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Abstract— Computing infrastructures of mobile robots
have grown in complexity in the last decades; They have
evolved from single processor systems to networks of micro-
controllers communicating through a shared bus. This has
induced additional architectural constraints that do not fit
well with the traditional polling-based sensors and actuators
control. To address this issue, we have developed ASEBA,
an event-based middleware that allows distributed control
and efficient resources exploitation of multi-microcontrollers
robots. ASEBA provides hardware modularity, better effi-
ciency, and improved scalability by embedding a lightweight
virtual machine in each microcontroller and providing an
IDE to develop and debug the whole robot reactive control
from a single place.

I. INTRODUCTION

Computing infrastructures of mobile robots have grown
in complexity in the last decades; Robots evolved from
single processor platforms, directly connected to sensors
and actuators [7] to distributed systems [11]. Mobile robots
now contain several processors that communicate through
a shared bus: Peripheral microcontrollers, close to sensors
and actuators, read sensors and set actuators in real-time
while a main processor attends to cpu-intensive tasks such
as vision and higher-level control [12].

Traditionally, robot control code reads sensors, process
the data, and sets actuators at regular intervals. This
functions well for single-processor robots, when the control
code has direct access to the hardware. Recently, this
control structure has been adapted to multi-processors
robots. In most systems, the control loop is running on the
main processor: it sequentially polls the sensors, process
the data, and sets the actuators. This sequential mode of
operation is not well suited for multi-processors robots:

• A synchronous control loop is not efficient when
several processors are connected through a bus in
a network. The bus is under load during short periods
of time, when the main processor reads the sensors
or sets the actuators, but rests idle otherwise. Also,
the main processor has to read sensors at each control
loop iteration, whether or not the state of the world
has changed. This consumes more bus bandwidth than
strictly required to implement the robot behaviour.

• The topology of the network must be predefined so
that the main processor reads and sets the data from
the correct microcontroller. This reduces flexibility:
For example, a better sensor cannot be transparently
added.
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(b) event-based architecture, multi-master bus. Any node can
initiate a data transfer.

1: Comparison of dataflow between classical and event-
based architectures.

• Modern sensors, such as cameras or laser scanners,
typically produce vectorial data, such as pictures or
arrays of distances. The amount of data generated is
orders of magnitudes larger than the more traditional
sensors such as bumpers or infraread sensors; Yet the
switch to multi-processors robots has decreased the
bandwidth between the hardware and the control code.
Communication buses used in mobile robots provide
a bandwidth several orders of magnitude smaller than
direct connections to microcontrollers. This severely
limits the performances of the robots.

We experienced the aforementioned limitations while
developing and using the s-bot mobile robot [12]. To
improve the efficiency and the scalability of low level
control, we propose a new event-based architecture called
ASEBA. It runs on robots with several microcontrollers
connected through a shared communication bus. On that
bus, asynchronous messages sent by any microcontroller,
called events, replace periodic sensors readings and actua-
tors commands from the main processor. Events consist of
an identifier and optional payload data. Any microcontroller
can communicate with any microcontroller asynchronously
by sending events (Figure 1). This requires the commu-
nication bus to be multi-master. However this feature is
relatively common; for example the CAN [14] bus we use
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2: A microcontroller in an ASEBA network.

in the robots we are currently developing provides this
feature.

The microcontrollers send outgoing events and react
to incoming events. The event emission policy depends
on external or internal conditions, including the result
of local pre-processing of sensors data. For instance, a
microcontroller driving a distance scanner can send an
event when the mean scanned distance is lower than a
given threshold. Inter-microcontroller communication is
possible: the main processor does not need to react to all
events. For example, the motor microcontroller can slightly
change trajectory in order to avoid a small obstacle. In
such case, the main processor needs not be interrupted.

The decisions of sending different outgoing events
change with robot behaviours: the events exchanged by the
microcontrollers will not be the same in a robot engaged
in obstacle avoidance than in a robot following walls.
Therefore, the event control code has to be easily modifiable
by the robot user and not only by the robot developer. In
ASEBA, this flexibility is implemented by splitting the
microcontroller code in two parts (Figure 2):

• Sensors readings (for example generating the timings
for an infraread sensor), actuators low level control
(for example the PID controller of a motor), and
the communication layer are implemented in native
code on the microcontrollers. This allows real-time,
interrupt driven handling of low level resources.

• Application specific programs that control the events
emission and reception policy run in a virtual machine
on the microcontrollers. They are compiled out of
a simple scripting language called AESL (ASEBA
Event Scripting Language). It provides the necessary
flexibility to allow non-specialist users to develop
event-based behaviours. AESL scripts do not perform
complex computations, they depend upon native
functions to do so. The overhead of the virtual machine
is thus not a problem for modern microcontrollers (See
footprints in Subsection II-D)
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3: A time oriented comparison of polling versus events-
based systems. 1) main processor processing all sensors,
2) microcontroller processing its local sensors, 3) micro-
controller processing incoming event and setting actuator.
Because processing is done locally and only useful data
is transmitted and the transfer occurs asynchronously, bus
load and reaction time are both reduced when using events.

In this paper, we present ASEBA in the perspective of a
comparison with others robots middlewares. We describe
the specificities of ASEBA in Section II and provide a
comparison with the state of the art in Section III.

II. ASEBA

ASEBA improves the modularity and efficiency of robot
middleware by distributing some of the software tasks to all
the microcontrollers and communicating only the relevant
data to the main processor. In ASEBA, microcontrollers
are not restricted to reading sensors or driving actuators,
but are also responsible for sensor data pre-processing and
some low level control. This is possible because modern
microcontrollers are powerful and often provide optimized
DSP instructions for signal processing. As they are directly
connected to the sensors and actuators, they can efficiently
use those instructions to only transmit relevant data to the
main processor.

Each microcontroller with its sensors and actuators
running ASEBA is a module emitting events and reacting
to the received events. This distribution of tasks improves
performances but also increases complexity. ASEBA copes
with that complexity by providing:

• events as the data abstraction mechanism,
• a simple and easy to learn language,
• an Integrated Development Environment (IDE) to

develop and debug the whole robot reactive control
from a single place.

A. Event-based architecture

An event-based architecture only transmits data when
relevant information is sensed (Figure 3). This reduces
the load on the bus, because less data is transmitted. For
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4: Block diagram of an ASEBA network.

example, a bumper can send events only when it touches
something that was not sensed previously. Furthermore,
when compared to polling with a fixed frequency, asyn-
chronous events also decrease the latency which improves
the robot reaction time. Figure 1 shows how dataflows differ
between classical and event-based architectures. Event-
based architectures reduce the computation complexity at
higher level by distributing the sensor pre-processing on
the microcontrollers that have direct accesses to the sensors.
Events in a multi-processor system can be compared to
interrupts in a microcontroller.

To support an event-based architecture, the communi-
cation bus must allow any node to transmit data at any
time. In the robots we are currently developing, we use
the CAN [14] bus that natively provides this feature. On
the main processor, a software switch extends this bus
over TCP/IP. Programs such as the IDE can connect to
this switch to exchange events with the rest of the robot
(Figure 4).

The development of a behaviour in an event based
architecture begins by defining all required events. Those
events abstract the details of the implementations on
each microcontroller. Event-driven programs are easy to
derive from specification documents like use case diagrams
and state machines. This close mapping improves the
maintainability of the robot software.

B. AESL Language

In ASEBA, event emission and reception policy is
described in a simple language, AESL (ASEBA Event
Scripting Language). Syntactically, AESL resembles matlab
scripts; semantically, it is a simple imperative programming
language with a single basic type (16 bits signed integers)
and arrays. It has some specific features:

• Events. Scripts can send events. Events can trigger
the execution of scripts. As events can take any
script variable as argument, they can be considered as
function calls. Such calls can be local or remote, but
they are asynchronous: the event-related script will
be executed once the current script is completed. It is
thus not suitable for recursive calls.

• When conditional. In addition to the usual if condi-
tional, AESL provides the when conditional that is true

# declare and initialize variables
var bumperLimit = 10
var bumperFilter[4] = 0, 0, 0, 0

# to execute periodically
ontimer:
# call native function meanFilter
call meanFilter(bumper, bumperFilter)
# when conditional
when bumper > bumperLimit do

# send event with variable bumper
emit ObstacleDetected bumper

end

# to execute on event SetLimit
onevent SetLimit:
# args contains the arguments of events
bumperLimit = args[0]

Listing 1: Example of AESL script. Lines beginning with
# are comments.

when the actual evaluation of the condition is true and
the last was false. For example, this can be used to
execute some script at the moment a bumper detects
an obstacle.

• Native functions. Native functions are written in C
or assembler and are well suited to do computing-
intensive tasks such as signal processing.

An example of AESL script illustrating those features is
given in Listing 1.

C. Development Environment

An event-based framework is not a common way of
implementing robots control. To facilitate the use of this
asynchronous and parallel paradigm, and to ensure an
efficient development process when using ASEBA, we
provide an Integrated Development Environment (IDE) with
the following features:

• a script editor with syntax highlighting,
• a compiler that recompiles script while typing and

visually marks errors inside the editor,
• a distributed debugger; the developer can visually

set breakpoints and control the execution state of
each microcontroller from inside the IDE while each
microcontroller runs one separate debugger core.

This IDE (Figure 5) allows seamless development and
debugging of the whole network of microcontrollers from
a single place.

D. Virtual machines

AESL scripts are compiled into bytecode by the IDE or,
if the robot runs autonomously, by the main processor. The
bytecode is then loaded to the microcontrollers through the
bus. On the microcontrollers, it runs in lightweight virtual
machines, with the following characteristics:



5: Screenshot of ASEBA IDE.

• Stack based.
• Less than 1000 lines of C, including debugging logic.
• RAM footprint: 16 bytes + user defined amount of

bytecode, variable and stack size,
• Flash footprint: less than 500 DsPIC instructions (1.5

KB flash)
• No external library requirement, excepted the imple-

mentation of bus communication.
Because virtual machines embed the debugging logic, the
user has full control of the remote execution directly from
the IDE. If a script produces an exception, such as a division
by zero, the error is broadcasted on the bus and the state of
the faulty virtual machine is reset. Bytecode is not deleted
and the virtual machine is ready to continue operation.

III. RELATED WORK

A. Comparison criteria

Table I compares ASEBA with other robots control
architectures, using the following criteria:

• Modularity: Is the architecture built of modules:
– full: each sensor and actuator, or each microcon-

troller, is an exchangeable module. The modu-
larity is present both at the software and at the
hardware level.

– limited: modules exist in the system, but they are
limited to main processors and do not extend to
the microcontrollers. In this class, modularity is
essentially software.

– none: all control is done at a single place.
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CLARAty [13] none n/a med. ext. open open
Player [5] none n/a large ext. open open
Urbi [2] none n/a med. no open open

OrIN [10] limited yes large ext. open open
Miro [15] limited yes large ext. open open
RT Middlew. [1] limited yes large ext. open open
Orocos [3] limited yes medium ext. open open
Orca [8] limited yes large ext. open open
Microsoft RS [9] limited yes large yes closed closed

OpenR [4] yes no small n/a open closed
ASEBA yes yes small yes open open

I: Comparison of the features of several robots control
middlewares. A detailed description of the comparison
criteria is given in Subsection III-A.

• Event-based: Can modules exchange events asyn-
chronously.

• Footprint: How much ressource does the implementa-
tion requires:

– large: an operating system with TCP/IP capabili-
ties, memory in the order of megabytes.

– medium (med.): a small processor board, no op-
erating system, memory in the order of hundreds
of kilobytes.

– small: a microcontroller, memory in the order of
kilobytes.

• IDE : Does the architecture comes with an Integrated
Development Environment. Ext. means that external
ones can work with the architecture.

• Specification: Is the specification open or closed.
• Implementation: Is the implementation open or closed.
We only consider architectures that abstract differents

sensors and actuators to present them under a unified
interface.

B. Classes of architectures

From our comparison (Table I), we classify robotics
middlewares in three main groups. Our analysis consider
the use of those middlewares in small mobile robots, in the
order of one kilogramme and one cubic decimeter. In such
robots, the computational power is limited and standard
PC laptops cannot be used.

The first group consists of non modular architectures.
They are essentially software libraries, but not components,
that wrap accesses to physical devices. We review three
noteworthy frameworks in this category:

• CLARAty [13] is a library to access robot sensors
and actuators and provides additional features useful
for robot control, such as a vision library.

• Player [5] is a robot device server that provides
network transparent robot control. It provides a sensors
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and actuators abstraction that allows client softwares
to control the robot.

• Urbi [2] provides the same features as Player. In
addition, it defines a scripting language to access
sensors and actuators. Script developers can attach
temporal profiles to variables.

The second group consists of modular architectures at
software level, through software components. We consider
this modularity to be limited, because the connections of
sensors and actuators with components are not dynamic.
A new sensor cannot be transparently added. The core of
such architectures are typically TCP/IP-based interprocess
communication services, such as CORBA [16] or HTTP.
Several well developed frameworks fall in this category:

• OrIN [10] is based on HTTP and other web technolo-
gies and targets industrial robots.

• Miro [15] and RT Middleware [1] are based on
CORBA.

• Orca [8] uses Ice [6], which is lighter than CORBA.
• Orocos [3] has its own component architecture, lighter

than CORBA. Orocos also provides support to do
Bayesian filtering, kinematics and dynamics computa-
tion.

• Microsoft Robotics Studio [9] uses HTTP to send
events between components. Components run on the
.NET framework with a Concurrency and Coordina-
tion Runtime (CCR).

While such frameworks are well suited to build higher-level
robots controllers and to do complex computations such
as path-planning, Bayesian processing, and reasoning; they
are not modular at the level of physical devices because
they are too heavy to run on microcontrollers.

The third group consists of architectures that are fully
modular, both at software and hardware level. Such
architectures provide physical modules that can be freely
interchanged. Each module can describe itself and the
services it provides. The most noteworthy example is
OpenR [4] from Sony, used in the Aibo pet robot. In OpenR,
modules can even describe their physical properties, such
as their masses or their possible attach points on the robot.
However, since Sony closed its robotics department, OpenR
seems unmaintained. ASEBA falls in the same category as
OpenR. Simpler than the latter, it provides full hardware
modularity: each module can be added or removed at any
time. Furthermore, because it is event driven, application
can be designed to scale with additional modules. For
instance, a faster distance sensor can be added to an existing
robot and will decrease the reaction latency.

C. ASEBA

Compared to most robots middlewares, ASEBA has the
following advantages:

• Distributed, event-based: small bus load, fast reaction
time. By pre-processing sensor data directly on the
microcontrollers, ASEBA reduces bus and main proces-
sor load. By sending events asynchronously, ASEBA
decreases reaction time.

• Simple scripting language and user friendly develop-
ment tools. Sensors and actuators are seen as normal
script variables. Furthermore, once used to it, event-
driven programs are easy to derive from specification
documents.

• For selected modules, robustness to failure. For
example, in an obstacle avoidance scenario where a
long range distance sensor provides early reaction and
short range distance sensors act as virtual bumpers; if
the long range sensor fails, the robot can still avoid
obstacles with the short range sensors but in a less
intelligent way. In a polling architecture, the robot
would be blocked or get erroneous data while trying
to read the faulty sensor.

The cost of those features is more software layers that
require more powerful microcontrollers and a multi-master
shared communication bus. Yet we think that the advantages
surpass the drawbacks: the overhead of code due to the
virtual machine is reasonable and multi-master buses are
now available to small robots.

The source code repository and bug tracker of ASEBA
are available at http://gna.org/projects/aseba.
The current implementation is working with the Enki sim-
ulator (http://gna.org/projects/enki). Future
work include the development of behaviours and the port
to the robots we are currently developing, in particular to
the successor of the s-bot [12].

IV. CONCLUSION

ASEBA improves the modularity and efficiency of robot
middleware by distributing some of the software tasks to all
the microcontrollers and communicating only the relevant
data to the main processor. It brings the modularity and
dynamics of CORBA-based architectures into the microcon-
trollers. It achieves that by embedding a lightweight virtual
machine in each microcontroller and providing an IDE to
develop and debug the whole robot reactive control from
a single place. The resulting architecture has hardware
modularity, better efficiency, and improved scalability.
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