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ABSTRACT

We examine alternative achitedures for a client-server model of speech-enabled applicaions
over the World Wide Web. We cmpare a server-only processing model, where the client
encodes and transmits the speech signal to the server, to a model where the reaognition front end
runs locally at the dient and encodes and transmits the cepstral coefficients to the reaognition
server over the Internet. We follow a novel encoding paradigm, trying to maximize recognition
performance instead of perceptual reproduction, and we find that by transmitting the cepstral
coefficients we can achieve significantly higher recognition performance d a fradion of the bit
rate required when encoding the speech signal diredly. We find that the required hit rate to
achieve the recgnition performance of high-quality unquantized speech is just 2000 hts per

sewnd.



1 INTRODUCTION

Motivated by the explosive growth of the Internet, speed researchers have been working on the
integration of speech tedhnologies into the World Wide Web (WWW) [1]-[8]. Applicaions
include Internet telephony, speech-enabled browsers, speedr and natura language
understanding systems, and speaker verificaion. Developers have succesdully adapted existing
systems, or creded new ones, that can be deployed over the WWW.

In this paper we mnsider a client-server speech reaognition system. We assume that
communicaion channels between the client and the server may have limited bandwidth. That
would be arealistic assumption in applicaions that communicate over the Internet or through
wireless channels. The achitedure of the client-server speech recognition is shown in Figure 1.
A central server provides speech reoognition services. The clients are deployed on
heterogeneous environments, such as personal computers, smart devices, and mobile devices.
Speed is captured by the clients, and after some local processing, the information is snt to the
server. The server recgnizes the speech acwrding to an applicaion framework and sends the

result string or adion back to the client.

Essentialy, this system uses two major speech technologies: speech recognition and speech
coding. In a complex dialog system, coding would be required to present audio prompts to the
user. Standard coding tedhniques can be used to send the speech over low-bandwidth channels
and produce perceptually acceptable speech to the user. In this paper, however, we focus on the

opposite path; that is, the speech data sent from the client to the server.

Traditional speech coding reseach focuses on the performance tradeoff between transmisson
rates and perceptua reproduction quality. To adiieve high perceptual quality at low
transmisgon rates, several succesful techniques have been developed, resulting in dramatic
tedhnological advances. The data mmpression problem for state-of-the-art hidden Markov
model (HMM) based speech reaognition systems differs from the traditional speech coding
problem in that the optimizaion criterion is recognition acarracy instead of perceptua quality
of the reproduced data. In addition to the pradical goal of developing a client-server
architedure, we dso have an interest in understanding how much and what information is
adualy being modeled by the HMMs. Understanding what data is redundant in the



representation of the speech signal may open the doar to new ideas on how to better model it for

recognition.
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Figure 1: Client-server speech recognition system.

In Sedion 2 of this paper, we briefly review HMM-based speech recognizers. Sedion 3
examines alternative achitedures for the implementation of speech-enabled applications over
the WWW. In Sedion 4 we discusstedchniques for encoding the front-end feaure vedors at the
client side and in Sedion 5 we present our experimental results. Sedion 6 presents our summary

and conclusions.

2 HMM-BASED SPEECH RECOGNITION

Today's date-of-the-art speed recognizers are based on statistical techniques, with hidden
Markov modeling being the dominant approach [9]. The typical components of a speech
reagnition and understanding system are the front-end procesor, the decoder with its acoustic
and language models, and the language understanding component. The latter component extracts
the meaning of a decoded word sequence, and is an essential part of a natural language system.
The remainder of this ®dion kriefly reviews the front end and the deaoder.

The front-end processor typicaly performs a short-time Fourier analysis and extracts a sequence

of observation vedors (or acoustic vedors) X :[xl,xz,---,xT]. Many choices exist for the



aoustic vectors, but the cepstral coefficients have exhibited the best performance to date [10].
The sequence of amustic vedors can either be modeled directly, or vedor-quantized first and
then modeled.

The deder is based on a ommunicaion theory view of the reagnition problem, trying to
extrad the most likely sequence of words W = [Wl,Wz,---,WN] given the set of acoustic vedors
X. This can be done using Bayes' rule:

PW)P(X|W)

W = argmax,, P(W| X) = argmax,, PO

The probability P(W) of the word sequence W is obtained from the languag model, whereas the
acoustic model determines the probability P(X|W) .

In HMM-based recognizers, the probability of an observation sequence for a given word is
obtained by building a finite-state model, possibly by concaenating models of the elementary
speech sounds or phones. The state sequence S:[sl,sz,---,sr] is modeled as a Markov chain,
and is not observed. At ead state s and time t, an acoustic vedor is observed based on the
distribution b, = p(x;|s), which is called output distribution. Becaise HMMs assume, for
simplicity, that observations are independent of their neighbors, first- and second-order
derivatives of the cepstral coefficients are included in the aoustic vedor x,. If the front-end

vedor quantizes the awmustic vedors, the output distributions take the form of discrete
probability distributions. If the amustic vedor generated by the front end is passed directly to the
aoustic model, then continuous-density output distributions are used, with the multivariate-

mixture Gaussians the most common choice
K
b(x) = p@IS)N(X;Hs Zq),
1=1

where p(w,|s) is the weight of the i-th mixture component in state s, and N(x;u,%) is the
multivariate Gaussian with mean  and covariance X . In this work, we use continuous-density

HMMs with mixture components that are shared aaoss HMM states [11]. Continuous density



HMMs exhibit superior recognition performance over their discrete-density counterparts
[91.[11].

3 SPEECH RECOGNITION OVER THE WWW

There ae several alternative achitedures for applicaions incorporating speech reaognition
tedhnology on the WWW, three of which are examined here. The first strategy is to perform no
processing related to the recognition/understanding process at the client side, but to smply
transmit the user's voice to the server. The second alternative is to perform nost of the speech
recognition processing at the client side, and then transmit the result to the server. Finally, an
intermediate solution is to do only the front-end processing at the dient and transmit only the

information that the recognizer needs through the network.

3.1 Server-Only Processing

When all the recognition processing takes place & the server side, we have the smallest
computational and memory requirements on the client, alowing a wide range of client machines
to accessthe speech-enabled applicaion. Speed can be transmitted to the server either through
the Internet, by using some traditional speech codingtedhniques, or via asecnd channel, such as
the telephone. An example of the Internet-based transmisgon is the gproac followed by DEC,
using a voice plug-in [1]. The disadvantage of this approad is that the user cannot accessthese
applicaions through low-bandwidth connedions, since, as we shall seein Sedion 5, recognition
performance degrades for rates below 32 kKops (kilobits per sewnd). In low-bandwidth
conrections, voice @n be transmitted to the server by a telephone line. This approach also
degrades performance, since in general, recognition performance is lower in toll-quality than in
high-quality data. It is also inconvenient (the user is typicaly prompted by the goplication to dal
atelephone number, which in the case of modem-based connedions may not exist), and adds the
cost of the telephone cnnedion to the user. The server-only approach was, however, followed
by ealy applications [2],[3], and was attractive in the beginning because it overcame problems

asciated with audio cgpture and transmisson standards.



3.2 Client-Only Processing

A different strategy is to run the recognition and understanding engines at the client machine.
The obvious advantages are that a high-bandwidth connedion is not required, and that
recognition can be based on high-quality speech, since the sampling and feaure extraction takes
place & the client side. The system is also less dependent on the transmisson channel and
therefore more reliable. However, this approad, limits significantly the types of clients that the
speech-enabled application can support, since they must be powerful enough to perform the
heavy computation that takes placein the recognition process In addition, local processing may
not be desirable for certain types of applications, such as gedker verificaion [5]. An example of
this approad is the Speedt Aware Multimedia (SAM) system developed by Texas Instruments
[6], in which the recognition grammar is downloaded from the server to client, and recognition is
done locally, even though influenced by the server. Applications based on dynamic and complex
grammars that require rapid database acess are also not good candidates for a dient-only

architedure.

3.3 Client-Server Processing

The client-server approach is based on two key observations:

* Fedure etraction is only a small part of the computation that takes placein a speech
recognition and understanding application.

* Speed remgnition reeds only a small part of the information that the speech signal
caries. The representation of the speech signal used for recognition concentrates on the
part of the signal that is related to the vocal-tract shape.

The first observation implies that we can run the front-end processing (the feature extraction) at
the client sde on a much wider range of machines than the ones that will support the whole
recognition process There ae alditional advantages of client-server processing over the dient-
only model. The recognizer may neeal information that exists on the server side in order to gude
the deading process this information would have to be transmitted to the client in the client-
only model, something umecessary in the client-server model, since the decoding takes place &

the server side. To make speech reamgnition servers available from a variety of systems, front-



end processing and compression can be standardized. Standard front-end modules can be

installed on the client machines as a system resource, a Java goplet, or abrowser plug-in.

Our second observation clealy shows the alvantage of client-server processing over the server-
only model. Traditional speech coding focuses on the perceptua reproduction quality of the
coded speed. As aresult, the speed coder may transmit redundant information, and at the same
time introduce noise to the features that are important in the recognition process becaise of
bandwidth limitations. When the objedive is to transmit the speech to a recognition server, there
is a clea shift in the speech-coding paradigm, and the objedive of the coding processshould be
recognition acairacy. If the information used by the reagnition processis contained in a set of
fedures, then only this set of feaures needs to be compressed and transmitted to the server. For
example, typical state-of-the-art speed reagnizers represent the vocal trad information using a
set of the first few cepstral coefficients. In view of our objective, we should exped a significant
reduction in bit rate if we encode this set of cepstral feaures, as opposed to encoding the speech
signal itself.

Of course, encoding and transmitting only the front-end processed tokens can become a
disadvantage, since, without any representation of the speech associated with these tokens, the
inpu speedr cannot be labeled. As a result, it may not be possible to monitor in-service
performance, or to colled labeled speech data for development and performance improvement.
To overcome this limitation, and collect labeled data during the initial deployment of the
applicaion, it is possible to transmit the original speech encoded using a very-low-bit-rate coder
as side information. This side information can be transmitted on top of the encoded front-end

tokens during the development phase only.

The client-server model can be gplied to the Internet, as well as to Wireless channels. The
Aurora Projed is a joint initiative, where anumber of companies, including Alcatel, Ericsson,
IBM, Matra, Nokia, Nortedl and Siemens, are working to establish a global standard for
distributed speed reagnition over wirelesschannels [7]. The speed representations adopted by
different speech remgnition servers are usually very similar. However, the definition of the
standard is not an easy task, since the speech-recognition developers put a significant amount of
effort into fine-tuning the recognizer parametersto the specific representation, making it difficult
to switch to a new, albeit similar representation. This task could be facilitated by the aoption of



an intermediate representation, such as the mel-filterbank coefficients, which exists in many
front-ends. On the Internet, the client-server model has been adopted by the BBN SAN (Speedt
on the Internet) system that was presented in [8]. Although the details of this system are not
known, it was reported that it encodes eech at 3.8 kbps in a form suitable for discrete-density
HMMs.

In our work, we follow the client-server model using the encoding scheme that is described in
Seaion 4. We implemented a highly modular signal processing front-end in Java to compute the
cepstral coefficients and encode the parameters. We verified that the system is fast enough to
handle the fedure extradion in real-time using a Pentium 16GVihz computer and a Java virtual
machine (JVM) with a just-in-time (JIT) compiler. We also ran benchmarks to compare
performance on the cmputation of the fast Fourier transform. We found that the optimized C
code is twice & fast as the Java implementation. We believe that as the VMs bemme more

efficient the gap between C and Java performancewill become even smaller.

The Java gplet is downloaded from the server. By default, the Java security model prevents an
applet from acessing retive resources. There are various possible gproadies to gant
permisson to access native resources. The various approaches for handling seaurity policies in

the Java model are beyond the scope of this paper.

4 CODING OF CEPSTRAL FEATURES

In the server-only model, toll-quality speech can be aded and transmitted to the server by using
standard speech coding techniques, like ADPCM at 32 kops, or newer schemes that are used
today in mobile telephony, like GSM or CELP a bit rates of 13 Kops or below. In Section 5,
however, we show that in addition to the recognition performance degradation that one
encounters when using toll quality instead of high-quality speech, we have an additional drop in
performance when hybrid coding schemes like GSM or CELP are used a low hit rates.

In contragt, for the client-server approacd, we neeal only transmit the set of coefficients that will
be used in recognition. Mel frequency-warped cepstral coefficients (MFCCs), constitute the set
of feaures used by most state-of-the-art HMM -based speech reagnizers today [10]. Because of
their superior recognition performance, we have chosen to encode and transmit the set of cepstral

coefficients, rather than working with representations that are typicaly used in the speech-coding



applicaions. Typical choices for the dimension of the feaure vedor and the rate & which it is
computed are 13 and 100times per seaond, respedively [11]. Secondary features, like the first-
and second-order derivatives of this feaure vedor that are also used in reaognition, do not have
to be aded and transmitted, since this information can be obtained at the server side. Hence, one

needs only to quantize atotal of 1300 @rameters per second of speech.

Discrete-density HMMs also quantize the front-end fedures and then model diredly the
quantized feaures, using discrete densities. A common choiceis to use six feaures—namely, the
energy, the vedor of cepstral coefficients, and their first- and second-order derivatives—and
gquantize them by using separate vedor-quantizaion (VQ) codebooks. In a typical discrete-
density HMM [11], 256-dimensional codebooks are used for the 12-dimensional cepstral-
coefficient vedor and the rresponding vedors of cepstral derivatives, and 32dimensional
codebooks are used for the three scalar energy fedures. If a discrete HMM approad is adopted
for our client-server model, the required hit rate would be (3x8+3x5)x100 bts per second (bps),
or 3.9 kbps. Although this rate is significantly lower than the rate required to code the speedt
signal diredly, it comes a a significant price in recognition acairacy: a one-and-a-half- to two-
fold increase in word-error rate has been reported for discrete-density HMMs compared with

their continuous-density counterparts.

The degradation in accuracy of the discrete-density HMMs can be dtributed to the low
resolution with which the spaceof observation feaures (the aoustic space) is represented. If we
look a the subspace of cepstral coefficients, a typicd discrete-density HMM uses a VQ
codebook with 256 codewords to represent a 12-dimensional space Increasing the amdebook size
is not a feasible solution, since it complicates significantly both the client and server processs.
The computation and memory requirements of the vedor quantizer, which in our case will run at
the client, will be proportional either to the number of codewords, if a linea vedor quantizer is
used, or to their logarithm (i.e., the number of bits), when a treestructured vedor quantizer is
employed. Most significant, however, isthe st a the server side. The number of parameters for
a discrete-density HMM is proportional to the number of codewords in the quantizer. For
medium to large vocabulary applications, there ae millions of parameters in discrete-density

HMMs, and hence increasing the codebook sizeis not a feasible solution.



A standard technique for managing a large mmpresgon task isto decompose it into smaller sub-
tasks [12]. To improve the resolution with which the aoustic space is represented, without the
significant costs incurred by increasing the vedor codebook size in discrete HMMs, we can
employ scalar, or subspace, quantization of the cepstral coefficients. Hence, we partition the
cepstral vedor into subvedors, and then encode the subvedors by using separate codebooks. The
total number of codewords that represent the aoustic spaceis the product of the number of
codewords used for the representation of each subvedor. The same tednique is also used for
coding several types of speech analysis parameters, including log-arearatios (LARS) in

traditional speech coding applicaions[13].

To avoid the increase in the number of discrete-HMM parameters, we have dosen to model
speech using continuous-density HMMss at the server. The subvectors are encoded at the client
side, transmitted through the network, and then mapped to their centroids at the server. These
centroids are then the input to the recgnition process To summarize employing scalar, or

subspace quantization of the cepstral coefficients has the following benefits:

* The amustic space may be represented with a high resolution, kegping the cmputational
and memory requirements of the quantizer at the client side & alow cost.

* The centroids of the product-code can be used as inpu to a continuous-density HMM
maintaining high recognition acairacy.

e There is no nea to transmit secwndary fedures, like the first- and second-order

derivatives, maintaining the required hit rate at low levels.

The simpler approadh is the extreme cae of scalar quantizaion, where the subvedors consist of
single cepstral coefficients. One @n use either uniform or non-uniform quantization levels. In
the latter case, the quantizer levels are matched to the statistics of the aefficient that is being
quantized. In the experiments that we present in Sedion 5, we have used both approadies. In the
nonuniform quantization scheme, we used the empirical distribution function as an optimal
companding function [12], sincethe random variable Y =Fx(X) obeys a uniform distribution. The
empirical distribution can be estimated by using a large number of utterances from different

spekers.

In the more general case, the dimensions of the subspaces used in the product code are larger

than one. Although more mmplex variations of product codes exist [12], we ae interested here
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in partitioned VQ, where we simply partition the cestral vedor into two or more
nonoverlapping subvedors. Product codes provide significant savings in memory storage of the
codewords and reduce the computational cost for separable distortion measures [13]. Both these
types of savings are very important in our applicaion, because of the large number of codewords
that must be used for good recognition performance Since the coding of the cepstral vedors
takes place & the dient, heavy memory and computational requirements can significantly limit

the types of machines that can acessa speech-enabled WWW site.

An important isaue in the design of a product code is the method used to partition the feaure
vedor into a number of subvectors. A product code is optimal if the component vedors are
independent and the distortion measure is sparable [13]. Hence one can partition the cepstral
vedor into subvedors by trying to satisfy the independence citerion. One gproad is to
partition the cepstral vedor using the matrix of the estimated pairwise crrelation coefficients of
its elements. Eacdh cepstral coefficient can be asdgned to the subvedor with the elements that are
more orrelated on average. An alternative, knowledge-based approad isto partition the vedor
of MFCCs into subvedors that contain conseautive wefficients, so that the most important low-

order coefficients are grouped together.

Oncethe subvedors of the product code are formed, the next important design question is how to
allocae the bits among the respedive @debooks. Since we ae interested in coding speech
fedures for recognition, we have designed a bit-all ocation algorithm that uses the word-error rate
as a metric. Specifically, we start with an initial bit allocation to subveaors, and then increase
the bit rate by adding hts to the subvedors that yield the maximal incremental increase in

recognition performance & follows:

11



Initiali zation: Allocae the initial number of bits to subvedors and evaluate speed recgnition
performance. Set this as the aurrent configuration.

Sep 1 For eat subvector, increase its allocaed number of bits by one and evaluate speech
recognition performance, keeing the number of bits assigned to ead of the remaining
subvedors asin the airrent configuration. Assgn the alditional bit to the subvedor that resulted
to the maximal increase in recognition performance, and set the new assgnment as the airrent
configuration.

Sep 2 If the desired recognition performance has been achieved, or the maximum available bit rate

has been readed, stop. Otherwise, go to step L

Any available metric can be used to evaluate speed recgnition performance In this work we
have used the word-error rate (WER), which is the percentage of words that were ‘erroneously’
recognized (i.e., the recognizer has added, deleted o replaceald some of the words that have been

spoken in the initial sentence). Thus:

oINS+ DEL + SUB
- TOTAL

x100% .

Although the &ove procedure is computationally expensive, due to the multiple recognition
experiments that must be run at ead step, it is only exeauted once during the initial design of the
quantizer. If, however, a faster allocation scheme is desired, the total assgned hits in the second

step can be incremented in steps of multiple bits.

5 EXPERIMENTS

To experiment with the quantization of cepstral parameters for speech recognition over the
WWW, we have seleded the ar-travel information (ATIS) domain [14]. Inthe ATIS domain, a
user can get flight information and book flights aaossthe United States using natural language.
It consists of avocabulary of approximately 1,500 words, with a moderate perplexity (a measure

of difficulty). This is the domain of the first speech-enabled application over the WWW
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developed a SRI International [2]. In addition, both high-quality and toll-quality data are
available for the ATIS domain, which allows us to compare the server-only architecure, which

uses toll-quality speech, with the client-server model which can use high-quality data.

5.1 Basdine and Speech-Encoding Performances

The remgnizer used throughout our experiments is SRI’s DECIPHER™ speech-recognition
system [11]. It uses continuous-mixture density HMM s, with Gaussians that are shared aaoss
aougtically similar states. The signal processing consists of a filterbank-based front end that
generated six feature sreans. the cepstrum, the cepstral energy, and their first- and second-order
derivatives. Eight cepstral coefficients were used for telephone-quality speedh, whereas for high-
quality data we increased this number to twelve. The wefficients were computed at a rate of 100
times per second. A bigram language model was used throughout our experiments. The
performance of the baseline recognizer high-quality speech was evaluated at 6.55% WER using a
test set of 34 male and female spedkers with 400 uterances. Although not diredly comparable,
since it was evaluated on a different set of spe&kers than the high-quality baseline, the
performance on telephone-quality speech is significantly lower, measured a 12.7% WER.
Compared with the telephone-quality baseline, the recognition performance did not degrade
when the data was encoded using the G721 32kbps ADPCM coding standard. However, when
speech was encoded with the full-rate RPE-LTP GSM 13-kbps geech encoder used in cellular
telephony, the WER increased to 14.5%. These results, summarized in Table 1, indicae the

recognition performance of the server-only model for bit rates ranging between 13 and 64 Kops.

Condition Bit Rate (kbps) Word-Error Rate (%)
M-law 64 127
GSM encoding 13 145

Table 1. Bit rates and word-error rates for different speed encoding schemes in the server-

only processing model.
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5.2 Scalar Quantization Performance

We first quantized the cepstral coefficients of telephone-quality speech by using scalar
quantization, and evaluated the recognition performance for various numbers of bits per
coefficient. We investigated both uniform and nonuniform quantizaion. In the nonuniform
quantization scheme, the empirical distribution was estimated by using 800 utterances from a
different set of spedkers than those included in the test set. These results are summarized in
Table 2.

We @n see that the recognition performance is essentially flat for 4 to 8 hits per cepstral
coefficient, and starts to degrade for lower numbers of quantization levels. Although we use a
very simple quantizaion scheme, the WER of 13.2% at 3.6 kbps is significantly better than the
GSM performance, although the latter used a bit rate that was four times higher. In addition, we
see that the nonuniform quantizaion outperforms the uniform quantization significantly,

especially at low numbers of bits per cepstral coefficient.

Word-Error Rate (%)

Bits/Coef. Bit Rate (kbps) Uniform Nonuniform

8 7.2 1255 12.82
7 6.3 12.65 12.87
6 5.4 13.08 12.65
5 4.5 1314 13.62
4 3.6 17.43 1319
3 2.7 4547 14.64
2 18 1089 21.07

Table 2: Bit rates and word-error rates for scdar quantization of cepstral coefficients in

telephone-quality speech.
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A significant advantage of running the front end at the client side, however, is that we can use
the high-quality front end that uses a higher sampling rate and a larger number of bits per
waveform sample. The baseline performance for the high-quality front end is 6.55% WER. In
Table 3 we present the recognition results for scalar quantization of the cepstral coefficients of a
high-quality front end. Although the bit rates are slightly increased when compared to the
telephone-quality front end, because of the larger number of cepstral coefficients used, we can
seethat the recognition performance is significantly better at comparable bit rates. For example,
transmisgon of the high-quality cepstral coefficients at 3.9 kbps yields a WER of 6.88%,
whereas transmisson of the toll-quality coefficients at 3.6 kbps resulted in a 13.19% WER.
When compared to the server-only processing model using GSM encoding, the performance
improvement is even bigger: we get lessthan half the aror rate (6.88% vs. 14.5%) at less than a
third bits per second (3.9 kbpsvs. 13 Kips).

Word Error Rate (%)
Bits/Coef. Bit Rate (kbps) Uniform Nonuniform
8 104 6.65 6.53
7 9.1 6.76 6.40
6 7.8 6.65 6.43
5 6.5 6.96 6.32
4 5.2 6.96 6.32
3 3.9 1245 6.88
2 2.6 9543 9.04

Table 3: Bit rates and word-error rates for scdar quantization of cepstral coefficients in high-

quality speech.

Figure 2 plots geet recognition performance as a function of the bit rate for the three caes we
examined: direct encoding of the speech signal, transmisson of the cepstral coefficients of a

telephone-quality front end, and transmisson of the cepstral coefficients of a high-quality front
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end. We can seethat, a any bit rate, the best strategy is to encode the high-quality cepstra

coefficients.
25
Q 20 +
< —&—toll-quality MFCC encoding
% 15 | —il— high-quality MFCC encoding
c A A speech encoding (GSM)
=
w 10 +
B
S .\'\-—H—H
z 5
0 1 1 1 1 1 1

Bit Rate (kbps)

Figure 2. Remgnition performance a a function of the bit rate for speed coding (GSM) and
for MFCC-coefficient encoding using non-uniform scalar quantizaion. The aefficient

encoding performanceis shown for both a high-quality and atoll-quality front end.

5.3 Product-Code Quantization Performance

In the previous ®dion we encoded the cepstral coefficients using scalar quantization with a
constant number of bits per coefficient. Inthis sedion, we present our experiments using product
code VQ with a variable number of bits per subvedor. In al our experiments, the codebooks for
each subvedor were estimated by running the generalized Lloyd algorithm on the same 800
utterances that were used to egstimate the ampirical distribution in the nonuniform scalar

quantization experiments. The codebooks were initialized using kinary splitting [13].

We first compared the two alternative goproacdhes for partitioning the cepstral coefficients into
subvedors. In Table 4 we present, for the cae of five subvedors, the WERSs of the correlation-
and knowledge-based approadhes at various bit rates, as we measured them at various gages of
the bit-allocation algorithm. The five subvedors consisted of the cepstral coefficients {(1,5),
(3,9,212,13), (4,6), (2,7,11), (8,10} and {(1,2), (3,4), (56,7), (8,9,10), (11,1213)} for the
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Word-Error Rate (%)

Bit Rate (bps) Correlation-based Knowledge-based

partitioning partitioning

1400 18.77 1171
1600 13.36 9.30
1800 10.24 8.10
1900 8.92 6.99
2000 8.38 6.63
2100 1.72

2200 7.01

Table 4: Bit rates and word-error rates for product-code VQ using 5 subvectors created by
either a wrrelation-based or a knowledge-based approacd.

correlation-based and the knowledge-based partition schemes, respedively. We see that the
knowledge-based partitioning exhibits significantly better performance a all bit rates, and
converges to the unquantized WER of 6.55% a a lower bit rate than the correlation-based
scheme. We found experimentally that the problem with the correlation-based partitioning was
the very low correlation between the various cepstral coefficients, which resulted in somewhat
arbitrary partitions. This problem can be resolved by measuring phone-specific correlation
coefficients, rather than poaling all the speech data together. Given the exceptional performance
of the knowledge-based partitioning, which achieved the WER of the unquantized speech at just
2000bps, we adopted the knowledge-based scheme for the rest of our experiments.

We then examined the behavior of the bit-allocation algorithm for various numbers of subvedors
in the product-code VQ. In Table 5 we present the case of five subvedors. The initial bit rate was
1200 bps, and the algorithm was initiated by distributing twelve bits to the five subvectors, as
shown in the first row of Table 5. To speed up the process the number of allocaed hits was
increased by a step of two hits in the first iterations of the algorithm (until 1800 bps), and by a
single bit in the latter stages of the algorithm. We @n see that the initial WER of 16.79%
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Composition of subvedors by MFCC coefficients
1,2 34 5,6,7 89,10 | 11,1213
Total bits Number of bits assigned to ead subvedor a ead Bit Rate | Word-Error
iteration (bps) Rate (%)

12 3 3 2 2 2 1200 16.79
14 5 3 2 2 2 1400 1171
16 5 3 4 2 2 1600 9.30
18 5 3 4 4 2 1800 8.10
19 5 4 4 4 2 1900 6.99
20 5 5 4 4 2 2000 6.63

Table 5: Progression of the bit-allocaion algorithm for the cae of five subvedors. The bits
assigned to eat subvedor, the total bit rate, and the corresponding word-error rate ae shown
at intermediate steps of the algorithm.

deaeases very rapidly and approades the unquantized-speech performance a 2000 bps. The
significance of the low-order coefficients is also dbvious. The alditional bits are allocaed to the
low-order subveaorsfirst, and the final bit allocaion uses more bits for the first two subvedors,

although they are mmposed of only two coefficients ead.

The same algorithm can be used to assign a variable number of bits to ead coefficient in the
nonuniform scalar quantization, sinceit isaspecia case of product-code VQ with single-element
subveadors. The progression of the algorithm in this case is shown in Table 6. The initial bit rate
was 1700bps by assigning 17 fits to the 13 coefficients, as shown in the first row of Table 6.
The algorithm was ged up ly increasing the number of bits at ead step by two, and by
assigning them to the two coefficients that deaeased the WER the most. We can seethat in this
caserates of at least 2600to 2800bps are required before the unquantized-speech performanceis
reated. The final bit allocaion uses threebits for the first four cepstral coefficients, and two bits

for the remaining coefficients.
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MFCC coefficient index

1234|567 |8|9]10|11|12|13
Total bits Number of bits assgned to ead coefficient at eat Bit Rate | Word-Error
iteration (bps) Rate (%)
17 2122|2111 (1}1|1,11]|1 1700 1278
18 3| 2|22}1|j1,1}j1|11}1|1,1 1800 10.66
20 3|3|/23}]1|j1,1}j1|11}1|1,1 2000 8.69
22 3|/3|3/3|]1|]2,1}1|1(1}1|1,1 2200 7.67
24 3/3|3|3|2|2;1}1|1(1]1|2) 1 2400 6.99
26 3/3|3|3|2|2,1|1|2|1|2|2) 1 2600 6.81
28 3/3|3|3|2|21|2|2|2|2|2)|1 2800 6.71
30 3/3|3|3|2|2,2|2|2|2|2]|2)|2 3000 6.55

Table 6: Progression of the bit-allocation algorithm for the cae of scalar quantization (13

subvedors). The bits assgned to ead coefficient, the total bit rate, and the @rresponding

word-error rate are shown at intermediate steps of the algorithm.

In Figure 3, we have plotted speedt reagnition performance as a function of the bit rate for

different numbers of subvedors in the product-code VQ (three ad five), and for the non-

uniform scalar quantization with a variable number of bits per coefficient. In the same figure, we

also show the WER for nonuniform scalar quantizaion using two bits per coefficient. The

partitioning of cepstral coefficients into subvectors for the cae of five subvedors was given

above, whereas for the cae of three subvedors, the partitioning was {(1,2,3), (4,5,6,7,8),

(9,10,11,12,13)}. Scdar quantization with a variable number of bits demonstrates sgnificantly

better performance than the scalar quantization scheme with a fixed number of bits per
coefficient that we examined in Sedion 5.2, reducing the WER to 6.81% from 9.04% at 2600
bps. Product code VQ, however, performs significantly better than scdar quantization at any bit

rate. When comparing the three and five-subvector cases, we seethat they behave similarly for
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low bit rates (below 1800 bps), but then the five-subvedor scheme @nverges faster to the

unquantized speech performance
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Figure 3: Remgnition performance & a function of the bhit rate for various types of MFCC
encoding: nonuniform scalar quantization with constant and variable number of bits per

coefficient; product-code vedor quantization with different numbers of subvedors.

6 CONCLUSIONS

We investigated different strategies for encoding and transmitting speech in speech-enabled
applicaions on the WWW. Using the server-only model with GSM encoding of speech, a
performance of 14.5% WER was adieved at a bit-rate of 13 kops. However, using the client-
server model, for encoding MFCCs resulted in a much lower error rate-6.5% WER-since a
high-quality front end can be used at the client side. This improvement in performance also
comes at afradion of the hit rate required for GSM encoding. A bit rate of 3900bps is required
when nonuniform scalar quantization with a constant number of bits per coefficient is used. This
rateisreduced to 2800bps with non-uniform scalar quantization with variable number of bits per

coefficient, and to just 2000bps when product-code vedor quantization is used.

Other techniques, like predictive VQ, can be used to reduce the bit rate by taking advantage of
the high correlation aadosstime that cepstral vectors exhibit. We must, however, also consider

other aspeds of the problem, like the mmputational complexity of the excoder, which in our
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case runs at the dient side. The freenature of the Internet may limit the amount of encoding one
can do. A wireless personal digital assistant (PDA) may be more likely to benefit from nore
encoding time and less transmisgon time, in which case the product-code VQ at 2 kbps may be
required. Other types of clients may benefit more from the simplicity of the scalar quantizaion
and transmit at 2800 lps.

Our work also has significant implications from the speech recgnition perspedive. The rate of 2
kbps, which is all that is required to adieve unquantized speech performance is rather
surprising. It is intriguing to see how low the bit rate can get, and to discover how much
information is redundant in the cepstral features, since this may help us lean how to better

model speech for recognition.

7 ACKNOWLEDGMENTS

This work was accomplished under a @ntract to Telia Research of Sweden and by internal SRI

reseach and development funds.

8 REFERENCES

[1] D. Goddeau, W. Goldenthal and C. Welkart, “Deploying Speet Applicaions over the
Web,” Procealings Eurospeed, pp. 685683, Rhodes, Greece September 1997,

[2] L. dulia, A. Cheyer, L. Neumeyer, J. Dowding and M. Charafeddine,
“http://www.speed.sri.com/demog/atis.html,” Proceedings AAAI'97, Stanford, CA, March
1997

[3] E. Hurley, J. Polifroni and J. Glass “Telephone Data Colledion Using the World Wide
Web,” Procealings ICSLP, pp. 18981901, Philadelphia, PA, October 1996

[4] S. Bayer, “Embedding Speech in Web Interfaces,” Procealings ICSLP, pp. 16841687,
Philadelphia, PA, October 1996

[5] M. Sokolov, “Speeker Verification on the World Wide Web,” Procealings Eurospeed, pp.
847-850, Rhodes, Greece September 1997,

[6] C. Hemphill and Y. Muthusamy, “Developing Web-Based Speech Applicaions,”
Proceedings Eurospeed), Rhodes, Greece September 1997.

21



[7] The Aurora Projed, announced a Telecom 95, “http://gold.ity.int/TELECOM/wt95’,
Geneva, October 1995 See &so “http://fipa.comtec.co.jp/fipa’yorktown/nyws029.htm”.

[8] D. Stallard, “The BBN SAN System”, presented at the VVoice on the Net Conference, Boston,
Mass., September 1997,

[9] S. J. Young, “A Review of Large-Vocabulary Continuous-Speech Reaognition,” |EEE Sgnd
Processng Magazine, pp. 45-57, September 1996

[10] S B. Davis and P. Mermelstein, “Comparison of Parametric Representations for
Monosyllabic Word Recognition in Continuously Spoken Sentences,” |EEE Trans. Acoustics
Speed and $gnd Processng, Vol. ASSR28(4), pp. 357-366, August 1980.

[11] V. Digalakis and H. Murveit, “Genones. Optimizing the Degree of Mixture Tying in a
Large Vocabulary Hidden Markov Model Based Speech Recognizer,” |EEE Trans. Speet
Audio Processng, pp. 281-289, July 1996

[12] A. Gersho and R. M. Gray, “Vedor Quartization and &nad Compresson,” Kluwer
Academic Publishers, 1991

[13] J Makhoul, S. Roucos and H. Gish, “Vedor Quantization in Speech Coding,”
Proceedings of the IEEE, Vol. 73, No. 11, pp. 15511588 November 1985

[14] P. Price. “Evaluation of spoken language systems. The ATIS domain,” Proceedings of
the Third DARPA Speed ard Natural Languag Workshop, Hidden Valley, Pennsylvania,
June 1990 Morgan Kaufmann.

22



