\F

Write = y + z where y = > z€’. So
e'EF

Z xe/e/>

e’eF’

2 2
= <all® Y 1Ble )

e'eF’

Z Ze Ble,e')

Ble,y)? = \B(
e’ e’

for e € E\ F (by the Cauchy-Schwarz inequality) so

Y 1Ble.y)P <lalPe and Y7 [Ble, o) < llzl? < e

e€EE\F e€E\F
Then
Y Blea)’= Y [Bley+a)l’= Y [Bley) +Be2)f
e€EE\F e€EE\F e€EE\F

< (Vlall?e + Ve2e)? = [la*e + ec® + 2l|z[lec = (|z]| + )

(the triangle inequality in L?(E)). Hence . |B(e,z)[* converges, so (ii) im-
ecE
plies (iii). &
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Note that in the last theorem the boundedness of B is only required to prove
that (ii) = (iii).
It is tempting to look for weaker conditions that entail the existence of an

adjoint. One natural candidate is

(3.1) inf sup [(Te,z)| =0,
F ecE\F

which suffices to construct the adjoint of @, the Brouwerian example in Section 1.
This condition is not generally sufficient, even when T has a norm, as the following
Brouwerian example shows.

Let (ay) be a binary sequence with a; = as = 0 and at most one term equal
to 1. Define a linear mapping T : H — H as follows:

(i) Tey =0, Tea = ea;

(ii) if ap, = 0 for 3 < k < n, then Te,, = 0;

(iii) if a,, = 1, then Te,, = - =Tegp_1 = ﬁﬁ and Te,, = 0 for all k > 2n
It is straightforward to show that | T|| = 1. Clearly, T satisfies (3 1). But, although
the partial sums Z |(Te,,e1)|? are bounded by 1, the series Z (Te,,e1)|? does

not converge. If 1t converges to s, then either s > 0, in whrch case (Ten,e1) # 0
for some N, and therefore a,, = 1 for some n < N; or else s < 1 and therefore
an, = 0 for all n.

Next we show that if a bilinear form is approximately right representable,

then it is right representable.

PROPOSITION 3.2. Let B be a bilinear form on a Hilbert space H, and sup-

pose that for each € > 0 there exists an operator T, such that
[B(z,y) — (z, Tey)| < e
for all x,y in the unit ball of H. Then B is right representable.
Proof. For all €,¢’ > 0 and all z,y in the unit ball of H we have

|<IL‘, (Ts - Ts/)y>| <e€ +5/7

so ||T: — Tw/|| < € +¢€’. By the completeness of H, there exists an operator T,

which T, approximates within e, such that B(z,y) = (z,Ty). 1
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4. ABSOLUTE VALUES AND POLAR DECOMPOSITIONS

An absolute value of an operator T is a (necessarily unique) positive selfadjoint
operator |T| : H — H such that (|T|z, |T|y) = (T'z,Ty) for all z,y € H. If T has
an adjoint, then |T'|> = T*T, and this equation may be used to define |T|.

An operator need not have an absolute value. Let ) be the Brouwerian
example of the introduction, and P; the projection on the span of e;. The operator
T = P, + @ does not have an absolute value, for if there were a linear mapping
S : H — H such that

(Sey,en) = (Ter,Tey,) = (e1,Qeyn) = an

for each n > 1, then the sequence (a,) would be square-summable, so we would
be able to decide whether there exists n such that a,, = 1. Note that ranT is
one-dimensional.
On the other hand, although we cannot construct the adjoint of @), we can
o0
construct its absolute value: |Qlx = 3 anzne,. Note that |@Q| is a projection.
n=1
To clarify the difference between having an adjoint and having an absolute
value, consider any bounded operator 1" that maps H into the one-dimensional

subspace spanned by e;. If A, = (Te,,e1), then > |\,|? has bounded partial
n=1

sums, but converges if and only if 7" has a norm. Sup;)ose T has an absolute value.
If S =|T)?, then

(Sz,en) = (Tx,Tey,) = (Z/\kxk>/\:,
k=1

so the series

e} 00 2
(4.1) Z A Z kT
n=1 k=1

converges to ||Sz||2. Conversely, if (4.1) converges, then T has an absolute value.

Certainly (4.1) converges if § |An|? converges — that is, if 7 has a norm.
But the operator @ (with A, = Z;j shows that the series can converge even if
i |An|? only has bounded partial sums. Explicitly, for any # € H, and any n, we
n=1

cl%arly have

oo 2
2
an E apry| < |z
k=1
SO
oo oo 2 oo
2
E an E apri| < E |5 ]
n=N+1 k=1 n=N+1

o 2
an . akfk‘
k=1

The right hand side goes to zero as N goes to 0o, so >

n=1

converges.



ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS 251

Rather than simply study the operators T and |T], it is convenient to study
operators T and R such that (Tz,Ty) = (Rz, Ry) for all z,y. Call two such
operators isometric. Note that in that case:

(i) if either R or T has an absolute value, then so does the other and the
absolute values are equal;
(ii) if either R or T is bounded, then so is the other; and
(iii) if either R or T has a norm, then so does the other.

The first of these observations has a converse: two operators with absolute values
are isometric if their absolute values are equal.

THEOREM 4.1. If the operators T and R are isometric, then there is an
isometry U from ran R to ranT such that T = UR. Hence T is compact if and
only if R is compact.

Proof. The equation (Rx, Ry) = (T'xz,Ty) allows us to define U by URz =
Tz, and shows that U is an isometry. If X is the image of the unit ball under R,
then UX is the image of the unit ball under T'. As U is an isometry, X is totally
bounded if and only if UX is. 1

Theorem 4.1 is a version of polar decomposition. Normally, one wants to
extend U in a canonical way to all of H. Classically, this is done by extending
U (uniquely) to the closure of ran R and defining U to be zero on the orthogonal
complement of ran R. However, this does not define U on all of H unless ran R is
located. (A subset K of H is located if

p(z, K) = inf{[|z —y| : y € K}

exists for each © € H.) A subspace of H is located if and only if its closure is the
image of a projection.

Let P be a projection and U an operator. Then the following conditions are
equivalent:

(i) |U] exists and equals P;
(ii) U is an isometry on the range of P and is 0 on the kernel of P.

If these hold for some projection P, we say that U is a partial isometry. Note that
if U is a partial isometry, then U|U| = U. The Brouwerian example @ is a partial
isometry.

PROPOSITION 4.2. An adjoint of a partial isometry is a partial isometry.
Proof. Let U be a partial isometry with adjoint U*. Then
(UU*? = U|U)PU* = U|U|U* = UU*.

Taking square roots of both sides, we have |U*|? = |U*|, so |U*| is a projection. 1
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LEMMA 4.3. If T = UR, where U is a partial isometry, then the following
are equivalent:
(i) T and R are isometric operators;
(ii) |U| is an isometry on ran R;

(iii) |U|R = R;
(iv) kerU C (ran R)*.
Proof. As

(IU|Rz,|U|Ry) = (URz,URy) = (T, Ty),

(i) and (ii) are equivalent. As |U]| is a projection, (ii) and (iii) are equivalent.
Note that ker U = ker |U|. Suppose that (iii) holds. If « € ker U, then

(z, Ry) = (x,|U|Ry) = (|U]z, Ry) = 0.
So (iv) holds. Conversely, suppose that (iv) holds. Then ker |[U| C (ran R)*, so
ran R C (ran R)** C (ker |U|)* = ran|U|
and (iii) holds.

If T, R and U are as in the above lemma, then we say that T'= UR is a polar
decomposition. If U has an adjoint, then for all z,y € H,

(U'Tz,y) = (I'z,Uy) = (URz,Uy) = (|U|Rz,y) = (R, y),
so R =U"T is a polar decomposition.

ProprosITION 4.4. If R is an operator that has an adjoint and a polar de-
composition R = UT, then T* exists and equals R*U .

Proof. Using part (iii) of Lemma 4.3, we have
(Tz,y) = (|U[Tz,y) = (UTz,Uy) = (z, R"Uy). 1

If T and R are isometric operators such that ran7" and ran R are located
— a classically trivial condition — then there exists a partial isometry U with an
adjoint such that
T=UR and R=U"T.

To construct U, extend the U of Theorem 4.1 to H by setting it equal to zero on
the complement of ran R. Then U* is the inverse of U on ranT and zero on the
complement of ranT.

If @ is the Brouwerian example of the introduction, then @ = Q|Q| is a
polar decomposition. So a polar decomposition 7' = U|T| does not guarantee that
T* exists. However, a polar decomposition |T'| = UT does entail that T* exists
(Proposition 4.4); in fact, approximate polar decompositions suffice (Theorem 4.6).

Let R and T be isometric operators. We say that UR is an e-approrimate
polar decomposition of T if U is a partial isometry and |7 — UR|| < . It is shown
in [3] (Theorem 1.1) that if T' is a bounded operator with an adjoint, then for each
g > 0 there exists a partial isometry U, with an adjoint, such that |||T| - UT| <
and ||T — U*|T||| < e. Tt follows that if R and T are isometric operators with
adjoints, then |R| = |T'| and for each ¢ > 0 there is a partial isometry U, with an
adjoint, such that ||R — UT|| < € and |T — U*R|| < &. The following lemma will
be used to prove a converse of that result.
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LEMMA 4.5. Let R and T be isometric bounded operators. Suppose further
that R has an adjoint. For each € > 0, there exists § > 0 such that if UT is a
d-approzimate polar decomposition of R, then

[(Tx,y) — {(x, R*Uy)| < e
for all x,y in the unit ball.

Proof. Choose 6 > 0 so that /2(||T||+0)0 + < e. Let P = |U| and
S=UT — R, so ||R|| <9. For all z,y in the unit ball

(PTz, PTy) = (UTz,UTy) = ((R+ S)z, (R+ S)y)
= (Tx,Ty) + (Sz, Ry) + (Rx, Sy) + (Sz, Sy)

SO
|(PTz, PTy) — (T, Ty)| < 2| T + 6)dllz[l [[y]-

Since
|(PT —T)z||* = (PTx — Tx, PTx — Tx) = —(PTx, PTx) + (T, Tx),
it follows that |PT — T||*> < (2||T|| + 6)d. Then
(Tx,y) — (z, R*Uy)| < (Tz,y) — (PTx,y)| + [(UTx, Uy) — (R, Uy)|
<|IT = PTI zlHyl + 1UT = R [ 1y
<AVQ2IT|+0)d+d<e¢
completing the proof. 1

THEOREM 4.6. Let R and T be bounded isometric operators such that R has
an adjoint. If for each € > 0 there is an e-approximate polar decomposition UT of
R, then T has an adjoint.

Proof. The result follows immediately from Lemma 4.5 and Proposition 3.2. I

Acknowledgements. The authors thank the University of Waikato for supporting
the visit of Richman and Schuster during which this paper was written.

REFERENCES

1. E. BisHopr, Foundations of Constructive Analysis, McGraw-Hill, New York 1967.

2. E. BisHopr, D. BRIDGES, Constructive Analysis, Grundlehren Math. Wiss., vol. 279,
Springer-Verlag, Heidelberg 1985.

3. D. BRIDGES, A constructive look at positive linear functionals on L(H), Pacific J.
Math. 95(1981), 11-25.

4. D. BrIDGES, F. RICHMAN, Varieties of Constructive Mathematics, London Math.
Soc. Lecture Notes, vol. 97, Cambridge University Press, London 1987.

5. H. IsHIHARA, Constructive compact operators on a Hilbert space, Ann. Pure Appl.
Logic 52(1991), 31-37.

6. F. RICHMAN, Generalized real numbers in constructive mathematics, Indag. Math.

9(1998), 595-606.



254 DouGLAS BRIDGES, FRED RICHMAN AND PETER SCHUSTER

7. A.S. TROELSTRA, D. VAN DALEN, Constructivism in Mathematics, North-Holland,
Amsterdam 1988.

DOUGLAS BRIDGES FRED RICHMAN
Department of Mathematics Department of Mathematics
& Statistics Florida Atlantic University
University of Canterbury Boca Raton, FL 33431
Christchurch USA
NEW ZEALAND
E-mail: d.bridges@math.canterbury.ac.nz E-mail: richman@acc.fau.edu

PETER SCHUSTER
Mathematisches Institut der Universitat
Theresienstrafie 39
80333 Miinchen
GERMANY

E-mail: pschust@rz.mathematik.uni-muenchen.de

Received January 18, 1998.



