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ABSTRACT

We examine alternative architectures for a client-server model of speech-enabled applications

over the World Wide Web. We compare a server-only processing model, where the client

encodes and transmits the speech signal to the server, to a model where the recognition front end

runs locally at the client and encodes and transmits the cepstral coefficients to the recognition

server over the Internet. We follow a novel encoding paradigm, trying to maximize recognition

performance instead of perceptual reproduction, and we find that by transmitting the cepstral

coefficients we can achieve significantly higher recognition performance at a fraction of the bit

rate required when encoding the speech signal directly. We find that the required bit rate to

achieve the recognition performance of high-quality unquantized speech is just 2000 bits per

second.
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1 INTRODUCTION

Motivated by the explosive growth of the Internet, speech researchers have been working on the

integration of speech technologies into the World Wide Web (WWW) [1]-[8]. Applications

include Internet telephony, speech-enabled browsers, speech and natural language

understanding systems, and speaker verification. Developers have successfully adapted existing

systems, or created new ones, that can be deployed over the WWW.

In this paper we consider a client-server speech recognition system. We assume that

communication channels between the client and the server may have limited bandwidth. That

would be a realistic assumption in applications that communicate over the Internet or through

wireless channels. The architecture of the client-server speech recognition is shown in Figure 1.

A central server provides speech recognition services. The clients are deployed on

heterogeneous environments, such as personal computers, smart devices, and mobile devices.

Speech is captured by the clients, and after some local processing, the information is sent to the

server. The server recognizes the speech according to an application framework and sends the

result string or action back to the client.

Essentially, this system uses two major speech technologies: speech recognition and speech

coding. In a complex dialog system, coding would be required to present audio prompts to the

user. Standard coding techniques can be used to send the speech over low-bandwidth channels

and produce perceptually acceptable speech to the user. In this paper, however, we focus on the

opposite path; that is, the speech data sent from the client to the server.

Traditional speech coding research focuses on the performance tradeoff between transmission

rates and perceptual reproduction quality. To achieve high perceptual quality at low

transmission rates, several succesful techniques have been developed, resulting in dramatic

technological advances. The data compression problem for state-of-the-art hidden Markov

model (HMM) based speech recognition systems differs from the traditional speech coding

problem in that the optimization criterion is recognition accuracy instead of perceptual quality

of the reproduced data. In addition to the practical goal of developing a client-server

architecture, we also have an interest in understanding how much and what information is

actually being modeled by the HMMs. Understanding what data is redundant in the
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Figure 1: Client-server speech recognition system.

representation of the speech signal may open the door to new ideas on how to better model it for

recognition.

In Section 2 of this paper, we briefly review HMM-based speech recognizers. Section 3

examines alternative architectures for the implementation of speech-enabled applications over

the WWW. In Section 4 we discuss techniques for encoding the front-end feature vectors at the

client side and in Section 5 we present our experimental results. Section 6 presents our summary

and conclusions.

2 HMM-BASED SPEECH RECOGNITION

Today’s state-of-the-art speech recognizers are based on statistical techniques, with hidden

Markov modeling being the dominant approach [9]. The typical components of a speech

recognition and understanding system are the front-end processor, the decoder with its acoustic

and language models, and the language understanding component. The latter component extracts

the meaning of a decoded word sequence, and is an essential part of a natural language system.

The remainder of this section briefly reviews the front end and the decoder.

The front-end processor typically performs a short-time Fourier analysis and extracts a sequence

of observation vectors (or acoustic vectors) [ ]X x x xT= 1 2, , ,� . Many choices exist for the
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acoustic vectors, but the cepstral coeff icients have exhibited the best performance to date [10].

The sequence of acoustic vectors can either be modeled directly, or vector-quantized first and

then modeled.

The decoder is based on a communication theory view of the recognition problem, trying to

extract the most likely sequence of words [ ]W w w wN= 1 2, , ,�  given the set of acoustic vectors

X. This can be done using Bayes’ rule:

�
argmax ( | ) argmax

( ) ( | )

( )
W P W X

P W P X W

P XW W= = .

The probabil ity P W( )  of the word sequence W is obtained from the language model, whereas the

acoustic model determines the probabil ity P X W( | ) .

In HMM-based recognizers, the probabil ity of an observation sequence for a given word is

obtained by building a finite-state model, possibly by concatenating models of the elementary

speech sounds or phones. The state sequence [ ]S s s sT= 1 2, , ,� is modeled as a Markov chain,

and is not observed. At each state st and time t, an acoustic vector is observed based on the

distribution b p x ss t tt
= ( | ) , which is called output distribution. Because HMMs assume, for

simplicity, that observations are independent of their neighbors, first- and second-order

derivatives of the cepstral coeff icients are included in the acoustic vector xt . If the front-end

vector quantizes the acoustic vectors, the output distributions take the form of discrete

probability distributions. If the acoustic vector generated by the front end is passed directly to the

acoustic model, then continuous-density output distributions are used, with the multivariate-

mixture Gaussians the most common choice:

b x p s N xs t i t si si
i

K

( ) ( | ) ( ; , )=
=

∑ ω µ Σ
1

,

where p si( | )ω  is the weight of the i-th mixture component in state s, and N x( ; , )µ Σ  is the

multivariate Gaussian with mean µ and covariance Σ . In this work, we use continuous-density

HMMs with mixture components that are shared across HMM states [11]. Continuous density
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HMMs exhibit superior recognition performance over their discrete-density counterparts

[9],[11].

3 SPEECH RECOGNITION OVER THE WWW

There are several alternative architectures for applications incorporating speech recognition

technology on the WWW, three of which are examined here. The first strategy is to perform no

processing related to the recognition/understanding process at the client side, but to simply

transmit the user's voice to the server. The second alternative is to perform most of the speech

recognition processing at the client side, and then transmit the result to the server. Finally, an

intermediate solution is to do only the front-end processing at the client and transmit only the

information that the recognizer needs through the network.

3.1 Server-Only Processing

When all the recognition processing takes place at the server side, we have the smallest

computational and memory requirements on the client, allowing a wide range of client machines

to access the speech-enabled application. Speech can be transmitted to the server either through

the Internet, by using some traditional speech coding techniques, or via a second channel, such as

the telephone. An example of the Internet-based transmission is the approach followed by DEC,

using a voice plug-in [1]. The disadvantage of this approach is that the user cannot access these

applications through low-bandwidth connections, since, as we shall see in Section 5, recognition

performance degrades for rates below 32 kbps (kilobits per second). In low-bandwidth

connections, voice can be transmitted to the server by a telephone line. This approach also

degrades performance, since, in general, recognition performance is lower in toll-quality than in

high-quality data. It is also inconvenient (the user is typically prompted by the application to dial

a telephone number, which in the case of modem-based connections may not exist), and adds the

cost of the telephone connection to the user. The server-only approach was, however, followed

by early applications [2],[3], and was attractive in the beginning because it overcame problems

associated with audio capture and transmission standards.
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3.2 Client-Only Processing

A different strategy is to run the recognition and understanding engines at the client machine.

The obvious advantages are that a high-bandwidth connection is not required, and that

recognition can be based on high-quality speech, since the sampling and feature extraction takes

place at the client side. The system is also less dependent on the transmission channel and

therefore more reliable. However, this approach, limits significantly the types of clients that the

speech-enabled application can support, since they must be powerful enough to perform the

heavy computation that takes place in the recognition process. In addition, local processing may

not be desirable for certain types of applications, such as speaker verification [5]. An example of

this approach is the Speech Aware Multimedia (SAM) system developed by Texas Instruments

[6], in which the recognition grammar is downloaded from the server to client, and recognition is

done locally, even though influenced by the server. Applications based on dynamic and complex

grammars that require rapid database access are also not good candidates for a client-only

architecture.

3.3 Client-Server Processing

The client-server approach is based on two key observations:

• Feature extraction is only a small part of the computation that takes place in a speech

recognition and understanding application.

• Speech recognition needs only a small part of the information that the speech signal

carries. The representation of the speech signal used for recognition concentrates on the

part of the signal that is related to the vocal-tract shape.

The first observation implies that we can run the front-end processing (the feature extraction) at

the client side on a much wider range of machines than the ones that will support the whole

recognition process. There are additional advantages of client-server processing over the client-

only model. The recognizer may need information that exists on the server side in order to guide

the decoding process; this information would have to be transmitted to the client in the client-

only model, something unnecessary in the client-server model, since the decoding takes place at

the server side. To make speech recognition servers available from a variety of systems, front-
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end processing and compression can be standardized. Standard front-end modules can be

installed on the client machines as a system resource, a Java applet, or a browser plug-in.

Our second observation clearly shows the advantage of client-server processing over the server-

only model. Traditional speech coding focuses on the perceptual reproduction quality of the

coded speech. As a result, the speech coder may transmit redundant information, and at the same

time introduce noise to the features that are important in the recognition process because of

bandwidth limitations. When the objective is to transmit the speech to a recognition server, there

is a clear shift in the speech-coding paradigm, and the objective of the coding process should be

recognition accuracy. If the information used by the recognition process is contained in a set of

features, then only this set of features needs to be compressed and transmitted to the server. For

example, typical state-of-the-art speech recognizers represent the vocal tract information using a

set of the first few cepstral coefficients. In view of our objective, we should expect a significant

reduction in bit rate if we encode this set of cepstral features, as opposed to encoding the speech

signal itself.

Of course, encoding and transmitting only the front-end processed tokens can become a

disadvantage, since, without any representation of the speech associated with these tokens, the

input speech cannot be labeled. As a result, it may not be possible to monitor in-service

performance, or to collect labeled speech data for development and performance improvement.

To overcome this limitation, and collect labeled data during the initial deployment of the

application, it is possible to transmit the original speech encoded using a very-low-bit-rate coder

as side information. This side information can be transmitted on top of the encoded front-end

tokens during the development phase only.

The client-server model can be applied to the Internet, as well as to Wireless channels. The

Aurora Project is a joint initiative, where a number of companies, including Alcatel, Ericsson,

IBM, Matra, Nokia, Nortel and Siemens, are working to establish a global standard for

distributed speech recognition over wireless channels [7]. The speech representations adopted by

different speech recognition servers are usually very similar. However, the definition of the

standard is not an easy task, since the speech-recognition developers put a significant amount of

effort into fine-tuning the recognizer parameters to the specific representation, making it difficult

to switch to a new, albeit similar representation. This task could be facil itated by the adoption of
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an intermediate representation, such as the mel-filterbank coefficients, which exists in many

front-ends. On the Internet, the client-server model has been adopted by the BBN SPIN (Speech

on the Internet) system that was presented in [8]. Although the details of this system are not

known, it was reported that it encodes speech at 3.8 kbps in a form suitable for discrete-density

HMMs.

In our work, we follow the client-server model using the encoding scheme that is described in

Section 4. We implemented a highly modular signal processing front-end in Java to compute the

cepstral coefficients and encode the parameters. We verified that the system is fast enough to

handle the feature extraction in real-time using a Pentium 166Mhz computer and a Java virtual

machine (JVM) with a just-in-time (JIT) compiler. We also ran benchmarks to compare

performance on the computation of the fast Fourier transform. We found that the optimized C

code is twice as fast as the Java implementation. We believe that as the JVMs become more

eff icient the gap between C and Java performance will become even smaller.

The Java applet is downloaded from the server. By default, the Java security model prevents an

applet from accessing native resources. There are various possible approaches to grant

permission to access native resources. The various approaches for handling security policies in

the Java model are beyond the scope of this paper.

4 CODING OF CEPSTRAL FEATURES

In the server-only model, toll-quality speech can be coded and transmitted to the server by using

standard speech coding techniques, like ADPCM at 32 kbps, or newer schemes that are used

today in mobile telephony, like GSM or CELP at bit rates of 13 kbps or below. In Section 5,

however, we show that in addition to the recognition performance degradation that one

encounters when using toll quality instead of high-quality speech, we have an additional drop in

performance when hybrid coding schemes like GSM or CELP are used at low bit rates.

In contrast, for the client-server approach, we need only transmit the set of coefficients that will

be used in recognition. Mel frequency-warped cepstral coefficients (MFCCs), constitute the set

of features used by most state-of-the-art HMM-based speech recognizers today [10]. Because of

their superior recognition performance, we have chosen to encode and transmit the set of cepstral

coefficients, rather than working with representations that are typically used in the speech-coding
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applications. Typical choices for the dimension of the feature vector and the rate at which it is

computed are 13 and 100 times per second, respectively [11]. Secondary features, like the first-

and second-order derivatives of this feature vector that are also used in recognition, do not have

to be coded and transmitted, since this information can be obtained at the server side. Hence, one

needs only to quantize a total of 1300 parameters per second of speech.

Discrete-density HMMs also quantize the front-end features and then model directly the

quantized features, using discrete densities. A common choice is to use six features−namely, the

energy, the vector of cepstral coefficients, and their first- and second-order derivatives−and

quantize them by using separate vector-quantization (VQ) codebooks. In a typical discrete-

density HMM [11], 256-dimensional codebooks are used for the 12-dimensional cepstral-

coefficient vector and the corresponding vectors of cepstral derivatives, and 32-dimensional

codebooks are used for the three scalar energy features. If a discrete HMM approach is adopted

for our client-server model, the required bit rate would be (3x8+3x5)x100 bits per second (bps),

or 3.9 kbps. Although this rate is significantly lower than the rate required to code the speech

signal directly, it comes at a significant price in recognition accuracy: a one-and-a-half- to two-

fold increase in word-error rate has been reported for discrete-density HMMs compared with

their continuous-density counterparts.

The degradation in accuracy of the discrete-density HMMs can be attributed to the low

resolution with which the space of observation features (the acoustic space) is represented. If we

look at the subspace of cepstral coeff icients, a typical discrete-density HMM uses a VQ

codebook with 256 codewords to represent a 12-dimensional space. Increasing the codebook size

is not a feasible solution, since it complicates significantly both the client and server processes.

The computation and memory requirements of the vector quantizer, which in our case will run at

the client, will be proportional either to the number of codewords, if a linear vector quantizer is

used, or to their logarithm (i.e., the number of bits), when a tree-structured vector quantizer is

employed. Most significant, however, is the cost at the server side. The number of parameters for

a discrete-density HMM is proportional to the number of codewords in the quantizer. For

medium to large vocabulary applications, there are mill ions of parameters in discrete-density

HMMs, and hence increasing the codebook size is not a feasible solution.
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A standard technique for managing a large compression task is to decompose it into smaller sub-

tasks [12]. To improve the resolution with which the acoustic space is represented, without the

significant costs incurred by increasing the vector codebook size in discrete HMMs, we can

employ scalar, or subspace, quantization of the cepstral coeff icients. Hence, we partition the

cepstral vector into subvectors, and then encode the subvectors by using separate codebooks. The

total number of codewords that represent the acoustic space is the product of the number of

codewords used for the representation of each subvector. The same technique is also used for

coding several types of speech analysis parameters, including log-area-ratios (LARs) in

traditional speech coding applications [13].

To avoid the increase in the number of discrete-HMM parameters, we have chosen to model

speech using continuous-density HMMs at the server. The subvectors are encoded at the client

side, transmitted through the network, and then mapped to their centroids at the server. These

centroids are then the input to the recognition process. To summarize, employing scalar, or

subspace, quantization of the cepstral coeff icients has the following benefits:

• The acoustic space may be represented with a high resolution, keeping the computational

and memory requirements of the quantizer at the client side at a low cost.

• The centroids of the product-code can be used as input to a continuous-density HMM

maintaining high recognition accuracy.

• There is no need to transmit secondary features, like the first- and second-order

derivatives, maintaining the required bit rate at low levels.

The simpler approach is the extreme case of scalar quantization, where the subvectors consist of

single cepstral coeff icients. One can use either uniform or non-uniform quantization levels. In

the latter case, the quantizer levels are matched to the statistics of the coeff icient that is being

quantized. In the experiments that we present in Section 5, we have used both approaches. In the

nonuniform quantization scheme, we used the empirical distribution function as an optimal

companding function [12], since the random variable Y=FX(X) obeys a uniform distribution. The

empirical distribution can be estimated by using a large number of utterances from different

speakers.

In the more general case, the dimensions of the subspaces used in the product code are larger

than one. Although more complex variations of product codes exist [12], we are interested here
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in partitioned VQ, where we simply partition the cepstral vector into two or more

nonoverlapping subvectors. Product codes provide significant savings in memory storage of the

codewords and reduce the computational cost for separable distortion measures [13]. Both these

types of savings are very important in our application, because of the large number of codewords

that must be used for good recognition performance. Since the coding of the cepstral vectors

takes place at the client, heavy memory and computational requirements can significantly limit

the types of machines that can access a speech-enabled WWW site.

An important issue in the design of a product code is the method used to partition the feature

vector into a number of subvectors. A product code is optimal if the component vectors are

independent and the distortion measure is separable [13]. Hence, one can partition the cepstral

vector into subvectors by trying to satisfy the independence criterion. One approach is to

partition the cepstral vector using the matrix of the estimated pairwise correlation coeff icients of

its elements. Each cepstral coeff icient can be assigned to the subvector with the elements that are

more correlated on average. An alternative, knowledge-based approach is to partition the vector

of MFCCs into subvectors that contain consecutive coefficients, so that the most important low-

order coefficients are grouped together.

Once the subvectors of the product code are formed, the next important design question is how to

allocate the bits among the respective codebooks. Since we are interested in coding speech

features for recognition, we have designed a bit-allocation algorithm that uses the word-error rate

as a metric. Specifically, we start with an initial bit allocation to subvectors, and then increase

the bit rate by adding bits to the subvectors that yield the maximal incremental increase in

recognition performance as follows:



12

Any available metric can be used to evaluate speech recognition performance. In this work we

have used the word-error rate (WER), which is the percentage of words that were ‘erroneously’

recognized (i.e., the recognizer has added, deleted or replaced some of the words that have been

spoken in the initial sentence). Thus:

WER
INS DEL SUB

TOTAL
=

+ +
× 100% .

Although the above procedure is computationally expensive, due to the multiple recognition

experiments that must be run at each step, it is only executed once during the initial design of the

quantizer. If, however, a faster allocation scheme is desired, the total assigned bits in the second

step can be incremented in steps of multiple bits.

5 EXPERIMENTS

To experiment with the quantization of cepstral parameters for speech recognition over the

WWW, we have selected the air-travel information (ATIS) domain [14]. In the ATIS domain, a

user can get flight information and book flights across the United States using natural language.

It consists of a vocabulary of approximately 1,500 words, with a moderate perplexity (a measure

of difficulty). This is the domain of the first speech-enabled application over the WWW

Initialization: Allocate the initial number of bits to subvectors and evaluate speech recognition

performance. Set this as the current configuration.

Step 1: For each subvector, increase its allocated number of bits by one and evaluate speech

recognition performance, keeping the number of bits assigned to each of the remaining

subvectors as in the current configuration. Assign the additional bit to the subvector that resulted

to the maximal increase in recognition performance, and set the new assignment as the current

configuration.

Step 2: If the desired recognition performance has been achieved, or the maximum available bit rate

has been reached, stop. Otherwise, go to step 1.
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developed at SRI International [2].  In addition, both high-quality and toll -quality data are

available for the ATIS domain, which allows us to compare the server-only architecture, which

uses toll -quality speech, with the client-server model which can use high-quality data.

5.1 Baseline and Speech-Encoding Performances

The recognizer used throughout our experiments is SRI’s DECIPHERTM speech-recognition

system [11]. It uses continuous-mixture density HMMs, with Gaussians that are shared across

acoustically similar states. The signal processing consists of a filterbank-based front end that

generated six feature streams: the cepstrum, the cepstral energy, and their first- and second-order

derivatives. Eight cepstral coefficients were used for telephone-quality speech, whereas for high-

quality data we increased this number to twelve. The coeff icients were computed at a rate of 100

times per second. A bigram language model was used throughout our experiments. The

performance of the baseline recognizer high-quality speech was evaluated at 6.55% WER using a

test set of 34 male and female speakers with 400 utterances.  Although not directly comparable,

since it was evaluated on a different set of speakers than the high-quality baseline, the

performance on telephone-quality speech is significantly lower, measured at 12.7% WER.

Compared with the telephone-quality baseline, the recognition performance did not degrade

when the data was encoded using the G721 32-kbps ADPCM coding standard. However, when

speech was encoded with the full-rate RPE-LTP GSM 13-kbps speech encoder used in cellular

telephony, the WER increased to 14.5%. These results, summarized in Table 1, indicate the

recognition performance of the server-only model for bit rates ranging between 13 and 64 kbps.

Table 1: Bit rates and word-error rates for different speech encoding schemes in the server-

only processing model.

Condition Bit Rate (kbps) Word-Error Rate (%)

M-law 64 12.7

GSM encoding 13 14.5
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5.2 Scalar Quantization Performance

We first quantized the cepstral coefficients of telephone-quality speech by using scalar

quantization, and evaluated the recognition performance for various numbers of bits per

coefficient. We investigated both uniform and nonuniform quantization. In the nonuniform

quantization scheme, the empirical distribution was estimated by using 800 utterances from a

different set of speakers than those included in the test set. These results are summarized in

Table 2.

We can see that the recognition performance is essentially flat for 4 to 8 bits per cepstral

coefficient, and starts to degrade for lower numbers of quantization levels. Although we use a

very simple quantization scheme, the WER of 13.2% at 3.6 kbps is significantly better than the

GSM performance, although the latter used a bit rate that was four times higher. In addition, we

see that the nonuniform quantization outperforms the uniform quantization significantly,

especially at low numbers of bits per cepstral coeff icient.

Word-Error Rate (%)

Bits/Coef. Bit Rate (kbps) Uniform Nonuniform

8 7.2 12.55 12.82

7 6.3 12.65 12.87

6 5.4 13.08 12.65

5 4.5 13.14 13.62

4 3.6 17.43 13.19

3 2.7 45.47 14.64

2 1.8 108.9 21.07

Table 2: Bit rates and word-error rates for scalar quantization of cepstral coefficients in

telephone-quality speech.
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A significant advantage of running the front end at the client side, however, is that we can use

the high-quality front end that uses a higher sampling rate and a larger number of bits per

waveform sample. The baseline performance for the high-quality front end is 6.55% WER. In

Table 3 we present the recognition results for scalar quantization of the cepstral coefficients of a

high-quality front end. Although the bit rates are slightly increased when compared to the

telephone-quality front end, because of the larger number of cepstral coeff icients used, we can

see that the recognition performance is significantly better at comparable bit rates. For example,

transmission of the high-quality cepstral coeff icients at 3.9 kbps yields a WER of 6.88%,

whereas transmission of the toll -quality coeff icients at 3.6 kbps resulted in a 13.19% WER.

When compared to the server-only processing model using GSM encoding, the performance

improvement is even bigger: we get less than half the error rate (6.88% vs. 14.5%) at less than a

third bits per second (3.9 kbps vs. 13 kbps).

Figure 2 plots speech recognition performance as a function of the bit rate for the three cases we

examined: direct encoding of the speech signal, transmission of the cepstral coefficients of a

telephone-quality front end, and transmission of the cepstral coeff icients of a high-quality front

Word Error Rate (%)

Bits/Coef. Bit Rate (kbps) Uniform Nonuniform

8 10.4 6.65 6.53

7 9.1 6.76 6.40

6 7.8 6.65 6.43

5 6.5 6.96 6.32

4 5.2 6.96 6.32

3 3.9 12.45 6.88

2 2.6 95.43 9.04

Table 3: Bit rates and word-error rates for scalar quantization of cepstral coefficients in high-

quality speech.
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end. We can see that, at any bit rate, the best strategy is to encode the high-quality cepstral

coefficients.

5.3 Product-Code Quantization Performance

In the previous section we encoded the cepstral coefficients using scalar quantization with a

constant number of bits per coeff icient. In this section, we present our experiments using product

code VQ with a variable number of bits per subvector. In all our experiments, the codebooks for

each subvector were estimated by running the generalized Lloyd algorithm on the same 800

utterances that were used to estimate the empirical distribution in the nonuniform scalar

quantization experiments. The codebooks were initialized using binary splitting [13].

We first compared the two alternative approaches for partitioning the cepstral coefficients into

subvectors. In Table 4 we present, for the case of five subvectors, the WERs of the correlation-

and knowledge-based approaches at various bit rates, as we measured them at various stages of

the bit-allocation algorithm. The five subvectors consisted of the cepstral coeff icients { (1,5),

(3,9,12,13), (4,6), (2,7,11), (8,10)} and {(1,2), (3,4), (5,6,7), (8,9,10), (11,12,13)} for the

�
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Figure 2: Recognition performance as a function of the bit rate for speech coding (GSM) and

for MFCC-coefficient encoding using non-uniform scalar quantization. The coeff icient

encoding performance is shown for both a high-quality and a toll-quality front end.
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correlation-based and the knowledge-based partition schemes, respectively. We see that the

knowledge-based partitioning exhibits significantly better performance at all bit rates, and

converges to the unquantized WER of 6.55% at a lower bit rate than the correlation-based

scheme. We found experimentally that the problem with the correlation-based partitioning was

the very low correlation between the various cepstral coeff icients, which resulted in somewhat

arbitrary partitions. This problem can be resolved by measuring phone-specific correlation

coefficients, rather than pooling all the speech data together. Given the exceptional performance

of the knowledge-based partitioning, which achieved the WER of the unquantized speech at just

2000 bps, we adopted the knowledge-based scheme for the rest of our experiments.

We then examined the behavior of the bit-allocation algorithm for various numbers of subvectors

in the product-code VQ. In Table 5 we present the case of five subvectors. The initial bit rate was

1200 bps, and the algorithm was initiated by distributing twelve bits to the five subvectors, as

shown in the first row of Table 5. To speed up the process, the number of allocated bits was

increased by a step of two bits in the first iterations of the algorithm (until 1800 bps), and by a

single bit in the latter stages of the algorithm. We can see that the initial WER of 16.79%

Word-Error Rate (%)

Bit Rate (bps) Correlation-based

partitioning

Knowledge-based

partitioning

1400 18.77 11.71

1600 13.36 9.30

1800 10.24 8.10

1900 8.92 6.99

2000 8.38 6.63

2100 7.72

2200 7.01

Table 4: Bit rates and word-error rates for product-code VQ using 5 subvectors created by

either a correlation-based or a knowledge-based approach.
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decreases very rapidly and approaches the unquantized-speech performance at 2000 bps. The

significance of the low-order coeff icients is also obvious: The additional bits are allocated to the

low-order subvectors first, and the final bit allocation uses more bits for the first two subvectors,

although they are composed of only two coeff icients each.

The same algorithm can be used to assign a variable number of bits to each coeff icient in the

nonuniform scalar quantization, since it is a special case of product-code VQ with single-element

subvectors. The progression of the algorithm in this case is shown in Table 6. The initial bit rate

was 1700 bps by assigning 17 bits to the 13 coefficients, as shown in the first row of Table 6.

The algorithm was sped up by increasing the number of bits at each step by two, and by

assigning them to the two coefficients that decreased the WER the most. We can see that in this

case rates of at least 2600 to 2800 bps are required before the unquantized-speech performance is

reached. The final bit allocation uses three bits for the first four cepstral coefficients, and two bits

for the remaining coeff icients.

Composition of subvectors by MFCC coefficients

1,2 3,4 5,6,7 8,9,10 11,12,13

Total bits Number of bits assigned to each subvector at each

iteration

Bit Rate

(bps)

Word-Error

Rate (%)

12 3 3 2 2 2 1200 16.79

14 5 3 2 2 2 1400 11.71

16 5 3 4 2 2 1600 9.30

18 5 3 4 4 2 1800 8.10

19 5 4 4 4 2 1900 6.99

20 5 5 4 4 2 2000 6.63

Table 5: Progression of the bit-allocation algorithm for the case of five subvectors. The bits

assigned to each subvector, the total bit rate, and the corresponding word-error rate are shown

at intermediate steps of the algorithm.
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In Figure 3, we have plotted speech recognition performance as a function of the bit rate for

different numbers of subvectors in the product-code VQ (three and five), and for the non-

uniform scalar quantization with a variable number of bits per coefficient. In the same figure, we

also show the WER for nonuniform scalar quantization using two bits per coeff icient. The

partitioning of cepstral coeff icients into subvectors for the case of five subvectors was given

above, whereas for the case of three subvectors, the partitioning was { (1,2,3), (4,5,6,7,8),

(9,10,11,12,13)} . Scalar quantization with a variable number of bits demonstrates significantly

better performance than the scalar quantization scheme with a fixed number of bits per

coefficient that we examined in Section 5.2, reducing the WER to 6.81% from 9.04% at 2600

bps. Product code VQ, however, performs significantly better than scalar quantization at any bit

rate. When comparing the three- and five-subvector cases, we see that they behave similarly for

MFCC coefficient index

1 2 3 4 5 6 7 8 9 10 11 12 13

Total bits      Number of bits assigned to each coeff icient at each

iteration

Bit Rate

(bps)

Word-Error

Rate (%)

17 2 2 2 2 1 1 1 1 1 1 1 1 1 1700 12.78

18 3 2 2 2 1 1 1 1 1 1 1 1 1 1800 10.66

20 3 3 2 3 1 1 1 1 1 1 1 1 1 2000 8.69

22 3 3 3 3 1 2 1 1 1 1 1 1 1 2200 7.67

24 3 3 3 3 2 2 1 1 1 1 1 2 1 2400 6.99

26 3 3 3 3 2 2 1 1 2 1 2 2 1 2600 6.81

28 3 3 3 3 2 2 1 2 2 2 2 2 1 2800 6.71

30 3 3 3 3 2 2 2 2 2 2 2 2 2 3000 6.55

Table 6: Progression of the bit-allocation algorithm for the case of scalar quantization (13

subvectors). The bits assigned to each coeff icient, the total bit rate, and the corresponding

word-error rate are shown at intermediate steps of the algorithm.
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low bit rates (below 1800 bps), but then the five-subvector scheme converges faster to the

unquantized speech performance.

6 CONCLUSIONS

 We investigated different strategies for encoding and transmitting speech in speech-enabled

applications on the WWW. Using the server-only model with GSM encoding of speech, a

performance of 14.5% WER was achieved at a bit-rate of 13 kbps. However, using the client-

server model, for encoding MFCCs resulted in a much lower error rate−6.5% WER−since a

high-quality front end can be used at the client side. This improvement in performance also

comes at a fraction of the bit rate required for GSM encoding. A bit rate of 3900 bps is required

when nonuniform scalar quantization with a constant number of bits per coeff icient is used. This

rate is reduced to 2800 bps with non-uniform scalar quantization with variable number of bits per

coefficient, and to just 2000 bps when product-code vector quantization is used.

 Other techniques, like predictive VQ, can be used to reduce the bit rate by taking advantage of

the high correlation across time that cepstral vectors exhibit. We must, however, also consider

other aspects of the problem, like the computational complexity of the encoder, which in our
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Figure 3: Recognition performance as a function of the bit rate for various types of MFCC

encoding: nonuniform scalar quantization with constant and variable number of bits per

coefficient; product-code vector quantization with different numbers of subvectors.
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case runs at the client side. The free nature of the Internet may limit the amount of encoding one

can do. A wireless personal digital assistant (PDA) may be more likely to benefit from more

encoding time and less transmission time, in which case the product-code VQ at 2 kbps may be

required. Other types of clients may benefit more from the simplicity of the scalar quantization

and transmit at 2800 bps.

 Our work also has significant implications from the speech recognition perspective. The rate of 2

kbps, which is all that is required to achieve unquantized speech performance, is rather

surprising. It is intriguing to see how low the bit rate can get, and to discover how much

information is redundant in the cepstral features, since this may help us learn how to better

model speech for recognition.
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