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ABSTRACT. It is shown that arithmetic expressions with n > 1 variables and constants; operations
of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in
time 4 log:n + 10(n — 1)/p using p > 1 processors which can independently perform arithmetic
operations in unit time. This bound is within a constant factor of the best possible. A sharper result
is given for expressions without the division operation, and the question of numerical stability is
discussed.
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1. Introduction

The question of how quickly arithmetic expressions can be evaluated on a computer with
several independent arithmetic processors is of theoretical and practical interest. In this
paper we determine the answer to within a constant multiplicative factor (see Corollary
2 in Section 4). All our proofs are constructive, and reasonably efficient algorithms for
compiling expressions for subsequent execution on a parallel computer may be derived
from our proofs. These algorithms compare favorably with those given in [1, 2].

We assume that a number of processors are available and that each can perform an
arithmetic operation (addition, multiplication, and sometimes division) in unit time.
The time required for accessing data, storing results, communicating between processors,
ete., is ignored. Also, the effect of rounding errors is neglected, except in Section 5. The
results hold for exact arithmetic with expressions over any commutative field.

Several special cases have been considered previously. For example, Maruyama {14]
and Munro and Paterson [19] have shown that polynomials of degree n can be evaluated in
time logzn + O ((logan)?) if sufficiently many processors are available, and Brent [3] has
shown that this is true for expressions of the form aq -+ z1(a1 + z2(a + -+ (@1 +
@.T,) ---)). Baer and Bovet [1] and Muraoka [20] considered expressions with n distinct
variables and operations of addition and multiplication over a commutative ring. It has
recently been shown in [5] that such expressions can be evaluated in time 2.465 logsn if
sufficiently many processors are available. (For results that apply if a fixed number of
processors is available, see Section 5.) Kuck and Maruyama [12] have shown that con-
tinued fractions of the form by + ay/ (by + a2/ (- - - (b1 + a@n/b,) - - -)) can be evaluated
in time 2 logen + O(1). Kuck [10], Maruyama [15], and Muraoka [20] have considered
expressions with a limited depth of parenthesis nesting and/or a limited number of
divisions. See also [6, 8, 9, 13, 18] and the references given there.
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Our results (Corollary 1 and Theorem 2) show that parallelism may be used to speed
up the evaluation of large arithmetic expressions. Knuth [7] has shown that most expres-
sions which occur in real FORTRAN programs have only a small number of operands.
Nevertheless, our results (or the method used to obtain them) may ultimately be of
practical value, for Kuck [11] has shown that an optimizing compiler for a parallel
machine might generate large expressions when compiling programs like those studied by
Knuth [7]. - .

In this paper we assume commutativity, but Maruyama [16] has recently extended
some of our results to expressions over noncommutative rings (e.g. rings of matrices).

2. Notation and Assumptions

We consider well-formed arithmetic expressions with the operations addition (“‘+”),
multiplication (‘“*”), and division (‘‘/”’); any level of parenthesis nesting; and distinct
indeterminates (or “atoms”) 21, %2, - -+ over a commutative field. We neglect the sub-
traction operation because expressions containing it can easily be transformed into
equivalent expressions with “+4”, “*”, “/” and (at most) some unary subtractions acting
on atoms, eg.a — b+ c¢/(d—¢e) —f) =a+ ((=b) +c¢/((—d) +e) + 7).

The restriction to expressions with distinct atoms means that we do not consider ex-
pressions such as a 4+ 2(® + z(c + ), a + 1/(® + 1/(c + 1/d)), and 2.
However, our results give upper bounds on the time required to evaluate such expres-
sions, because they apply to the more general expressions ¢ + z (b + z2(c + 23)),
a4+ u/ (b + u/(c + us/d)), and 232z - - - 2100 respectively. For further discussion and
examples, see [5].

If E is an arithmetic expression then | E | denotes the number of atoms (relabeled if
necessary to become distinet) in E. If T is a parse tree for E then |T| =|E]|is the

number of terminal nodes of 7. If | T| > 1 we write T = L R, where L and R are the
maximal proper subtrees of 7. A subexpression of F is the expression corresponding to a
subtree (not necessarily proper) of a parse tree for E.

If 7 is a real number then M7 denotes the integer satisfyingr < M} <7 4 1.

3. Main Theorem

Theorem 1 states slightly more than we use subsequently, but the statement is necessary
so that the result may be proved by induction. The most interesting consequences of the
theorem are stated in Corollaries 1 and 2 (Section 4).

We first state, without proof, a trivial but useful lemma.

Lemma 1. If1 < m < nand T is a binary tree with | T | = n, then there is a subtree
Xi=Li Riof Tsuchthat | X | = m, | Li| < m, and | Ry| < m. Also, if « is one of the
terminal nodes of T, there 1is a sublree Xy, = Ly Ry of T such that | Xo| 2 m and either
(1) z is a terminal node of Ly and | Ly | < m, or (2) z s a terminal node of R and | R: | <
m.

THEOREM 1. Let E be any arithmetic expression with n (distinct) atoms and operations
“r Y and /7 over a commutative field. Suppose that sufficiently many processors
capable of performing “+"" and “*” (bul not necessarily /") in unit time are avarlable.
Let Py(n)=3(n — 1), P, (n) = max(0, 3n — 4), @1(n) = max (0,10n — 19), Q. (n) =
mazx (0, 10n — 29), and

b = n+1 if n <2,
T M4 log;(n — 1)1 if n>3.

Then (1) and (2) below hold:
(1) E = F/G, where F and G are expressions which can be evaluated stmultaneously in
time k& — 2 with Py(n) processors and Qi (n) operations.
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(2) If x is any atom of E, then E = (Ax + B)/(Cx + D), where A, B, C, and D are
expressions which do not contain x and which can be evaluated stmulianeously in time k with
Py (n) processors and Q. (n) operations. (Note that some of A, ---, G may be identically
Oorl.) '

Proor. By inspection, the result holds for n < 4, so we assume that n = N > 5
(so k > 8). The proof is by induction on N. As inductive hypothesis we assume that
parts (1) and (2) of the theorem hold forn < N.

We shall show that part (1) holds with » = N. Applying Lemma 1 with
m = [ (n+ 1)/271 to a parse tree for E, we see that there is a subexpression X; =
Li#iR; of E such that | Xy | > (n + 1)/2, | Li| < n/2, | Ri| < n/2, and 6, = “+7,
(l*77’ Or N/7)‘

From the definition of k, 7 < 2" 4+ 1550 | Ly | < n/2 < 2% 4 1, and similarly for
R, . Thus, by part (1) of the inductive hypothesis, Ly = F,/G; and R, = F,/G,, where
Fy, Gi, Fy, and G; can be evaluated simultaneously in time (k — 4) — 2 = k — 6
with Py(| Ly |) 4+ Pi(| R1|) processors and Qs (| L1 |} + Q: (| R1|) operations.

Now X] = L101R1 = (F1/01)01 (Fz/Gg) = Fs/G3 B where

F]Gz + F2G1 if 01 “+”, . G 9%
Fy = P, i = } and G = {gxgz ?ﬁ Z‘ = hrort }
F1G2 if 01 = “/“’ 142 1 1 = / .

Hence F; and G can be evaluated in time k — 4.,

Let £, be the expression formed by replacing Xi by an atom in E. Since | E;| =
n4+1—]X| < (n+1)/2 <2%Y* 41, part (2) of the inductive hypothesis (applied
to El) giVBS E = (A: X1 + Bl)/ (Cle + Dl), where A, y B; , Cy s and D; can be evaluated
simultancously in time k — 4 with Py (| E;|) processors and @, (| Ey|) operations. Since
X1 = F3/Gs, it follows that E = F/G, where F = A)F; + BiGs; and G = CiF; + DiG;s
can be evaluated in time & — 2.

Consider the number of processors required to compute F and G as above. In the first
k — 6 steps we compute Fy, Gy, F,, G, and start computing A, , By, C1, and Dy, using
Pi(| L) + Pi(|R:|) + P2(| E1|) processors. From time k — 6 to k — 4 we compute
F3 and G and finish computing 4y, By, C1, and Dy, using 2 4 P»(| E;|) processors.
Finally, from time & — 4 to k — 2 we compute F and G, using four processors. Thus,
the number of processors required is

max [Pi(| L1 |) + Po(|Ru|) + Po(| Ev ), 2 + Pa(| B ), 4]
=max B(| Li| + | R + | E1|) = 10,3( Li| -+ | R1]) — 6,3 Ex| — 2, 4]
<3(n — 1) = Py(n),

as|Ly| + |Ru| + B =n4+1 | L]+ ]|R| <n |E| < (4 1)/2 and n > 2.

Now consider the number of operations required to compute F and G as above. Since
3< (n+1)/2<|X:|=]1La]+| R, the definition of @ gives @ (| In |} + @ (| Bi | £
10( Ly | + | Ry |) — 29. Thus, the number of operations is at most

104+ QL) + QR ]) + Q0 Er])
Smax [10(| Ly | + | Bi| + [ Ex|) — 48, 10(| L1 | + [ Re|) — 19]
< 10n — 19 = @, (n),

so part (1) holds with n = N.

To complete the proof, we must show that part (2) holds with n = N. Let z be an
atom of E. Applying the second half of Lemma 1 withm = [ (n + 1)/27] to a parse
tree for E, we see that there is a subexpression X, = L.6:R» of E such that | X;| >
(n + 1)/2, 6 = “47, “4”, or *“/”, and either x is an atom of L; and | Ly | < n/2, or
z is an atom of R, and | B, | < n/2. We shall suppose that 2 is an atom of L, . (The
proof is similar if x is an atom of R, .)
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Let E, be the expression formed by replacing X, by an atom in E. Thus | E,| =
n41—]X:) < (n41)/2 < 2% + 1, and part (2) of the inductive hypothesis
(applied to E,) gives E = (4.X; + B:)/ (C.X, + D,), where A;, By, C:, and D, can
be evaluated simultaneously in time k — 4 with Pu(] E;|) processors and @;(| E:|)
operations.

Similarly, L; = (Asx + Bs)/ (Csx + D;), where Az, B;, C;, and D; can be evaluated
in time &k — 4 with P, (| L. |) processors and Q,(] L, |) operations. Also, since | Ry | <
n — 1, part (1) of the inductive hypothesis shows that B, = F,/G,, where F,; and G, can
be evaluated in time k — 2 with Py (] R; |) processors and @y (| B; |) operations.

From X; = L.0,R. and the above expressions for E, L., and R, , we find that £ =
(4z + B)/(Cx + D), where

(A2C3)F4 + (A2A3 + Bzcs)G4 if 6, = u+,,’
A= (A2A3)F4 + (BzCs)G4 > if 8y = u*n,
(AzAa)Gq + (3203)17'4 if 02 — u/n’

and B, C, and D are given by similar expressions. Thus 4, B, C, and D can be evaluated
in time k.

The number of processors required to compute A4, - - - , D simultaneously in time % is
at most

max [P2(| E;|) + Po(| Lo |) + Pi(| R:|), 8 4+ Pi(| B2 )]
=max 3(| E;| + | Ly + |R:|) — 11, 3(| Lo | + | R ]) — 7,

3(Ey| + |R:|) — 7, 3| Ra| + 5]
Since | E2| 4+ | Le| + [Rel =n + 1, | Le| + | R | <, | B2 + | Re| < 3y
and » > 1, the number of processors required is at most 3n — 4 = P,(n) provided
3{Ry| +5 < 3n — 4,ie. provided [By| <n — 3. If [Ry] =n — 20rn — 1, the
expressions for A, B, C, and D simplify, and a straightforward examination of cases
shows that P,(n) processors suffice.

Similarly, if | E;| > 2 and | L, | > 2, the number of operations required is at most
284+ Q| E2]) + Q(| La|) + ([ Re[) <10n — 30 < @o(n). If | Ey | < 20r | Ly < 2
or both, the expressions for 4, B, C, and D simplify, and Q.(n) operations suffice. This
completes the proof of part (2), so the theorem follows by induction on N.

4. Consequences of Theorem 1

We need the following lemma, which is of some independent interest.

LemMa 2. If a computaiion C can be performed in time t with q operations and suffi-
ciently many processors which perform arithmetic operations in wnit time, then C can be
performed in time t + (g — ¢)/p with p such processors.

Proor. Suppose that s; operations are performed at step ¢, for< = 1,2, --- , {. Thus
Yt as; = q. Using p processors, we can simulate step ¢ in time [Ts;/p7 . Hence, the
computation C can be performed with p processors in time

Sialsy/p1 < QA —1/p)t+ A/p) iasi=1t4+ (g —t)/p.

CoRrOLLARY 1. Let E be as in Theorem 1 and suppose that p processors which can perform
addition, multiplication, and division tn unit time are available. Then E can be evaluated in
time 4 logon + 10(n — 1)/p.

Proor. Suppose that n > 3, for otherwise the result is trivial. By Theorem 1,
E = F/G, where F and G can be evaluated in time M4 log,(n — 1)1 — 2 < 4 logn — 1
with less than 10 (n — 1) operations. Applying Lemma 2 witht = M4 log(n — 1)7 — 2
and ¢ = 10(n — 1), we see that F and G can be evaluated in time 4logmm — 1 +
10(n — 1)/p with p processors. Finally, E = F/G can be evaluated in one more unit of
time. (Note that only one division is performed, so the result is easily modified if a divi-
sion takes longer than an addition or multiplication. )
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COROLLARY 2. Let 7(n, p) be the maximum time required to evaluate arithmetic expres-
stons with n atoms, using p processors which can perform arithmetic operations in unit time.
Let ¢(n, p) = max(logsn, (n — 1)/p). Then, for all n >1 and p > 1, ¢(n, p) <
7(n, p) < 146 (n, p).

Proor. Consider the expression vy + 2, 4+ -++ 4+ 2,. By a fan-in argument, its
evaluation requires time at least logsn. Also, at least » — 1 operations must be performed,
S0 p processors require time at least (n — 1)/p. Hence, the lower bound on 7 (n, p) is
established. The upper bound follows from Corollary 1.

5. Concluding Remarks

Corollary 2 establishes the complexity of parallel evaluation of general arithmetic ex-
pressions to within a constant factor. The constant 14 can doubtless be reduced by more
refined arguments, and the lower bound for 7 (n, p) can be improved slightly (see [5]).

The proof of Theorem 1 simplifies, and the constants can be reduced, if division is
excluded. Corresponding to Corollary 1 we have the following, which is slightly weaker
than Theorems 1 and 2 of [5] if p >> n, but much stronger if p is of order » or less.

TuroreM 2. Let E be any arithmetic expression with n (distinct) atoms and operations
“47 and “*” over @ commutative ring. If p processors which can perform “+’ and “*” in
unit time are available, then E can be evaluated in ttme 4 logan + 2(n — 1) /p.

A proof of Theorem 2 is given in [4], where we also show that, for real expressions and
approximate arithmetic, the evaluation of E in the time given by Theorem 2 is numeri-
cally stable (in the sense that the computed result can be obtained by making small
relative changes in the values assigned to the atoms and then performing exact arithme-
tic). Unfortunately, this result does not extend to expressions with division, and exam-
ples found by a program of Miller {17] show that the algorithm implied by the proof of
Theorem 1 is not always numerically stable. Hence, it is an open question whether gen-
eral arithmetic expressions can be evaluated stably in the time given by Corollary 1.
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verified the numerical instability mentioned above, and a referee’s comments were
useful in clarifying the proof of Theorem 1.
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