
Ontology Inconsistency Handling:
Ranking and Rewriting Axioms

Sik Chun (Joey) Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vasconcelos

Department of Computing Science
University of Aberdeen, AB24 3UE, UK

{slam, jpan, sleeman, wvasconc }@csd.abdn.ac.uk

Abstract. Ontology reasoners are able to detect inconsistencies in ontologies;
however, there is relatively limited support for resolving the problems. Existing
approaches either pinpoint axioms which are responsible for inconsistencies or
calculate maximal consistent/coherent sub-ontologies of inconsistent/incoherent
ontologies. These approaches simply remove problematic axioms from the on-
tology, the support for correcting the axioms is still limited. In this paper, we
identify two typical scenarios of inconsistent/incoherent ontologies and extend
existing approaches by proposing some methods for ranking and rewriting ax-
ioms in ontologies, so as to provide users with guidelines on how to achieve a
consistent/coherent ontology. We implement these methods in a prototype sys-
tem, aiming at enabling non-expert users to resolve inconsistencies.

1 Introduction

Ontologies [15] play an important role in the Semantic Web [1]. The advent of the Web
makes an increasing number of ontologies widely available for reuse. After adding new
axioms into an existing ontology, the user may find that the revised ontology becomes
inconsistent. While reasoners are able to detect inconsistencies in ontologies, there is
relatively limited support for resolving the problems. It should be noted that there are
two kinds of inconsistencies in ontologies. An ontology is inconsistent iff it has no
model; an ontology is incoherent iff it contains an unsatisfiable named concept. For
now we focus on incoherent ontologies which are represented in the description logic
ALC [14]. Our approach, however, can be trivially extended to more expressive DLs
and inconsistent ontologies.

There are two existing approaches to deal with inconsistent ontologies: (1) to pin-
point the so called Minimal Unsatisfiability Preserving Sub-ontologies (MUPSs) [13],
[7], which are sets of axioms responsible for an unsatisfiable concept, and (2) to calcu-
late Maximally Concept-Satisfiable Sub-ontologies (MCSSs) [10], in which satisfiable
sub-ontologies are obtained by removing just enough axioms to eliminate all errors.
These two approaches are very similar because they identify subsets of an ontology’s
axioms which are possible sources of the problems. In the case of MUPSs, the sets of
problematic axioms are identified directly; in the case of MCSSs it is the axioms ex-
cluded from an MCSS which are problematic. The later approach is believed to have
better scalability, as a tableau-like algorithm is used to identify MCSSs; the former de-
velops pinpointing algorithms as additional functionality to an external DL reasoner.

Both approaches identify sets of problematic axioms, and then leave it up to the user
to modify the errors or provide the user with a set of maximal coherent ontologies.
However, there is no further support for selecting which problematic axioms to remove
or modify, and in the case of modification, no support is provided to assist with the
rewriting of the axioms.

What is needed are: (1) methods to rank potentially problematic axioms to give
the user guidance on which ones should be removed or modified, and (2) methods to
rewrite the problematic axioms. We now illustrate two typical scenarios of inconsis-
tent/incoherent ontologies to illustrate the need for these methods.

1. inconsistencies as errors– People may find it difficult to understand the logical
meaning of the underlying description logic, and potential inferences in ontologies;
hence people may fail to formulate axioms which are logically correct, or may
specify contradictory statements. For example,
(a) Lion v ∃ eats (Sheep u Cow)
(b) Sheep v ¬ Cow
(c) Sheep v Animal
(d) Cow v Animal
Either axiom (a) or (b) should be removed from the ontology, however, we believe
that sibling concepts are usually disjoint with each other, therefore, axiom (a) is
suggested to be removed or rewritten. This case shows the need for ranking axioms
in an ontology in order to assist the user in choosing which axioms to remove or
rewrite.

2. inconsistencies as knowledge overwrite– a typical example is the bird ontology in
which ‘birds can fly’ (Bird v CanFly). One may extend this ontology by stating
‘penguins are birds which cannot fly’ (Penguin v Bird, Penguin v ¬ CanFly).
This would lead to an incoherent ontology, because it implies penguins can both
fly and not fly. Though removing one of the axioms can resolve the problem, this
approach is not reliable, because the removal may cause significant information loss
in the ontology, hence it would be better to rewrite one of the axioms. Therefore, it
is necessary to give the user guidance on how to rewrite axioms in order to resolve
the contradiction. For instance, the default axiomBird v CanFly can be rewritten
such that all birds but penguin can fly, i.e.Bird u ¬ Penguin v CanFly.

In this paper, we first introduce the existing approach to finding Maximal Concept-
Satisfiable Sub-ontologies (MCSSs), in which axioms causing the inconsistency are
excluded. We go a step further by introducing our adapted and novel techniques to indi-
cate the likely correctness of axioms in an ontology. To do this, we propose knowledge
heuristics based on: (i) ontology structure, and (ii) patterns of usage of the ontology,
which will be described in Section 3. Hence we enable users to select the MCSS which
is most likely to be correct. The next step is to correct the axioms which are excluded
from MCSSs, rather than to directly remove them from the ontology. We provide change
operations for the users to rewrite the excluded axioms: the concepts in such axioms can
be generalised or specialised (see Section 4). The user will be presented with a number
of rewriting options. Each possible rewrite means the loss of some entailments from the
original ontology. We want to ensure that the modified ontology can be as “close” as
possible to the original ontology (based on the Principle of Minimal Change [8]). We

achieve this by sorting the rewriting suggestions returned to the user, to give preference
to the most specific generalisations (or the most general specialisations).

We will show, using examples, how our method is applicable in ontologies with
change annotations, and also applications which reuse/integrate ontologies, as well as
ontology evolution. This work provides an integrated framework for both ranking and
rewriting problematic axioms. The framework has been implemented (see Figure 1A),
in the tool ReTAX++ [9]. With our approach, we enable even users who are not experts
in ontology engineering to resolve inconsistencies.

This paper is organised as follows: Section 2 describes the necessary formal defini-
tions of an ontology etc. In Section 3, we present methods for selecting a sub-ontology
by ranking the axioms. Strategies for rewriting axioms are presented in Section 4. We
present the related work and conclusion in Sections 5 and 6.

2 Preliminaries

2.1 Ontology Model

We will describe our proposed framework in terms of the underlying OWL ontology
model, which is represented in the description logicALC [14]. LetNC andNR be a set
of concept names and relation names respectively; an ontologyO consists of a set of
terminologyaxiomsT (TBox) and assertional axiomsA (ABox). An axiom inT is of
the formC v D whereC andD are arbitrary concepts; an axiom inA is of the form
a : C whereC is a concept anda is an individual name. A concept is defined by the
following syntactic rules, whereCN is a concept name,R is a relation,C1 andC2 are
concept expressions:

> |⊥ | CN |¬C1 |C1 u C2 |C1 t C2 |∃R.C1 |∀R.C1

An interpretationI = (∆I , ·I) consists of a non-empty set of individuals and the
interpretation function(·I) maps each concept nameCN ∈ NC to a setCNI ⊆ ∆I

and each relation nameRN ∈ NR to a binary relationRNI ⊆ ∆I × ∆I . Given aT
and a concept nameA, T is A-satisfiableiff there is a modelI of T such thatAI 6= ∅.
T is concept-satisfiableiff it is A-satisfiable for every concept nameA occurring inT .
T is unfoldableiff the left-hand side of everyα ∈ T contains a concept nameA, there
are no otherα’s with A on the left-hand side, and the right-hand side ofα contains no
direct or indirect references toA [10].

2.2 Finding Maximally Concept-Satisfiable Sub-ontologies

In this subsection, we revisit the existing approach to finding the maximally concept-
satisfiable sub-terminologies of an unfoldable terminology. Meyer et al. [10] provide a
specialised tableau-like algorithm for finding the maximallyA-satisfiable subsets (A-
MSSs) of an unfoldable terminologyT represented inALC, for any concept nameA
occurring inT . We then describe how to extend their work in the subsequent sections.
Example
Table 1 shows an example ontologyO containing a set of terminology axiomsT , that

we will use for the rest of this paper. The ontology contains two unsatisfiable concepts,
PhDStudent andMScStudent. We will use this example to explain how to achieve a
coherent ontology.

Table 1.An ontology exampleO
α1. PGCourse v ¬ UGCourse α7. PhDStudent v PGStudent
α2. UGCourse v Course α8. MScStudent v PGStudent
α3. PGCourse v Course α9. MPhilStudent v ∀ take. Course
α4. PGStudent v Student α10. MScStudent v ∀ take.(PGCourse u Exam)
α5. UGStudent v Student α11. PhDStudent v ∀ take.PGCourse
α6. MPhilStudent v PGStudent α12. Student v ∃ register.Dept u ∃ take.UGCourse

α13. PGStudent v ∃ take.(¬ Exam)

Maximally A-satisfiable subsets (A-MSSs)
A subsetT ′ of T is anA-MSS of T iff it is A-satisfiable, and everyT ′′ such that
T ′ ⊂ T ′′ ⊆ T is A-unsatisfiable. Intuitively, a set ofA-MSS is obtained by exclud-
ing axioms involved in the clash. We abbreviate the set of allA-MSSs ofA in T by
mss(A). From Table 1, theA-MSSs of the unsatisfiable concepts in our example are:
mss(PhDStudent) = {T \ {α1}, T \ {α4}, T \ {α7}, T \ {α11}, T \ {α12}}
mss(MScStudent) = {T \ {α8}, T \ {α10}, T \ {α13, α4}, T \ {α1, α13}, T \ {α12, α13}}

Tagging Axioms and Concept Pinpointing
We employ the extension of the tableau algorithm which has been developed in [6].
This allows us to capture the parts of axioms responsible for a clash. The concepts or
relations in axioms, which are relevant to the clash, aretaggedand denoted astag(C).
For example, given a set of axioms:{A∗ v B∗u D∗u E, B∗ v F ∗u G, F ∗ v ¬D∗},
the concepts with∗ are relevant to the clash ofA. For details of tagging axioms, see [6].

A clash happens when an individual belongs to a concept and to its complement.
It is useful to record which concept and its complement is causing the clash. To do
this we employ theconcept pinpointingtechnique from [13]. This calculates a set of
generalised incoherence-preserving terminologies of a TBoxT , which is denoted as
git(T). Each member of this set is a generalised version of the terminologyT , which
is generalised as much as possible, while still preserving incoherence. The general-
isation works by making all but one axiom trivial (e.g. to makeα5 trivial: UGStu-
dent v >), and the remaining non-trivial axiom is generalised just to the point where
any further generalisation would remove the clash (See [13] for details). In our ex-
ample, ignoring trivial axioms,git(T) = {{PhDStudent v ∀ take.UGCourse u ∃
take.¬PGCourse}, {MScStudent v ∀ take.UGCourse u ∃take.¬PGCourse },
{MScStudent v ∀take.Exam u ∃take.¬Exam} }. The left hand side of each ax-
iom in agit is a concept nameA which is unsatisfiable, and the right hand side gives
the conceptC and its complement¬C which cause the clash. From this, we can de-
fine conflict(A) as the set of conceptsC, . . . involved in the conflict of some concept
A. If C ∈ conflict(A), this would mean thatA v C u ¬C. Returning to our ex-
ample again,conflict(PhDStudent) is {∀take.PGCourse}, conflict(MScStudent)
is {∀take.PGCourse, ∀take.Exam}.

Maximally Concept-Satisfiable Sub-ontologies (MCSSs)
The algorithm for findingA-MSSs is then used to find MCSSs. A subsetT ′ of T is
an MCSS ofT iff it is concept-satisfiable, and everyT ′′ such thatT ′ ⊂ T ′′ ⊆ T is
concept-unsatisfiable. We abbreviate the set of all the MCSS ofT by MCSS(T). In
our example, the MCSSs will be the following:

MCSS(T) = {T \ {α1, α13}, T \ {α1, α10}, T \ {α1, α8}, · · · }
Let M be a member ofMCSS(T). The set of axioms being excluded inM is

denoted asEx(M). For exampleEx(T \ {α1, α13}) = {α1, α13}. Note that the size
of the exclusion set is the number of axioms being excluded in order to make a consis-
tent sub-ontology. One may prefer to exclude the least possible number of axioms in
order to resolve the problem with minimal side effects. In our running example, some
sub-ontologies, such asT \ {α1, α13}, exclude the minimal number of axioms (two),
however, it does not necessarily follow that such sub-ontologies are the best results for
users. For example, though excludingα1 andα13 requires a minimal change, a user
may strongly believe that the disjointness ofUGCourse and PGCourse should be
kept (α1). Besides the size of the exclusion sets of the members ofMCSS(T), we also
propose knowledge heuristics to analyse the structure and usage of an ontology, and
suggest to the user which axioms to select for removal or rewriting.

3 Confidence of Axioms

In an inconsistent/incoherent ontology, some axioms are likely to be correct, while some
are likely to be wrong. For example, axioms which are frequently updated are likely to
be vulnerable to further modifications, as the users may have been making experimental
changes. Theconfidencevalue indicates how confident we are of the correctness of the
axioms in an ontology; we want to exclude the axioms with the least confidence and
preserve the ones with the highest confidence. We will describe how to calculate the
confidence of individual axioms in detail below, but first we look at how this confidence
measure can be used to select an MCSS.

Table 2.Calculating the confidence of a MCSS

1. Given:M∈ MCSS(T),
2. and a set ofAj-MSSs forj = 1 . . . n, where eachAj is an unsatisfiable concept
3. for eachα ∈ Ex(M)
4. for eachmss(Aj), for j = 1 . . . n, where eachAj is an unsatisfiable concept
5. for eachM′ ∈ mss(Aj)
6. if α /∈M′

7. for eachC ∈ conflict(Aj)
8. conf += wpath · conf path(α, Aj , C);
9. end for
10. break;
11. end if
12. end for
13. end for
14. conf + = wsib · conf sib(α) + wdisj · conf disj(α) + wusage · conf usage(α);
15. end for
16. conf += wsize · |Ex(M)|;
17. returnconf ;

3.1 The Confidence of an MCSS

Recall thatMCSS(T) is a set of maximally satisfiable sub-ontologies of the incoher-
ent ontologyT . This section describes our approach to selecting the best sub-ontology
from MCSS(T) to use. We do this by calculating the confidence of each exclusion
set. The algorithm for calculating the confidence of an exclusion set is given in Table 2;
lines 3-13 loop through each axiomα in the exclusion set, to find the concepts which
clash as a result ofα, and to calculate the confidence of the paths on which the clash
occurs (conf path is defined in detail in section 3.3). In line 14 the above “confidence of
paths” is summed with the confidence value obtained by using three confidence heuris-
tics; these are summed for each axiom in the exclusion set. We will outline these three
heuristics for evaluating the confidence of axioms in the next section, and it is feasible
that more may be added in the future. From these, a single overall confidence for an ax-
iom may be defined as an aggregation of the heuristics. We use an aggregation function
to combine the confidence value of all individual axioms and the size of the set, this
aggregation function could be a simple summation, or could assign a weightwi to each
heuristici, reflecting its importance, wherei ∈ {path, sib, disj, usage}. In line 16 the
size of the exclusion set is also considered because smaller sets are generally preferred,
as fewer axioms will need to be excluded. The relative importance of this consideration
is captured bywsize. Finally the MCSS with the lowest confidence for its exclusion set
is recommended to the user.

3.2 Definition of the Confidence of Axioms

We can represent the confidence of an axiom by means of the following function:

Definition 1 Letα be an axiom in an ontologyO, the confidence ofα is a function

confidence : α → [−1, 1]

The confidence function provides a ranking over the axioms, and thus allows us
to indicate the correctness of axioms in an orderly way. The confidence of all axioms
is presumed to be 0 initially; positive confidence values which are close to 1 indicate
axioms which are likely to be “correct”, and which should be preserved; negative confi-
dence values which are close to−1 indicate axioms which are likely to be “incorrect”,
and which should be removed from the ontology. The knowledge heuristics below allow
us to evaluate the confidence of axioms through an analysis of (i) the ontology structure
and (ii) the patterns of usage in the ontology.

3.3 Knowledge of Ontology Structure

Knowledge of the ontology structure can help us to evaluate the confidence we have in
an axiom. We describe here three heuristics which can be used to evaluate the confi-
dence of axioms based on the ontology structure; we call thesestructural heuristics.

(1) Syntactic Relevance Measurement.

Chopraet al. [2] propose that the relevance between two formulas in a belief set
is dependent on the syntactical structure of the formulas. That means two formulas are
relevant to each other if they share an atom. We translate this idea to ontologies by
saying that concepts are relevant to each other if they appear on the left hand side and
right hand side of the same axiom. Furthermore, we view this relevance as transitive, to
a degree, so that two concepts which are connected by a long chain of axioms are less
relevant than those connected by a short chain.

Definition 2 Given two concept names or relation namese1 and e2 in T , they are
directly relevant, denoted as rel(e1, e2), if and only if there is an axiomα ∈ T such
thate1 appears on the left hand side ofα, e2 appears on the right hand side.

Definition 3 Given two conceptsC1 andC2 in T , paths(C1, C2) is defined as the set
of all paths connectingC1 and C2. Each path consists of a set of axioms connecting
C1 and C2, such that rel(C1, C3), · · · , rel(Cn, C2). The strength of paths(C1, C2) is
defined as

strength(C1, C2) =
∑

pathi∈paths(C1,C2)

(1/|pathi|)

Where|pathi| is the number of axioms involved inpathi.

Definition 4 Given an unsatisfiable conceptA andαin T , and aC ∈ conflict(A), this
means thatA v C andA v ¬C. We compare the relative strength ofpaths(A,C) with
paths(A,¬C). Path confidence is defined as

conf path(α,A, C) = −strength(A,¬C)/(strength(A,C) + strength(A,¬C))

Note that in this situation we are dealing with conflicting axioms, this means that
at least one will definitely need to be removed. For this reason we are calculating how
likely each one is to be removed. If removal is extremely unlikely, then the confidence
value should be close to zero, but if removal is likely then the confidence value must be
negative. This explains why the result of the above calculation should lie in the range
[−1, 0]. Roughly speaking, the confidence we have in the subsumption ofA by C is
given by the confidence ofpaths(A,C) compared topaths(A,¬C). For example, the
conceptPhDStudent is a subconcept of both∀take.PGCourse and its complement.
paths(PhDStudent, ∀take.PGCourse) ={{α11}},
paths(PhDStudent, ¬∀take.PGCourse) = {{α4, α7, α1, α12}},
conf path(α11,PhDStudent, ∀take.PGCourse) = −1/4

1+1/4 = −1/5;

conf path(α4,PhDStudent, ¬ ∀take.PGCourse) = −1
1+1/4 = −4/5.

(2) Comparison between Sibling Concepts.
This heuristic analyses the hierarchical structure of an ontology in two ways: (i) the

relationships which concepts participate in. Since all the siblings in the concept hi-
erarchy must be at the same level of generality [11], they usually participate in similar
relationships. (ii) disjointness between sibling concepts. All the direct siblings in a well-
defined subsumption hierarchy should be disjoint [3]. The confidence of the axioms of
a concept can be evaluated by comparing with the concept’s siblings. If an axiomα
relates a conceptC to a relationR, and its siblings are also related toR, then its confi-
dence value will be higher.

Definition 5 Let α ∈ T be an axiom connecting a conceptC to a relationR. The
siblings ofC are denoted bysiblings(C); the siblings which are directly relevant toR
are denoted bysiblingsR(C), i.e.siblingsR(C) = {s ∈ siblings(C) ∧ rel(s,R)}. The
confidence ofα is defined as

conf sib(α) =
|siblingsR(C)|
|siblings(C)|

The result of the above confidence calculation will be in the range[0, 1]; higher
values represent axioms that are more likely to be preserved. In our running example,
PhDStudent has siblingsMScStudent andMPhilStudent which are directly relevant
to the relationtake, therefore,conf sib(α11) = 1.

Furthermore, in a well-modeled ontology the direct siblings, i.e. children of a com-
mon parent in the subsumption hierarchy should be disjoint [3].

Definition 6 Let an axiomα be of formC1 v ¬C2 in T , whereC2 ∈ siblings(C1);
the siblings which are disjoint withC1 are denoted bysiblingsdisj (C1). The confidence
of α is defined as

conf disj(α) = |siblingsdisj (C1)|/|siblings(C1)|

Therefore, in our running example, the confidence ofα1 is 1, becauseUGCourse
is disjoint with its siblingPGCourse.

3.4 Usage Heuristics

Different ontology engineers may have different views on which coherent sub-ontology
should be selected. These views are affected by commonsense knowledge, personal
preferences, subjective opinions on the domain, etc. To anticipate the ontology user’s
perspective on an ontology, we propose a heuristic which can be used to evaluate the
confidence of axioms based on knowledge of the history of a user’s interaction with the
ontology and the reliability of the information source; we call theseusage heuristics.
Firstly, we believe that an axiom’s likelihood of being modified in the future depends on
the frequency with which it has been modified in the past. We therefore gather the his-
torical knowledge by tracking the users’ interactions with the ontology in a log file. All
activities the users have performed are recorded in the usage log. Secondly, the effect
of the new information is dependent on the reliability of sources, we therefore allow
the user to input reliability values, which are−1, 0, or +1, on axioms when modifica-
tions are made. Here we assume the users rate the reliability of the new information.
The “reliable” information has rating+1; the “unreliable” information has rating−1; 0
indicates unrated information.

Definition 7 Let α be an axiom, the reliability rating of the information source of the
axiom is defined as

r : α → {−1, 0,+1}

The interplay between time, confidence and reliability provides the following three
mutually exclusive cases:

– Case 1: the information is reliable, r = +1
In this case it is assumed that newer information (newly added or modified axioms)
generally reflects a more accurate view of the domain (The Principle of Primacy of
New Information [4]). That means the axioms which are newly added or modified
are usually more accurate than those provided earlier and have higher confidence.

– Case 2: the information is unreliable, r = −1
In this case the effect of recency is the inverse of the above. The new information
can be rejected, because the new information is obtained from unreliable and un-
trustworthy sources. That means the newly added axioms have lower confidence,
and older axioms, having stood the test of time, have higher confidence.

– Case 3: the information is unknown, r = 0
If the reliability of the information source is unknown, then the confidence of ax-
ioms is dependent on the frequency of modifications, rather than its reliability. Ax-
ioms which are frequently updated are likely to be vulnerable to further modifi-
cations, as the users may have been making experimental changes. Therefore, the
confidence of an axiom is inversely proportional to the frequency of its modifica-
tions.

Definition 8 Let t be the length of time since the last modification on an axiomα, r be
the reliability value of the information provided by users, andmodify(α) be the number
of modifications on the axiomα, ex be the exponential function. The confidence of the
axiom is defined as

conf usage(α) =





1
modify(α)·et+1 − 1 if r = +1,

e−t · (1
modify(α)+1 − 1) if r = −1,

1
modify(α)+1 − 1 if r = 0.

The result of the above confidence will be in the range[−1, 0].

3.5 Applications

We now describe some applications of our heuristics. Ontology editors, such as Protéǵe,
KAON etc. log changes and offer users support to annotate these changes, and the
changes are logged. Particularly, KAON [5] supports users to rate the importance of
ontology elements explicitly. Such information is especially useful in our usage heuris-
tic, as we can make use of the annotations and ratings to select appropriate axiom(s)
for modification. In addition, the interplay between time, confidence and reliability are
applicable in different scenarios. Firstly, an ontology which describes a certain domain
of interest inevitably evolves in the course of its lifetime. Changes in an ontology may
be made when the domain of interest changes, the user requirements change, or new
information is available for extension. In such cases, the newly added axioms usually
have higher reliability, and hence we have higher confidence in them (See case 1 in
Definition 8). Secondly, in collaborative ontology building scenarios, it is reasonable
to assign higher confidence to the local axioms over axioms from imported ontologies.
With theowl:imports construct, we cannot import a certain interesting part of ontology

and leave out the irrelevant part. Therefore, the imported axioms which are contradic-
tory to the existing ones have low reliability and, hence, we have lower confidence in
them (See case 2 in Definition 8).

4 Strategies for Rewriting Axioms

After selecting a coherent sub-ontology based on the confidence we have in the axioms,
ontology users would like to revise the excluded axioms and put them back into the
sub-ontology, rather than to directly remove them from the ontology. To do this, we
propose strategies for rewriting axioms in this section, a set of candidate changes is
presented to the user, in which the concepts can be either generalised or specialised. We
want to achieve the minimal impact of changes; we achieve this by sorting the rewriting
suggestions returned to the user, to give preference to the most specific generalisations
(or the most general specialisations).

4.1 Generalisation and specialisation

Our strategy for rewriting is to weaken excluded axioms so that the contradiction is
removed, however, this can be done in many ways. It is impractical for a system to
list all possibilities exhaustively to users. We can weaken an axiom either by making
its right hand side more general, or by making its left hand side more specific. We
will give some algorithms forgeneralisingandspecialisingconcepts. In the running
example, assume a MCSS,T \ {α12, α13}, is selected, and we have to rewrite the
excluded axioms and put them back into the MCSS. For each axiom in the exclusion
set, we have to know which concepts it makes unsatisfiable. In this case we knowα12

causesPhDStudent to be unsatisfiable, because it is excluded from one of the members
of mss(PhDStudent); conflict(PhDStudent) is {∀ take.PGCourse} (cf. line 3-9 in
Table 3). The next step is to generalise and specialise the concepts inα12 by the function
weaker andstronger respectively. For brevity Table 3 omits some stages: In order to
find the minimal impactchanges, the sets of concepts are sorted w.r.t. subsumption,
the most specific one in weaker concepts comes first; the most general one in stronger
concepts comes first. Axioms must then be constructed from the sorted concepts, i.e. to
put the weakened conceptswi back into the formD v wi and the general onessi back
into the formsi v E. Finally a list of sorted candidate changes are returned to the user.

Because of the monotonicity of OWL-DL, weakening axioms in an ontology will
not add a new entailment, and so will not cause other concepts in the ontology to be
unsatisfiable.

In the following we give an overview of how we generalise and specialise concepts;
these methods will then be formalised in our algorithms below.

Generalisationinvolves replacing the conflicting conceptE with a weaker concept
expressionE′ (i.e. less specificE v E′). This can be done by (1) replacingE with
its one of its superconcepts, (2) replacing its relation filler with weaker concepts, (3)
changing a conjunct to a disjunct, or (4) specialising negated concepts (see Table 4).

Specialisationinvolves replacing the conflicting conceptD with a stronger concept
expressionD′ (i.e. more specificD′ v D). This can be done by (1) replacingD with

Table 3.Rewriting an axiom algorithm

1. Given:M∈ MCSS(T), anα ∈ Ex(M), whereα is of formD v E
2. and a set ofAj-MSSs forj = 1 . . . n, where eachAj is an unsatisfiable concept

3. C := ∅
4. for eachmss(Aj), for j = 1 . . . n, where eachAj is an unsatisfiable concept
5. for eachM′ ∈ mss(Aj)
6. if α /∈M′

7. C := C∪ conflict(Aj); break; //Aj has conflict withC
8. end if
9. end for
10. end for
11.wset := weaker(E, T , Aj , C) ; //a set of generalisation changes
12.sset := stronger(D, T , Aj , C); //a set of specialisation changes
13. returnwset, sset; //return a set of candidate changes

one of its subconcepts, (2) adding a conjunct (e.g. exception of subsumption), (3) re-
placing its relation filler with stronger concepts, (4) changing a disjunct to a conjunct,
or (5) generalising negated concepts (see Table 5).

Table 4.Weaker concepts algorithm

1. Given:A, C, andE in T
2.Function:weaker(E, T , A,C)
3. E := {};
4. if tag(E), thenE := E ∪superconcepts(E);
5. if E is of form∀R.F , andtag(R), then∀F ′ ∈ weaker(F, T , A,C), E := E ∪{∀R.F ′};
6. if E is of form∃R.F , andtag(R), then∀F ′ ∈ weaker(F, T , A,C), E := E ∪{∃R.F ′};
7. if E is of formF u G, and (tag(F) or tag(G)), then begin
8. E := E ∪{F t G};
9. if tag(F), then∀F ′ ∈ weaker(F, T , A, C), E := E ∪{F ′ u G};
10. if tag(G), then∀G′ ∈ weaker(G, T , A, C), E := E ∪{G′ u F}.
11. end if
12. if E is of form¬F andtag(F), then∀F ′ ∈ stronger(F, T , A, C), E := E ∪{F ′}
13. for eachEi ∈ E
14. for eachCj ∈ C
15. if E v ⊥ andEi v ⊥, thenE := E \{Ei};
16. else if (E v Cj) and (Ei v Cj), thenE := E \{Ei};
17. else if (E v ¬Cj) and (Ei v ¬Cj), thenE := E \{Ei};
18. end for
19. end for
20.returnE;

We now show how Table 4 can be used to generate weaker concepts. The axiomα12:
Student v ∃ register.Dept u ∃ take∗.UGCourse∗ is chosen for generalisation. The
input concept is of formF u G, so we useline 7 in Table 4. Firstly, according toline
8, the intersection restriction can be changed to be union. This givesop1 below. Next
we useline 10, because∃ take∗.UGCourse∗ is tagged. We now have a nested call to
weaker(∃ take∗.UGCourse∗, . . .), and in the nesting we firstly useline 4; its weaker
concept is{>}. This givesop2. Next we useline 6. As take is tagged, the weaker
concepts of its relation filler will be retrieved in a further nested call. In this innermost

Table 5.Stronger concepts algorithm

1. Given: Given:A, C, andD in T
2. Function:stronger(D, T , A,C)
3. if (D == A) return null;
4. D := {};
5. if tag(D), thenD := D ∪subconcepts(D);
6. if tag(D) andA v D, then
7. ∀G ∈ superconcpet(A) ∪ ({A} \ (superconcept(D) \ {D})), D := D ∪{D u ¬G};
8. if D is of form∀R.F , andtag(R), then∀F ′ ∈ stronger(F, T , A,C), D := D ∪{∀R.F ′};
9. if D is of form∃R.F , andtag(R), then∀F ′ ∈ stronger(F, T , A,C), D := D ∪{∃R.F ′};
10. if D is of formF t G, and (tag(F) or tag(G)), then begin
11. D := D ∪{F u G};
12. if tag(F), then∀F ′ ∈ stronger(F, T , A, C), D := D ∪{F ′ t G};
13. if tag(G), then∀G′ ∈ stronger(G, T , A, C), D := D ∪{G′ t F}.
14. end if
15. if D is of form¬F andtag(F), then∀F ′ ∈ weaker(F, T , A, C), D := D ∪{F ′}
16. for eachDi ∈ D
17. if A v Di, thenD := D \{Di};
18. end for
19. returnD;

nesting we note thatUGCourse is tagged and so we useline 4; its weaker concepts are
{>, Course}. This givesop3 andop4. Finally, there are four weaker concepts:op1: ∃
register.Dept t ∃ take.UGCourse; op2: ∃ register.Dept; op3: ∃ register.Dept u ∃ take.>;
andop4: ∃ register.Dept u ∃ take.Course. The four candidate changes provided for the
axiomα12 are shown in Figure 1C.

4.2 Application to examples

Addressing the two typical scenarios in Section 1, we are now able to provide support
for rewriting the axioms. In the first case, assumeLion v ∃ eats (Sheep u Cow) is
chosen to be rewritten, the relation filler can be generalised to beSheep t Cow (see
Table 4). Therefore, our algorithms can guide the users to pick appropriate operations
and minimise the impact of changes. In the second case, assume thatBird v CanFly
is chosen for modification. We can specialise the conceptBird such that all birds but
penguin can fly, i.e.Bird u ¬ Penguin v CanFly (see Table 5).

5 Related Work

To our knowledge, the most relevant work is SWOOP [7], where the authors propose
strategies used torankerroneous axioms in order of importance and rewrite them. They
propose various strategies to rank the erroneous axiom(s) to be removed from the MUPS
in order to fix the unsatisfiable concepts. We now compare their strategies with our
approach:

1. Provenance information (where precedence means the status or authority of the
user) –The authors of SWOOP mention that the change-log of ontologies can be

A

C

B

Fig. 1. (A) The screenshot of the implemented tool, in which an ontology is detected with unsat-
isfiable concepts. (B) The set of excluded axioms are ranked based on the confidence value. (C)
A list of sorted candidate changes are provided.

shared, and that axioms added by a user with a high precedence level will be given
high importance. However, the details are sketchy in their paper. We propose to
utilise the usage-log of an ontology to analyse the frequency of modifications with
respect to the time-stamp and the reliability of the information source.

2. Relevance to the ontology in terms of its usage – in SWOOP the relevance of an
element to the ontology depends on the usage of the element in its ontology. That
means, if a concept is highly referenced by other elements in an ontology, then it is
more relevant to the ontology, and hence more important. This strategy is different
to our structural heuristic which places more emphasis on ranking axioms accord-
ing to their likelihood to be correct, rather than the ramifications of removing them.

3. Impact on ontology when an axiom is removed or modified – SWOOP ranks ax-
ioms based on the number entailments which would be broken if the axioms were
removed. This implies that an axiom which breaks more relationships is more im-
portant in the ontology. However, we consider this point not at the ranking phase,
but in our strategies for rewriting axioms. Our algorithms generate a set of candi-
date changes and give preference to the changes which cause the minimal impact
of changes.

Few approaches have been proposed concerning the strategies for resolving incon-
sistent ontologies. In [12], the authors propose a set of rules to resolve the detected in-
consistency. They weaken restrictions either by removing an axiom, replacing it with its
superconcepts, or changing its cardinality restriction values. In contrast, our approach
allows users to select from a range of different weakening strategies. On the other hand,
the authors of SWOOP propose another approach to resolving inconsistency. They sug-
gest rewriting the axiom to preserve as much information as possible while eliminating
unsatisfiability. A library of commonly occurring error patterns is maintained; If any
erroneous axiom has a pattern corresponding to one of the common error patterns, then
they suggest the intended axiom to the user as a replacement. However, the common
error patterns may only apply for those ontologies built by non-expert users, it is in-

sufficient to cover other applications, such as ontology integration. Moreover, by cor-
recting ontologies based on the common error patterns of SWOOP, one may arrive at
an inconsistent ontology. In comparison, our approach only weakens axioms, so further
inconsistencies will not be introduced by the candidate changes. SWOOP additionally
uses the heuristic of the concept’s name to infer the relationships. However, it is too
simple to infer more complex relationships.

6 Conclusion and Future Work

In this paper we identify two typical scenarios of inconsistent/incoherent ontologies and
extend existing approaches by proposing some methods for ranking and rewriting ax-
ioms in ontologies. Structural and usage heuristics are formalised to evaluate the confi-
dence of axioms, so that we are able to select a maximal coherent sub-ontology (MCSS)
which is most likely to be correct. Furthermore, we propose strategies to rewrite the ex-
cluded axioms and put them back into the MCSS, rather than remove them directly.
With our approach, users are provided with guidelines on how to achieve a consis-
tent/coherent ontology. We aim to enable even users who are not experts in ontology
engineering to resolve inconsistencies. The approach has yet to be evaluated in the con-
text of various ontologies. For future work we plan to implement our prototype as a
plug-in in existing tools, such as Protéǵe. We are currently extending our methods to
deal with more expressive description logics as well.

References

1. Tim Berners-lee. Semantic Web Road Map. W3C Design Issues. URL
http://www.w3.org/DesignIssues/Semantic.html, Oct. 1998.

2. S. Chopra, R. Parikh, and R. Wassermann. Approximate belief revision.Logic Journal of
the Interest Group in Pure and Applied Logics (IGPL), 9(6):755–768, 2001.

3. R. Cornet and A. Abu-Hanna. Evaluation of a frame-based ontology. a formalization-
oriented approach. InMIE2002, Budapest, Studies in Health Technology and Information,
volume 90. G. Surjn , R. Engelbrecht and P. McNair, eds, 2002.

4. M. Dalal. Investigations into a theory of knowledge base revision: Preliminary report. In Paul
Rosenbloom and Peter Szolovits, editors,Proceedings of the Seventh National Conference
on Artificial Intelligence, volume 2, pages 475–479, California, 1988. AAAI Press.

5. P. Haase. Incremental ontology evolution: Evaluation. SEKT Formal Deliverable D3.1.2,
University of Karlsruhe, December 2005.

6. A. Kalyanpur, B. Parsia, B. C. Grau, and E. Sirin. Tableaux tracing in SHOIN. Technical
Report UMIACS-TR 2005-66, University of Maryland, November 2005.

7. A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau. Repairing Unsatisfiable Concepts in
OWL Ontologies. InProc. of the Third European Semantic Web Conference, June 2006.

8. H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and minimal
change.Artificial Intelligence, 52(3):263–294, 1992.

9. SC J. Lam, D. Sleeman, and W. Vasconcelos. Graph-based ontology checking. Inthe work-
shop Ontology Management: Searching, Selection, Ranking, and Segmentation in K-CAP 05,
October 2005.

10. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable terminologies for
the description logic ALC. InProceedings of the 21st National Conference on Artificial
Intelligence (AAAI-06), July 2006.

11. N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Technical report, Stanford Knowledge Systems Laboratory, KSL-01-05, 2001.

12. P. Plessers and O. De Troyer. Resolving inconsistencies in evolving ontologies. InProceed-
ings of the Third European Semantic Web Conference (ESWC-2006), June 2006.

13. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In8th International Joint Conference on Artificial Intelligence,
IJCAI’03. Morgan Kaufmann, 2003.

14. M. Schmidt-Schauss and G. Smolka. Attribute concept descriptions with complements.Ar-
tificial Intelligence, 48(0):1–26, 1991.

15. M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applications.The
Knowledge Engineering Review, 1996.

