
Block code reconstruction using iterative decoding
techniques

Mathieu Cluzeau
INRIA projet CODES

B.P. 105
78153 Le Chesnay Cedex - France
Email: Mathieu.Cluzeau@inria.fr

Abstract— In this paper, we present a new algorithm for
recovering a linear block code from noisy codewords. To achieve
this, we introduce a version of Gallager algorithm with weighted
parity-check equations. This new algorithm efficiently recovers
LDPC codes and can also be used for other block codes.

I. I NTRODUCTION

The problem we address here is to be understood in the
more general context of reverse-engineering a communication
system. The general problem is, for an observer, to recover the
transmitted information from the knowledge of the observed
stream. But he does not know anything about the characteris-
tics of the different elements except the noisy channel, and so
his first goal is to determine which elements have been used
in the communication system.

information - Scrambler - Encoder

?

Encoded Stream

¾Noisy Channel¾Observed Stream

Fig. 1. Communication system.

Here, we are interested recovering the error-correcting code
which has been used for the communication when this code
is a linear block code overF2. Note that finding the error-
correcting code does not mean finding the encoder. It only
means that we want to find a basis of the linear space defined
by the code or equivalently a generator matrix for this code. In
[Val01], Valembois shows that the associated decision problem
lies in the class of NP-complete problems. Even if this problem
seems to be intractable, practical instances could be easy.
Thus, we try to find some techniques to reconstruct an error-
correcting code, especially if the code length is not too large
and/or if the error rate is low.

In the following, we will denote byC the error-correcting
code which has been used. Letn, k and dmin respectively
denote its length, its dimension and its minimum distance.

First, we describe the main reconstruction technique as
presented in [Val00]. Then we present a new algorithm for
reconstructing an error-correcting code based on the classical

tools of iterative decoding [Gal63]. The last section will be
devoted to the simulation results based on this new algorithm.

II. RECONSTRUCTION TECHNIQUE

A. Basic principle

We assume that the synchronisation and the block length
n are known. Then, we are able to split the observed binary
stream intoM noisy codewords of lengthn. In the following,
we consider theM × n binary matrixX whose rows consist
of all thesen-bit noisy codewords. The technique we are
presenting here consists in constructing a basis of the dual
C⊥ of the targeted code.

C⊥ = {h|∀c ∈ C, hcT = 0}
wherehcT denotes the scalar product betweenh and c over
Fn

2 . If there was no error during the transmission, we would
have:

∀h ∈ C⊥, hXT = 0,

whereXT denote the transposed matrix ofX. Here, the binary
sequence has been sent through a noisy channel and so, instead
of having hXT = 0, hXT has a low Hamming weight. We
will use the following result.

Proposition 1: If m is the word received after transmission
through a binary symmetric channel with cross-over probabil-
ity τ , then the probability that the number of error positions
is even is :

1 + (1− 2τ)n

2
.

Corollary 1: Let h ∈ C⊥ and m be the result of the
transmission of a codeword inC through a binary symmetric
channel with cross over probabilityτ . Then:

Pr[hmT = 0] =
1 + (1− 2τ)wt(h)

2
,

P r[hmT = 1] =
1− (1− 2τ)wt(h)

2
wherewt(h) denote the Hamming weight ofh, i.e. the number
of its non-zero coordinates.

Let h /∈ C⊥, then the Hamming weight ofhXT will be in
averageM

2 and if h ∈ C⊥, then the weight ofhXT will be
lower: M

2 (1− (1− 2τ)wt(h)).

This gives us a method for distinguishing the words of the
dual code from the others (especially when the wordh has a
low Hamming weight) and so a starting point for reconstruct-
ing a parity-check matrix for the codeC. Furthermore, it gives
us a method for finding words in the dual code: we have to
search for linear combinations of the rows ofXT which have
a low weight. In fact, when we find a word of low weight in
the code spanned byXT , it comes, with a high probability,
from a word ofC⊥.

B. Finding low-weight codewords

This problem has been studied in another context, for
finding the minimum distance of a linear code. So there exist
numerous papers on this topic [Leo88], [LB88], [Ste89]. Here
we choose to use the following algorithm inspired by [CC98]
in all simulations. The problem is as follows:

Let G be the generator matrix of an[n, k] code. We want
to find words of Hamming weight less than a given threshold
T in the code spanned byG. Our algorithm involves three
parameters:s, p andT .

We start by selecting a random information setI for the
[n, k] code. Then, we permute the columns ofG such that the
first k columns correspond toI and we perform a Gaussian
reduction onG:

P−1G = GI = (Ik|Z)

whereP is ak by k invertible matrix. We split the information
set into two partsI1 and I2 of same size and we randomly
choose a subsetJ of s positions outside the information set.
We are then searching for all the wordsm such that

wtH(m|I1) = wtH(m|I2) = p andwtH(m|J) = 0.

A word m is expected to have a low Hamming weight since
it has weight2p on k + s positions and in practicep = 1 or
2. We compute its actual Hamming weight and if it is smaller
than the thresholdT we output its original coordinate inG.
That is, for h = mk (the first k positions ofm), we have
m = hGI = hP−1G and if wt(hZ) + 2p ≤ T , we output
hP−1.

Once we have done that for a given information set, we
restart with another one until we get enough small weight
codewords. In order to speed up the process and to avoid
expensive Gaussian reduction, we change only one position
of I at each step like in [CC98].

The parameterss and p could be optimised as shown in
[Cha92]. The value ofT will change the probability that the
output words belong to the dual code. We will see later the
role played by this parameter when we compute the probability
that a given wordh belongs to the dual code.

C. Reconstruction algorithm

In the previous paragraph, we have seen that we are able
to find wordsh such thathXT has a low weight. Thoseh
are candidates to be in the dual code ofC. A test to decide

whether or noth belongs toC⊥ was proposed by Valembois
[Val01]. Whenever the ratio

Pr[X|h ∈ C⊥]
Pr[X]

=(1 + (1− 2τ)wt(h))M

×
(

1− (1− 2τ)wt(h)

1 + (1− 2τ)wt(h)

)wt(hXT)

is greater than a given threshold, we decide thath belongs to
C⊥. The algorithm proposed by Valembois consists in finding
n−k linear independent words such that they form a basis of
C⊥. This algorithm is what he calls the first-order algorithm.

He also presents higher-order algorithms, the main differ-
ence being that, for anr-order algorithm, instead of testing
words one by one, it tests whether ar-dimensional subspace
is included in C⊥ or not. Let Hr denote the event: the
linear space spanned byh1, . . . , hr is included inC⊥. Let
H = (h1, . . . , hr), then:

Pr[X|Hr]
Pr[X]

=
N∏

i=1

∑

B∈Fr
2

(−1)<B,xiH>(1− 2τ)wt(BHT).

When we test if the subspace spanned byr words of low
weight is included or not inC⊥, we just compute the previous
ratio and compare it to a threshold.

In each case, first-order or higher-order algorithms, we
could summarise the algorithms by both following steps:

• generate words of low weight.
• test if they are inC⊥ and if so, eliminate the dependent

vectors in order to compute a basis ofC⊥.

III. I MPROVEMENTS

A. Basic principle

We have seen that in the algorithms proposed by Valembois,
we just perform some statistical tests to decide whether or
not a word is in the dual code. Our idea is instead to try to
decode using our likely parity check-relations and then get
some feedback on these equations. For that, we will compute
the probability that a word belongs to the dual code and give it
a weight accordingly. Then, we will use an iterative algorithm
with weighted parity-check equations to correct some errors.

B. How to computePr[h ∈ C⊥|wt(hXT) = w]

Let (h,w) be an output of the algorithm which searches for
low weight words. So, we havewt(hXT) = w. We want to
computePr

[
h ∈ C⊥|wt(hXT) = w

]
.

But, we can only computePr
[
wt(hXT) = w|h ∈ C⊥]

and
Pr

[
wt(hXT) = w|h /∈ C⊥]

. Let mi denote one codeword
andm̃i the noisy codeword, we have

XT =
(

m̃1 m̃2 · · · m̃M

)
.

Let ph = 1−(1−2τ)wt(h)

2 andqh = 1+(1−2τ)wt(h)

2 , then using
corollary 1, we can compute:

Pr
[
wt(hXT) = w|h ∈ C⊥]

=
(

M

w

)
pw

h qM−w
h .

Now, we want to computePr
[
wt(hXT) = w|h /∈ C⊥]

. For
large M , we can assume that ourmi are independent and
randomly and then we are able to derive

Pr
[
wt(hXT) = w|h /∈ C⊥]

=

(
M
w

)

2M
.

Let P0 = Pr[wt(hXT) = w|h ∈ C⊥] and P1 =
Pr[wt(hXT) = w|h /∈ C⊥]. We can then compute the
probability Pr[h ∈ C⊥|wt(hXT) = w] and it is equal to:

Pr[h ∈ C⊥]P0

Pr[h /∈ C⊥]P1 + Pr[h ∈ C⊥]P0
. (1)

Finally, we can write this probability as a function of
Pr[h ∈ C⊥]. Unfortunately, we could not compute this
probability: indeedPr[h ∈ C⊥] depends on the weight distri-
bution of C⊥ and of course, we do not know this distribution
since we are searching for the codeC. In practice, for such
communication schemes, only some well-known codes are
used and we then know their weight distributions, at least for
low weights (and that is what we are looking for). So, we will
have to assume that the code which has been used belongs
to a given family and then we could be able to compute
Pr[h ∈ C⊥|wt(hXT) = w].

C. An iterative decoding algorithm

In this section, we recall the algorithm of Gallager intro-
duced in [Gal62]. At each iteration we update the probability
that a received bit is correct using parity-check equations.
Using an equation of weightd:

EQ : at0 +
d−1∑

j=1

atj = 0,

we can compute a new probability for the bitat0 using other
bits atj . Assume we have a probabilityPr[atj = 1] for each
tj , we want to computePr[at0 = 1|EQ]. So,

Pr[at0 = 1|EQ] = Pr[
d−1∑

j=1

atj = 1].

Similarly to Proposition 1, we can prove that:

Pr[at = 1|EQ] =
1−∏d−1

i=1 (1− 2Pr[atj = 1])
2

.

Now, let us consider a bitat, such that we have several
informations coming from all equations in whichat appears
and from the observation.
In the following, we will denote byx the eventx = 1 and by
x the eventx = 0. For two binary random variablesy1, y2, if
we assume that the channel is memoryless and that we have
Pr[x] = Pr[x], then

Pr[x|y1, y2] =
Pr[x|y1]Pr[x|y2]

Pr[x|y1]Pr[x|y2] + Pr[x|y1]Pr[x|y2]
.

Let u andv be two reals in[0, 1], we denote

u⊗ v =
uv

uv + (1− u)(1− v)
.

We could notice that we have:

Pr[x|y1, y2] = Pr[x|y1]⊗ Pr[x|y2].

Then the probability for a bitat is obtained by combining
all the informations we have with the previous law⊗.

We assume that the transmission has been done through
a binary symmetric channel with cross-over probabilityτ .
Let Obs(at) denote the probability forat coming from the
observation,Extre(at) the probability for at coming from
the e-th equation. And letAe(at) denote the partialAPP (a
posteriori probability) forat, i.e. this probability is computed
using all informations onat except the one coming from the
e-th equation.APP (at) will denote the total probability. In
the algorithm, there are three steps :

• Initialisation:

– ComputeObs(at) = 1− τ if the observation is1.
Obs(at) = τ if the observation is0.

– ∀e, Extre(at) = 1
2 .

• Iteratenbit:
For all equationse, update the probabilitiesAe(at) and
thenExtre(at).

• End:
For all t:

– compute

APP (at) = Obs(at)⊗
[⊗

i

Extri(at)

]
.

– If APP (at) > 1
2 thenat = 1, otherwiseat = 0.

D. Iterative decoding with probabilistic parity-checks

In our case, the main difference is that we have likely parity-
check equations instead of exact ones. So we will take this into
account when we update the probabilities. Consider we have
an equation of weightd:

EQ : at0 +
d−1∑

j=1

atj = 0,

which holds with probabilityp. We want to computePr[at0 =
1|Pr[EQ] = p]. This probability is equal to:

pPr[
d−1∑

j=1

atj = 1] + (1− p)Pr[
d−1∑

j=1

atj = 0].

We can compute it by

Pr[at0 = 1|Pr[EQ] = p]

= p
1−∏d−1

i=1 (1− 2Pr[atj = 1])
2

+ (1− p)
1 +

∏d−1
i=1 (1− 2Pr[atj = 1])

2
.

and we can combine all the informations on a bit as before. We
also want to update the probability of parity-check equations.
When we decode a given noisy codewordm̃i we can compute
the probabilityp̃e,i that thee-th equation is true according to
the probabilities of the bits involved:

p̃e,i =
1 +

∏
t∈Ie

(1− 2Ae(at))
2

.

For a given equation, we have many informations: our first
estimation (Este) and, for all i, p̃e,i. Then, we update the
probability of thee-th equation in the decoding of thei-th
word by:

pe,i = Este ⊗

⊗

j 6=i

p̃e,j


 .

So, we can use the following algorithm which corresponds
to Gallager algorithm in which the extrinsic probabilities are
updated using the fact that thee-th parity-check equation holds
with probabilitiespe,i when we are decoding thei-th word.

• Initialisation:
For all equations, computeEste
For all wordsm̃i

– ComputeObs(at) = 1− τ if the observation is1.
Obs(at) = τ if the observation is0.

– ∀e, Extre(at) = 1
2 .

– ∀e, p̃e,i = 1
2 .

• Iteratenbit:
For all wordsm̃i and for alle:

– Compute

Ae(at) = Obs(at)⊗

⊗

j 6=e

Extrj(at)


 .

– Compute

p̃e,i =
1 +

∏
t∈Ie

(1− 2Ae(at))
2

whereIe = {i|ai belongs to Equatione}.
– Compute

pe,i = Este ⊗

⊗

j 6=i

p̃e,j


 .

– Compute

Extre(at) = (
1
2
−pe,i)

∏

j∈Ie\{t}
(1−2Ae(aj)) +

1
2
.

• End:
For all wordsm̃i, for all t:

– compute

APP (at) = Obs(at)⊗

⊗

j

Extrj(at)


 .

– If APP (at) > 1
2 thenat = 1, otherwiseat = 0.

E. New algorithm

Now, we have all the building blocks for reconstructing a
linear code. Our algorithm will be as follows:
Iterate:

• Find some words of low weight in the code spanned by
the matrixXT , return h whereh likely belongs to the
dual code ofC. We will then associate toh a parity-check
equation. Let denoteH the set of candidate vectorsh.

• Eliminate parity-check equations inH which involve
cycles of short size (in our tests, cycles of length less than
4 are eliminated). For remaining wordsh ∈ H, compute
Pr[h ∈ C⊥] an approximation of the probability thath
belongs toC⊥ as explained in section III-B.

• Use parity-check relations inH and their probabilities in
order to correct some errors using the algorithm described
in section III-D.

From Corollary 1, we can see that it will be easier to find
a word of low weight in the code generated byXT if there
are words of low weight inC⊥. Furthermore, our decoding
algorithm inspired by Gallager algorithm will be much more
efficient when the weight of the parity-check equations are
low. For these reasons, it is expected that the complexity of
this algorithm decreases with the minimum distance ofC⊥.

IV. RESULTS

A. Reconstruction of a LDPC (3,6)

Since our decoding algorithm is based on the existence of
low-weight words in the dual code, a first very natural example
is the reconstruction of a LDPC. We here consider a LDPC
(3,6) code, i.e. each column of the parity-check matrix has
exactly 3 ones and each row has 6 ones (in this case, we have
k
n = 1

2 and so the dual code is also a [n,k] code). We have
to computePr[h ∈ C⊥]. This requires an approximation of
the weight distribution of the dual code at least for the low
weights. We make some rough approximation on the number
of words of weight less than24 in the dual code of a LDPC
(3,6) just using the fact that there arek words of weight6. For
example, most of words of weight10 are obtained with two
words of weight6 which have only one position in common,
this leads us to say that there are approximately2k words of
weight 10 because every positions participates in exactly3
equations. For the others weights, we use the same kind of
reasoning.

Then we are able to approximate the probability

Pr[h ∈ C⊥] =
#{a ∈ C⊥|wt(a) = wt(h)}(

n
wt(h)

) .

Thus, we can also approximatePr[h ∈ C⊥|wt(hXT) = w]
for all h of weight less than24. In practice, we seldom find
words of weight larger than24 using our algorithm and so
we choose not to take them into account. For simulations,
we separate the algorithm for finding words of low weight
(FWLW) from the decoding algorithm in which we choose
to take 30 iterations. We iterate the algorithm for finding
low-weight words a bounded time. We recall thatτ denote

the cross-over probability of our channel and we denoteperr

the error rate/bit probability after decoding with our decoding
algorithm. For a LDPC (3,6) of length 100, simulations on a
Pentium 4 at 3.2GHz provide the following results:

τ FWLW time perr decoding time
0.01 1s 0 1s

0.02 1s 0.003 0.7s
0.02 5s 0.00017 0.8s
0.02 10s 0 0.8s

0.03 10s 0.027 0.5s
0.03 30s 0.022 0.74s
0.03 1min 0.011 1.12s
0.03 5min 0.002 1.43s
0.03 10min 0.0018 1.39s
0.03 1h 0.0012 1.37s

We can remark that, if we have to recover our code when the
cross-over probability of our channel is0.03, we can do better
than using our algorithm for finding words of low weights
during 20min and then decode using our decoding algorithm.
For that, we use our FWLW algorithm during 1 minute, then
we decode using our decoding algorithm. We have reduced
our cross-over probability to0.01 and we could now use
our FWLW algorithm on the output stream of the decoding
algorithm. With such a cross-over probability, an only second
is enough to recover the dual code. In practice, we need a few
more time since most of the new words of low weight would
be linearly dependent from the ones used for the first decoding
step.
Let us see what happens for the more realistic case of a LDPC
code of length1000.

τ FWLW time perr decoding time
0.001 1min 0.0001 53s
0.001 2min 0.000006 56s
0.001 3min 0.000008 55s
0.001 4min 0 57s
0.001 5min 0 57s

0.002 1min 0.0019 12s
0.002 5min 0.0017 16s
0.002 10min 0.0014 25s
0.002 20min 0.0011 30s
0.002 30min 0.0007 36s
0.002 1h 0.0005 43s

We can see that for a code of length1000, we manage
to correct main errors only if the cross-over probability of
our channel is very low so we will be able to reconstruct it
only in this case. However, in practice, demodulation provides
soft information. If the amount of data is large enough, we
can choose most probable noisy codewords. Then cross-over
probabilities like0.001 can be reached.

B. Reconstruction of a random code of length 100 and dimen-
sion 50

We have seen that our algorithm is efficient in the case of
a LDPC (3,6) code and now, we will see what happens in
the general case of a random code. As we have taken forC a

random code,C⊥ is also a random code and then, we can use
the weight distribution of a random code which is a binomial
distribution. We then have:

Pr[h ∈ C⊥] =
1
2k

.

Thus, we are able to approximatePr[h ∈ C⊥|wt(hXT) = w]
for all h. Our algorithms for finding words of low weight
and using them to decode provide the following results for a
random code of length100 and dimension50.

τ FWLW time perr decoding time
0.005 10s 0.003 1.22s
0.005 30s 0.003 1.18s
0.005 1min 0.003 1.20s

0.01 10s 0.006 1.18s
0.01 30s 0.006 1.19s
0.01 1min 0.006 1.18s
0.01 10min 0.006 1.19s

0.02 30s 0.02 0s
0.02 5min 0.02 0s
0.02 1h 0.02 0s

For random codes, our algorithm is less efficient than for
LDPC codes since it takes more time to find words of low
weight and to decode, so it will be harder to recover our code.
However, we know that random codes are very difficult to
decode. Moreover, we manage to correct some errors (and so
to recover easily our code) in a few minutes when the cross-
over probability is lower than 1 percent.

ACKNOWLEDGMENT

The author would like to thank J-P. Tillich for his helpful
advice. He also wants to aknowledge F.Didier and Y.Laigle-
Chapuy for their help in the algorithms implementations.

REFERENCES

[CC98] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-
weight words in a linear code: application to primitive narrow-sense
BCH codes of length 511.IEEE Trans. Info. Theory, 44(1):367–378,
january 1998.

[Cha92] F. Chabaud. Asymptotic analysis of probabilistic algorithms for find-
ing short codewords. In P. Camion, P. Charpin, and S. Harari, editors,
EUROCODE 92, number 339 in CISM Courses and Lectures, pages
175–183. Springer-Verlag, 1992.

[Gal62] R. G. Gallager. Low density parity check codes.IRE Trans. Info.
Theory, IT-8:21–28, 1962.

[Gal63] R. G. Gallager.Low Density Parity Check Codes. MIT Press, 1963.
[LB88] P.J. Lee and E.F. Brickell. An observation on the security of

McEliece’s public-key cryptosystem. In C.G. Günter, editor,Ad-
vances in Cryptology - EUROCRYPT’88, number 330 in Lecture
Notes in Computer Science, pages 275–280. Springer-Verlag, 1988.

[Leo88] J.S. Leon. A probabilistic algorithm for computing minimum
weights of large error-correcting codes.IEEE Trans. Info. Theory,
34(5):1354–1359, 1988.

[Ste89] J. Stern. A method for finding codewords of small weight. In
G. Cohen and J. Wolfmann, editors,Coding Theory and Applica-
tions, number 388 in Lecture Notes in Computer Science, pages
106–113. Springer-Verlag, 1989.

[Val00] A. Valembois. Décodage, D́etection et Reconnaissance des Codes
Linéaires Binaires. PhD thesis, Université de Limoges, 2000. in
French.

[Val01] A. Valembois. Detection and recognition of a binary linear code.
Discrete Applied Mathematics, 111:199–218, 2001.

