
A Quantitative Comparison of Graph-based

Models for Internet Topology

Ellen W. Zegura and Kenneth L. Calvert and Michael J. Donahoo

Abstract|
Graphs are commonly used to model the topological struc-

ture of internetworks, to study problems ranging from rout-
ing to resource reservation. A variety of graphs are found
in the literature, including �xed topologies such as rings or

stars, \well-known" topologies such as the ARPAnet, and
randomly generated topologies. While many researchers

rely upon graphs for analytic and simulation studies, there
has been little analysis of the implications of using a partic-
ular model, or how the graph generation method may a�ect

the results of such studies. Further, the selection of one
generation method over another is often arbitrary, since the
di�erences and similarities between methods are not well

understood.
This paper considers the problem of generating and se-

lecting graph models that re
ect the properties of real inter-

networks. We review generation methods in common use,
and also propose several new methods. We consider a set of

metrics that characterize the graphs produced by a method,
and we quantify similarities and di�erences amongst several
generation methods with respect to these metrics. We also

consider the e�ect of the graph model in the context of a
speci�c problem, namely multicast routing.

Keywords: Scalability, Network modeling, Internetwork-
ing

1 Introduction

1.1 Background

The explosive growth of the Internet has been accompa-
nied by a wide range of internetworking problems related
to routing, resource reservation, and administration. The
study of algorithms and policies to address such problems
often involves simulation or analysis using an abstraction

or model of the actual network structure and applications.
The reason is clear: networks that are large enough to be
interesting are also expensive and di�cult to control, there-
fore they are rarely available for experimental purposes.
Moreover, it is generally more e�cient to assess solutions
using analysis or simulation | provided the model is a
\good" abstraction of the real network and application. It
is therefore remarkable that studies based on randomly-
generated or trivial network topologies are so common,
while rigorous analyses of how the results scale or how they
might change with a di�erent topology are so rare.
The state of the art in network modeling includes:

� Regular topologies, such as rings, trees and stars (e.g.,
[12, 44, 64])

E. Zegura, K. Calvert, and M. Donahoo are with the College of Com-
puting, Georgia Institute of Technology.

� \Well-known" topologies, such as the ARPAnet or NSFnet
backbone (e.g., [5, 54, 65])

� Randomly generated topologies (e.g., [55, 58, 61])

The limitations of each of these are obvious: well-known
and regular topologies re
ect only parts of current or past
real networks; random topologies may not re
ect any (past,
present or future) real network. Also clear from the cited
references is the diverse set of problems that rely on net-
work models to evaluate performance. Furthermore, most
researchers seem to be aware of the perils of reaching con-
clusions about real networks based on these models; it is
typical for papers to include a disclaimer to this e�ect.
To illustrate the important role that the network model

can play in assessing algorithms, consider the following re-
sults:

� Doar and Leslie found that the e�ciency of their dy-
namicmulticasting algorithmswas reduced by as much
as a half when using random graphs versus using hier-
archically structured graphs designed to re
ect some
of the properties of real internetworks. (See Figure 5
in [26].)

� Wei and Estrin found that the tra�c concentration
in core-based multicast routing trees is comparable to
tra�c concentration in shortest-path trees for a net-
work model with average node degree of about 3.0,
but the tra�c concentration is almost 30% higher in
core-based trees when average node degree increased
to 8.0. (See Figure 9(a) in [63].)

� Mitzel and Shenker found that multicast resource reser-
vation styles compared quite di�erently in the quantity
of resources reserved for linear, tree and star topolo-
gies. (See Tables 4 and 5 in [44].)

It should be clear from these examples that the network
model does matter: the conclusions reached about the suit-
ability and performance of algorithms may vary depending
on the methods used to model the network.
A variety of criteria may be applied to assessing a net-

work model, depending in large part on the intended use.
For example, if the purpose is to stress-test the algorithm,
the model should generate instances which are, in some
sense, \di�cult." For the problem of routing, this may
mean topologies with moderate node degree and many rout-
ing choices. If the purpose is to model a particular (static)
network (e.g., a campus or corporate network), then the
model should accurately re
ect the current topology.
Historically, large networks such as the Public Switched

1

Telephone Network have grown according to a topological
design developed by some central authority or administra-
tion [7]. In contrast, there is no central administration
that controls |or even keeps track of| the detailed topol-
ogy of the Internet. Although general characteristics of its
topology are known, it is impractical, if not impossible, to
construct a detailed topological map of the Internet due
its decentralized administration and sheer scale.1 Further,
the structure of the Internet is changing at a rapid rate,
limiting the accuracy of any snapshot of topology. These
considerations make it di�cult to rigorously validate the
\realism" of any graph model. In such cases, where we have
some |albeit incomplete| knowledge of the current and
expected future structure of the network, the model should
re
ect the known properties, and instantiate the remainder
of the topology in some reasonable, random fashion.

Figure 1: The dangers of visual representation

1.2 Overview and Roadmap

In this paper we consider the question of how to generate
graph models that have path characteristics like those of
the Internet. We also address the issue of the signi�cance of
di�erences between graphs generated with di�erent meth-
ods. Our goal is to provide information that can be used in
selecting a graph to use for a particular purpose. We begin
by describing the general topological characteristics of the
Internet (Section 2). It is this structure that the reader
should keep in mind as we describe the common methods
to model internetwork topology.
In Section 3 we describe three classes of graph generation

methods:
at random, regular, and hierarchical. Common
methods in the literature fall primarily into the
at ran-
dom and regular classes. Within the hierarchical class,
we propose a new Transit-Stub model having properties
of hierarchy, locality and routing policy, as found in real
internetworks.
We then analyze the outputs of the various generation

methods (Section 4), with the goal of providing a basis for
selecting a generation method, comparing one method to

1Through interdomain routing protocols it is possible to obtain in-
formation about high-level connectivity covering a signi�cant fraction of
the Internet here but assembling complete end-to-end information |i.e.
down to the level of last-hop routers| would require the cooperation of
hundreds of di�erent domain administrations.

another, or comparing the graphs generated by a method to
(a set of) known real topologies. We propose a set of topo-
logical properties as a basis for such comparisons. Note
that a rigorous system for quantifying the characteristics of
models is essential; relying on visual representation (e.g.,
noting that a layout bears a visual resemblance to geo-
graphic maps of the Internet) can be terribly misleading.
For example, the two topologies in Figure 1 each have 100
vertices and approximately the same number of edges (230
versus 231), a fact that is counter to the visual impression.
Given a set of generation methods (Section 3) and a set

of metrics on the generated graphs (Section 4), an obvi-
ous task is the comparison of one method to another. Be-
fore tackling that question, however, we must determine
the e�ect of the method parameters on the metrics of the
generated graphs within a particular method; Section 5
describes our investigation of this relationship. A statisti-
cal comparison of metric distributions across the di�erent
generation methods provides a basis for some observations
about method similarities and di�erences; these are pre-
sented in Section 6. We augment these general observa-
tions by investigating the e�ect of the generation method
in the context of a speci�c problem typical of those of for
which graph models are used, namely multicast routing.
These results are presented in Section 7.

2 Internet Domain Structure

Throughout this paper it is assumed that the goal is to
model the paths (i.e., sequences of nodes) along which in-
formation
ows between nodes in an internetwork. Typ-
ically, undirected graphs are used to represent the set of
these paths, with nodes representing switches or routers,
and edges representing forwarding paths between switches.
A forwarding path may be a direct (physical) link, or it may
be a shared medium; we do not distinguish these two cases.
For example, an FDDI ring to which four IP routers are
connected would be represented as a clique of four nodes.
In an internetwork there may be many paths between a
pair of nodes; at any time one of these is considered the
\best," or primary path, typically because it is the shortest
(by some metric) of the possible paths. When we mention
\the path between two nodes," we refer to this primary
path.
We do not model individual hosts; it is therefore sen-

sible to have a switching node with an edge to only one
other node, a situation that is not uncommon in actual
internetworks. We also do not model link characteristics
(e.g., bandwidth); such information can be easily included
as an overlay to the basic topological structure, as needed
for studying particular problems.
Today's Internet can be viewed as a collection of inter-

connected routing domains [19], which are groups of nodes
that are under a common administration and share rout-
ing information. A primary characteristic of these domains
is routing locality: the path between any two nodes in a
domain stays entirely within the domain. Each routing

2

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

Stub Domains

Stub-Stub edge

Transit Domains Multi-homed Stub

Figure 2: Example of Internet domain structure

domain in the Internet can be classi�ed as either a stub

domain or a transit domain. A domain is a stub domain if
the path connecting any two nodes u and v goes through
that domain only if either u or v is in that domain; tran-
sit domains do not have this restriction. The purpose of
transit domains is to interconnect stub domains e�ciently;
without them, every pair of stub domains would need to
be directly connected to each other. (See Figure 2.)
A transit domain comprises a set of backbone nodes,

which are typically fairly well connected to each other. In
a transit domain each backbone node also connects to a
number of stub domains, via gateway nodes in the stubs.
Some backbone nodes also connect to other transit do-
mains. Stub domains can be further classi�ed as single-
or multi-homed. Multi-homed stub domains have connec-
tions to more than one transit domain. Single-homed stubs
connect to only one transit domain. Some stubs also have
links to other stubs.
The routing characteristics of the current Internet can be

summarized by the following general principles regarding
the path between two arbitrary nodes u and v:

� If u and v are in the same domain, the path between
them remains entirely within that domain.

� If u is in domain U and v is in domain V , the path
from u to v goes from U , through zero or more transit
domains, to V .

Routing domains range in size from one or two nodes to
hundreds or thousands of nodes.
To summarize, the primary structural characteristic af-

fecting the paths between nodes in the Internet is the dis-
tinction between stub domains and transit domains: a path
connecting two nodes in di�erent stub domains will never
pass through any stub domain other than those two. In
other words, there is a hierarchy imposed on nodes.2 In
the next section, we consider methods of generating graphs
that model the structure of internetworks; as we shall see,
some commonly-used models fail to capture these restric-

2Two re�nements of this structure in the present Internet are worth
mentioning. First, there may be multiple strata of transit domains, i.e.
some transit domains connect only to other transit domains and not to
stub domains. This gives rise to a three-level (or even deeper) hierar-
chy. Second, top-level transit domains are not interconnected pairwise
randomly, but rather come together in cliques called exchanges. Such an
exchange is implemented by a single network, to which nodes from many
transit domains are connected.

tions.

3 Graph Generation Methods

When modeling an entity with some details that are un-
known, or may vary, the standard approach is to substi-
tute nondeterminism for the unknowns, generate multiple
instances, and analyze the set of results. In modeling In-
ternet topology, this corresponds to generating multiple
graphs to be used in simulation or analytic studies. In this
section, we consider three classes of generation methods.
The �rst are
at random graph methods, which construct
a graph by probabilistically adding edges to a given set of
nodes, with no structure amongst the nodes. The second
class of generation methods are regular, in the sense that
they generate graphs with speci�c structure, for example
rings and meshes, and thus have no randomness at all. The
third class of models are hierarchical, building larger net-
work structure from smaller network components. These
methods represent a compromise between the extremes of
the
at random and regular methods: they impose some
high-level structure, and �ll in details at random.3

3.1 Four Flavors of Flat Random Methods

The networking literature contains a variety of
at (i.e.,
non-hierarchical) random methods used to model internet-
works. All are variations on the same basic method: a set
of vertices is distributed in a plane, and an edge is added
between each pair of vertices with some probability. In
the Pure Random (or simply Random) method, this
probability is a �xed number p. While the Pure Random
method does not explicitly attempt to re
ect the structure
of real internetworks, it is attractive for its simplicity and
is commonly used to study networking problems.
Other methods add edges with a probability that is some

function of the distance between the nodes. After the Pure
Random Method, perhaps the most common generation
method is the Waxman method [61], with the probability
of an edge from u to v given by:

P (u; v) = �e�d=(�L)

where 0 < �; � � 1, d is the Euclidean distance from u to v
and L is the maximumdistance between any two nodes. An
increase in � increases the number of edges in the graph,
while an increase in � increases the ratio of long edges to
short edges [61]. Several variations on the Waxmanmethod
have been proposed [26, 63]; because they are essentially
equivalent to the Waxmanmethod, our study includes only
the original method.
We propose two new methods that are also intended to

capture locality by relating edge probability to distance
between vertices. Our Exponential method uses:

P (u; v) = �e�d=(L�d):

3Georgia Tech Internet Topology Models (GT-ITM) is a package for
generating the
at random and
hierarchical models described in this section. It is publically available
at http://www.cc.gatech.edu/projects/gtitm/

3

Method Edge Probability

Pure Random p

Waxman �e�d=(�L)

Exponential �e�d=(L�d)

Locality � if d < r

� if d � r

Table 1: Flat random graph methods

so that the probability of an edge approaches zero as the
distance between two vertices approaches L. Our Locality
method partitions the (potential) edges based on length,
and assigns a di�erent (�xed) probability for each equiva-
lence class of edge lengths. For the case of two equivalence
classes, the parameter r de�nes the boundary:

P (u; v) =

�
� if d < r

� if d � r

One nice feature of the Locality method is that we have
been able to extend some analytic results from the large
body of work on pure random graphs [10] to this model;
these results deal with properties of the graphs (e.g. con-
nectedness) as the number of nodes becomes large.
To summarize, Table 1 indicates the probability of an

edge between two vertices at Euclidean distance d for each

at random method in our study. Note that for most
of these methods, the e�ect of the various parameters on
properties of interest is indirect. For example, suppose one
is modeling a real network with known average node de-
gree of 4.0. What values of � and � should be chosen in the
Waxman method? The Exponential method? We return
to such questions in Section 5.
Note also that in each of these methods, every pair of ver-

tices is treated equally with respect to addition of edges.
Thus, although it is possible to control the approximate
number of edges, it is not possible to control the con�gura-
tion of the edges. This has implications for the generation
of large sparsely-connected graphs using these methods. In
particular, for any of the edge probability functions in Ta-
ble 1, the probability that a graph is connected decreases
as number of nodes in the graph increases. As a result, it
is di�cult to create connected graphs with large numbers
of nodes and low average node degree. One alternative is
to generate partially-connected graphs and then apply var-
ious \repair" techniques to connect the graph. Obviously
this will produce graphs whose structure is not entirely ran-
dom, because it has been in
uenced by the repair process.
Another option is to use the random methods to generate
smaller graphs that are then connected into a hierarchical
structure. (See Section 3.3.)

3.2 Regular Graphs

Regular graphs are often used in analytic studies of al-
gorithm performance because their structure makes them
tractable. We consider Linear Chains, Rings, Stars and

Meshes; Figure 3 gives an example of each topology with
nine nodes. The general structure should be clear from
these examples.

Ring
Star

Mesh

Linear Chain

Figure 3: Examples of regular graphs

3.3 Hierarchical Methods

The
at random and regular graph methods represent ex-
tremes in the sense that the former o�er little control over
the structure of the resulting graphs, while the latter are
extremely rigid in their structure. Neither captures the hi-
erarchy that is present in real internetworks, though both
may re
ect some notion of locality if certain nodes are
more likely to be connected than others. We now describe
two methods of creating hierarchical graphs by connect-
ing smaller components together according to a larger-scale
structure.

3.3.1 N-Level Method

The N-level hierarchical method constructs a graph by iter-
atively expanding individual nodes into graphs. Beginning
with a connected graph, each node in the graph is replaced
by a connected graph. The edges of the original graph are
then re-attached to nodes in the replacement graphs.
More precisely, in constructing the
at random graphs,

we divide a unit square in the Euclidean plane into equal-
sized square sectors, the number of which is determined by
a scale parameter S; each node in the graph is then as-
signed to one of the S2 squares. In constructing an N-level
hierarchical graph, the top-level graph is constructed in this
fashion using scale parameter S1. Then each square con-
taining a node is subdivided again, according to the second-
level scale parameter (S2), and a graph is constructed using
that top-level square as the unit plane. Figure 4 illustrates
the initial iterations of the process. The result is that the
scale of the �nal graph is the product of the scales of the
individual levels, and edge lengths are roughly determined
by edge level. For example, in a three-level graph, \top-
level" edges (i.e., part of the original graph) are typically
longer than second-level edges, while the second-level edges
are typically longer than third-level edges.
It is possible to de�ne a simple \routing policy" based on

the principles outlined in Section 2, and add information to
the graph to re
ect it. This generally takes the form of an
edge metric designed so that the \shortest" path between
two nodes, in terms of that metric, obeys the hierarchy
constraints. For example, in the N-level method, the path
between nodes within the same level-k domain should stay
entirely within that domain. We implemented this by asso-

4

ciating with each edge a routing policy weight, in addition
to the Euclidean edge length, to use in constructing policy-
based shortest paths. One of the advantages of the N-level
method is its simplicity. Because of the way nodes are laid
out in the plane with this method, Euclidean edge lengths
are a good approximation for policy weights that enforce
domain locality. A disadvantage of this method is that the
nodes are of only one type, and thus paths in these graphs
may not have the form described in Section 2.

Figure 4: N-Level hierarchical layout

3.3.2 Transit-Stub Method

Our Transit-Stub method is a new way to produce hier-
archical graphs, by interconnecting transit and stub do-
mains. We �rst generate a connected random graph, using
any one of the methods discussed earlier; each node in that
graph represents an entire transit domain. Each node in
that graph is then replaced by another connected random
graph, representing the backbone topology of one transit
domain. Next, for each node in each transit domain, we
generate a number of connected random graphs represent-
ing the stub domains attached to that node. Each of these
stub domains has an edge to its transit node. Finally, we
add some \extra" connectivity, in the form of edges be-
tween pairs of nodes, one from a transit domain and one
from a stub, or one from each of two di�erent stub domains.
The number of \extra" edges of each type is controlled by
parameters to the method. Clearly, if the random graphs
generated are all connected, this construction results in
a connected graph. Doar has independently proposed a
graph generation method that has a somewhat similar hi-
erarchical structure to this method [15].
The size of the graph (number of nodes) and the distri-

bution of nodes between transit and stub domains in this
method is controlled by the following parameters:

Param. Meaning Ex.

T number of transit domains 6
Nt (avg) nodes/transit domain 15
K (avg) stub domains/transit node 12
Ns (avg) nodes/stub domain 8

total nodes 8730

As the table shows, it is not di�cult to generate rather
large graphs with this method. Moreover, the average node
degree of the whole graph depends mainly on the number of
edges in the component graphs; if the component graphs
are small enough, it is possible to generate large graphs
with small average node degrees. In the example above,
if the average node degree is 3 for transit backbones and
2.5 for stub domains, the average node degree of the entire
graph will be about 2.75.
Note that the parameters given are averages. In our

implementation, we randomize the numbers of nodes in the
transit domains while preserving the average 4. The values
of K and Ns for each transit node and stub domain are
also randomized. Our implementation also allows di�erent
random graph methods and parameters to be plugged in to
generate transit and stub domain subgraphs with di�erent
characteristics.
Once the complete graph is constructed, integer edge

weights are assigned to the edges so that the hierarchical
routing policies of Section 2 are enforced when shortest
paths are calculated using the weights. The calculation of
these weights is described in the Appendix.
The transit-stub method, like the other methods, assigns

each node of the graph to a point in the Euclidean plane, so
that a \length" metric may be assigned to each edge. This
is done in such a way that nodes in the same domain are
\near" each other, but domains may overlap in the plane.
In particular, stub domains may overlap with the transit
domains to which they are connected. This means that the
policy weights assigned to the edges may have little to do
with the Euclidean \length" of the edges|unlike graphs
generated using the N -level method.

4 Metrics

In this section, we consider several metrics that can be used
to compare and evaluate graphs. The metrics fall into two
categories: topological metrics, which are independent of
any particular application, and application-speci�c metrics,
which depend on topology and application. In the next
section, the e�ect of method parameters on the topological
metrics is discussed; in Section 6, the di�erent generation
methods are compared with respect to these metrics. In
Section 7, the methods are compared using some metrics
speci�c to multicast routing.

4This is done by iteratively choosing a transit domain, and if its cur-
rent number of nodes exceeds 1, decrementing it and then choosing an-
other random domain and incrementing its number of nodes. This process
\spreads out" the values while keeping the mean constant.

5

4.1 Topological Metrics

We �rst consider attributes inherent in the graphs them-
selves; these are useful for characterizing and classifying
methods independent of any particular application. Some
of these metrics are derived from shortest paths; we con-
sider both \hop" metrics, in which each edge has unit
weight, and \length" metrics, in which each edge has weight
equal to its Euclidean length. We further consider com-
posite metrics in which the shortest paths are determined

using one metric, but evaluated using a di�erent metric.
For example, in the hierarchical methods, we might deter-
mine the shortest paths using the routing policy weights,
then evaluate the maximum hop count for these (policy-
determined) routes between nodes.
For a graph with n nodes and m edges, we consider the

following topological properties:

� Average node degree. (2m=n).
� Diameter. The diameter of a graph is the length of
the longest shortest-path between any two vertices [11].
Informally, a low diameter generally corresponds to
shorter paths. We consider several variations on the
diameter, depending on the metric used to construct
and evaluate the shortest paths.
The hop-diameter is the length of the longest shortest-
path between any two vertices, where the shortest
paths are computed and evaluated using hop count
as the metric.
The length-diameter is the length of the longest
shortest-path between any two vertices, where the short-
est paths are computed and evaluated using Euclidean
length as the metric.
The hop-length-diameter is a composite metric. The
shortest paths are determined using hop count, then
measured using Euclidean length. The diameter is
the longest Euclidean length amongst the paths found
using hop count. This metric is interesting because
routing algorithms often use hop count to �nd paths,
but propagation delay is proportional to physical path
length (represented by Euclidean distances).
For the hierarchical methods, the policy-hop-diameter
uses the routing policy weights to construct the short-
est paths, then uses the hop count to evaluate the
length of the paths. The diameter is the length of the
longest path.
Similarly, the policy-length-diameteruses the rout-
ing policy weights to construct the shortest paths, then
uses the Euclidean length to evaluate the length of the
paths. The diameter is the length of the longest path.

� Number of biconnected components. A bicon-
nected component (or bicomponent) is a maximal set
of edges such that any two edges in the set are on a
common simple cycle [11]. The number of bicompo-
nents is a measure of the degree of \connectedness"
or \edge redundancy" in a graph. Generally, a smal-
ler number of bicomponents corresponds to a larger
number of paths between nodes in the graph.

We considered a number of other possible metrics, includ-

Edges Hop-diameter Bicomps

L. Chain n� 1 n n

Ring n bn=2c 1
Star n� 1 2 n

Mesh 2(n�
p
n) 2(

p
n� 1) 1

Table 2: Properties of regular graphs

ing some that were not scalar (e.g., node degree distribu-
tions). We chose to focus on these characteristics because
they are quantitative abstractions of some aspects of the
structure of the graph, they are relatively easy to measure,
and they are informative. They are not necessarily inde-
pendent. In particular, increasing average node degree cor-
relates with decreasing diameter and fewer bicomponents.
As an example, Table 2 gives selected properties of Lin-

ear Chains, Rings, Stars and Meshes, with n nodes. While
a Ring and a Chain di�er by only one edge, they have
substantially di�erent hop-diameter and number of bicom-
ponents. (Removing one edge in a Ring breaks the sym-
metry.) A Star has the smallest hop-diameter of these four
regular graphs. In all cases, the properties are completely
determined by the number of nodes n.

4.2 Example Application Metrics

To more closely relate the evaluation of network models to
a speci�c intended use, we also consider two metrics that
are relevant to the performance of multicast routing algo-
rithms. Brie
y, a multicast routing instance is a subset S of
the graph nodes designated as multicast group sources and
another subset R designated as multicast group receivers;
these two sets may intersect.
For a given graph and instance, a multicast routing al-

gorithm de�nes a set of distribution trees, one per source,
which determine the path followed by each packet sent by
a source on its way to all the receivers. A distribution tree
is generally derived from the shortest-path trees provided
by the underlying internetwork (unicast) routing protocol.
For a group with s senders and r receivers (1 � s; r � n)

we measure the following quantities for multicast routing
algorithm A:

� Packet-hops ratio. This metric considers the packet-
hops, that is, the number of edges traversed by mul-
ticast packets in the routing trees de�ned by A, from
all sources to all destinations. The actual value of the
metric is the ratio of this quantity to the packet-hops
used by another routing algorithm that constructs a
distribution tree by using a shortest-path tree rooted
at each source and including all receivers as leaves.5

5There are a couple of reasons for measuring the ratio to the shortest-
path tree number, rather than the absolute number. For one, the ratio
serves to normalize results, allowing comparisons across instances with
di�erent numbers of sources and receivers. In addition, shortest-path
trees are the basis for the presently-deployed Internet multicast routing
algorithm DVMRP [25, 48], thus the ratio allows an evaluation of how
algorithm A compares to an accepted standard.

6

� Delay ratio. This metric considers the maximum
delay, measured in hops, from any source to any re-
ceiver in the distribution trees de�ned by A. As above,
the \raw" value is normalized to get the metric value,
by dividing by the maximum delay obtained using a
shortest-path algorithm. Note that this ratio is always
at least 1.0.

5 Parameter Selection

We have described methods for generating graphs and met-
rics that can be used to evaluate the properties of a graph.
We now proceed to use these metrics to evaluate the graphs
generated by each method. To compare the metrics across
methods, we must have some reasonable way of \normal-
izing" so that the di�erences that we observe are (in some
sense) inherent to the method. In this section, we de-
scribe a methodology for comparing methods that consists
of �xing the number of nodes and the average number of
edges. For most methods, a target number of edges can
be achieved by various combinations of parameter values,
so we investigate how the metric values vary with the pa-
rameters. We conclude this section by selecting parameters
for each method, avoiding the extremes of the parameter
space.

5.1 Evaluation Methodology

To compare methods, we normalize by �xing a value for
n, the number of vertices, m, the number of edges, and
L, the maximumdistance between two nodes. Speci�cally,
we select n = 100 and m = 175; this corresponds to an
average node degree of 3.5. The scale of the Euclidean
plane in which the nodes of each graph are placed is 100
by 100, thus L = 100

p
2 � 141. Later in the paper we

investigate the e�ect of changing n and m.
In each method, we explore the combinations of parame-

ters that yield the desired �xed number of edges, while also
producing connected graphs with reasonable frequency. (Af-
ter generating each graph, we check it for connectivity,
keeping only those graphs that are connected.) After char-
acterizing the combinations of parameters that can pro-
duce connected graphs with the target number of edges, we
pick one particular set of parameters for each method and
determine the additional properties of interest for graphs
generated using these parameters.

5.2 Flat Random Methods

For all of the properties we will examine, the most useful
result would be an analytic expression giving the value of
the property as a function of the model parameters and
the graph size. Unfortunately, most of the methods do
not admit a simple analytic expression, even for simple
properties. There are two exceptions to this: �rst, a wide
body of work on the properties of (pure) random graphs has
been developed, particularly graphs with large numbers of
nodes (n!1) [10]; second, we have extended a number of

these results to the Locality method [9]. For the remaining
methods, we rely on empirical results.

alpha
be

ta

0.10 0.15 0.20 0.25 0.30

0.
10

0.
15

0.
20

0.
25

0.
30

50 100
150

200

250

300

350
400

450
500

Figure 5: E�ect of � and � on number of edges in Waxman
method

The expected node degree in the Pure Random method
is given by p(n�1), thus p = :035 will produce graphs with
m = 175 edges. The expected degree of a node in the Ex-
ponential method is E[n�e�D=(L�D)] = n�E[e�D=(L�D)],
where D is a random variable giving the distance between
two vertices. The expected node degree in the Exponen-
tial model scales linearly with �. Empirical results indi-
cate that the average number of edges is approximately
175 when � = :06; about three out of 100 of these graphs
are connected.
The relationship between the number of edges and the

parameters of the Waxmanmethod is somewhat more com-
plex. Through empirical studies, we have determined that
the parameter L has essentially no e�ect on the number of
edges, for �xed � and �, because a change in L is accompa-
nied by a change in the distance d between an arbitrary pair
of vertices, keeping the quantity d=L essentially constant.
The practical implication is that a user of this method can
generate vertices in any convenient scale without a�ecting
the graphs that are generated.
For a target number of edges, many combinations of �

and � can achieve the target. Figure 5 shows the contour
lines of equi-number of edges as a function of � and �, for
n = 100.
We explore the e�ect of the parameters � and � by se-

lecting four combinations that produce m = 175 edges. We
generate 100 connected graphs for each combination, and
measure the metrics described earlier. Figure 6 shows the
comparison using a box plot to indicate the median over
the 100 values (with a white line), the 25% and 75% range
boundaries (with a box), the 5% and 95% range boundaries
(with \whiskers") and any outliers with single lines. The

7

3.
0

3.
4

3.
8

4.
2

wax0 wax1 wax2 wax3

Average degree

5
10

15
20

25
30

wax0 wax1 wax2 wax3

Bicomponents

7
8

9
10

11
12

13

wax0 wax1 wax2 wax3

Hop-diameter

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

wax0 wax1 wax2 wax3

Length-diameter

Figure 6: E�ect of parameters in Waxman method

average node degree plot serves as a check that the graphs
achieve the target of 175 edges (i.e., average node degree
3.5). The other properties are the number of bicompo-
nents and the diameter measured in both hops and length.
The length-diameter has been normalized by dividing the
Euclidean length by the scale.
We will use box plots extensively to present scalar met-

rics, since they neatly summarize information about the
distribution, and also support comparisons across methods.
The reader should be careful, however, in interpreting the
data for discrete metrics. For example, the hop-diameter
for the wax0 method is almost always either 8 or 9; it does
not take on continuous values as one might infer from the
box plot.
The value of � ranges from 0.1 (wax0) to 0.4 (wax3). The

� values are chosen to achieve the target of 175 edges: for
� = 0:1, � = 0:28; for � = 0:4, � = 0:1. As � increases
(and thus � decreases), the graphs have more short edges,
leading to longer hop-diameter, shorter length-diameter
and slightly more bicomponents. For comparisons to other
methods, we select � = :2 and � = :15.
For the Locality model, we determined that a choice of

� = :2, � = :005 and r = :25 � L will produce an aver-
age node degree of 3.5. We have also experimented with
variations in � and � in the Locality method. We ob-
served the same general trends as in the Waxman method:
more short edges (higher �) results in longer hop-diameter,
shorter length-diameter and more bicomponents. The dif-
ferences in length-diameter can be extreme in the Locality
method, since � and � can be chosen to force the extremes
of no edges of length greater (or less) than r.
We summarize the choice of parameters for each method

in Table 3.

Method Parameters

Random p = :035

Waxman � = :2; � = :15
Exponential p = :06

Locality � = :1; � = :005; r = (:25� L) = 35:35

Table 3: Selected parameters for each
at random method

5.3 Hierarchical Methods

One of the advantages of the hierarchical methods is their
ability to generate large graphs e�ciently, while maintain-
ing low average node degree. The
at methods require
the average node degree to grow as n grows in order to
generate connected graphs with reasonable e�ciency. The
increase in average node degree in turn a�ects other pa-
rameters such as diameter and number of bicomponents.
In contrast, the formula for the average node degree of a
transit stub graph (ignoring \extra" edges) is

2(Et + (1 + EsNs)K)

1 +KNs

where Et and Es are the edge densities (number of edges
per node) of the transit and stub domains, respectively.6

Thus, it is possible to parameterize the random graph gen-
eration methods to achieve almost any overall average node
degree.
Consider now the e�ect of varying the number and sizes

of the domains for the transit-stub and N -level methods,
with N = 2. Note that there is no obvious way to \nor-
malize" the edge probabilities when the number and size
of domains is varied.7 Thus, we make observations about
the general trends that hold over large portions of the edge
probability space; some extreme values of edge probabil-
ity may generate graphs that do not follow these general
trends.
In the transit-stub method, we vary the number and size

of transit domains, while keeping the number and size of
stubs �xed, then vary the number and size of stub domains
while keeping the number and size of transits �xed. For
example, Figure 7 shows metrics for three con�gurations
of 200-node transit-stub graphs with average node degree
approximately 3.5. Note that for this comparison, we are
using the diameter metrics that construct the routes us-
ing the routing policy weights. The con�gurations are as
follows:

6In our implementation, the randomization of the number of nodes in
the domains tends to increase the number of edges slightly over what the
above formula predicts. This is because the number of possible edges in
a graph grows quadratically with the number of nodes. Thus, although
the mean number of nodes per domain is preserved by the randomization
process, the number of additional edges contributed by domains with
a greater-than-average number of nodes will be greater than the de�cit
left by domains with fewer-than-average edges. If parameters are always
chosen so that domain size is limited, this randomization e�ect will also
be limited.

7One possibility is to keep constant the ratio of the number of intra- to
inter- domain edges. However, one can easily come up with other plausible
alternatives. We are not convinced that there is a \best" way to do this
normalization.

8

3.
2

3.
4

3.
6

3.
8

4.
0

ts0 ts1 ts2

Average degree

80
90

10
0

11
0

ts0 ts1 ts2

Bicomponents

8
10

12
14

ts0 ts1 ts2

Policy-hop-diameter

2.
0

2.
5

3.
0

3.
5

4.
0

ts0 ts1 ts2

Policy-length-diameter

Figure 7: Varying domains in Transit-Stub graphs

Con�g # xit nodes/ # stubs/ nodes/
domain xit xit stub

ts0 2 4 4 6
ts1 1 8 4 6
ts2 2 4 6 4

If we call ts0 the baseline, then ts1 corresponds to few-
er/larer transit domains and ts2 corresponds to more/-
smaller stub domains.
From this example, and others, we observe the following:

� More/smaller transit domains yields more bicompo-
nents and larger hop and length diameter. This is
consistent with intuition: more and smaller transit
domains result in longer paths to get from one stub
domain to another.

� More/smaller stubs yields more bicomponents and smal-

ler hop and length diameter. Thus the e�ect on diam-
eters is opposite for stubs than for transit domains.
This is also consistent with intuition: smaller stub do-
mains result in shorter paths within the stub, while the
length of the paths across the transit domains remain
constant.

The 2-level method has just one type of domain. More
and smaller domains in this model have the same e�ect as
more/smaller stubs; that is, more/smaller domains lead to
more bicomponents and smaller hop and length diameter.
We selected the following parameters to use in comparing

the hierarchical methods to the
at random methods: each
transit-stub graph has 1 transit domain of 4 nodes, 2 stub
domains per transit node, and 12 nodes per stub domain.
None of these graphs have any \extra" transit-stub or stub-
stub edges, so each stub domain connects to exactly one
transit domain. Each 2-level graph has 10 domains with

an average of 10 nodes each. In both hierarchical methods,
the pure random method was used to generate all of the
domain graphs.

6 Method Comparisons

In this section, we compare one graph generation method
to another. We pay particular attention to the metrics that
serve as discriminators, demonstrating one method to be
clearly di�erent from another. Our comparison is based
on 100 connected 100-node graphs for each method, using
parameters chosen (see Section 5) so that the average of
the graph average node degrees is 3.5 across the graphs of
each type.

6.1 Graph Properties

2.
5

3.
0

3.
5

4.
0

rand wax local exp tstub 2lev

Average degree

10
20

30
40

rand wax local exp tstub 2lev

Bicomponents

6
8

10
12

14

rand wax local exp tstub 2lev

Hop-diameter

1
2

3
4

5
6

rand wax local exp tstub 2lev

Length-diameter

Figure 8: Comparison of
at random and hierarchical
methods

Figure 8 shows box plots of topological metrics for the four
random methods (rand, wax, local, exp) and the two hi-
erarchical methods (tstub, 2lev). The salient features of
these plots are the following:

� The most signi�cant di�erence in the
at methods is
in the length-diameter. For the parameters chosen,
the Pure Random method is clearly di�erent from the
other models, with much longer length-diameter. The
Random method is insensitive to edge length when
adding edges to a graph, while the other methods
(with the given parameters) favor shorter edges over
longer edges. The Random method is therefore more
likely than the other methods to have long edges and
long paths.

9

� The Exponential method is next most likely to have
long paths. The Exponential method does include
length in the probability of an edge, however for the
parameters chosen, the probability falls o� more slowly
with increasing edge length than in the other methods.

� The hierarchical methods di�er from the
at methods
most signi�cantly in the bicomponents metric, with
nearly twice as many bicomponents, on average, in hi-
erarchical graphs. The hierarchical graphs also tend to
have longer hop-diameter and shorter length-diameter.
The hierarchical structure explains the diameter re-
sults: edges are mostly constrained to be (short) intra-
domain edges, resulting in longer hop-based paths, but
more direct (thus, shorter) length-based paths.

� The two types of hierarchy re
ected in Transit-Stub
and 2-Level methods di�er from one another on sev-
eral metrics, with Transit-Stub graphs tending to have
more bicomponents and longer length-diameter. For
these parameters, the transit domains serve to \sep-
arate" stub domains, leading to more bicomponents
and longer length-based paths.

To further compare the two hierarchical methods, we
look at a larger topology.8 We consider graphs of 600
nodes, with average node degree 4.1. We normalize across
the two hierarchical methods by �xing the number and
size of the domains to 75 domains of 8 nodes each. In the
Transit-Stub method, three of these domains are transit
domains and 72 are stub domains, with an average of three
stubs per transit node. We further select the edge proba-
bility parameters so that the average number of \lowest"
level intradomain edges are approximately the same. Thus,
the number of intra-stub edges in Transit-Stub is approx-
imately equal to the number of intra-neighborhood edges
in 2-Level.
Figure 9 shows properties for the hierarchical methods,

including diameter using policy weights to construct the
paths. Two Transit-Stub results are shown: those labeled
tstub have no extra edges, while those labeled tstub-ex
have �ve extra Transit-Stub edges and �ve extra Stub-Stub
edges. These results show that Transit-Stub graphs tend
to have more bicomponents than 2-level graphs, though as
expected the di�erence is reduced as extra edges are in-
cluded. The policy-hop-diameter is essentially the same
for all three results, but the policy-length-diameter is more
than 50% larger in the 2-level method. The di�erence in
policy-length-diameter can be attributed to the lack of a
\backbone" in the 2-level graphs. Routes in a 2-level graph
may need to traverse multiple neighborhoods to get from
source to destination, while the Transit-Stub routes are
more likely to make good use of the backbone to construct
shorter routes. Further, the policy-length-diameter is in-
sensitive to the addition of extra edges; the extra edges will
only reduce the diameter of a given graph if they happen
to provide an alternative, shorter route between nodes that
are currently separated by the longest shortest path.

8Note that the hierarchical methods are well-suited to the generation of
large topologies; indeed n = 100 nodes is somewhat too small to generate
an \interesting" hierarchical graph.

3.
9

4.
0

4.
1

4.
2

4.
3

tstub tstub-ex 2lev

Average degree

12
0

14
0

16
0

18
0

20
0

tstub tstub-ex 2lev

Bicomponents

12
13

14
15

16
tstub tstub-ex 2lev

Policy-hop-diameter

3
4

5
6

7

tstub tstub-ex 2lev

Policy-length-diameter

Figure 9: Hierarchical methods

6.2 Statistical Analysis

We now turn to statistical analysis of the topological metric
data for the models. Our aim is to go beyond the qualita-
tive, visual comparisons of the previous section to provide a
rigorous test for determining the extent to which two meth-
ods di�er with respect to the characteristics of the graphs
they generate. We quantify the similarity of the graphs
generated with di�erent methods by performing pairwise
comparisons of the methods for each metric. Given two
methods and a metric, these comparisons are designed to
answer the following questions:

� Does the metric data come from the same distribu-
tion?

� What is the probability that a random instance gener-
ated by one method has a smaller value for the metric
than a random instance from the other method?

6.2.1 Statistical Methods

To answer the �rst question, we utilize the Kolmogorov-
Smirnov two-sample test (KS test) [32] which tests the hy-
pothesis that two independent samples are drawn from the
same population. For a particular metric, if the distribu-
tion of all methods appears identical, then the selection of
the method for that metric is less important; conversely,
for methods whose metric values are not the same, extra
consideration must be given to the appropriate method to
use. To determine method interrelationships, we perform a
two-sided KS test with � = 0:05 for each metric, pairwise
over the generation methods. Thus, the null hypothesis
is that the samples are drawn from the same distribution,
and the test will indicate whether the null hypothesis can

10

be rejected with con�dence level 1� � = 0:95.
Distribution testing allows only a yes/no answer about

the similarity of the metric value distributions for twometh-
ods. We want to extend our analysis to answer the ques-
tion of how similar or dissimilar the graphs generated by
the methods are. In addition we want to derive a measure
of con�dence in conclusions of metric value relationships
between methods. That is, how con�dent are we in con-
cluding that the metric value for one method is less than
the metric value for another? To determine this, we assess
the probability that a randomly generated instance from
method F has a lower value of metric M than a randomly
generated instance from method G. The closer this inter-
metric probability is to 0:5, the more similar the methods
are, relative to metric M . A high (low) probability indi-
cates that the value for metric M of an instance of F is
likely to be lower (higher) than the value for G.9

Let f(x) and g(x) be the probability distribution func-
tion of generation method F and G, respectively, for metric
M . For any random instance of graph modelsF andGwith
metric value f and g, respectively, the probability that f
is at most g is given by:

Pff � gg =

Z
1

�1

(

Z y

�1

f(x)dx)g(y)dy

We used the measured distribution data from the experi-
ments in the previous section to numerically perform the
integration.

6.2.2 Results

For conciseness, we combine the results of the KS-Test and
intermetric probability into a single table format. We opt
for a pictographic representation of the intermetric proba-
bility data, using a \pie" that is proportionally more �lled
in to represent larger probabilities.10 For the KS-Test, we
add an asterisk to those tabular entries that do not reject
the null hypothesis of two sample sets having the same
distribution.
Each table contains results comparing a variety of gen-

eration methods for a particular metric. Each row corre-
sponds to a particular graph size, and each column corre-
sponds to a particular pair of methods.11 Within a column,
two values for average node degree are considered, 3.5 and
5.0. Each entry in the table gives the pie-chart represent-
ing the intermetric probability. Pie charts with an asterisk
indicate that the two methods being compared have equiv-
alent metric value distributions according to the KS test.
N/A entries indicate that we did not perform experiments
for this particular graph size and node degree.

9Other methods exist for comparison of sample distribution (e.g.

�
2 [49]). We chose to use a method that is somewhat more simple to

evaluate and is not sensitive to factors such as selection of bin size.
10Clearly some information is lost by this representation, however we

believe that actually makes it easier to reach meaningful conclusions about
the results.
11The columns are labeled Pr(X < Y) where X and Y are the �rst letter

of the method names being compared. For example, Pr(R < L) means
that the table entry gives the intermetric probability that Random is less
than Locality.

As an example, consider the top entry in the �rst column
of Table 4. For this entry, 100 Random graphs are com-
pared to 100 Locality graphs, all of average node degree
3.5. The pie indicates that a Random graph has approx-
imately a 62.5% chance of having a smaller hop-diameter
than a Locality graph, assuming both graphs have 50 nodes
and an average node degree of 3.5. The lack of an asterisk
indicates that the KS-Test rejected the hypothesis that 50
node, 3.5 average node degree Random and Locality graphs
have the same distribution of hop-diameter.
Tables 4, 5 and 6 give the
at-to-
at comparison for three

diameter metrics: the hop-diameter, the length-diameter
and the hop-length-diameter. Recall that the hop-length-
diameter is determined by �rst constructing shortest paths
using hop count as the distance metric, then determin-
ing the length of the longest resulting path using the Eu-
clidean length of the edges as the length metric. Hop-
length-diameter is useful since routing algorithms often rely
on hop count to construct paths, but Euclidean length is
proportional to propagation delay on the path.
Tables 7 and 8 compare the
at methods to the hierarchi-

cal methods for the hop-diameter and the length-diameter,
with Transit-Stub denoted T and 2-level denoted N. For
the hierarchical-to-hierarchical comparisons, we only use
600 node graphs with node degree 4.2. Table 9 compares
the Transit-Stub and 2-level hierarchical methods using the
hop- and length-diameters, in addition to the bicomponent
metric.
The interesting observations which can be made from

these tables are:

� We con�rm, using statistical methods, some of the ob-
servations we made in Section 6.1 based on visual in-
spection of the boxplot data. For example, the di�er-
ences between the
at methods are more profound for
the length-diameter measure than the hop-diameter
measure: the pies in Table 5 that are mostly empty
or nearly entirely �lled, while the pies in Table 4 are
closer to half-�lled.

� The comparisons tend to be preserved with changes in
graph size and average node degree, for the parameters
selected.

� The comparison of the
at methods based on length-
diameter is strikingly similar to the comparison based
on hop-length-diameter, with both metrics revealing
signi�cant di�erences across methods.

� The ordering of the methods di�ers signi�cantly with
respect to length-based and hop-based evaluation met-
rics. In fact, the most likely ordering is generally in-
verted in going from one to the other. For example
in Table 7 (hop-diameter) all entries are close to 1,
while in Table 8 (length-diameter) almost all are close
to 0. The reason for the inversion is the di�erence
in probability of long paths for the various generation
methods. That is, graphs with the most long edges
will most likely have the smallest hop-diameter; how-
ever, graphs with mostly long edges will most likely
not yield the most direct Euclidean path.

� There are signi�cant di�erences between the 2-Level

11

method and the Transit-Stub method as demonstrated
in the pair-wise comparisons of Table 9. Note again
the inversion of probabilities for hop and length-based
metrics.

Graph Pr(R < L) Pr(R < W) Pr(R < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � * � * � * � *

100 � * � � � � * � *

200 N/A � N/A � N/A � *

Graph Pr(L < W) Pr(L < E) Pr(W < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � � � * � *

100 � * � � � � * � *

200 N/A � N/A � N/A �

Table 4: Hop-Diameter for Flat-to-Flat Comparison

Graph Pr(R < L) Pr(R < W) Pr(R < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � � � �

100 � � � � � �

200 N/A � N/A � N/A �

Graph Pr(L < W) Pr(L < E) Pr(W < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � � � �

100 � � * � � � �

200 N/A � N/A � N/A �

Table 5: Length-Diameter for Flat-to-Flat Comparison

Graph Pr(R < L) Pr(R < W) Pr(R < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � � � �

100 � � � � � �

200 N/A � N/A � N/A �

Graph Pr(L < W) Pr(L < E) Pr(W < E)

Size 3.5 5.0 3.5 5.0 3.5 5.0

50 � � � � � � *

100 � * � * � � � �

200 N/A � N/A � N/A �

Table 6: Hop-Length-Diameter for Flat-to-Flat Compari-
son

Graph Pr(R < T) Pr(R < N) Pr(L < T) Pr(L < N)

Size 3.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0

100 � � � � � � � �

200 N/A � N/A � N/A � N/A �

Graph Pr(W < T) Pr(W < N) Pr(E < T) Pr(E < N)

Size 3.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0

100 � � � � � � � �

200 N/A � N/A � * N/A � N/A �

Table 7: Hop-Diameter for Flat-to-Hierarchical Compari-
son

Graph Pr(R < T) Pr(R < N) Pr(L < T) Pr(L < N)

Size 3.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0

100 � � � � � � � �

200 N/A � N/A � N/A � N/A �

Graph Pr(W < T) Pr(W < N) Pr(E < T) Pr(E < N)

Size 3.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0

100 � * � � � � � � �

200 N/A � N/A � N/A � N/A �

Table 8: Length-Diameter for Flat-to-Hierarchical Com-
parison

7 Multicast Routing

Comparisons of methods using topological metrics has pro-
vided evidence of di�erences between methods; however,
ultimately it is important to know if these di�erences af-
fect performance for real networking problems. That is,
how do methods compare for problems of interest? To
determine this e�ect, we consider the problem of multicast
routing. We assume the reader is familiarwith the concepts
of multicasting, and center-based (or shared-tree) multicast
routing. (See [16] for details). Many di�erent generation
methods have been used to study multicast routing algo-
rithms, including the Waxmanmethod [61] and well-known
topologies such as the ARPAnet [63]. Thus, it is important
to determine the e�ect, if any, the method has on results.

7.1 Multicast Routing

Many metrics exist for evaluating multicast routing algo-
rithms and policies. For simplicity, we consider the packet-
hops and maximum delay, as de�ned in Section 4. In our
experiments, we consider ten graphs, each 200 nodes with
average node degree 5.0, generated by three methods (Ran-
dom, Exponential, and Transit-Stub). We chose these par-
ticular methods to have representation that include the
pure random method, a
at method that is sensitive to
edge length, and a hierarchical method.

Hop-diameter Length-diameter Bicomponents

� * � �

Table 9: Pr(T < N): Hierarchical Comparison

12

To test the e�ect of graph type on performance, we per-
form a series of \runs" on each graph: each run consists of
generating a multicast instance with 1 to 50 sources and
1 to 50 receivers. The total number and identity of the
sources and receivers are chosen randomly. After an in-
stance has been generated, we evaluate the performance
(packet-hops and maximum delay) with each node as the
center of the shared tree. We record the performance for
the optimal center, as well as the performance averaged
over all centers. Finally, we normalize the optimal and
average performance values by taking the ratio to the per-
formance of the shortest-path multicast routing trees for
the instance. For each graph, we construct 100 such runs.
Within a method, we combine the results of the 100 runs
over each of 10 graphs, to get 1000 data points per method.

7.2 Results

Figure 10 gives the box plots for the ratio of the optimal
and average center performance to the shortest path per-
formance for packet-hops and maximum delay. Note that
while the average center ratios are somewhat similar for
all methods, the optimal center ratios di�er signi�cantly
between the
at and hierarchical methods in the following
manner:

� For optimal packet-hops and delay, the means di�er
between the Randomand Transit-Stub by 13% and be-
tween the Exponential and Transit-Stub by 2%; how-
ever, the means for optimal packet-hops and delay be-
tween the
at graphs only di�er by 1%.

� The packet-hops and delay results for the Transit-Stub
graphs exhibit a much tighter distribution than either

at graph.

� The hierarchical variance is an order of magnitude less
that either
at variance for the optimal measures and
half for the average measures. Also, note that the

at graphs' 0-50th percentile ranges correspond to the
entire range of the Transit-Stub graphs. This indicates
that, at least for these measures, fewer Transit-Stub
graphs may be needed to achieve a signi�cant sample
size in analyzing results from the transit-stub graphs
than from the
at graphs.

� Using mean equivalence hypothesis testing (t-test [47])
with � = 0:05, we determine the means of the
at
methods for the average packet-hops and delay mea-
sures to be equivalent, but the means of either
at
method compared to the Transit-Stub method are not
equivalent. Note that our large sample size (1000
graphs/runs) relaxes the need for normality in this
type of hypothesis testing [45].

Figure 11 shows the distribution of multicast performance
for each metric. Note that, as expected, the frequency
distributions for the two
at methods are very similar, and
the Transit-Stub frequency distribution is dissimilar to the

at methods. Also note that the frequency distribution for
the Transit-Stub method is tightly centered around 1.0 for
both optimal metrics. Without more extra Transit-Stub or

Stub-Stub edges, the structure of the Transit-Stub graph
limits the routing tree possibilities; therefore, the optimal
center routing tree is similar to the shortest path routing
tree.

0.
7

0.
8

0.
9

1.
0

1.
1

Random Exponential Transit-Stub

Optimal Hops

R
at

io
 o

f C
en

te
r

to
 S

ho
re

st
 P

at
h

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Random Exponential Transit-Stub

Optimal Delay

R
at

io
 o

f C
en

te
r

to
 S

ho
re

st
 P

at
h

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Random Exponential Transit-Stub

Average Hops

R
at

io
 o

f C
en

te
r

to
 S

ho
re

st
 P

at
h

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Random Exponential Transit-Stub

Average Delay

R
at

io
 o

f C
en

te
r

to
 S

ho
re

st
 P

at
h

Figure 10: Multicast Performance

This demonstrates that generation method does have
a signi�cant e�ect on performance in an actual network-
ing problem. Speci�cally, problems involving optimality
should pay close attention to the method selected because
the method a�ects relative performance as well as perfor-
mance variability.

8 Conclusions and Future Work

We set out to examine and improve upon methods for gen-
erating graphs to model Internet topology. We have ac-
complished the following:

� Surveyed and analyzed the behavior of graph genera-
tion methods commonly used in studies of networks.
The literature contains numerous random and regular
topologies used to study networking algorithms, with
little guidance for the user of network models. We have
outlined the role of the parameters in each method and
included some plots that can be used for parameter
lookup by users of these methods.
We conclude that the Pure Random method is signif-
icantly di�erent from the three other random meth-
ods. The other methods can all be parameterized to

13

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2

R
at

io
 o

f C
en

te
r

to
 S

ho
rt

es
t P

at
h

Frequency

Optimal Hops

Random
Exponential
Transit-Stub

0

100

200

300

400

500

600

700

1 1.1 1.2 1.3 1.4 1.5 1.6

R
at

io
 o

f C
en

te
r

to
 S

ho
rt

es
t P

at
h

Frequency

Optimal Delay

Random
Exponential
Transit-Stub

0

100

200

300

400

500

600

700

1 1.2 1.4 1.6 1.8 2 2.2

R
at

io
 o

f C
en

te
r

to
 S

ho
rt

es
t P

at
h

Frequency

Average Hops

Random
Exponential
Transit-Stub

0

50

100

150

200

250

1 1.2 1.4 1.6 1.8 2 2.2

R
at

io
 o

f C
en

te
r

to
 S

ho
rt

es
t P

at
h

Frequency

Average Delay

Random
Exponential
Transit-Stub

Figure 11: Multicast Performance Distribution

favor short edges over long edges. The Pure Ran-
dom method has no such control, therefore it gener-
ates edges that are (comparatively) longer, leading to
longer paths (in terms of Euclidean distance). Given
the tendency towards locality in internetworking con-
nectivity, methods that include edge length in deter-
mining edge probability are more realistic. For the
parameters we chose, the Exponential method is next
most likely to have long edges; the other two methods
are similar in all properties we considered.

� Identi�ed a fundamental limitation in all of the ran-
dom graph methods.
We found that it is not practical to generate even
moderate-sized random graphs (e.g., n = 1500) that
are connected and have realistic average node degrees
(e.g., less than about 6), without resorting to methods
of repairing unconnected graphs. Based on what we
know of real topologies, this limitation is signi�cant,
especially if a model is to be used to obtain quantita-
tive results that are valid for the Internet.

� Developed a hybrid generation method, the Transit-
Stub method, capable of creating large graphs by com-
posing smaller random graphs.
By imposing a structure resembling the administra-
tive structure of the Internet, the Transit-Stub method
allows creation of large random graphs having realis-
tic average node degree. Moreover, edge weights can
be assigned to these graphs in such a way that intra-
and interdomain paths in the graph behave in a re-
alistic manner. (See the Appendix for details on the
assignment of edge weights.) Finally, the Transit-Stub
method allows relatively direct control over attributes
such as hop diameter and average node degree.

� Compared
at random and hierarchical methods based
on quantitative measures, including topological met-
rics and metrics speci�c to multicast routing.

As the Internet continues to grow in size and impor-
tance, realistic models of network topology will be critical
for meaningful assessment of all kinds of algorithms and
policies. One goal of our future work is to understand how
measurements taken on modest-sized graphs can be scaled
to apply to much larger networks. Work is in progress
to establish a public repository of information about real
network topologies, including both graph models and mea-
surements. The graph-generating tools described in this
paper are already in place and being used by various re-
search groups.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their helpful comments.

References

[1] M. Ahamad. Multicast Communication in Distributed

14

Systems. IEEE Computer Society Press Technology
Series, 1990.

[2] C. Alaettino�glu and A. U. Shankar. An approach to
hierarchical and inter-domain routing with on-demand
tos and policy resolution. In Proceedings of 1993 Inter-
national Conference on Network Protocols, San Fran-

cisco, pages 72{79, October 1993.
[3] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish.

A trade-o� between information and communication
in broadcast protocols. Journal of the ACM, 37:238{
256, 1990.

[4] A. Ballardie, P. Francis, and J. Crowcroft. Core based
trees. Proceedings of ACM SIGCOMM '93, 1993.

[5] J. Behrens and J.J. Garcia-Luna-Aceves. Distributed,
scalable routing based on link-state vectors. Proceed-
ings of ACM SIGCOMM '94, pages 136{147, 1994.

[6] N. Belkeir and M. Ahamad. Low-cost algorithms for
message delivery in dynamic multicast groups. In
IEEE Ninth International Conference on Distributed

Computing, pages 110{117, June 1989.
[7] J. Bellamy. Digital Telephony. John Wiley, 1991.
[8] K. Bharath-Kumar and J. M. Ja�e. Routing to mul-

tiple destinations in computer networks. IEEE Trans-

actions on Computers, COM-31:343{351, Mar 1983.
[9] S. Bhattacharjee, K. Calvert, and E. Zegura. Extend-

ing random graph theory to topologies with hierarchy
and locality (in preparation). Technical report, Col-
lege of Computing, Georgia Tech, 1997.

[10] B. Bollob�as. Random Graphs. Harcourt Brace Jo-
vanovich, 1985.

[11] J.A. Bondy and U.S.R. Murty. Graph Theory with

Applications. North-Holland, 1976.
[12] L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas:

New techniques for congestion detection and avoid-
ance. Proceedings of ACM SIGCOMM '94, pages 24{
35, 1994.

[13] R. Cahn, P.C. Chang, P. Kermani, and A. Kershen-
baum. INTREPID: An integrated network tool for
routing, evaluation of performance, and interactive de-
sign. IEEE Communications Magazine, pages 40{47,
July 1991.

[14] K. Calvert, R. Madhavan, and E. W. Zegura. A com-
parison of two practical multicast routing schemes.
Technical report, Georgia Tech, College of Comput-
ing, GIT-94-25.

[15] K. Calvert, E. Zegura, and M. Doar. Modeling Inter-
net topology. IEEE Communications Magazine, June
1997.

[16] Kenneth L. Calvert, Ellen W. Zegura, and Michael J.
Donahoo. Core selection methods for multicast rout-
ing. In Kia Makki and Niki Pissinou, editors, Proceed-
ings of the ICCCN '95, pages 638{642. IEEE, IEEE
Computer Society Press, Sept. 1995.

[17] W. Cheswick. Firewalls and Internet Security: Re-

pelling the Wily Hacker. Addison-Wesley, 1994.
[18] D. Clark, S. Shenker, and L. Zhang. Supporting real-

time applications in an integrated services packet net-
work: Architecture and mechanism. Proceedings of

ACM SIGCOMM '92, pages 14{26, 1992.
[19] David Clark. Policy routing in internet protocols. In-

ternet Request for Comments 1102, May 1989.
[20] S. E. Deering. Host extensions for ip multicasting.

Internet Request for Comments 1112, August 1988.
[21] S. E. Deering. Multicast Routing in a Datagram Inter-

network. PhD thesis, Stanford University, California,
USA, 1991.

[22] S. E. Deering, D. Estrin, D. Farinacci, V. Jacobson,
C. Liu, and L. Wei. An architecture for wide-area
multicast routing. In Proceedings of ACM SIGCOMM

'94, pages 126{135, 1994.
[23] S. E. Deering, D. Estrin, D. Farinacci, V. Jacobson,

C. Liu, and L. Wei. Protocol independent multicast
(PIM): Motivation and architecture. Working Draft,
March 1994.

[24] S. E. Deering, D. Estrin, D. Farinacci, V. Jacobson,
C. Liu, and L. Wei. Protocol independent multicast
(PIM), sparse mode protocol speci�cation. Working
Draft, March 1994.

[25] Stephen E. Deering and David R. Cheriton. Multicast
routing in datagram internetworks and extended lans.
ACM Transactions on Computer Systems, 8(2):85{
110, May 1990.

[26] Matthew Doar and Ian Leslie. How bad is naive mul-
ticast routing? In Proceedings of IEEE INFOCOM

'93, pages 82{89, 1993.
[27] C. Alaettino�glu et al. Introducing MaRS, a routing

testbed. Computer Communication Review, 22(1):95{
96, January 1992.

[28] H. Fowler and W. Leland. Local area network tra�c
characteristics, with implications for broadband net-
work congestion management. IEEE J. Selected Areas

in Communications, pages 1139{1149, 1991.
[29] E. Fuchs and P. Jackson. Estimates of distributions

of random variables for certain computer communi-
cations tra�c models. Communications of the ACM,
13(12):752{757, December 1970.

[30] F. Harary. The maximum connectivity of a graph.
Proc. Nat. Acad. Sci. U.S.A., pages 1142{1146, 1962.

[31] A. Heybey. The network simulator. Technical report,
MIT, 1990.

[32] Joseph E. Hill and August Kerber. Models, meth-

ods, and analytical procedures in education research.
Wayne State University Press, 1967.

[33] M. Imase and B. Waxman. Dynamic Steiner tree prob-
lem. Siam J. on Discrete Math., 3:369{384, 1991.

[34] R. Jain. The Art of Computer Systems Performance

Analysis. John Wiley and Sons, Inc., 1991.
[35] R. M. Karp. Reducibility among combinatorial prob-

lems. In R. A. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85{103.
Plenum Press, New York, 1972.

[36] S. Keshav. REAL: A network simulator. Technical re-
port, Department of Computer Science, UC Berkeley,
88/472.

[37] S. Khuller, B. Raghavachari, and N. Young. Balanc-
ing minimum spanning and shortest path trees. In

15

Symposium on Discrete Algorithms (SODA), 1993.
[38] D. Knuth. The Stanford GraphBase: A Platform for

Combinatorial Computing. Addison-Wesley, 1994.
[39] V. P. Kompella, J. C. Pasquale, and G. C. Poly-

zos. Multicast routing for multimedia communication.
IEEE/ACM Transactions on Networking, 1, 1993.

[40] L. Kou, G. Markowsky, and L. Berman. A fast algo-
rithm for Steiner trees. Acta Informatica, 15:141{145,
1981.

[41] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the self-similar nature of Ethernet tra�c. Proceed-
ings of ACM SIGCOMM '93, pages 183{193, Septem-
ber 1993.

[42] MaRS Project, Dept. of CS, University of Maryland.
MaRS Version 1.0 Programmer's Manual.

[43] MaRS Project, Dept. of CS, University of Maryland.
MaRS Version 1.0 User's Manual.

[44] D. Mitzel and S. Shenker. Asymptotic resource con-
sumption in multicast reservation styles. Proceedings

of ACM SIGCOMM '94, pages 226{233, 1994.
[45] Douglas C. Montgomery. Design and Analysis of Ex-

periments. John Wiley & Sons, third ed. edition, 1991.
[46] J. Moy. MOSPF: Analysis and experience. Internet

Draft, July 1993.
[47] Bernard Ostle and Richard W. Mensing. Statistics in

Research. Iowa State University Press, third edition,
1975.

[48] C. Partridge, D. Waitzman, and S. Deering. Distance
vector multicast routing protocol. Internet Request
for Comments 1075, November 1988.

[49] V. Paxson. Empirically derived analytic models of
wide-area TCP connections. IEEE/ACM Transac-

tions on Networking, 2(4):316{336, August 1994.
[50] V. Paxson and S. Floyd. Wide-area tra�c: The fail-

ure of poisson modeling. In Proceedings of ACM SIG-

COMM '94 Symposium, pages 257{268, August 1994.
[51] D. Peleg and E. Upfal. A trade-o� between space

and e�ciency for routing tables. Journal of the ACM,
36:510{530, 1989.

[52] V. J. Rayward-Smith and A. Clare. On �nding Steiner
vertices. Networks, 16:283{294, 1986.

[53] J. Rekhter. Forwarding database overhead for inter-
domain routing. Computer Communication Review,
23(1):66{81, January 1993.

[54] S. Sibal and A. DeSimone. Controlling alternate rout-
ing in general-mesh packet
ow networks. Proceedings
of ACM SIGCOMM '94, pages 136{147, 1994.

[55] D. Sidhu, T. Fu, S. Abdallah, R. Nair, and R. Coltun.
Open shortest path �rst (OSPF) routing protocol sim-
ulation. In Proceedings of ACM SIGCOMM '93, pages
53{62, 1993.

[56] M. Steenstrup. IDPR: An approach to policy routing
in large diverse internetworks. Journal of High Speed

Networks, 3(1), 1994.
[57] M. Thomas and E. W. Zegura. Generation and analy-

sis of random graphs to model internetworks. Techni-
cal report, Georgia Tech, College of Computing, GIT-
94-46.

[58] Dinesh C. Verma and P.M. Gopal. Routing reserved
bandwidth multi-point connections. In Proceedings of

ACM SIGCOMM '93, 1993.
[59] D. W. Wall. Mechanisms for Broadcast and Selective

Broadcast. PhD thesis, Stanford University, Califor-
nia, USA, 1980.

[60] David Wall. Selective broadcast in packet-switched
networks. In Proceedings of the Sixth Berkeley Work-

shop on Distributed Data Management and Computer

Networks, pages 239{258, 1982.
[61] Bernard M. Waxman. Routing of multipoint connec-

tions. IEEE Journal on Selected Areas in Communi-

cations, 6(9):1617{1622, 1988.
[62] Bernard M. Waxman. Performance evaluation of mul-

tipoint routing algorithms. In Proceedings of IEEE

INFOCOM '93, pages 980{986, 1993.
[63] Liming Wei and Deborah Estrin. The trade-o�s of

multicast trees and algorithms. In International Con-

ference on Computer Communications and Networks,
August 1994.

[64] C. Williamson. Optimizing �le transfer response time
using the loss-load curve congestion control mecha-
nism. In Proceedings of ACM SIGCOMM '93, pages
117{126, 1993.

[65] William T. Zaumen and J.J. Garcia-Luna Aceves.
Dynamics of distributed shortest-path routing algo-
rithms. In Proceedings of ACM SIGCOMM '91, 1991.

Appendix: Transit-Stub EdgeWeight

Calculation

The edge weights to be calculated and assigned are:

Wtt Weight of a transit-transit interdomain edge
Wts Weight of a transit-stub interdomain edge
Wss Weight of a stub-stub interdomain edge

Note that all edges of the same type are given the same
weight. Also, all intradomain edges are given unit edge
weight. By making the weights of the interdomain edges
su�ciently large, we guarantee that the path between any
two nodes in the same domain will remain within that do-
main.
In calculating the weights of the interdomain edges, the

following quantities, taken from the constructed graph, are
used:

Parameter Meaning

Dtop Diameter of transit-domain connectivity
graph

Dt Maximum diameter of any transit
domain graph

Ds Maximum diameter of any stub domain
graph

The following constraints guarantee the desired locality
characteristics:

16

Constraint Result

2Wss > Ds Intra-stub preferred over any
Inter-stub path

2Wtt > Dt Intra-transit preferred over any
Inter-transit path

2Wts > DtopWtt + (Dtop + 1)Dt

No shortcut via a stub node
connected to any pair of transit nodes

2Wss > 2Ds + 2Wts +DtopWtt +DtopDt

Every all-transit path preferred over
any path with three stubs

Wss � 2Wts + � Direct connection between 2 stubs
may be preferred sometimes.

By assigning the following values, the above constraints are
satis�ed:

Wtt := dDt=2e
Wts := dDtopWtt=2e+ d(Dtop + 1)Dte
Wss := Ds + 2Wts

17

