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Abstract—In this paper, we present a new algorithm for tools of iterative decoding [Gal63]. The last section will be

recovering a linear block code from noisy codewords. To achieve devoted to the simulation results based on this new algorithm.
this, we introduce a version of Gallager algorithm with weighted

parity-check equations. This new algorithm efficiently recovers Il. RECONSTRUCTION TECHNIQUE

LDPC codes and can also be used for other block codes. . -
A. Basic principle

I. INTRODUCTION We assume that the synchronisation and the block length

The problem we address here is to be understood in Bare known. Then, we are able to split the observed binary

more general context of reverse-engineering a communicatfyFam ”j'tOM noisy cod(_awords of I.ength. In the foIIowmg_,
e consider theV/ x n binary matrix X whose rows consist

system. The general problem is, for an observer, to recover% I th bi X g ds. Th hni
transmitted information from the knowledge of the observe a t_esen- It noisy codewords. ‘he tec nique we are
esenting here consists in constructing a basis of the dual

stream. But he does not know anything about the characteR tth 4 cod
tics of the different elements except the noisy channel, and%o of the targeted code.
his first goal is to determine which elements have been used Ct ={hVecec, hc’ =0}

in the communication system.
where he” denotes the scalar product betweerand ¢ over

information% ScramblerH Encoder}—L Fz. If there was no error during the transmission, we would

have:
VheCt hXT =0,

Encoded Stream whereX T denote the transposed matrix &t Here, the binary

sequence has been sent through a noisy channel and so, instead
. T P . .
Observed Strears Noisy Channel of_ having hX* = O hX* has a low Hamming weight. We
will use the following result.

Fig. 1. Communication system. Proposition 1: If m is the word received after transmission
through a binary symmetric channel with cross-over probabil-

Here, we are interested recovering the error-correcting cotle 7, then the probability that the number of error positions
which has been used for the communication when this coigeeven is :
is a linear block code oveF,. Note that finding the error-
correcting code does not mean finding the encoder. It only
means that we want to find a basis of the linear space defined
by the code or equivalently a generator matrix for this code. In Corollary 1: Let h € €+ and m be the result of the
[Valo1], Valembois shows that the associated decision probldf@nSmission of a codeword @& through a binary symmetric
lies in the class of NP-complete problems. Even if this probleffiannel with cross over probability. Then:

1+ (1-27)"
—

seems to be intractable, practical instances could be easy. - 14 (1 —27)wth)
Thus, we try to find some techniques to reconstruct an error- Prihm” = 0] = 5 )
correcting code, especially if the code length is not too large
: : 1—(1—27)wt)
and/or if the error rate is low. PrihmT =1] =
In the following, we will denote byC the error-correcting 2

code which has been used. Let k and d,,;, respectively wherewt(h) denote the Hamming weight &f i.e. the number
denote its length, its dimension and its minimum distance. of its non-zero coordinates.

First, we describe the main reconstruction technique asLet h ¢ C*, then the Hamming weight df X7 will be in
presented in [Val00]. Then we present a new algorithm fewerage’l and if » € C*, then the weight of. X7 will be
reconstructing an error-correcting code based on the classicater: & (1 — (1 — 27)wt®),



This gives us a method for distinguishing the words of thehether or noth belongs toC+ was proposed by Valembois
dual code from the others (especially when the wbrdas a [Val01]. Whenever the ratio
low Hamming weight) and so a starting point for reconstruct- n
. : ; S PriX|h e C]
ing a parity-check matrix for the code Furthermore, it gives — B
us a method for finding words in the dual code: we have to r[X]
search for linear combinations of the rowsXf which have 1—(1— QT)Wt(h)
a low weight. In fact, when we find a word of low weight in (1 +(1- QT)wt(h)>

the code spanned b¥ 7, it comes, with a high probability, . i )
from a word ofCL. is greater than a given threshold, we decide thékelongs to

C*. The algorithm proposed by Valembois consists in finding

B. Finding low-weight codewords n — k linear independent words such that they form a basis of
. ) ) C+. This algorithm is what he calls the first-order algorithm.

This problem has been studied in another context, forye g1so presents higher-order algorithms, the main differ-

finding the minimum distance of a linear code. So there exighce peing that, for an-order algorithm, instead of testing
numerous papers on this topic [Leo88], [LB88], [Ste89]. Hetgyrgs one by one, it tests whether-alimensional subspace
we choose to use the following algorithm inspired by [CC98L included in C or not. Let H, denote the event: the

in all simulations. The problem is as follows: linear space spanned by, ..., A, is included inC'. Let
Let G be the generator matrix of &n, k] code. We want rr — (p, .. h,), then: T

to find words of Hamming weight less than a given threshold
T in the code spanned bg. Our algorithm involves three  Pr[X|H,] _ IJ—V[ Z (C1)<Baifi> (] QT)M(BHT)
parameterss, p andT. Pr[X] )
We start by selecting a random information defor the
[n, k] code. Then, we permute the columns(okuch that the  When we test if the subspace spannedrbyords of low
first k columns correspond té and we perform a Gaussianweight is included or not i€+, we just compute the previous
reduction onG: ratio and compare it to a threshold.
. In each case, first-order or higher-order algorithms, we
PTG =G = (1] Z) could summarise the algorithms by both following steps:

whereP is ak by k invertible matrix. We split the information ~* 9enerate words OfJOW weight.

set into two parts/; and I, of same size and we randomly * testif th.ey are inC+ and if so, ellmlnate the dependent
choose a subsef of s positions outside the information set. ~ VEctors in order to compute a basis ®f

We are then searching for all the words such that m

:(1 + (1 _ 27_)wt(h))M

wt(hXT)

i=1 BeF}

. | MPROVEMENTS
wty(m), ) = wtg(m, ) =pandwty(m,) = 0. A. Basic principle

. . . : We have seen that in the algorithms proposed by Valembois,
A word m is expected to have a low Hamming weight since . o X
. X ” . . We just perform some statistical tests to decide whether or
it has weight2p on k + s positions and in practice = 1 or

; . . o not a word is in the dual code. Our idea is instead to try to
2. We compute its actual Hamming weight and if it is smaller . : . ;
: o : . decode using our likely parity check-relations and then get
than the threshold” we output its original coordinate it. : .
. . = some feedback on these equations. For that, we will compute
That is, forh = my (the first k& positions ofm), we have . L
1 . the probability that a word belongs to the dual code and give it
m = hGr = hP~ G and if wt(hZ) 4+ 2p < T, we output . . ; . . .
a weight accordingly. Then, we will use an iterative algorithm

hP . . . with weighted parity-check equations to correct some errors.
Once we have done that for a given information set, we

restart with another one until we get enough small weigl. How to computePr[h € CH|wt(hX™) = w)

codewqrds. In or_der to spged up the process and to a_v_o'q_et (h, w) be an output of the algorithm which searches for
expensive Gaussian reduction, we change only one positign weight words. So, we havet(hXT) — w. We want to

of I at each step like in [CC98]. . _ computePr [h e CLjwt(hXT) = w}
The parameters and p could be optimised as shown in g\ \va can only comput@r [wt(hXT) = w|h € C*] and

[Cha92]. The value ofl" will change the probapility that the Pr [wt(hXT) = wlh ¢ Cl]. Let m; denote one codeword
output words belong to the dual code. We will see later t di; the noisy codeword, we have

role played by this parameter when we compute the probability
that a given wordh belongs to the dual code. XT=(m my - n ).

1—(1—27)wt® 14(1—27)wt
2 2

C. Reconstruction algorithm Letpy = andg, = , then using

In the previous paragraph, we have seen that we are a%?éollary 1, we can compute:

to find wordsh such thathX” has a low weight. Thosé

M
Ty __ 17 w , M—w
are candidates to be in the dual codeCofA test to decide Pr [wt(hX )=wlheC ] o (w)ph n )



Now, we want to computé’r [wt(hXT) = w|h ¢ C*]. For Letu andv be two reals in0, 1], we denote

large M, we can assume that our,; are independent and u
randomly and then we are able to derive LU= w+ (1 —u)(l—v)
M) . .
(o We could notice that we have:
Pr[wt(hX™) = wlh ¢ C*+] = BV

Priz|y1, y2] = Priz|yi] ® Priz|ys].
Let Py = Prlwt(hXT) = wlh € C*t] and P, =
Priwt(hXT) = wlh ¢ CL]. We can then compute the Then the probability for a bit, is obtained by combining
probability Pr[h € C+|wt(hXT) = w] and it is equal to: all the informations we have with the previous law
N We assume that the transmission has been done through
Prih e C]Ry _ Q) @ binary symmetric channel with cross-over probability
Prlh ¢ CL]P, + Pr[h € CL| P, Let Obs(a;) denote the probability for, coming from the
Finally, we can write this probability as a function ofPPServation,Extre(a,) the probability fora, coming from
y P y the e-th equation. And letd.(a;) denote the partiad PP (a

Pr[h € C*]. Unfortunately, we could not compute this o - . . R
probability: indeedPr [ € C] depends on the weight distri- posteriori probability) fora,, i.e. this probability is computed

bution of C+ and of course, we do not know this distributioHJSing all ir_1formations Om_t except the one coming ff‘?m the
since we are searching for the codeln practice, for such e-th equation.APP(a;) will denote the total probability. In

communication schemes, only some well-known codes amae algorithm, there are three steps :
used and we then know their weight distributions, at least fore Initialisation:
low weights (and that is what we are looking for). So, we will — ComputeObs(a;) = 1 — 7 if the observation idl.
have to assume that the code which has been used belongs Obs(a;) = 7 if the observation ig).
to a given family and then we could be able to compute - Ve, Extr(a;) = 3.
Pr[h e CHlwt(hXT) = w). . lteratenb;:
For all equations:, update the probabilitiesl.(a;) and
then Extr.(a;).
In this section, we recall the algorithm of Gallager intro- « End:
duced in [Gal62]. At each iteration we update the probability For all ¢:
that a received bit is correct using parity-check equations.  _ compute
Using an equation of weight:

C. An iterative decoding algorithm

APP(at) = Obs(at) ®

® Extri(at)] )

d—1
EQI ato—i—Zatj :0,
=t — If APP(a;) > 3 thena, = 1, otherwisea, = 0.

we can compute a new probability for the bit, using other ) . ) o .
bits a,,. Assume we have a probabiliyr[a;, = 1] for each D. lterative decoding with probabilistic parity-checks

t;, we want to computeé’ra,, = 1|EQ)]. So, In our case, the main difference is that we have likely parity-
g1 check equations instead of exact ones. So we will take this into
Priay, = 1|EQ] = PT[Z ar, =1]. account when we .upd.ate the probabilities. Consider we have
o an equation of weightl;

.. . d—1
Similarly to Proposition 1, we can prove that:
y P P EQ: ay+ Y ay =0,
~ 15 (1 —2Pr[a, = 1)) =1
2 ' which holds with probability. We want to computér|a;, =
Now, let us consider a bit;, such that we have severall| Pr[EQ] = p]. This probability is equal to:
informations coming from all equations in whieh appears d—1 d—1
and from the_ observa_t|0n. ppr[z ag, =1+ (1 - p)Pr[Z a, = 0).
In the following, we will denote by: the eventz = 1 and by =1 =1
T the eventr = 0. For two binary random variableg, y,, if eith
we assume that the channel is memoryless and that we h\c’x\/% can compute it by

Prla; = 1|EQ] =

Pr(z] = Pr[z], then Prlay, = 1|Pr[EQ] = p)
1[I (1= 2Prfay, = 1))
Prizly:, y2] = =P 2
Prla|yy) Prix|y) 1+ [T (1 - 2Prfar, = 1))

Prlzly ]| Prz|y] + Pr(zly | Pr(z|ys] +(1-p) 5



and we can combine all the informations on a bit as before. \#e New algorithm

also want to update the probability of parity-check equations. Now, we have all the building blocks for reconstructing a
When we decode a given noisy codewaigl we can compute |inear code. Our algorithm will be as follows:
the probabilityp. ; that thee-th equation is true according t0terate:

the probabilities of the bits involved:
B 1+ [The, (1—24c(ar))

De,i 2

For a given equation, we have many informations: our first
estimation Est.) and, for all, p.;. Then, we update the

probability of thee-th equation in the decoding of theth
word by:

DPe,i = Este ® ®ﬁe,j
J#i

So, we can use the following algorithm which corresponds
to Gallager algorithm in which the extrinsic probabilities are
updated using the fact that theth parity-check equation holds

with probabilitiesp. ; when we are decoding theth word.
« Initialisation:
For all equations, computgst,
For all wordsm;
— ComputeObs(a;) = 1 — 7 if the observation igl.
Obs(a;) = 7 if the observation ig).
— Ve, Extre(a;) = 3.
- Ve, ﬁe,i = %
o lteratenb;;:
For all wordsm; and for alle:

— Compute

Aclatr) = Obs(ar) ® ®Emtrj(at)

Jj#e
— Compute
~ 1+ Htele(l - 2Ae(at))
Pe,i =
2
where I, = {i|a; belongs to Equation}.
— Compute
DPe,i = ESte & ®5€,j
J#i
— Compute
1 1
Extre(a;) = (5 —pe,i.) I —24c(ay)) + 5
JELA{t}
e End:
For all wordsm;, for all ¢:
— compute

APP(a;) = Obs(a) ® ® Extr;j(a;)

— If APP(a;) > 3 thena, = 1, otherwisea, = 0.

« Find some words of low weight in the code spanned by
the matrix X7, return b where b, likely belongs to the
dual code ofC. We will then associate tb a parity-check
equation. Let denotéf the set of candidate vectofs

o Eliminate parity-check equations il which involve
cycles of short size (in our tests, cycles of length less than
4 are eliminated). For remaining wordsc H, compute
Pr[h € C*] an approximation of the probability that
belongs toC+ as explained in section 11I-B.

o Use parity-check relations il and their probabilities in
order to correct some errors using the algorithm described
in section IlI-D.

From Corollary 1, we can see that it will be easier to find
a word of low weight in the code generated By if there

are words of low weight inC+. Furthermore, our decoding
algorithm inspired by Gallager algorithm will be much more
efficient when the weight of the parity-check equations are
low. For these reasons, it is expected that the complexity of
this algorithm decreases with the minimum distance 6f

IV. RESULTS
A. Reconstruction of a LDPC (3,6)

Since our decoding algorithm is based on the existence of
low-weight words in the dual code, a first very natural example
is the reconstruction of a LDPC. We here consider a LDPC
(3,6) code, i.e. each column of the parity-check matrix has
exactly 3 ones and each row has 6 ones (in this case, we have
% = % and so the dual code is also a [n,k] code). We have
to computePr[h € C*]. This requires an approximation of
the weight distribution of the dual code at least for the low
weights. We make some rough approximation on the number
of words of weight less thad4 in the dual code of a LDPC
(3,6) just using the fact that there dravords of weights. For
example, most of words of weight) are obtained with two
words of weight6 which have only one position in common,
this leads us to say that there are approxima2élywords of
weight 10 because every positions participates in exagtly
equations. For the others weights, we use the same kind of
reasoning.

Then we are able to approximate the probability

(wt(h))

Thus, we can also approximafer[h € C*|wt(hXT) = w]

for all h of weight less tharR4. In practice, we seldom find
words of weight larger thar24 using our algorithm and so
we choose not to take them into account. For simulations,
we separate the algorithm for finding words of low weight
(FWLW) from the decoding algorithm in which we choose
to take 30 iterations. We iterate the algorithm for finding
low-weight words a bounded time. We recall thatdenote




the cross-over probability of our channel and we dengte random code¢* is also a random code and then, we can use
the error rate/bit probability after decoding with our decodinthe weight distribution of a random code which is a binomial
algorithm. For a LDPC (3,6) of length 100, simulations on distribution. We then have:

Pentium 4 at 3.2GHz provide the following results: n 1
T FWLW time Derr decoding time .
0.01 Ts 0 Ts Thus, we are able to approximake|[h € Ct|wt(hXT) = w]
0.02 1s 0.003 0.7s for all h. Our algorithms for finding words of low weight
8-82 15(’)5 0-08017 8-25 and using them to decode provide the following results for a
' = =S random code of length00 and dimensiorb0.
0.03 10s 0.027 0.5s
0.03 30 0.022 0.74 : —
0.03 lmii 0.011 1 122 T FWLW time | perr | decoding time
0.03 5min 0.002 1.43s 0.005 10s 0.003 1.22s
0.03 | _ 10min 0.0018 1.30s 0.005 30s 0.003 1.18s
0.03 1h 00012 1375 0.005 Imin 0.003 1.20s
0.01 10s 0.006 1.18s
0.01 30s 0.006 1.19s
, 0.01 Imin 0.006 1.18s
We can remark that, if we have to recover our code when the 0.01 10min 0.006 1.19s
cross-over probability of our channel(g3, we can do better 0.02 30s 0.02 0s
than using our algorithm for finding words of low weights 0.02 5min 0.02 0s
during 20min and then decode using our decoding algorithm. 0.02 1h 0.02 Os

For that, we use our FWLW algorithm during 1 minute, then
we decode using our decoding algorithm. We have rEEdUCE}dFor random codes, our algorithm is less efficient than for

our cross-over probability t@.01 and we could now use LDPC codes since it takes more time to find words of low

our F.WLW a_lgorlthm on the output S”ea.'?”' of the deCOd'nw%eight and to decode, so it will be harder to recover our code.
algorithm. With such a cross-over probability, an only Secoqqowever we know that random codes are very difficult to

is enough to recover the dual code. In practice, we need a f
more tirgr]we since most of the new wordg of low weiaht woul Ecode. Moreover, we manage to correct some errors (and so
9 0 recover easily our code) in a few minutes when the cross-

be linearly dependent from the ones used for the first decodig\%r probability is lower than 1 percent

step.

Let us see what happens for the more realistic case of a LDPC ACKNOWLEDGMENT
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