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STABLY SPLITTING BG

DAVE BENSON

Abstract. In the early nineteen eighties, Gunnar Carlsson proved the Segal
conjecture on the stable cohomotopy of the classifying space BG of a finite
group G. This led to an algebraic description of the ring of stable self-maps of
BG as a suitable completion of the “double Burnside ring”. The problem of
understanding the primitive idempotent decompositions of the identity in this
ring is equivalent to understanding the stable splittings of BG into indecom-
posable spectra. This paper is a survey of the developments of the last ten to
fifteen years in this subject.

1. The Segal conjecture

The nineteen eighties saw a number of major breakthroughs in homotopy theory.
Among the most spectacular are the proofs of the nilpotence conjecture by Dev-
inatz, Hopkins and Smith [10], the Sullivan conjecture by Haynes Miller [24], and
the Segal conjecture by Gunnar Carlsson [7]. Two of these three concern the role
of finite groups in homotopy theory: the Sullivan conjecture is “unstable”, while
the Segal conjecture is “stable” with respect to suspension. This report is about
the consequences of the Segal conjecture for the stable splittings of the classifying
space of a finite group.

We begin by setting the scene. Around 1960, Atiyah [3] calculated the K-
theory of the classifying space of a finite group. There is a natural map from the
character ring R(G) to K0(BG) which sends a complex representation V to the
corresponding vector bundle EG×GV → BG. Atiyah proved that this map induces
an isomorphism

R(G)ˆ
I

∼=−→ K0(BG)

where the completion

R(G)ˆI = lim←−
n

R(G)/In

is with respect to the augmentation ideal I = Ker(dim : R(G) → Z). He also
showed that K1(BG) = 0.

The Segal conjecture is the corresponding statement for stable cohomotopy, in
which the representation ring is replaced by the Burnside ring A(G). This is the
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Grothendieck ring of finite permutation representations of G, with addition corre-
sponding to disjoint union and multiplication corresponding to Cartesian product
with diagonal G-action.

We first explain stable maps and stable cohomotopy. If X and Y are pointed
CW complexes, let [X ;Y ] denote the homotopy classes of basepoint preserving
maps X → Y . Then there is a suspension homomorphism

[X ;Y ]→ [SX ;SY ] ∼= [X ; ΩSY ].

If X is finite, then passing to the limit we have

lim
m→∞

[SmX ;SmY ] = lim
m→∞

[X ; ΩmSmY ] = [X ; lim
m→∞

ΩmSmY ].

We write Ω∞S∞Y for limm→∞ΩmSmY . Taking Y = Sn (the n-sphere) and adding
a disjoint basepoint to an unbased spaceX to give a based space X+, the right-hand
side of the above equation defines a generalized cohomology theory

πns (X) = [X+; lim
m→∞

ΩmSm+n]

called stable cohomotopy. Notice also that this formula makes sense for n negative,
so that π∗s is a Z-graded theory.

For an arbitrary (not necessarily finite) CW complex X , taking homotopy classes
of maps does not commute with passing to the limit, but the right-hand side above
is the appropriate definition to ensure that π∗s is a generalized cohomology theory.
In general, therefore, we define the stable maps from X to Y to be

{X ;Y } = [X ; Ω∞S∞Y ].

There is a natural way to add stable maps, using a suspension coordinate, so that
{X ;Y } is an abelian group. There is also a natural way to compose stable maps,
so that for example {X ;X} is a ring and π∗s is a multiplicative cohomology theory.
This also allows us to make CW complexes and stable maps into a category. Any
stable map from X to Y induces a map in cohomology f∗ : H̃∗(Y ;R)→ H̃∗(X ;R)
with coefficients in, say, an abelian group R, so cohomology is a functor on CW
complexes and stable maps.

We next describe the mapping telescope construction. For actual maps of spaces
f : X → X , this is easy to describe: we take a disjoint union of copies of X × I
indexed by the natural numbers and identify the right-hand end of each copy with
its image under f in the left-hand end of the next copy. If f is idempotent (i.e.,
f ◦ f = f), then the cohomology of the mapping telescope is equal to the image of
f∗ in the cohomology of X .

For stable maps, we need to extend the category in order to be able to make
the corresponding construction. The category of CW complexes and stable maps
is a full subcategory of the category of spectra. The spectra corresponding to CW
complexes are called suspension spectra. The homotopy category of spectra is called
the stable homotopy category. We refer the interested reader to Adams [1] for
full details, but suffice it to say here that the mapping telescope construction has
an obvious analog in the category of spectra and allows us to form the mapping
telescope of a stable map. The mapping telescope of a map between suspension
spectra is not necessarily a suspension spectrum, but it is at least a “connective”
spectrum—it has no homotopy in negative degrees.

A stable splitting of X as a wedge sum Y ∨ Z (i.e., an isomorphism between X
and Y ∨Z in the stable homotopy category) corresponds to an idempotent element
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e of {X ;X}. Conversely, any idempotent e ∈ {X ;X} provides a splitting of X
as a wedge sum of spectra, via the mapping telescope construction. The wedge
summands Y and Z in a stable splitting are equivalent to the mapping telescopes
of e and 1− e respectively.

If p : X → Y is a finite covering, then there is a stable map Trp : Y+ → Ω∞S∞X+

called the transfer map. For example, if H is a subgroup of finite index in a group
G, then there is a finite covering BH → BG, and the corresponding transfer map
TrH,G ∈ {BG+;BH+} induces the usual transfer map in cohomology, Tr∗H,G :

H∗(BH;R)→ H∗(BG;R) (note that H̃∗(X+;R) = H∗(X ;R)). Composing TrH,G
with the map BρH : BH+ → B{1}+ = S0 (where ρH maps H to the trivial group)
gives an element of stable cohomotopy BρH ◦ TrH,G ∈ π0

s (BG). There is thus a
natural map A(G)→ π0

s(BG) sending the permutation representation (G/H) to the
stable map BρH ◦TrH,G. This is a ring homomorphism, and the Segal conjecture
states that this map induces an isomorphism of rings A(G)ˆ

I
→ π0

s(BG) between
the completion of A(G) with respect to the augmentation ideal I and degree zero
stable cohomotopy. Furthermore, it states that πns (BG) = 0 for n > 0. Of course,
even for the trivial group, the stable cohomotopy in negative degrees (namely, the
stable homotopy of spheres) is extremely complicated, but a suitable form of the
conjecture (see page 190 of Carlsson [7]) gives the stable cohomotopy in negative
degrees, in terms of the stable homotopy groups of classifying spaces of subquotients
of G of the form NG(K)/K, K ≤ G.

The Segal conjecture was proved first for the cyclic group of order two by Lin [19],
then for the cyclic groups of odd prime order by Gunawardena [13], for general finite
cyclic groups by Ravenel [29], for elementary abelian 2-groups by Gunnar Carls-
son [6], for odd elementary abelian groups by Adams, Gunawardena and Miller [2],
and finally for general finite groups by Gunnar Carlsson [7]. An unstable proof
along entirely different lines can be found in Lannes [17].

2. The double Burnside ring

Now consider the more general problem of computing {BG+;BH+} for finite
groups G and H. In the case H = {1}, this is the stable cohomotopy π0

s (BG) ∼=
A(G)ˆ

I
. For a more general H, the appropriate algebraic gadget is the Grothendieck

group A(G,H) of finite sets with a commuting G-action and free H-action (for
short, H-free G×H-sets). Given such a set X , the principal H-bundle EG×GX →
EG×G (X/H) is classified by a map EG×G (X/H)→ BH. Composing this with
the transfer for the finite covering EG×G (X/H)→ BG gives us a stable map

BG+ → Ω∞S∞(EG×G (X/H))+ → Ω∞S∞BH+

in {BG+;BH+}. We therefore have a natural map A(G,H) → {BG+;BH+}
sending the set X to this stable map. Following ideas of Haynes Miller, Adams
conjectured in [1] that this map induces an isomorphismA(G,H)ˆ

I
→ {BG+;BH+},

where I is the augmentation ideal in A(G). The action of A(G) on A(G,H) is given
by taking Cartesian products, with diagonal G-action. It was proved by Lewis, May
and McClure [18] that this conjecture follows from the Segal conjecture.

The effect of knowing that we have an isomorphism

A(G,H)ˆ
I
→ {BG+;BH+}

is that topological questions about stable maps are converted into algebraic ques-
tions. To make this an effective tool, we need to know how to compose maps.
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Composition

{BH+;BK+} × {BG+;BH+} → {BG+;BK+}
corresponds to the operation

A(H,K)×A(G,H)→ A(G,K)

sending a K-free H×K-set Y and an H-free G×H-set X to the K-free G×K-set
(X × Y )/H, where H acts diagonally on X × Y . This defines a category, with
groups as objects, where the morphisms from G to H are given by A(G,H). Any
functor on groups which admits appropriately behaved transfer maps extends to a
functor on this category.

More explicitly, A(G,H) has a basis given as follows. Given a subgroup G′ ≤ G
and a homomorphism φ : G′ → H, there is a finite H-free G × H-set XG′,φ =
(G×H)/∆G′,φ, where

∆G′,φ = {(x, φ(x)), x ∈ G′} ≤ G×H.
Every transitive H-free G × H-set is of this form, and so A(G,H) has a basis
corresponding to the conjugacy classes of pairs (G′, φ). We write ζG′,φ for the basis
element of A(G,H) corresponding to XG′,φ. An explicit double coset formula for
multiplying basis elements is given in Benson and Feshbach [4].

This multiplication makes A(G,G) into a noncommutative Noetherian ring,
called the double Burnside ring. Stable splittings

BG+
∼= X1 ∨ · · · ∨Xn

correspond to decompositions

1 = e1 + · · ·+ en

in A(G,G)ˆ
I

of the identity element as a sum of orthogonal idempotents. Here,
two idempotents e and f are said to be orthogonal if ef = fe = 0. The space

Xi = ei(BG+) is formed as the mapping telescope Tel(BG+
ei−→ BG+

ei−→ · · · ).
Thus in order to understand stable splittings of BG+, we need to understand the
algebraic structure of A(G,G) and the effect of I-adic completion.

At this stage, it is worth getting rid of the disjoint basepoint. Choosing a base-
point in BG gives us a stable equivalence BG+

∼= S0 ∨ BG. So the problem of
splitting BG+ is equivalent to the problem of splitting BG. Denote by Ã(G,G)
the quotient of A(G,G) by the two-sided ideal given by the linear span of the basis
elements ζG′,φ with Im(φ) = {1}. Then the map

Ã(G,G)ˆ
I
→ {BG;BG}

is an isomorphism.
The next step is to work one prime at a time. If |G| = pα1

1 . . . pαss , then stably,
BG splits as a wedge sum of pi-local spectra

BG ∼= BGp1 ∨ · · · ∨BGps .
Furthermore, the transfer map displays BGp as a stable wedge summand of BP ,
where P is a Sylow p-subgroup of G. Regarding G as a P -free P × P -set via
the action given by (x, y) : g → xgy−1 and writing [G] for the corresponding

element of Ã(P, P )ˆ
I
∼= {BP ;BP}, we have BGp = [G].BP (the mapping telescope

Tel(BP
[G]−→ BP

[G]−→ · · · )). So it makes sense to concentrate on the case of a
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p-group P . In this case, the I-adic completion is not quite the same as the p-adic
completion on A(P, P ), but it is the same on Ã(P, P ):

Ã(P, P )ˆp
∼= Ã(P, P )ˆI

∼= {BP ;BP},
and

{BGp;BGp} ∼= [G]Ã(P, P )ˆp[G].

Set Ãp(P, P ) = Fp ⊗Z Ã(P, P )ˆp. Then the idempotent refinement theorem
(see for example Curtis and Reiner [9], Theorem 6.7) does not apply directly to

Fp ⊗Z A(P, P )ˆp, but it does apply to Ãp(P, P ). It implies that any decomposition

of the identity as a sum of orthogonal idempotents in Ãp(P, P ) lifts to such a decom-

position in Ã(P, P )ˆp and that any two such lifts are conjugate. It follows that stable
p-local splittings of BG correspond to orthogonal idempotent decompositions of the
identity in the finite-dimensional Fp-algebra Fp ⊗Z {BGp;BGp} ∼= [G]Ãp(P, P )[G].

The homotopy theoretic consequences of these algebraic properties of idempo-
tents in {BGp, BGp} are as follows. First, we have a Krull–Schmidt theorem: BGp
splits essentially uniquely as a finite wedge of indecomposable pieces. The homotopy
types of indecomposable stable wedge summands are in one-one correspondence
with the isomorphism classes of simple modules for the algebra [G]Ãp(P, P )[G].
The multiplicity of a given stable homotopy type as a wedge summand is equal
to the dimension of the corresponding simple module over its endomorphism ring,
which is a finite field of characteristic p. Unfortunately, the representation theory
of these algebras is not easy to study, though the papers of Martino and Priddy [21]
and Benson and Feshbach [4] make some progress in this direction. The paper [21]
gives an explicit formula for the multiplicity of a wedge summand as the rank of
a certain matrix defined in terms of subgroups and conjugations, while the pa-
per [4] attempts a more abstract description of the simple modules. For further
work in this area, see Martino and Priddy [22, 23], Nishida [26], Priddy [27, 28].
Some explicit calculations appear in Dietz [11], Dietz and Priddy [12], Martino and
Priddy [20]. Much remains to be done.

In the next section, we begin by explaining the abelian case, as a lot of the com-
plications of the general case are not present here. The problem is not completely
solved even in this case, but rather, it reduces to a well-known problem in modular
representation theory—the determination of the simple modules in characteristic
p for the finite general linear groups GL(n,Fp). In the remaining sections, we ex-
plain some of the ideas of Nishida [26], Martino and Priddy [21] and Benson and
Feshbach [4] in the general case.

3. Abelian groups

It is worth discussing a particular case in some detail. If P is a finite abelian
p-group, then denote by E(P ) the multiplicative semigroup of endomorphisms of
P and by RE(P ) its semigroup algebra over a coefficient ring R. Note that the
zero endomorphism of P is not equal to the zero element of RE(P ), but it spans a

two-sided ideal isomorphic to R. We write RẼ(P ) for the quotient by this ideal.
There is an obvious embedding, i : ZE(P ) ↪→ A(P, P ), which passes down to

embeddings ı̃ : ZẼ(P ) ↪→ Ã(P, P ) and ı̃p : FpẼ(P ) ↪→ Ãp(P, P ). Following work of
C. Witten [30] and S. Mitchell [25], J. Harris [14] and G. Nishida [26] have indepen-

dently shown that there is a surjective ring homomorphism ρ : Ãp(P, P )→ FpẼ(P )
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whose composite with ı̃p is the identity map on FpẼ(P ). Furthermore, the ker-

nel of ρ is a nilpotent two-sided ideal in Ãp(P, P ). Again applying the idempotent
refinement theorem, one finds that stable splittings of BP are in one-one correspon-
dence with orthogonal idempotent decompositions of the identity in FpẼ(P ) and
that the homotopy types of indecomposable stable wedge summands are in one-one
correspondence with the simple FpẼ(P )-modules. Thus, for example, the indecom-
posable stable wedge summands of B(Z/p)n+ correspond to simple FpMat(n,Fp)-
modules.

Having reduced to the theory of matrix representations of finite semigroups in
this way, we can draw on the literature on finite semigroup representations (Clifford
and Preston [8], Howie [16]) to reduce to finite group representation theory. The
details may be found in Harris [14], Harris and Kuhn [15]. If S is a finite mul-
tiplicative semigroup with zero element (for example S = E(P )) and k is a field,
there is a natural bijection between isomorphism classes of irreducible kS-modules
and ∐

G

{isomorphism classes of irreducible kG-modules}.

Here, G runs over the equivalence classes of maximal subgroups of S. Two maximal
subgroups G and G′ of S are equivalent if SGS = SG′S (this implies G ∼= G′).
Given a simple kG-module M , the corresponding kS-module is described as follows.
First we form the kSGS-module

M̃ = kGS ⊗k(G∪{0}) M

and then we extend M̃ to a kS-module by letting s ∈ S act as s.1G ∈ SGS.
As an example, the simple FpMat(n,Fp)-modules (and hence the indecomposable

stable wedge summands of B(Z/p)n+) correspond to

n∐
m=0

{simple GL(m,Fp)-modules}.

Although the simple GL(m,Fp)-modules are classified by their highest weights, it
remains an unsolved problem to describe their dimensions over Fp, which determine
the multiplicities of the corresponding indecomposable stable wedge summands
of B(Z/p)n+. There remains also the interesting and largely unsolved problem of
understanding the cohomology of the wedge summands. Some surprising work of
Carlisle and Kuhn [5] relates the representation theoretic indexing of the factors
to their Morava K-theories, via freeness over finite subalgebras of the Steenrod
algebra.

4. Dominant summands

One feature of the elementary abelian case generalizes easily to arbitrary finite
p-groups. Namely, it is apparent from the description given in the last section that
an indecomposable stable wedge summand of B(Z/p)n+ “comes from” a subgroup
(Z/p)m for a uniquely determined value of m ≤ n. The generalization to arbitrary
finite groups is Nishida’s theory of dominant summands [26]. If P is a finite p-group,

Nishida defines JP to be the two-sided ideal in {BP ;BP} ∼= Ã(P, P )ˆp generated
by the maps which factor through the classifying space of a proper subgroup of P ,
and he shows that

{BP ;BP}/JP ∼= Zˆ
pOut(P ),
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the group ring over the p-adic integers of the outer automorphism group of P . The
ideal JP is not in general nilpotent.

Reduction modulo JP induces a one-one correspondence between conjugacy
classes in {BP ;BP} of primitive idempotents not lying in JP and conjugacy classes
of primitive idempotents in Zˆ

pOut(P ). These in turn are in one-one correspondence
with the isomorphism classes of irreducible R-modules, whereR is the group algebra
FpOut(P ).

An indecomposable stable wedge summand X = e.BP of BP is said to be dom-
inant if the corresponding primitive idempotent e ∈ {BP ;BP} does not lie in JP .
This is equivalent to the statement that X does not have the homotopy type of a
summand of BQ for any proper subgroup Q of P . The dominant summand corre-
sponding to the trivial one-dimensional representation of R is called the principal
dominant summand. It turns out that every indecomposable stable wedge sum-
mand of BGˆ

p (G now a general finite group) has the homotopy type of a dominant
summand of BQ for a uniquely determined isomorphism class of p-subgroups Q of
G.

There is no sense in which Q is determined up to conjugacy in G, but we can do
better than just naming the isomorphism class. By analogy with modular represen-
tation theory, we say that Q is a vertex of X = e.BGˆ

p if the map Bi : BQ → BG
induced by the inclusion i : Q → G induces a homotopy equivalence between a
dominant summand of BQ and an indecomposable summand of BGˆ

p isomorphic
to X . The corresponding simple R-module S (where R = FpOut(Q)) is called the
source of X . The question of the extent to which these are determined by X in G
is investigated in Section 5 of [4].

5. Multiplicities

The discussion of dominant summands in the last section gives rise to two related
questions. Which dominant summands of BQ appear as summands in BG, as Q
runs over the p-subgroups of G? And what are their multiplicities in BG?

To some extent, we have the answers to these questions. Martino and Priddy [21]
show that the multiplicity of the dominant summand of BQ corresponding to the
simple R-module S (where R = FpOut(Q)) appears with multiplicity in BG equal
to the rank of a certain matrix (W̄αβ) whose entries lie in the field k = EndR(S).
To describe the entries W̄αβ , we introduce some notation. We write Split(Q) for the
set of conjugacy classes of triples consisting of a subgroup Qα ∼= Q in G, a subgroup
Pα ≥ Qα, and a split surjection qα : Pα → Qα. Two such triples (qα : Pα → Qα)
and (qβ : Pβ → Qβ) are said to be conjugate if there is a pair of conjugations
cu : Pα → Pβ and cv : Qα → Qβ (u, v ∈ G) satisfying cu ◦ qα = qβ ◦ cv.

For each such conjugacy class, we choose a representative and a fixed isomor-
phism between Qα and Q. We set

W̄αβ =
∑
x

1⊗ (qβ ◦ cx) ∈ Fp ⊗Zˆ
p
{BP ;BP}/JP ∼= R

where x runs over a set of representatives for the orbits of Pβ on NG(Qα, Pβ) (the
set of elements of G conjugating Qα into Pβ). This gives us an n× n matrix over
R, where n = |Split(Q)|. The action of R on S gives a map R → Matm(k) where
m = dimk(S), and via this map we interpret (W̄αβ) as an mn×mn matrix over k.
The theorem of Martino and Priddy [21] is that the multiplicity of the corresponding
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dominant stable summand of BQ as a stable summand of BG is equal to the rank
of this matrix.

6. Representation theory of Ap(G,G)

A different approach to the determination of the stable summands of BG+ is
taken by Benson and Feshbach [4]. They give a construction for the simple mod-
ules for Ap(G,G) (which, as we have indicated, parametrize the isomorphism types
of indecomposable stable wedge summands of (BG+)ˆp) without determining the
dimensions (and hence the multiplicities). Their starting point is the construc-
tion of a faithful integral representation of A(G,G), which they call the coadjoint
module, whose submodule structure is easier to analyse than that of the regular
representation or its dual.

The idea is as follows. If H is any collection of subgroups of a finite group G,
closed under conjugation and intersections, then we write A(G,H) for the subring
of the (usual) Burnside ring A(G) spanned by the G-sets where the point stabilizers
are in H. For each conjugacy class of H ∈ H, taking H-fixed points gives a ring
homomorphism A(G,H)→ Z. It is well known that the sum of these maps embeds
A(G,H) as a subring of finite index in a direct product of copies of the ring Z.

Replace G by G×H, and take for H the collection of subgroups ∆G′,φ described
in Section 2. Then A(G ×H,H) may be identified with the double Burnside ring
A(G,H). Write fG′,φ for the corresponding map A(G,H)→ Z, and write M(G,H)
for the free abelian group whose basis elements consist of the fG′,φ. If ζG′′,φ′ is a
basis element of A(G,G), then composition

A(G,H)
−◦ζG′′,φ′
−−−−−−→ A(G,G)

fG′,ψ
−−−−−−→ Z

defines a map

A(G,G) ×M(G,H)→M(G,H)

making M(G,H) into an A(G,G)-module. An explicit formula for the above com-
position is given in Proposition 3.1 of [4]. In particular, if we set G = H, we
obtain the coadjoint A(G,G)-module M(G,G), which is contained in the dual of
the regular representation HomZ(A(G,G),Z) as a subgroup of finite index.

Next, we assume that G = P is a p-group and reduce modulo p. We obtain an
Ap(G,G)-module Mp(G,H), and in case G = H, this must contain every simple
module with nonzero multiplicity. The advantage over the regular representation
(or its dual) is that Mp(G,H) admits an obvious filtration by the conjugacy classes
of pairs (G′, φ) (as usual, G′ ≤ G and φ : G′ → H). We partially order these pairs
by writing (G′, φ) � (G′′, φ′) if there is a surjective homomorphism α : G′ → G′′

which extends to a (not necessarily surjective) homomorphism G′CG(G′) → G′′

and if there is an element g ∈ G such that φ = cg ◦ φ′ ◦α. If (G′, φ) � (G′′, φ′) and
(G′′, φ′) � (G′, φ), then we write (G′, φ) ∼ (G′′, φ′) and say that (G′, φ) has the
same type as (G′′, φ′). It is shown in Proposition 4.4 of [4] that if fG′′,φ′ appears with
nonzero multiplicity modulo p in the image of fG′,φ under the coadjoint action of an
element of A(G,G) then (G′, φ) � (G′′, φ′). Thus we have a filtration of Mp(G,H)
by types of pairs (G′, φ). The filtered quotients are written L̄(G,H)G′,φ. This
admits commuting actions of Ap(G,G) and FpOut(H). So if S is a simple right
FpOut(H)-module, we may form the tensor product S⊗FpOut(H) L̄(G,H). One can
define a submodule M of this tensor product in such a way that the quotient is
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either zero or a simple Ap(G,G)-module L̄(G,H, S). The modules L̄(G,H, S) form
a set of representatives for the isomorphism classes of simple Ap(G,G)-modules.
The quotient is zero precisely when the dominant summand of BH+ corresponding
to S does not appear as a summand of BG+, and when it does appear, L̄(G,H, S)
is the simple Ap(G,G)-module corresponding to this summand. In particular, its
dimension over its endomorphism ring gives the multiplicity of the summand.

For the general finite group G with Sylow p-subgroup P , we form as before
the element [G] of Ap(P, P ) and set L̄(G,H, S) = [G].L̄(P,H, S). This is again
equal to the simple [G].Ap(P, P ).[G]-module corresponding to the occurrences of
the dominant summand of BH+ corresponding to S as a summand of BG+, if
there are any, and zero otherwise.

7. Concluding remarks

We may liken the current state of the subject to the current state of the modular
representation theory of the finite symmetric groups. In this case, the reduction
modulo p of a Specht module Sλ has defined on it a symmetric bilinear form b. The
modules Sλ/Rad(b) are either zero or simple. In the latter case, they are written
Dλ. It is known exactly which cases give rise to nonzero modules Dλ in this way,
but the only formula we have for the dimension of Dλ is as the rank of a certain
matrix with entries in Fp. The decomposition numbers are not known.

In the case of the finite groups of Lie type in the defining characteristic, the
problem is similar but with the Specht modules replaced by the Weyl modules and
the bilinear form replaced by a contravariant form.

In the case of Ap(G,G), again we know the simple modules, and we have a
formula for the dimension as the rank of a certain matrix. These tell us the inde-
composable stable wedge summands of the classifying space and their multiplicities.
Is it possible that there is some kind of bilinear form, or contravariant form, or some-
thing similar on S⊗FpOut(H) L̄(G,H) whose radical is the submoduleM mentioned
at the end of the last section?

What is the precise relationship between the matrices of Martino and Priddy and
the modules of Benson and Feshbach? Is it possible to reduce the entire multiplicity
question down to questions about modular representations of finite groups which
are as comprehensible as in the abelian case? It seems that there is still much to
be done in this area.
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