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Abstract. In this paper we use the Epigram language to define the
universe of regular tree types—closed under empty, unit, sum, product
and least fixpoint. We then present a generic decision procedure for Epi-
gram’s in-built equality at each type, taking a complementary approach
to that of Benke, Dybjer and Jansson [7]. We also give a generic defini-
tion of map, taking our inspiration from Jansson and Jeuring [21]. Fi-
nally, we equip the regular universe with the partial derivative which can
be interpreted functionally as Huet’s notion of ‘zipper’, as suggested by
McBride in [27] and implemented (without the fixpoint case) in Generic
Haskell by Hinze, Jeuring and Löh [18]. We aim to show through these
examples that generic programming can be ordinary programming in a
dependently typed language.

1 Introduction

This paper is about generic programming [6] in the dependently typed functional
language Epigram [29, 30]. We construct the universe of regular tree types—the
datatypes closed under empty, unit, sum, product and least fixpoint—by giving
a de Bruijn-style syntax [14] to its types and presenting the elements of those
types as an inductive family [16].

The regular tree types form quite a small universe compared to others we
might imagine [4, 7], but it is a universe very rich in structure. We realise some of
that structure by writing programs: we show that Epigram’s standard equality
is decidable for every regular tree type; we equip every regular tree type con-
structor with its associated notion of functorial ‘map’; we construct the formal
derivative of each type expression, including those with fixpoints, and extract
the corresponding notion of one-hole context or ‘zipper’ [20]. In the last example
McBride’s observation [27], given its explanation in [3], has finally become a
program.

1.1 What is a universe?

The notion of a universe in Type Theory was introduced by Per Martin-Löf [26,
34] as a means to abstract over specific collections of types. A universe is given
by a type U : ? of codes representing just the types in the collection, and a
function T : U → ? which interprets each code as a type. A standard example



is a universe of finite types—each type may be coded by a natural number
representing its size. We can declare the natural numbers in Epigram as follows

data
Nat : ? where

zero : Nat
n : Nat

suc n : Nat

One way to interpret each Nat as a finite type is to write a recursive function
which calculates a type of the right size, given an empty type Zero, a unit type
One and disjoint unions S + T

let n : Nat
fin n : ? fin n ⇐ rec n

fin zero ⇒ Zero
fin (suc n) ⇒ One + fin n

Another way is to define directly an inductive family [16] of finite types:

data n : Nat
Fin n : ? where

fz : Fin (suc n)
i : Fin n

fs i : Fin (suc n)

Finzero is uninhabited because no constructor targets it; Fin(sucn) has one more
element than Fin n.

In either presentation, Nat acts as a syntax for the finite types which we then
equip with a semantics via fin or Fin. Let us emphasize that Nat is an ordinary
datatype, and hence operations such as plus can be used to equip the finite
universe with structure: Fin (plus m n) is isomorphic to Fin m + Fin n. Universe
constructions express generic programming for collections of datatypes [6, 18, 21]
in terms of ordinary programming with their codes.

The notion of universe brings an extra degree of freedom and of precision
to the business of generic programming. By their nature compiler extensions
such as Generic Haskell [10] support the rolling-out of generic operations to
the whole of Haskell’s type system, but we are free to construct a continuum,
ranging from large universes which support basic functionality to small and
highly structured universes which support highly advanced functionality. Benke,
Dybjer and Jansson provide a good introduction to this continuum in [7]. In
fact every family of types, whether inductive like Fin or computational like fin,
yields a universe.

1.2 From Finite Types to Regular Tree Types

The finite types are closed under ‘arithmetic’ type constructors such as empty,
unit, sum and product. If we also add list formation, we leave the finite universe
and acquire the regular expression types. We can code these (with respect to an
alphabet of size n) by the following syntax

data n : Nat
Rex n : ? where

fail, nil, dot : Rex n
i : Fin n

only i : Rex n

S ,T : Rex n
S or T , S then T : Rex n

R : Rex n
R star : Rex n



From each regular expression in the syntax, we may then compute a type which
represents the words which match it.

let R : Rex n
Wordsn R : ? Wordsn R ⇐ rec R

Wordsn fail ⇒ Zero
Wordsn nil ⇒ One
Wordsn dot ⇒ Fin n
Wordsn (only i) ⇒ Single i
Wordsn (S or T ) ⇒ Wordsn S + Wordsn T
Wordsn (S then T ) ⇒ Wordsn S × Wordsn T
Wordsn (R star) ⇒ List (Wordsn R)

This universe, like the finite types, has much algebraic structure to expose, and
there is plenty of ad hoc work devoted to it, motivated by applications to docu-
ment structure [19].

Moving just a little further, we can generalise from lists to trees by replacing
star with a binding operator µ which indicates the least fixpoint of an algebraic
type expression. Closing under µ gives us the universe of regular tree types. These
include the string-like structures such as the natural numbers, µN. 1 + N and
the lists of A’s, µL. 1 + A × L, but also branching structures such as binary
trees µT. 1 + T × T . Nesting µ yields structures like the finitely branching trees,
whose nodes carry lists of subtrees, µF. µL. 1 + F ×L. In effect, we acquire the
first-order fragment of the datatypes found in Standard ML [32]. It is this class
of types types the the structures and algorithms they support, which we shall
study in this paper.

Of course, there are plenty more universes to visit. Altenkirch and McBride
construct the nested datatypes, allowing non-uniform type constructors to be de-
fined by recursion [4]. Benke, Dybjer and Jansson construct the indexed induc-
tive definitions [7, 17], their motivation being that these structures are effectively
those of the Agda system [12] with which they work.

1.3 Programming in Epigram

Epigram [29, 30] is a functional programming language with an interactive editor,
incrementally typechecking source code containing sheds, [ · · · ] , whose contents
are free text which remains unchecked. It supports programming with inductive
families in a pattern matching style, as proposed by Thierry Coquand [13] and
implemented in the Alf system [25].

However, Epigram programs elaborate into a version of Luo’s UTT [23]. This
is a more spartan and more clearly defined theory than that of Alf, equipping
inductive families only with the induction principles which directly reflect their
constructors. In this respect, Epigram more closely resembles its direct ancestor,
Lego [24], and also to some extent the Coq system [11]. The design criteria for
a good high-level programming language and a good low-level core often pull in
opposite directions, hence we separate them.



Epigram’s data structures are introduced by declaring their applied formation
rules and constructors in a natural deduction style. Argument declarations may
be omitted where inferable by unification from their usage—for example, in
our declarations of Fin’s constructors, fz and fs, there is no need to declare
n : Nat. The resemblance between constructor declarations and typing rules is
no accident. It is intended to encourage the view of an inductive family as a
universe capturing a small type system, and that is exactly how we work in this
paper.

Epigram functions are given a type signature, also in the natural deduction
style, then developed in a decision tree structure, shown here by indentation
and representing a hierarchical analysis of the task it performs. Each node in
a decision tree has a left-hand side which shows the information available, in
the form of the patterns into which the arguments have been analysed, and a
right-hand side which explains how to proceed in that case. The latter may take
one of three forms:

⇒ t the function returns t , an expression of the appropriate type, con-
structed over the pattern variables on the left;

⇐ e the function’s analysis is refined by e, an eliminator expression, charac-
terising some scheme of case analysis or recursion, giving rise to a bunch of
subnodes with more informative left-hand sides;

| w the subnodes’ left-hand sides are then extended with the value of w , some
intermediate computation, in an extra column: this may then be analysed
in addition to the function’s original arguments.

In effect, Epigram gives a programming notation to some constructions which
are more familiar as tactics in proof systems: ⇒ corresponds to Coq’s exact and
| resembles generalize; ⇐ is McBride’s elimination tactic [28]. McBride and
McKinna give a thorough treatment of Epigram elaboration in [30], and begin
to explore the flexibility of the ⇐ construct. In this paper, however, we shall
need only the standard constructor-guarded recursion operators rec x , which we
make explicit, and the standard constructor case analysis operators casex , which
we leave implicit whenever their presence is directly inferable from the resulting
constructor patterns. In general, we are only explicit about case analysis when
its results are empty:

let x : Fin zero
impossible x : Zero

impossible x ⇐ case x

Case analyses in Epigram, as in Alf, are constrained by the requirement in
each branch that the indices of the scrutinee—zero for x : Fin zero above—
coincide with those of the constructor pattern in question—above, (suc n) in
both cases. When they concern constructor symbols, these constraints are auto-
matically simplified by first-order unification: impossible cases are dismissed, as
above, and the possible cases are simplified. The ⇐ construct thus generalises
Alf’s dependent constructor matching ‘in software’. At time of writing, neither



Coq nor Agda deliver this functionality directly, but there is no technical obstacle
to its wider adoption.

Before we start work in earnest, we must own up to the notational liberties
we have taken in this paper which the current implementation of Epigram does
not support. At present, neither the | w notation, nor the suppression of obvious
⇐ case . . . nodes notation has been implemented: both omissions have simple
but verbose workarounds—expanding the programs here would shed more heat
than light. More trivially, we still work in ASCII rather than LATEX and have
only prefix operators thus far—the notation we use here is cosmetically more
advanced.

2 The Universe of Regular Tree Types

We define the codes for the regular tree types as follows:

data n : Nat
Reg n : ?

where ‘Z’ : Reg (suc n)
T : Reg n

‘wk’ T : Reg (suc n)
S : Reg n T : Reg (suc n)

‘let’ S T : Reg n

‘0’, ‘1’ : Reg n
S ,T : Reg n

S ‘+’ T ,S ‘×’ T : Reg n
F : Reg (suc n)
‘µ’ F : Reg n

This is syntax-with-binding in de Bruijn style—the numeric index gives the
number of free type variables available in the expression. The ‘Z’ refers to the
most local variable (de Bruijn index zero), where there is one; the weakening
constructor ‘wk’ , read backwards, discards the top variable, allowing access to
the others. We can thus define an embedding from Fin n to the representation
of variables in Reg n

let X : Fin n
‘var’ X : Reg n

‘var’ X ⇐ rec i
‘var’ fz ⇒ ‘Z’
‘var’ (fs X ) ⇒ ‘wk’ (‘var’ X )

Both ‘µ’ (least fixpoint) and ‘let’ (local definition) bind a variable. The latter
clearly introduces redundancy, as does the applicability of ‘wk’ to expressions
other than variables. We could have chosen a redundancy free representation,
making ‘var’ a constructor and dropping ‘Z’, ‘wk’ and ‘let’. Such a syntax could
be equipped with a renaming functor and a substitution monad as in [5] and we
should need this equipment and proofs of its properties to do our work. Definition
and weakening replace just enough of the behavior of substitution for us to avoid
this extra effort.

A similar choice presents itself when we come to interpret this syntax. It
seems natural to interpret only the closed type expressions—the elements of
Reg zero—substituting whenever we go under a ‘µ’ or ‘let’ binder. Some simple
operations, such as our generic equality, become even simpler if we take this



choice, but other operations, such as ‘map’, require us to work with properties
of substitution. We choose to sidestep substitution in the usual way, interpreting
open expressions over an environment. We construct our environments carefully
to support the way we shall use them: they are telescopic [15] in the sense that
each new variable is bound to an expression over the previous variables

data n : Nat
Tel n : ? where

ε : Tel zero
ts : Tel n t : Reg n

ts::t : Tel (suc n)

We can now interpret every type expression without having to rename de Bruijn
indicies at run time to account for the new context or substituting out to a closed
expression.

data Γ : Tel n T : Reg n
JT KΓ : ?

where t : JT KΓ
top t : J‘Z’KΓ ::T

t : JT KΓ
pop t : J‘wk’ T KΓ ::S

t : JT KΓ ::S

def t : J‘let’ S T KΓ

s : JSKΓ
inl s : JS ‘+’ T KΓ

t : JT KΓ
inr t : JS ‘+’ T KΓ

void : J‘1’KΓ
s : JSKΓ t : JT KΓ
pair s t : JS ‘×’ T KΓ

x : JF K(Γ ::‘µ’ F)

in x : J‘µ’F KΓ

The telescopic environments behave as we promised. Notice how the rule for ‘Z’
interprets the top type T over the remaining Γ—but how did it get there? Either
from a ‘let’ or a ‘µ’ extending Γ with a type which is defines over it! The rule
for ‘wk’ just pops the environment. Most interesting is the definition of in, which
uses the environment to expand the fixpoint—let us show how this behaves by
coding the natural numbers:

let ‘Nat’ : Reg n ‘Nat’ ⇒ ‘µ’ (‘1’ ‘+’ ‘Z’)

let
ze : J‘Nat’KΓ

ze ⇒ in (inl void)

let n : J‘Nat’KΓ
su n : J‘Nat’KΓ

su n ⇒ in (inr (top n))

We can program with ‘Nat’ quite easily:

let m,n : J‘Nat’KΓ
plus m n : J‘Nat’KΓ

plus m n ⇐ rec m
plus (in (inl void)) n ⇒ n
plus (in (inr (top m))) n ⇒ su (plus m n)



Note that the patterns on the left correspond to ze and su. These cases are
exhaustive—all the other constructors target types which conflict with the defi-
nition of ‘Nat’, so Epigram dismisses them automatically.

The space efficiency of this interpretation structure is a legitimate concern:
on the face of it, each data constructor takes an environment and perhaps some
type expressions as arguments, even if sharing is preserved, this is particularly
wasteful. Fortunately, as Brady has shown [8, 9], there is no need to duplicate in
the data any information which can be extracted from the type indices, so all
of the Γ ’s, S ’s and T ’s vanish, even from the open representation we need for
partial evaluation in the typechecker.

Further, Brady’s work suggests that we can also remove constructor tags
where these are determined by indices. In our case, this means that only elements
of sums need to be tagged inl or inr, as each of the other type formers has at
most one data former. Hence there is no need for an extra layer of indirection
inside each top, pop, def or in. There is no reason why our explicit definition and
weakening has to lead to a space penalty.

3 Deciding Equality

Every regular tree type can be given a decidable equality in a systematic way.
In this section, we express that system as a program. Equality as a Boolean test
has been a standard example of generic programming from PolyP onwards [21].
Benke, Dybjer and Jansson replay this construction in Agda [7] and, moreover,
they prove generically that what is being tested really behaves like equality, in
that it is reflexive and substitutive. We take a slightly different approach, given
that Epigram has a built in equality type which is reflexive by construction, and
substitutive by case analysis:

a : A b : B
a=b : ? refl : a=a

Rather than proving a Boolean test correct, we can exploit directly the type of
decisions, which packs up either a proof or a refutation for a given proposition:

data P : ?
Decision P : ? where y : P

yes y : Decision P
n : P → Zero

no n : Decision P

To decide the equality of x and y , and know that we have done so, we must
show how to compute an inhabitant of Decision (x=y). We can get most of the
way by analysing each element and inspecting the results of the recursive calls
on corresponding subterms—see 1. Again, dependent pattern matching ensures
that we need only consider elements which have the same type. Fundamentally,
all inequalities boil down to the fact that inl and inr are different: inl s = inr t is
an empty type, so case analysis leaves no branches. We have left [ ] s for most
of the cases where we must show that recursive inequality of subterms breaks
equality for the whole terms. Each of these proofs require an auxiliary definition
all of which follow the same pattern. We have shown the pattern by giving the
proof for in.



let
x , y : JT KΓ

decEq x y : Decision (x=y)

decEq x y ⇐ rec x

decEq (def x ) (def y) decEq x y
decEq (def x ) (def x ) yes refl ⇒ yes refl
decEq (def x ) (def y) no n ⇒ no [ ]

decEq (top x ) (top y) decEq x y
decEq (top x ) (top x ) yes refl ⇒ yes refl
decEq (top x ) (top y) no n ⇒ no [ ]

decEq (pop x ) (pop y) decEq x y
decEq (pop x ) (pop x ) yes refl ⇒ yes refl
decEq (pop x ) (pop y) no n ⇒ no [ ]

decEq void void ⇒ yes refl

decEq (inl sx ) (inl sy) decEq sx sy
decEq (inl s) (inl s) yes refl ⇒ yes refl
decEq (inl sx ) (inl sy) no sn ⇒ no [ ]

decEq (inl sx ) (inr ty) ⇒ no (λq ⇐ case q)
decEq (inr tx ) (inl sy) ⇒ no (λq ⇐ case q)
decEq (inr tx ) (inr ty) decEq tx ty
decEq (inr t) (inr t) yes refl ⇒ yes refl
decEq (inr tx ) (inr ty) no tn ⇒ no [ ]

decEq (pair sx tx ) (pair sy ty) decEq sx sy
decEq (pair s tx ) (pair s ty) yes refl decEq tx ty
decEq (pair s t) (pair s t) yes refl yes refl ⇒ yes refl
decEq (pair s tx ) (pair s ty) yes refl no tn ⇒ no [ ]

decEq (pair sx tx ) (pair sy ty) no sn ⇒ no [ ]

decEq (in x ) (in y) decEq x y
decEq (in x ) (in x ) yes refl ⇒ yes refl
decEq (in x ) (in y) no n ⇒ no (notEqIn n)

let
x , y : JF KΓ ::(‘µ’ F) n : (x=y)→ Zero q : (in x=in y)

notEqInx y n q : Zero

notEqInx x n refl ⇒ n refl

Fig. 1. Decidable Equality



4 Type Constructors and Generic Map

We can represent type constructors in our universe by type expressions with
parameters, much as one does when one defined a polymorphic data structure
in a functional programming language. For example, we can have

let ‘List’ : Reg (suc n) ‘List’ ⇒ ‘µ’ (‘1’ ‘+’ (‘wk’ ‘Z’ ‘×’ ‘Z’))

We can then create specific instances of polymorphic structures by capturing
the free parameter with ‘let’—the type of lists of natural numbers would then
be coded by ‘let’ ‘Nat’ ‘List’. We can also develop polymorphic operations by
working with open type expressions over a nonempty environment:

let
nil : J‘List’KΓ

nil ⇒ in (inl void)

let a : J‘Z’KΓ as : J‘List’KΓ
cons a as : J‘List’KΓ

cons a as ⇒ in (inr (pair (pop a) (top as)))

let as, bs : J‘List’KΓ
append as bs : J‘List’KΓ

append as bs ⇐ rec as
append (in (inl void)) bs ⇒ bs
append (in (inr (pair (pop a) (top as)))) bs ⇒ cons a (append as bs)

Of course, to apply these polymorphic operations in specific cases, one must strip
and apply the def constructor.

Let us now develop a generic polymorphic operation—functorial mapping.
Suppose we have two environments Γ and ∆ interpreting the free type variables
in an expression T (‘List’, for example). If we can translate between the values
in the corresponding types in Γ and ∆, then we can map between JT KΓ and
JT K∆, preserving the structure due to T , but translating the data corresponding
to the free type variables. Here, the fact that we represent the syntax of type
expressions makes this task easy.

Let us define morphisms between environments and then show how to map
them across polymorphic type expressions. We are careful to ensure that we can
readily extend a morphism uniformly when we go under a binder.

data Γ ,∆ : Tel n
Morph Γ ∆ : ? where

mId : Morph Γ Γ

φ : Morph Γ ∆ f : JSKΓ → JT K∆
mFun φ f : Morph (Γ ::S ) (∆::T )

φ : Morph Γ ∆
mMap φ : Morph (Γ ::T ) (∆::T )

We can now write our generic gMap operator by structural recursion on data.
Each time we go under a binder, we extend the morphism with mMap, explaining



that the type variable at that point is local. When we reach a variable, we look
up the appropriate translation, using gMap to interpret mMap. In the case of
the identity morphism, the environments are known to coincide, so no further
traversal is necessary.

let φ : Morph Γ ∆ x : JT KΓ
gMap φ x : JT K∆

gMap φ x ⇐ rec x
gMap φ (def x ) ⇒ def (gMap (mmap φ) x )
gMap mId (top x ) ⇒ top x
gMap (mFun φ f ) (top x ) ⇒ top (f x )
gMap (mMap φ) (top x ) ⇒ top (gMap φ x )
gMap mId (pop x ) ⇒ pop x
gMap (mFun φ f ) (pop x ) ⇒ pop (gMap φ x )
gMap (mMap φ) (pop x ) ⇒ pop (gMap φ x )
gMap φ (inl x ) ⇒ inl (gMap φ x )
gMap φ (inr x ) ⇒ inr (gMap φ x )
gMap φ void ⇒ void
gMap φ (pair x y) ⇒ pair (gMap φ x ) (gMap φ y)
gMap φ (in x ) ⇒ in (gMap (mMap φ) x )

Instantiating gMap for our ‘List’ example is straightforward

let f : JSKΓ → JT KΓ as : J‘let’ S ‘List’KΓ
list f as : J‘let’ T ‘List’KΓ

list f (def as) ⇒ def (gMap (mFun mId f ) as)

Is this functorial mapping? An easy induction on x shows that

gMap mId x = x

but what about composition? Composition may be defined as follows

let φ : Morph ∆ Θ : ? ψ : Morph Γ ∆ : ?
φ ◦ψ : Morph Γ Θ

φ ◦ψ ⇐ rec φ
mId ◦ ψ ⇒ ψ
mFun φ f ◦ mId ⇒ mFun φ f
mFun φ f ◦ mFun ψ g ⇒ mFun (φ ◦ψ) (f · g)
mFun φ f ◦ mMap ψ ⇒ mFun (φ ◦ψ) (f · gMap ψ)
mMap φ ◦ mId ⇒ mMap φ
mMap φ ◦ mFun ψ g ⇒ mFun (φ ◦ψ) (gMap φ · g)
mMap φ ◦ mMap ψ ⇒ mMap (φ ◦ψ)

Another easy induction on x then shows that

gMap (φ ◦ψ) x = (gMap φ · gMap ψ) x



5 The Derivative and the Zipper

Formal differentiation of algebraic expressions was one of the first functional
programs ever to be written in pattern matching style and executed on a com-
puter [31]. Thirty-five years later we can run it again, but with a new meaning.
As McBride observed [27], differentiating a regular tree type T with respect to
a free variable X computes the type of one-hole contexts for a value from X in
a value from T . The explanation of the derivative as coding for the linear part
of a polymorphic function space between containers can be found in [3]. Here we
show how this works out as code:

let X : Fin n T : Reg n
∂ X T : Reg n

∂ X T ⇐ rec T
∂ fz ‘Z’ ⇒ ‘1’
∂ (fs X ) ‘Z’ ⇒ ‘0’
∂ fz (‘wk’ T ) ⇒ ‘0’
∂ (fs X ) (‘wk’ T ) ⇒ ‘wk’ (∂ X T )
∂ X (‘let’ S T ) ⇒ ‘let’ S (∂ (fs X ) T )

‘+’ ‘let’ S (∂ fz T ) ‘×’ ∂ X S
∂ X ‘0’ ⇒ ‘0’
∂ X ‘1’ ⇒ ‘0’
∂ X (S ‘+’ T ) ⇒ ∂ X S ‘+’ ∂ X T
∂ X (S ‘×’ T ) ⇒ ∂ X S ‘×’ T ‘+’ S ‘×’ ∂ X T
∂ X (‘µ’ F ) ⇒ ‘µ’ (‘1’ ‘+’ ‘Z’ ‘×’ ‘wk’ (‘let’ (‘µ’ F ) (∂ fz F )))

‘×’ ‘let’ (‘µ’ F ) (∂ (fs X ) F )

Leibniz’s [22] rules take on an alternative meaning: ‘an S ‘+’ T with a hole’
is either ‘an S with a hole’ or ‘a T with a hole’; ‘an S ‘×’T with a hole’ is either
‘an S with a hole and a T ’ or ‘an S and a T with a hole’. The chain rule for ‘let’
must account for each fsX directly in T as well as each X sitting inside an S via
a fz in T—this notion of derivative is thus partial on the free variables and total
on the bound variables. McBride added a new rule, inspired by Huet [20]—a one
hole context inside an inductively defined container consists of a ‘zipper’ which
wraps up the node where the hole is. Let us define a ‘zipper’:

let F : Reg (suc n)
‘Zipper’ F : Reg n

‘Zipper’ F ⇒ ‘µ’ (‘1’ ‘+’ ‘Z’ ‘×’ ‘wk’ (‘let’ (‘µ’ F ) (∂ fz F )))

A ‘Zipper’ F is thus a stack of steps, each giving the context for a ‘Z’ inside an
F , and hence a recursive subtree inside a ‘µ’F . With this definition, we effectively
have that ∂ X (‘µ’ F ) is a node with a hole and a ‘Zipper’ F .

Let us now show how to plug a ‘var’ X into a ∂ X T , and a ‘µ’ F into a
‘Zipper’ F . It is not hard to see that these two tasks are mutually recursive.
We shall therefore need to dodge the problem that Epigram does not currently



support mutually recursive functions. We do this in the obvious way, by turning
the mutual definition into the definition of a family. First, we define the family
of ‘pluggers’ for a type of contexts C with a hole type H , yielding output in O ,

data C ,H ,O : Reg n
Plugger C H O : ? where X : Fin n T : Reg n

X ( T : Plugger (∂ X T ) (‘var’ X ) T

F : Reg (suc n)
	 F : Plugger (‘Zipper’ F ) (‘µ’ F ) (‘µ’ F )

and then we explain how to interpret pluggers as operators, by recursion over
the context—as long as we consume the context, we are free to ‘change mode’
when we need to. We start like this, by recursion on the task, then case analysis
on the plugger:

let p : Plugger C H O c : JC KΓ h : JH KΓ
c 〈p] h : JOKΓ

c 〈p] h ⇐ rec c
c 〈X ( T ] h [ ]
c 〈	 F ] h [ ]

Now we can develop the two branches as if we were writing a mutual definition.
We implement 〈X ( T ] as follows:

void 〈fz ( ‘Z’] h ⇒ h
c 〈fs X ( ‘Z’] h ⇐ case c
c 〈fz ( ‘wk’ T ] h ⇐ case c
pop c 〈fs X ( ‘wk’ T ] pop h ⇒ pop (c 〈X ( T ] h)
inl (def tc) 〈X ( ‘let’ S T ] h ⇒ def (tc 〈fs X ( T ] pop h)
inr (pair (def tc) sc) 〈X ( ‘let’ S T ] h ⇒ def (tc 〈fz ( T ]

top (sc 〈X ( S ] h))
c 〈X ( ‘0’] h ⇐ case c
c 〈X ( ‘1’] h ⇐ case c
inl sc 〈X ( S ‘+’ T ] h ⇒ inl (sc 〈X ( S ] h)
inr tc 〈X ( S ‘+’ T ] h ⇒ inr (tc 〈X ( T ] h)
inl (pair sc t) 〈X ( S ‘×’ T ] h ⇒ pair (sc 〈X ( S ] h) t
inr (pair s tc) 〈X ( S ‘×’ T ] h ⇒ pair s (tc 〈X ( T ] h)
pair ff (def fc) 〈X ( ‘µ’ F ] h ⇒ ff 〈	 F ]

in (fc 〈fs X ( F ] pop h)

Meanwhile, ‘zipping out’ iterates ‘plugging in’ tail recursively:

in (inl void) 〈	 F ] h ⇒ h
in (inr (pair (top ff ) (pop (def fc)))) 〈	 F ] h ⇒ ff 〈	 F ]

in (fc 〈‘Z’ ( F ] top h)

This may look like a complicated definition, but we had some help to write it.
The Epigram system calculates all the context types, not us: we just apply case
analysis repeatedly on the contexts until the subcontexts appear. The only real
choice we must make is whether 〈	 F ] should read its context as ‘hole-to-root’ or
‘root-to-hole’. Here, following Huet, we choose the former, shrinking the context
and growing the subtree as we follow the path.



6 Conclusions and Further Work

In this paper, we have constructed the universe of regular tree types, closed un-
der polynomials and least fixpoints; we equipped its syntax with an inductively
defined semantics. By dependent pattern matching and structural recursion on
data, we implemented a generic decision procedure for equalities on regular types
and functorial mapping. We equipped the regular tree types with their differ-
ential structure, generalising ‘the zipper’. We have given a tractable coding to
these generic tasks without the assistance of any peculiar extensions to Epigram.
Ordinary programming suffices to get us this far, and while it is inevitably harder
work than using tools dedicated to a specific universe, it is undeniably less work
than making those tools. A dependently typed language allows a flexible ap-
proach to programming with universes of many characters, large and small.

Perhaps we should remark on the technology which makes this approach
practicable—dependent pattern matching with inductive families of datatypes.
We have quietly exploited multiple layers of dependency, with equality types
indexed by data from interpretations indexed by telescopes and type expressions
indexed by numbers, for example, and we have not had to lift a finger to push the
pattern matching through. This kind of deep dependency takes us well beyond
the familiar world of inductive relations indexed by simply typed data, but it is
nothing to be frightened of, given suitable tools.

But there is a great deal of work yet to do. Whilst we have programmed
generically for a small and ad hoc universe, we have not developed generic pro-
gramming for Epigram. We should pursue the agenda set by Pfeifer and Rueß [33]
to acquire generic programs and proofs for the types we use, not just the types
we model.

This is even more vital for dependently typed programming than it is for
‘ordinary’ functional programming because we tend to tailor data structures
more closely to the specific properties we need for a given task. We might have
sized lists, sorted lists, telescopes or transitive closures where once we just had
lists—the extra detail may be just what we need for a particular problem, but it
should not come at the expense of rebuilding the list library for each variation.
Generic programming can potentially help us in two ways. We can seek to develop
operations which work generically for all list-like types, or all concrete syntaxes,
or whatever classes of structure we can characterise. We can also seek to roll out
structure such as sizing or sortedness across a broad universe of datatypes.

Correspondingly, we need a representation of data structures which directly
and compositionally describes inductive families in Epigram, in much the way
that indexed induction-recursion [17] gives an account of data structures in Agda.
A promising approach is based on the uniform representation of strictly positive
structures as containers [1, 2]. These extend readily to dependent structures, and
are closed under a fixed grammar of combinators including least and greatest
fixpoints. We need the system to automate the quotation of data structures in
this grammar and the maps in and out of their container form—much the way
Generic Haskell [10] relates each Haskell datatype with the ‘structure types’
over which generic programs actually compute. Subsets of this general grammar



then give us codes for smaller universes with more specific structure. If we can
standardise our reflection of data structures in this way, then we really shall have
reduced generic programming to ordinary programming.
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