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ABSTRACT
At the 2004 Workshop on Privacy in the Electronic Society
(WPES), Borisov, Goldberg and Brewer, presented “Off the
Record Messaging” (OTR), a protocol designed to add end-
to-end security and privacy to Instant Messaging protocols.
An open-source implementation of OTR is available and has
achieved considerable success.

In this paper we present a security analysis of OTR show-
ing that, while the overall concept of the system is valid
and attractive, the protocol suffers from security shortcom-
ings due to the use of an insecure key-exchange protocol and
other problematic design choices.

On the basis of these findings, we propose alternative de-
signs and improvements that strengthen the security of the
system and provide the originally intended features of the
protocol, including deniability, in a sound and well-defined
sense.

Categories and Subject Descriptors
K.4.1 [Computer and Society]: Public Policy Issues –
Privacy; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection – Authentica-
tion; E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Perfect forward secrecy, deniability, authentication, instant
messaging

1. INTRODUCTION
The Internet has introduced new ways in which people

communicate. The most common is Electronic Mail (or
email) which allows people around the world to commu-
nicate in a fast and very efficient way. Due to its suc-
cess, nowadays the email system is entrusted with all forms
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of information, including very sensitive data. As a conse-
quence, the need to secure the email infrastructure has re-
ceived plenty of attention, and solutions such as PGP [4, 27]
and s/MIME [25] are widely available. Such solutions are
designed to provide with the three pillars of secure commu-
nications, namely:

Confidentiality: the content of communications should re-
main secret: an unauthorized person should not be
able to learn any private information.

Authentication: the recipient of information should have
certainty about the sender of the information; no other
person (or entity) should be able to impersonate the
legitimate sender.

Integrity: Unauthorized changes to information transmit-
ted between legitimate parties must be detected by the
receiver.

To achieve these properties cryptographic techniques are ap-
plied, with encryption functions used to provide confiden-
tiality, and digital signatures and message authentication
codes to provide for authentication and integrity.

1.1 Instant Messaging
In addition to email, a Web communication tool that

has gained immense popularity is Instant Messaging (IM).
Through IM programs one can “chat” with other on-line
users in a way that is more interactive, timely, and fun than
through email. In addition, although it originally started as
a recreational tool, IM is becoming more and more common
inside corporations as an essential collaboration tool.

As it happened with electronic mail, this newer tool is
going through a second phase of maturation. In particular,
the use of IM technology both in private personal communi-
cations as well as in sensitive business settings requires that
security protection be added to these tools.

While many of the popular IM solutions, such as MSN
Messenger and Yahoo, do not provide any means of pro-
tection, others have already started adding security func-
tionality to their IM programs. Such is the case of AOL
that provides protection similar to s/MIME and Trillian’s
SecureIM which offers data encryption but not authentica-
tion. These initial examples indicate a growing awareness
for the need to secure IM applications. Before continuing
it is worth pointing out that existing security tools such
as SSL and VPNs can provide protection of IM traffic be-
tween servers but are insufficient in most implementations
to secure the traffic between the end points to the commu-
nication. Such an end-to-end security is required to protect



personal communications as well as needed in many business
scenarios.

An important step towards the establishment of wide-
spread mechanisms for protecting end-to-end IM communi-
cations has been taken by Borisov, Goldberg and Brewer [3].
They developed a security design for IM based on the premise
that not only IM requires end-to-end security but the specifics
of the medium and its applications require special security
considerations. In particular, they observe that well estab-
lished end-to-end tools such as PGP (designed to protect
email traffic) fall short of providing the security function-
ality required in the IM setting. Interestingly, while more
demanding, the interactive character of the IM setting also
presents some advantages over off-line settings such as email.

Indeed, in the case of email, when Alice wants to send an
email message to Bob, she cannot engage in a security ex-
change with Bob (who may not be connected to the network
at all), but rather Alice will use Bob’s public key to encrypt
the message before sending it. An adversary (Eve) can now
sit on the network and collect all these encrypted emails,
which at this point are useless to her. But what if at some
future point Bob’s private key gets compromised and ex-
posed to Eve? This is a realistic possibility given that many
of these keys are not well protected (insecure storage, easy
to guess PINs or passwords, etc.). With the knowledge of
Bob’s private key, not only can Eve read Bob’s future com-
munications, but she can also read any of the past messages
addressed to Bob that were protected under this key! (All is
needed is that Eve recorded the encrypted communication.)

In an interactive settings as IM, this drawback can be
avoided by using systems that provide the so called “per-
fect forward secrecy” (PFS) [12, 8]. In this type of systems,
the exposure of a secret key (even a long-term private key)
doesn’t compromise the security of past transactions. The
basic idea is that long term secret keys are used for the pur-
pose of authentication only, while encryption itself is per-
formed using short-term session keys that are erased at the
end of a session. As long as these session keys are not recov-
erable from past transcripts and the long-term secret keys
then PFS is ensured. The interactive nature of IM systems
allows to design a security solution that achieves PFS.

Another issue to consider is privacy, intended not just as
the desire to keep the contents of communications secret (we
refer to the provision of such secrecy as confidentiality), but
also the desire of keeping private the very fact that a com-
munication between two given individuals ever took place.
In particular, cryptographic means applied for securing the
communications should not leave a proof verifiable by a third
party (say a judge) that a particular conversation took place.
Ideally, any party to a conversation should be able to deny
its contents even if the peer to the communication purposely
misbehaves to obtain such a proof. Obviously, this require-
ment conflicts strongly with the desire for authenticity: if
Alice requests a proof that a certain message came from Bob,
how can Bob later deny that he ever sent that message?

Again if the communication is interactive, there are so-
lutions to this quandary. The idea is that Bob provides a
proof that is convincing only for Alice and nobody else. As
said, even Alice should not be able to later prove that the
exchange ever took place. This kind of authentication, with
a “deniability” feature as above, is called deniable authen-
tication. The conflict between authentication and deniabil-
ity features is best illustrated by digital signatures whose

main feature (and the main reason to use them in some ap-
plications) is the provision of non-repudiation (namely, the
ability to prove to a third party that a signer committed to
a document or other piece of information). However, non-
repudiation is the opposite of what deniability asks for. Yet,
as we will see later, one can use signatures in a careful way
in order to preserve deniability. Additional techniques for
supporting deniability are provided by encryption functions
and message authentication codes (MAC).

An early example of a protocol providing support for this
feature is SKEME [17] which was designed in order to pro-
vide a deniability option to IPsec’s IKE protocol [13]. In
last years deniable authentication has received some more
formal attention in the cryptographic literature [17, 11, 23,
14, 21, 9].

1.2 Off-the-Record Messaging
The work of Borisov, Goldberg and Brewer [3] from the

2004 WPES workshop was the first to tackle the above se-
curity issues in the context of Instant Messaging. Their
contribution has been both at the level of establishing re-
quirements for security solutions in the context of IM as well
as in designing (and implementing) specific mechanisms to
achieve these requirements. They proposed “Off-the-Record
(OTR) Messaging” as a security mechanism to adopt on top
of a generic IM protocol. The goal was to obtain desirable
properties such as privacy, authenticity, PFS and deniabil-
ity. Their solution roughly consists of two phases: an au-
thenticated key-exchange phase where a first session key is
established and a subsequent re-keying phase where session
keys are renewed.

The authors of OTR have also created an Open Source
project to embed their protocol in the major IM programs.
At present the project hosts a native plugin for the multi-
protocol client GAIM1 and a proxy server that virtually
permits its use with any IM client. The OTR project has
achieved considerable success in the Open Source commu-
nity. It could be considered a first step toward a standard
for IM security.

1.3 Our Contribution
The goal of this paper is to examine in depth the princi-

ples behind the design of OTR in an effort to improve its
already good features. Our analysis points to some flaws in
the cryptographic design of OTR, including feasible attacks
against the authentication features of the key-exchange pro-
tocol. We also discuss the need to refine some of the notions
used to argue about the security of the protocol. On the
basis of this analysis, we propose alternative mechanisms
for achieving well-founded security without sacrificing (in
some cases, even improving) the performance of the proto-
col. Most importantly, the proposed designs are all rooted in
provably secure mechanisms, both at the level of secure key-
exchange protocols as well as in regards to well-defined de-
niability properties. The rest of the paper is devoted to pre-
senting these issues and alternative designs for OTR. Some
of the improvements proposed in this work are being con-
sidered for inclusion in a future version of the official OTR
protocol.

1GAIM is available in different platforms like Windows,
Linux and other Unix-like OS.



2. THE OTR MESSAGING PROTOCOL
In this section we describe the “Off-the-Record Messag-

ing” (OTR) protocol from [3]. OTR was designed to provide
security features for an underlying instant messaging (IM)
protocol. IM protocols are characterized by a sequence of
messages exchanged between two parties but not necessarily
alternate, that is a party could send more than one message
before he or she receives a reply. (This property matters in
the re-keying process as we will see below.)

The OTR protocol uses the underlying IM protocol as a
transport layer, namely, each binary message of the OTR
protocol is converted into characters that are transported
by the IM protocol. Upon receipt, this message is converted
back to the original format. Each OTR message is marked
by a special tag so it is recognizable.

The OTR protocol consists of two phases: a first phase
where an authenticated key-exchange is performed obtaining
a shared session key; a second phase consisting of a contin-
uous refreshment of the session key during the exchange of
IM messages.

2.1 The OTR Authenticated Key-Exchange
To establish a shared secret key the OTR protocol uses

the well-known Diffie-Hellman Key-Exchange [7].
Briefly, there are some public parameters: a prime p and

a generator g of a subgroup of Z∗
p of large prime order q.

Alice and Bob pick two random numbers (the secret expo-
nents), x and y in {1, . . . , q}, respectively, and they exchange
X = gx and Y = gy (computed mod p) over a public chan-
nel. At this point both parties can compute a shared secret
value that is computationally unknown (under proper as-
sumptions) to any eavesdropper. This secret value is gxy

and is computed by Alice as Y x and by Bob as Xy. The
shared key K is then set to a suitable hash of gxy, i.e.,
K = H(gxy) [18, 10], and the exponents x, y are erased.
Even though the eavesdropper sees X and Y , it is believed
that computing gxy from these values alone is intractable.

The basic DH protocol provides security only against pas-
sive eavesdroppers. If the adversary is capable of interfering
with the messages being sent, then it is extremely easy to
mount a man-in-the-middle attack. In particular it is very
easy for the attacker to impersonate Bob and fool Alice into
believing that she is having a private conversation with Bob.

For this reason it is essential to use an “Authenticated
Key-Exchange” (AKE) protocol which provides the means,
on top of the Diffie-Hellman exchange, to authenticate the
parties and guarantee that the key is solely known, and
uniquely bound, to the legitimate parties to the exchange.
Authentication of a Diffie-Hellman exchange is often done
using the public keys of the peers (though there are other
mechanisms, like pre-shared keys and passwords). The basic
goals are, therefore, to guarantee that honest parties are not
fooled to believe in the wrong identity of a peer to an ex-
change, that both parties have consistent views of who the
peer to the exchange is, and that only the legitimate peers
may possibly know the value of the exchanged key.

In order to add authentication to the basic DH protocol,
OTR uses public keys and digital signatures. Specifically,
each party A in the OTR network has a pair of secret/public
keys (skA, vkA) for a digital signature scheme (implemented
using either DSA or RSA signatures).

In a signature scheme, the secret key skA is used to cre-
ate valid signatures by the owner of the key such that no

other party can create valid signatures. At the same time,
anyone, using the public key vkA, can verify the validity of
any given signature. Note that the public key is associated
to the identity of a specific party. OTR adopts a simple and
non-hierarchical approach to the distribution of public keys,
where each party stores the public keys of the users he com-
municates with. When first entered users are prompted to
verify validity of the public key via fingerprint recognition,
much like in SSH [26].

The OTR authenticated key-exchange phase requires that
each party signs its Diffie-Hellman value. The public key is
sent with the first message:

A→ B : SignskA(gx), vkA

A← B : SignskB (gy), vkB

If the public key vkA is already stored by B and it is
associated with the identity of A, this assures B that gx

comes from A and vice versa (in the absence of pre-stored
public keys the protocol could use PK certificates). After
the verification of the signatures, both parties compute their
shared secret value gxy and erase the DH exponents.

The main goals of the above protocol, as stated in [3],
are to provide a key exchange that guarantees authentica-
tion, PFS, and deniability. As we show below, however, this
AKE protocol is not a secure key-exchange protocol as it
is open to authentication vulnerabilities and other attacks.
Moreover, a straightforward fix of the protocol results in
the loss of its deniability properties. We discuss the security
shortcomings of the OTR AKE in Section 3 and propose
alternative solutions in Section 4.

2.2 The key refreshment
Once the first session key is established, OTR engages in a

very fine-grain key refreshment procedure. Basically for each
message sent each party generates a DH exponent which
will be used to generate a new DH key. Authentication is
performed using the key shared in the previous message.
Once the new key is established it will be used to encrypt
and authenticate messages, while the previous one is erased.

Because, as we discussed, IM messages do not necessarily
follow an alternate pattern between the two parties, care
is necessary to make sure that the right DH exponents are
“paired” by the parties to generate the new key. Basically,
instead of sending a DH exponent for each message, Alice
will send one only after she received a response from Bob.
Key IDs are enclosed to ensure that both parties know which
key is being used.

2.3 Encryption and authentication of messages
Messages exchanged during a OTR session are encrypted

and authenticated. The message is first encrypted using
AES in counter mode and then the resulting ciphertext is au-
thenticated using HMAC (with hash function SHA-1) [16].
As discussed above, the new DH exponent is also included
under the MAC argument in order to authenticate it.

The choice of a counter mode of operation is justified by
the designers of OTR with the desire of having a malleable
encryption scheme in order to increase deniability (see be-
low). Recall that in a malleable encryption scheme given
a ciphertext it is possible to modify it to obtain a cipher-
text of a related plaintext. This is clearly easy to do with
a counter (or other stream-cipher) mode of operation where
flipping a bit in the ciphertext results in the flipping of the



corresponding bit of plaintext.
Another mechanism used by OTR for the purpose of de-

niability is that after a new key has been established via the
key refreshment mechanism, the previous MAC key is re-
vealed. This way the MAC on previous messages will cease
to have authorship value associated with Alice or Bob, since
once the key is revealed anybody could create a valid mes-
sage/MAC pair with that key.

The reason behind the above choices (i.e., a malleable
encryption and revealing the MAC keys) is deniability. A
valid ciphertext/MAC pair cannot be associated with Alice
or Bob, because anybody could have created a ciphertext
that decrypts correctly (by simply modifying another valid
ciphertext, via the malleability of the scheme) and then com-
puted a valid MAC on it (since old MAC keys are made
public).

3. SECURITY ANALYSIS
In this section we analyze the security properties of OTR

and point out some flaws and attacks, mainly to the AKE
component. In Section 6 we describe further design short-
comings in other parts of the protocol.

The design of an AKE protocol is a critical task. This
topic has been the subject of many works in the literature.
Defining and proving security for AKE protocols is not an
easy task as can be seen from the long list of protocols that
have been broken and discarded along the way. Unfortu-
nately, the OTR AKE protocol suffers of such weaknesses
too. The good news is that based on the significant progress
made in the cryptographic literature in last years regarding
the design and analysis of AKE protocols we are able to spot
the OTR’s weaknesses and, at the same time, offer secure
(and equally efficient) alternatives.

3.1 An authentication failure
One of the obvious goals of an AKE is to guarantee that

the identities of the real participants in the protocol be
known to each of the peers to the exchange and the key
known only to these parties. If the protocol successfully ter-
minates (i.e., both parties compute a shared key) then we
want that both parties have computed the same key, and
that this key is associated to the right identities. That is,
both Alice and Bob must end with the same key K, and
have consistent views of who the key was shared with.

Diffie et al. [8] have shown that the association, or bind-
ing, between keys and identities is trickier than one may
perceive in a first place. In developing an authenticated DH
protocol they showed an attack in which the attacker Eve
interferes between Alice and Bob in a way that both parties
end computing the same key but while Alice believes that
the peer to the exchange is Bob, Bob believes that the key
was exchanged with Eve. Therefore, communications pro-
tected using this key will be considered by Bob as coming
from Eve and not from Alice. In [8] it is shown how this can
be used by Eve to defraud a customer Alice and a bank Bob.
Other consequences from such an authentication failure have
been later shown in applications ranging from personal rela-
tions to military applications. Since its discovery by Diffie et
al. this attack has become a basic test for sound designs of
key-exchange protocols (the attack has been referred to by
several names, including the “unknown key share (UKS)”,
“source substitution” and “identity misbinding” attacks).

Unfortunately, the signed Diffie-Hellman key agreement

adopted in OTR (and described in Section 2.1) is subject to
this form of attack, as showed next. Here Eve (E) acting as
a person-in-the-middle runs two conversations at the same
time, one with Alice and one with Bob. The DH values
sent from Alice to Bob are relayed by Eve to Bob but this
time under Eve’s name (all Eve needs to do is to sign this
DH value under her own private signature key). On the
other hand, the response from Bob (intended to Eve in Bob’s
“mind”) are relayed without change to Alice. Pictorially
(the symbol E[B] denotes the fact that Eve acts in this
message as an interface to Bob):

A→ E[B] : gx, SignskA(gx), vkA

E → B : gx, SignskE (gx), vkE

E ← B : gy, SignskB (gy), vkB

A← E[B] : gy, SignskB (gy), vkB

The established key gxy is equal for both sessions, but
Alice associates this key to the identity of Bob, and Bob as-
sociates it to the identity of Eve. Even though Eve doesn’t
know the key, she is able to forward messages between the
two sessions with the result of these messages being associ-
ated to the wrong identity by Bob, with fraudulent conse-
quences as mentioned above.

A simple way to overcome the attack is to include the
identity of the intended receiver in the signature. This way
it becomes impossible to forward signed messages to sessions
in which different identities are involved. This signed DH
agreement would become:

A→ B : gx, SignskA(gx, B), vkA

A← B : gy, SignskB (gy, A), vkB

Unfortunately, by doing so the protocol lost the deniabil-
ity feature that motivated it. Indeed, in the above protocol,
each participant is leaving a full, non-repudiable, proof that
it communicated with the other party.

3.2 A freshness-impersonation vulnerability
In addition to the above attack, the OTR key-exchange

protocol suffers of an additional vulnerability that questions
the resistance of the protocol to full impersonation attacks.
A well-designed key-exchange protocol should have the prop-
erty that the only way an attacker can impersonate Alice
in key-exchange sessions is by compromising the long-term
private key used by Alice for the purpose of authentication
(indeed if such key is leaked to the attacker, the latter can as-
sume the identity of the victim). The exposure of any other
piece of information, such as session-specific values, should
be of no use for the attacker to impersonate Alice in other
sessions. In other words, a basic security requirement is that
the exposure of ephemeral session-specific secrets should have
no bearing on the security of other sessions.

The OTR protocol, however, does not provide such guar-
antee. Since the signature of Alice on the value gx does
not carry any freshness indication, then Bob has no means
to verify the freshness of the signature. Hence, an attacker
that finds a single ephemeral value x used by Alice, will be
able to impersonate Alice to any other party in the system
for as long as the public key of Alice is not revoked! All the
attacker needs to do is to replay the pair gx, SignskA(gx).
Since it knows x it can compute the session key for whatever
response gy comes from Bob.

This vulnerability to the disclosure of ephemeral informa-
tion is particularly serious in the case of DH exponents since



one way to handle the cost of DH exponentiations (especially
in low-powered devices) is to pre-compute pairs (x, gx) and
store them in memory until they are needed. As such, these
exponents may be much more vulnerable to attack than the
long-term private key of a party. Even in cases where DH
exponents are not pre-computed one may hope to have the
long-term key better protected (e.g., in a hardware token)
than temporary DH exponents generated for a specific ses-
sion (and possibly stored in a shared computer from which
the user may occasionally run an IM session).

Notice that if we modify the protocol to include the iden-
tity of the receiver Bob in the signature (as suggested for
preventing the identity misbinding attack), impersonation
of A to B is still possible if a pair (x, gx) used by A in an
exchange with B is ever learned by the attacker.

3.3 Deniability
In a deniable authentication protocol there are two seem-

ingly conflicting requirements: Alice wants to be convinced
that she is really talking to Bob; on the other hand Bob does
not want Alice (or any other entity) to be able to prove to a
third party that Bob said something or, in some cases, even
that Bob ever talked to Alice.

Deniability can thus be defined at various levels: for ex-
ample Bob may be willing to admit that he talked to Alice,
as long as he can deny the content of the conversation. The
strongest definition of deniability is when Bob can deny that
the conversation ever took place. Usually this condition is
defined by enforcing a simulation requirement [11]. A pro-
tocol is fully deniable if there exists an efficient algorithm
(called a simulator) that produces transcripts indistinguish-
able from the real ones without knowing the secret keys of
the parties. If such a simulator exists, then any conversa-
tion can a posteriori be denied as it could be the product
of the simulator and not of the real party. That is, a tran-
script of communication shown by Alice does not constitute
a proof that the transcript was generated in a conversation
with Bob since Alice could have produced the transcript by
simply using the simulator.

The OTR protocol uses digital signatures for authentica-
tion. Clearly, Alice cannot generate signatures in the name
of Bob without knowing Bob’s secret key, therefore strictly
speaking the protocol cannot be fully simulated. On the
other hand, since the only signatures produced by the pro-
tocol are on random values, and independent of the commu-
nication with Alice, they only constitute a proof that Bob
was involved in some conversation but this cannot be traced
to the specific peer. Such a level of deniability is often suf-
ficient in practice.

However, if we consider the fix for the OTR AKE intro-
duced in Section 3.1 where the identity of the intended re-
ceiver is included under the signature, then the signature is
not on a random value anymore. This signature constitutes
an undeniable evidence that Bob has talked specifically to
Alice and this stronger fact could have further implications
(for example, proving collusion in a crime or just a love af-
fair). Thus the OTR AKE from [3] does not satisfactorily
solve the conflict between authentication and deniability:
the proposed deniable protocol does not ensure strong cryp-
tographic authentication, and once we fix the authentication
part the protocol ceases to be deniable.

In the next section we give several AKE proposals which
are both secure (i.e., good at authenticating the parties) and

deniable (with varying levels of deniability as discussed in
Section 5.1). Their efficiency is comparable, and even better
in some cases, than the original OTR protocol.

4. BUILDING A SOUND AKE FOR OTR
Fortunately, there is no need to invent a new key-exchange

protocol for the purposes of OTR. Several, well-analyzed
and proven secure protocols exist that fit the needs of OTR
messaging. Here we discuss some of these options. In Sec-
tion 5 we expand on the privacy properties of these proto-
cols.

4.1 SIGMA
SIGMA is a signature-based authenticated DH exchange

[18] adopted as the main key-exchange protocol in IKE (ver-
sions 1 and 2 [13, 15]). The protocol has been formally ana-
lyzed and proven secure in [6]; in particular, SIGMA solves
the weaknesses of the OTR AKE protocol as discussed in
Section 3. The protocol is outlined next.

A→ B : gx

A← B : gy

A→ B : “A”, SignskA(gy, gx), MACKm(“0”, “A”), vkA

A← B : “B”, SignskB (gx, gy), MACKm(′′1”, “B”), vkB

Here “A” and “B” denote the identities of Alice and Bob
and the MAC key Km is derived by hashing the value gxy.
The session key is derived also from gxy in a (computation-
ally) independent way from Km (see [18] for full details and
rationale).

The use of the MAC value in the protocol serves two pur-
poses: it prevents the identity misbinding attack and, at
the same time, it provides a deniable exchange by avoiding
signing the peer’s identity.

The 4-message SIGMA protocol as described above is
called SIGMA-R. A 3-message variant, called SIGMA-I, can
be obtained by inverting the order of the 3rd and 4th mes-
sages. This has significance in the form of identity protection
that the protocol may provide if these last two messages are
encrypted (see Section 5.2). As we will see in Section 5.1,
SIGMA-R has better deniability properties than SIGMA-I.

Note that SIGMA requires more messages than the two
in the original OTR protocol. If the use of a 2-message
protocol is considered important, the next two subsections
present such protocols at the expense of a weaker from of
PFS.

4.2 SKEME
As noted earlier, the SKEME protocol [17] constitutes an

early example of a protocol designed as both a secure AKE
as well as to support deniable communications. The original
SKEME protocol has several flavors. Here we are interested
in the one that implements an authenticated DH exchange
using public-key encryption as a means of authentication.
The original protocol involves three messages and was for-
mally analyzed in [5]; it can be directly used in the context
of OTR messaging to provide all the desirable security prop-
erties discussed earlier, including PFS and deniability2.

2The option of using SKEME is suggested at the end of the
OTR paper [3] as an alternative AKE which would avoid the
deniability issues created by the use of digital signatures. As
we see here, the use of SKEME also addresses the other more
significant security problems present in the OTR AKE.



Here, we describe a 2-message variant of SKEME in case
that one wants to preserve the number of messages in the
original OTR AKE. As we will see this provides with the
same array of features of a 3-message SKEME but with a
limited form of PFS.

A→ B : “A”, gx, EncB(nA)
A← B : “B”, gy, EncA(nB)

In this description “A” and “B” stand for the identities of
A and B, respectively. The symbol EncA (resp. EncB)
means encryption under the public key of A (resp. B). The
values nA, nB are random nonces chosen by A, B, respec-
tively. The session key is computed as: K = PRFnA(gxy)⊕
PRFnB (gxy) (PRF is a pseudorandom function such as
HMAC or AES). This differs from the original 3-message
SKEME in that the MAC values exchanged as part of the
explicit authentication of the original protocol are now re-
moved. Instead, the exchange is only implicitly authenti-
cated through the session key computation that uses a prf
keyed via the secret nonces.

This protocol can be shown to be secure in the key ex-
change security model of [5] except that the protocol does
not provide explicit key confirmation (which, as shown in
[5], is not a necessary property for guaranteeing secure com-
munications) and it offers a weaker form of PFS. Indeed, as
shown in [19], no 2-message protocol with implicit authen-
tication can provide full perfect forward secrecy. Instead,
what the protocol guarantees is the following weaker prop-
erty: if during the key exchange execution the attacker did
not inject its own messages into the communication then
full PFS is guaranteed for the resultant session key. On the
other hand, if, for example, the message from Bob to Alice
was actually chosen by Eve, then Eve may learn the session
key if she later finds Alice’s private key. What is important
is that as long as Eve does not learn this private key then
she gets no information on the session key. If this weaken-
ing of PFS is to be prevented then one has to go back to
the original 3-message SKEME protocol [17] (which can also
be run as a 2-message protocol where the third message is
piggy-backed to the first message from Alice to Bob in the
session).

Note that in the first message of the protocol Alice uses
Bob’s public key, thus it is assumed that Alice has acquired
Bob’s public key before the initiation of the session. This is
the typical case assumed in [3]; in other cases Alice will have
to learn this key by some other means. Note, that Bob does
not need to know Alice’s public key in advance since she can
include her public key in the first message (of course, this
should be complemented by some way for Bob to check for
the authenticity of Alice’s public key, e.g. via a certificate).

SKEME supports deniability by completely avoiding the
use of signatures and their possible non-repudiation impli-
cations. Instead, the authentication happens through the
ability of the parties to decrypt the nonce sent by the peer.

4.3 HMQV
The MQV protocol is a well-known protocol developed

by Law, Menezes, Qu, Solinas and Vanstone [20]. It is the
most efficient and versatile of all known authenticated DH
protocols (and consequently widely standardized). Unfor-
tunately, the MQV protocol suffers of several design weak-
nesses. Recently, [19] presents a fix to the protocol which
preserves its original outstanding performance while at the

same time delivering its “promised security” in a formally
provable way. The protocol is relevant to the applications in
this paper due to its simplicity, performance and provable
security including deniability (the latter property has been
recently formalized and proven in [9]).

The HMQV protocol has a 2- and 3-message variants that
are relevant to our context. Below we describe the 2-message
variant that, as in the case of 2-message SKEME, provides
limited PFS. To move to the 3-message protocol (which adds
explicit key confirmation via MAC values) one either needs
the additional message in the AKE protocol or to piggy-
back this third message to the first session message sent
from Alice to Bob.

In the HMQV setting each party has a static DH value
as its public key; for example, Alice will have as its public
key a value Ā = ga where g generates a group of prime
order q and a is a secret value in {1, . . . , q} known only to
Alice. Similarly, Bob’s public key will be B̄ = gb for a secret
value b. The 2-message HMQV exchange consists of a simple
(unauthenticated) DH exchange, namely,

A→ B : “A”, X = gx

A← B : “B”, Y = gy

The authentication is provided via the session key com-
putation which is computed by A as K = H((Y B̄e)x+da)
and by B as K = H((XĀd)y+eb), where d = h(X, B) and
e = h(Y, A). The function h(·) is a hash function that out-
puts |q|/2 bits and H(·) is a hash function that outputs
values of the length of desired key (in the OTR case, 128
bits). Both functions can be computed using the same un-
derlying hash function with suitable truncation. The key
computation only costs 1.5 exponentiations (since exponen-
tiation to the power of e or d involves only |q|/2 multiplica-
tions). An additional exponentiation is needed to compute
the ephemeral DH value gx, gy.3

Note how the lack of any authentication information trans-
mitted in the protocol makes HMQV well suited for deniable
applications such as OTR (see next section).

5. PRIVACY CONSIDERATIONS
This section discusses some of the important privacy con-

siderations related to the choice of protocols suggested in the
previous section. We first consider the deniability properties
of these protocols, and then discuss identity protection.

5.1 Deniability Properties
As discussed in the introduction and Section 3.3, an im-

portant privacy property that we would like our protocols to
provide is “deniability”, namely, the property that no infor-
mation generated by the protocol (during the KE part and
subsequent data exchange) could be used to later prove to
a third party (which we call a judge) that the communica-
tion, or its specific contents, took place. Deniability, how-
ever, is not an absolute term. It comes in different flavors
and strengths depending on the assumptions that one makes
about the behavior of the participants in the protocol and

3The exponentiation X = gx (and Y = gy) can be per-
formed off-line. In particular, in HMQV the eventual expo-
sure of an ephemeral value x (resp. y) does not compromise
the security of other sessions provided that A checks that
Y B̄e (and B that XĀe) is of prime order q. Interestingly,
this check also helps in achieving deniability.



even on the behavior of the judge. It also depends on the
type of information that the protocol allows to deny. In the
best case, nothing can be proven to a third party: neither
the contents of a conversation nor the mere existence of the
communication (i.e., the fact that party A talked to party
B). In other cases it may suffice that the protocol leaves no
provable trail for the contents of a conversation though it
does allow to prove that a communication between A and B
took place.

Dealing with the whole range of deniability flavors is be-
yond the scope of this paper; a detailed and formal treat-
ment of the subject is presented in [9]. Here we will discuss
informally (and consequently somewhat inaccurately) some
of the deniability properties of the key exchange protocols
described in the previous section.

The three protocols have the most basic and important
deniability property, namely, if both peers are honest at the
time of the run of the KE protocol then they leave no prov-
able trail of the communication. To see the significance of
this deniability property consider the protocol discussed at
the end of Section 3.1 in which parties sign the peer’s iden-
tity. Clearly, this protocol leaves an undeniable (signed)
proof that B talked to A (and viceversa); moreover, not
only can A prove to a third party that B talked to her, but
this proof is available to any eavesdropper (at least for the
non-encrypted portion of the communication). In contrast,
in the protocols we propose as long as A follows the proto-
col then neither she or an eavesdropper will be able to prove
later the contents or existence of the communication to a
judge.

What happens, however, if one of the peers to the ex-
change (say A) purposely deviates from the honest run of
the protocol in order to later be able to prove something
about the communication to a judge J . The first thing to
note is that in most cases such a proof of communication
can be provided from A to J if A and J actively collaborate
at the time the communication is happening, in particular
during the run of the KE protocol. In this case J can dic-
tate some protocol values to A that will convince J that
she is receiving information authenticated by Bob. (This is
easy to achieve with the SIGMA and SKEME protocols4 but
not necessarily with the HMQV protocol where convincing
J may require that A reveals her private key to J). No-
tice, however, that even in this case J may not be able to
convince another party about what he witnessed.5

The more interesting question is to what extent can a
party (say A) deviate from the honest run of the protocol
in a way that it will later allow A to prove something about
the communication to a judge J with whom A was not col-
laborating during the run of the protocol. We prove in [9]
that, under suitable cryptographic assumptions, protocols

4For example, in the SKEME protocol J will encrypt a
nonce nA that only she knows under B’s public key, and
give the resultant ciphertext to A who sends it to B. If B is
willing to talk to A then he will send an encrypted nonce nB

to A, and will compute a session key derived from nA, nB

and gxy. Assuming that J also chose x and that A can prove
that the ciphertext received from B contained the value nB

(this is possible for ”committing encryption” schemes such
as RSA) then J will be convinced.
5Needless to say, we limit ourselves to “algorithmic” proofs
of communication, and ignore other means that courts may
accept as evidence such as physical tapping (or just the word
of a gentleman...).

SKEME and HMQV provide deniability in this case.
The case of SIGMA is more complex due to the signing

of the peer’s DH value. Consider the 3-message protocol
(SIGMA-I). The responder B signs the pair (gx, gy) before
even knowing who he is talking to. Therefore, the specific
value of gx (chosen by the initiator and signed by B) will
say nothing about who B communicated with. It could have
been sent by anyone in the network, in particular by some-
one with whom B is not willing to talk to at all. However,
in the case of A (the initiator) the signature on the pair
(gy, gx) is generated by A after she checked who the sender
of gy is. This can allow B to “frame” A by choosing a spe-
cial value of gy (e.g. y = SIGB(“I talked to A on [date]”)).
Note that this is not sufficient proof that A really talked to
B since gy could have been sent to A by some other party
C (who A knows and who received y from B), or the pair
(gy, gx) could have been generated by A acting as a respon-
der in another run of the protocol (in which case A signed gy

without verifying who the sender was). Yet, in some attack
scenarios a carefully-chosen value of Y may be used as some
form of evidence against A (e.g., a value y computed as the
signature of B on the pair (“A”, gx) may be used to prove
that A acted as the initiator). In addition, a large scale at-
tack directed to frame many parties (say, a large web site
– e.g., one whose visitors/customers may prefer not to be
identified – performing this attack on all its customers) may
also be difficult to deny.

We will omit a more detailed discussion here and will only
note that SIGMA-R is more robust to the above attacks:
since the first to sign in SIGMA-R is the initiator A. Hence,
any choice of gy by a dishonest responder B (even if gy de-
pends on gx) has no consequence in framing A (who signs
before even knowing, or verifying, who she is talking to).
Hence any signature of party A on a pair (gy, gx) can always
be claimed to have been produced as initiator and hence it
carries no proof of whom the peer to the exchange was (it is
important that signatures produced by the parties as initia-
tors and responders are indistinguishable). This property of
SIGMA-R may be particularly relevant to scenarios such as
instant messaging where end points are individuals acting
both as initiators and responders of key exchange execu-
tions.

5.2 Identity Protection
As clearly stated in the conclusion of the OTR paper [3],

anonymity or identity protection, was not a design choice for
OTR. However, we believe that a protocol whose goal is to
achieve a high level of privacy, as is the case of OTR, should
strive to provide identity protection to the largest possible
degree. Specifically, by identity protection (see [17, 18, 1])
we refer to the hiding of (logical) identities from attackers
in the network (not from the peers to the exchange). Such
logical identities may be names of individuals, companies,
an email address, a public key or its certificate, etc. In
contrast, physical addresses, as those required for routing,
will inevitably be exposed; but in many cases these routing
addresses will not be bound to logical identities in which case
protecting the latter is of significance. Indeed, hiding who
am I talking to may not be less significant than hiding the
content of a conversation (especially considering that many
times it is the information of who I am talking to that will
trigger the interest in eavesdropping into my conversation,
or just be the reason to throw me to jail).



Some key-exchange protocols such as the one originally
used in OTR do not provide identity protection. However,
both the SIGMA and SKEME protocols can provide such
protection while enjoying all other desired security features,
including deniability. For achieving identity protection in
the case of SIGMA the parties use the values gx, gy to com-
pute a key with which they encrypt the identities (including
public keys and certificates if sent) and the signatures. In
this case, SIGMA provides protection of identities for both
parties against eavesdroppers. In addition, SIGMA-R pro-
vides protection of the responder’s identity against active
attacks while SIGMA-I does it for the initiator (see [18]).
SKEME can also provide identity protection by simply in-
cluding the identities under the exchanged ciphertexts (see
[17]).

In the case of HMQV, the protocol does not support iden-
tity protection since each party needs to know the peer’s PK
before it can compute the session key. If one is willing to pay
with an extra exponentiation and extra message, then one
could use the 3-message variant of HMQV while encrypt-
ing the second and third flow with a key carefully derived
from gxy (computing gxy is where the extra exponentiation
is needed). We omit any discussion and details of such key
derivation.

One possible objection to the use of identity-hiding pro-
tocols is that in IM identities are anyhow transmitted in the
clear as part of the addressing system. While this is the
case for many such protocols, it is not an essential (or un-
avoidable) need. One could envision protocols that will use
session identifiers, or other forms of temporary “aliases”, to
conceal such identities (at least from network attackers if
not from the IM server). If such measures are implemented,
one must be careful not to have the key-exchange protocol
itself reveal the (logical) identities. In this case, identity-
protecting key-exchange protocols become very desirable.

6. FURTHER COMMENTS ON OTR
This section discusses some further technical aspects of

the design of OTR [3] and points to some weaknesses that
should be removed from the protocol.

6.1 Repudiability of the symmetric encryption
Two central design choices in OTR are the use of a mal-

leable encryption scheme (such as a stream cipher) to en-
crypt messages, and the release of MAC keys after each key
refresh (see Section 2.3). Both steps are introduced as a
means to enhance the repudiability of messages by the par-
ticipants. It is not clear, however, how much is gained by
these mechanisms. The basic idea is that if the attacker can
produce a ciphertext and its authentication by itself then it
cannot convince a third party that certain information was
transmitted between Alice and Bob. Note, however, that if
the key-exchange protocol in use is deniable then there is no
way to tie a communication to the value of a key. So even if
an attacker Eve claims to have learned a key used between
Alice and Bob (and even if we assume that it really learned
the actual session key), there is no way that Eve can con-
vince that this is the real value of the session key. Eve could
have as likely made up the key and generated the alleged
communication.

One could say that if the measures of malleable encryp-
tion and disclosure of MAC keys do not help they do not
cause harm either. We disagree. First, stream cipher en-

cryption has some risks that make them less appealing in
some scenarios, especially in the need of managing counters
with great care to avoid re-use of counter values or other por-
tions of a pseudorandom stream. Second, it is best to leave
freedom for the choice of encryption functions and modes
as available and desired by an application. Third, revealing
the MAC keys does introduce timing and synchronization
issues needed to prevent a too-early disclosure. While this
is possible as claimed in [3] this results in added complexity
to the system.

While the above considerations may be seen as subjec-
tive to some extent, in the next subsection we illustrate the
danger of adding non-standard security techniques. If not
carefully designed, such techniques (while appealing to the
eye) may interact badly with other components of the sys-
tem.

6.2 Unnecessary weakening of encryption keys
The choice to reveal MAC keys in OTR interacts badly

with another design element (also motivated by deniability
issues) in a way that weakens the secrecy of encryption keys
used by the protocol, and consequently weakens the secrecy
of the encrypted information.

In OTR the MAC keys are computed as a one-way hash
of the encryption key: Kmac = H(Kenc), where the en-
cryption key is obtained by hashing the result of the DH
key exchange. Once again the justification for this peculiar
design choice is repudiability: should the attacker find the
decryption key, she would not only be able to read messages
but also to MAC them. As observed in Section 6.1, the
justification for such steps is dubious, One objection is that
once Kmac is revealed the attacker has an easy way to test
for the value of any encryption key (without the need for
known or plausible plaintext). In the extreme case that this
key is used as a one-time pad, the attacker could use this
knowledge to mount a “dictionary attack” on the plaintext
which is infeasible otherwise.

6.3 On the Key Refreshing
As recalled in Section 2.2, the OTR protocol performs

a DH key exchange per message and that such exchange
is authenticated with the previous key. The goal is to ob-
tain a fine-grain perfect forward secrecy mechanism in which
learning the encryption key at one point will not allow the
adversary to learn even a single past message. We note
however, that if the adversary learns the current ephemeral
key6, future messages may be completely compromised. In-
deed even if the new encryption key is not computable from
the old one (being the result of a fresh DH exchange), the
adversary can however impersonate the parties because the
old key is used for authentication. In particular the attacker
can hijack the session and learn/modify all future messages.

More in detail, if in the OTR protocol, Eve finds the key
Ki−1 used for the last message i − 1, then she can run the
next ith message DH key exchange with Alice pretending
to be Bob, since she knows how to authenticate. Similarly,
she can perform the ith message DH key exchange with Bob
pretending to be Alice. Now all the messages exchanged by
Alice and Bob go through Eve, who can of course learn them
and also modify them at will.

6This is plausible if the user’s computer has been compro-
mised in some way.



Thus the value of performing a DH key exchange with
each message where authentication depends on the previous
shared key is of limited value. This is even more so given
the computational cost of a DH exchange ([3] discounts the
effect of such computation, however it may be considerable
in low-powered devices). In any case, whether the compu-
tational cost of a DH exchange is substantial or negligible,
we believe that the better use of this power is in running
periodic, fully fresh, DH exchanges authenticated using the
long-term private authentication keys of the parties. In this
case, as long as a party’s private key is not disclosed to the
attacker, the party can be confident of retaining (or regain-
ing) full control of its sessions with each such full-fledge DH
exchange.

Thus we suggest that OTR will enjoy better overall se-
curity by running the AKE protocol at regular intervals. If
a finer-grain refreshing mechanism is desired for forward-
secrecy purposes, then a lighter, yet powerful, mechanism
can be employed, such as deriving new keys (possibly on a
per-message basis, if so desired) by one-way hashing the pre-
vious key. This ensures that a break at a given point in time
will affect future communications but not past ones. Most
importantly, the affected future communications are only
those carried before the next full-fledge run of the AKE.
Once this protocol is performed, the attacker looses its abil-
ity to read and modify the communication!
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