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In a total order of the vertices of a graph, two edges with rapeimt in common can berossing nested or disjoint

A k-stack(respectivelyk-queuek-arch) layout of a graph consists of a total order of the vertices, and atjgauriof
the edges int& sets of pairwise non-crossing (respectively, non-nested:disjoint) edges. Motivated by numerous
applications, stack layouts (also calledok embeddingsnd queue layouts are widely studied in the literature]evhi
this is the first paper to investigate arch layouts.

Our main result is a characterisation lefairch graphs as thalmost(k + 1)-colourablegraphs; that is, the graphs
G with a setS of at mostk vertices, such thaG\ Sis (k+ 1)-colourable. In addition, we survey the following
fundamental questions regarding each type of layout, arilércase of queue layouts, provide simple proofs of a
number of existing results. How does one partition the edgen a fixed ordering of the vertices? What is the
maximum number of edges in each type of layout? What is tharmar chromatic number of a graph admitting
each type of layout? What is the computational complexitseobgnising the graphs that admit each type of layout?

A comprehensive bibliography of all known references ors¢hpics is included.

Keywords: graph layout, graph drawing, stack layout, queue layouh &ayout, book embedding, queue-number,
stack-number, page-number, book-thickness.
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1 Introduction

We consider undirected, finite, simple grapgbwith vertex setv(G) and edge s€E(G). The number
of vertices and edges & are respectively denoted loy= |V (G)| andm = |E(G)|. The subgraph o6
induced by a set of verticeSC V(G) is denoted byG[S. G\ SdenotesG[V(G) \ §, andG\ v denotes
G\ {v} for each vertex € V(G).

A vertex orderingof ann-vertex graphG is a bijectiono : V(G) — {1,2,...,n}. We writev <g w to
mean thao(v) < o(w). Thus<g is a total order o/ (G). We sayG (or V(G)) is ordered by<g. At
times, it will be convenient to expressby the list(vq, Vo, ...,Vn), whereo(v;) = i. These notions extend

to subsets of vertices in the natural way. Suppose\thab, ...,V are disjoint sets of vertices, such that
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eachV; is ordered by<;. Then(Vy,Vs,...,Vk) denotes the vertex orderirgsuch thatv <5 w whenever
veVandwe Vjwithi < j, orve Vi, weV;, andv <; w. We writeVy <g Vs <g -+ <g Vk.

In a vertex ordering of a graphG, letL(e) andR(e) denote the endpoints of each edge E(G) such
thatL(e) <¢ R(e). Consider two edges f € E(G) with no common endpoint. There are the following
three possibilities for the relative positions of the enidpoofe and f in 0. Without loss of generality
L(e) <g L(f).

e eandf cross L(e) <q L(f) <5 R(e) <s R(f).
e eandf nestandf is nested inside:d_(e) <q L(f) <¢ R(f) <o R(€)
e eandf aredisjoint L(e) <g R(e) <g L(f) <o R(f)

Edges with a common endpoint do not cross, do not nest, ambardisjoint.

A stack(respectivelyqueue arch) in o is a set of edgeB C E(G) such that no two edges In are
crossing (respectively, nested, disjoint)dn Observe that when traversimg edges in a stack appear in
LIFO order, and edges in a queue appear in FIFO order — hepaeetimes.

A linear layout of a graplG is a pair(o,{E1,Ep,...,Ex}) wherea is a vertex ordering o5, and
{E1,Ep,...,Ex} is a partition ofE(G). A k-stack(respectively,queug arch) layout of G is a linear
layout (o, {Es,Eg,...,Ex}) such that eaclk, is a stack(respectivelyqueue arch) in o. At times we

write stack(e) = ¢ (or queue(e) = ¢, arch(e) = /) if e € E;. Layouts ofKg of each type are illustrated in
Figure 1.

- ~~

(b)
Fig. 1: Layouts ofKg: (a) 3-stack, (b) 3-queue, (c) 3-arch.

A graph admitting &-stack (respectively, queue, arch) layout is callddstack(respectivelygueue
arch) graph The stack-numbe(respectively,queue-numberarch-numbe) of a graphG, denoted by
sn(G) (respectivelygn(G), an(G)), is the minimumk such thatG is a k-stack (respectivelyk-queue,
k-arch) graph.

Stack and queue layouts were respectively introduced ayaih [85] and Heatkt al. [55, 59]. As
far as we are aware, arch layouts have not previously beelestualthough Dan Archdeacbauggests
doing so.

Stack layouts are more commonly calledok embeddingsnd stack-number has been calksabk-
thicknessfixed outer-thicknes@ndpage-numberApplications of stack layouts include sorting permu-
tations [36, 49, 86, 89, 102], fault tolerant VLSI design [92, 93, 94], complexity theory [38, 39, 66],
compact graph encodings [63, 82], compact routing tabl&} End graph drawing [6, 24, 108, 109].
Numerous other aspects of stack layouts have been studibd literature [7, 8, 10, 11, 14, 15, 16, 18,
20, 22, 33, 34, 35, 37, 40, 42, 51, 52, 53, 54, 55, 59, 60, 665468, 69, 73, 74, 75, 76, 77, 79, 80, 81,

* http://www.emba.uvm.edu/“archdeac/problems/stackg.h tm
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84, 88, 91, 95, 96, 97, 98, 99, 100, 103, 106, 111]. Stack Imyofudirected graphs [23, 50, 57, 58] and
posets [2, 3, 56, 72, 83, 101] have also been investigated.

Applications of queue layouts include sorting permutadi¢®6, 61, 86, 89, 102], parallel process
scheduling [5], matrix computations [88], and graph drayj25, 27, 110]. Other aspects of queue
layouts have been studied in the literature [29, 30, 41, 8], Queue layouts of directed graphs [57, 58]
and posets [56] have also been investigated.

Table 1 summarises some of the known bounds on the stackerumio queue-number of various
classes of graphs. A blank entry indicates that a more geresalt provides the best known bound.

Tab. 1: Upper bounds on the stack-number and queue-number.
graph family stack-number reference gueue-number reference
n vertices [0 [4,17, 48] 15 [59]
medges O(v/m) [76] ey/m Theorem 4
proper minor-closed bounded [9, 11]
genusy O(Vy) [75]
tree-widthw W [74] e 3w-1)/9_ 1 [27,31]
tree-widthw, max. degreé 36Aw [110]
path-widthp p [110]
band-widthb b-1 [100] (51 [59]
track-numbet t—1 [27, 30, 110]
toroidal 7 [33]
planar 4 [111]
bipartite planar 2 [21, 87]
2-trees 2 [91] 3 [28, 91]
Halin 2 [41] 3 [41]
X-trees 2 [17] 2 [59]
outerplanar 1 [4] 2 [55]
arched levelled planar 2 [55] 1 [55]
trees 1 [17] 1 [59]

Consider a vertex ordering = (vi,Vo, ..., Vn) of a graphG. For each edgev; € E(G), let thewidth
of vivj in o beli — j|, and let themidpointof vv; be%(i + j). Theband-widthof o is the maximum width
of an edge of5 in 0. Theband-widthof G, denoted byw(G), is the minimum band-width over all vertex
orderings ofG. Consider the two fundamental observations:

Observation 1 ([59]). Edges whose widths differ by at most one are not nested.
Observation 2. Distinct edges with the same midpoint are nested.

Observation 1 was made by Heath and Rosenberg [59]. Remgriddservation 2 seems to have gone
unnoticed in the literature on queue layouts.

Our main result is a characterisation lofarch graphs, given in Section 3. We also survey various
fundamental questions regarding each type of layout, atldeirtase of queue layouts, provide new and
simple proofs (based on Observation 2) of a number of exjsesults. In Section 2 we consider how to
partition the edges given a fixed vertex ordering. In Secliave analyse the computational complexity
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of recognising the graphs that admit each type of layout.€ietiSn 5 we consider the extremal questions:
whatis the maximum number of edges in each type of layoutydrad is the maximum chromatic number

of a graph admitting each type of layout? Section 6 consiewsto produce a queue layout of a graph
G given queue layouts of the biconnected components.ain Section 7 we give a simple proof of the

known result that queue-number is@f,/m).

2 Fixed Vertex Orderings

Consider the problem of assigning the edges of a g@pb the minimum number of stacks given a
fixed vertex orderings of G. This problem is equivalent to colouring a circle graph wiitle minimum
number of colours. (A&ircle graphis the intersection graph of a set of chords of a circle.) Asitated

in Figure 2(a), awistin o is a matchingviw; € E(G) : 1 <i <k} such that

V1<0‘V2 <o'"'<o'Vk<(;W1 <(;W2<0‘"'<0‘Wk .

A vertex ordering with &k-edge twist needs at leaktstacks, since each edge of a twist must be in a
distinct stack. However, the converse is not true. Therstexdrtex orderings with ngk + 1)-edge twist
that requireQ(klogk) stacks [70]. Moreover, it is\'P-complete to test if a fixed vertex ordering of a
graph admits &-stack layout [43]. On the other hand, Kostochka [71] proved that a vertex andevith

no 3-edge twist admits a 5-stack layout, and Ageev [1] prdhet 5-stacks are sometimes necessary in
this case. In general, Kostochka and Kratochvil [70] pdotreat a vertex ordering with ngk+ 1)-edge
twist admits a #6-stack layout, thus improving on previous bounds by Gyarfas [46, 47].néethe
stack-number of a grapB is bounded by the minimum, taken over all vertex orderiags G, of the
maximum number of edges in a twistdn

NN~ i

Vi V2 V3 Vg4 V5 W1 Wp W3 Wq W5 V1 Vo V3 Vg4 V5 W5 Wgq W3 Wp W1 V1 W1 Vo Wo V3 W3 V4 Wq V5 Wg
@) (b) (©
Fig. 2: (a) 5-edge twist, (b) 5-edge rainbow, (c) 5-edge necklace.

Now consider the analogous problem for queue layouts: ags&gedges of a graph to the minimum
number of queues given a fixed vertex orderingf G. As illustrated in Figure 2(b), eainbowin o is a
matching{viw; € E(G) : 1 <i <k} such that

V1<0‘V2 <(;"'<ng<ng<ng,1 <o‘"'<0W1 .

The rainbow{viw; : 2 <i < k} is said to benside iw;. We now give a simple proof of a result by Heath
and Rosenberg [59].

§ Unger [104, 105] claimed that it i9(P-complete to determine whether a given vertex ordering ofaplyG admits a 4-stack
layout, and that there is@(nlogn) time algorithm in the case of 3-stack layouts. Crucial detaie missing from these papers.

T Unger [104] claimed without proof that a vertex orderinglwito (k-+ 1)-edge twist admits ak2stack layout. This claim is refuted
by Ageev [1] in the case d = 2.



On Linear Layouts of Graphs 5

Lemma 1. [59]A vertex ordering of a graph G admits a k-queue layout of G d anly if it has no
(k+ 1)-edge rainbow.

Proof. A k-queue layout has n@+ 1)-edge rainbow since each edge of a rainbow must be in a distinc
gueue. Conversely, suppose we have a vertex ordering wittk #dl)-edge rainbow. For every edge
vw e E(G), let queue(vw) be the maximum number of edges in a rainbow insideplus one. Ifvwis
nested insidey thenqueue(vw) < queue(xy). Hence we have a valid queue assignment. The number of
queues is at most O

Heath and Rosenberg [59] presented(anloglogn) time algorithm that, given a fixed vertex ordering
of a graphG with no (k+ 1)-edge rainbow, assigns the edge&ab k queues. Lemma 1 implies that the
queue-number of is the minimum, taken over all vertex ordering®f G, of the maximum number of
edges in a rainbow io. Hence determining the queue-number of a graph is no morethigaquestion of
finding the right vertex ordering.

Now consider the problem of assigning the edges of a g@afuhthe minimum number of arches given
a fixed vertex ordering of G. As illustrated in Figure 2(c), aecklacen o is a matchingviw; : 1 <i <k}
such that

Vi <0'W1 <0‘V2 <0W2 <()' <0'Vk <0'Wk .
The necklacqviw; : 1 <i < k- 1} is said toprecedethe edgesw.

Lemma 2. A vertex ordering of a graph G admits a k-arch layout of G if amdy if it has no(k+ 1)-edge
necklace.

Proof. A k-arch layout has n¢k+ 1)-edge necklace, since each edge of a necklace must be akgigne
a distinct arch. Conversely, suppose we have a vertex oglenith no(k+ 1)-edge necklace. For every
edgevw € E(G), letarch(vw) be the maximum number of edges in a necklace that precsdgkis one.

If vw andxy are disjoint then, without loss of generalityy is in a necklace that precederg and thus
arch(vw) < arch(xy). Hence we have a valid arch assignment. The number of arslasriosk. O

Lemma 2 implies that the arch-number of a gr&pls the minimum, taken over all vertex orderings
of G, of the maximum number of edges in a necklaceinFor examplean(K,) = [5]. Now consider
the following algorithm.

Algorithm ASSIGNARCHES G, 0)

letkp =0

let (vi,V2,...,Vh) =0

fori=1,2,...,ndo
for each edge;v; € E(G) withi < ], letarch(vivj) = 1+ki_1
letki = ki1
for each edge;v; € E(G) with j <, let ki = max{ki,1+kj_1}

oukrwnNpE

Lemma 3. Given a vertex ordering of an n-vertex m-edge graph G, the algorithrasSIGNARCHES G, 0)
assigns the edges of G to the minimum number of arches witkeeto in O(n+ m) time.
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Proof. It is easily verified that the algorithm maintains the ineati thatk; is the maximum number of
edges in a necklace in the vertex order{ng, vo, ...,Vv;). Hence, for every edgew € E(G), arch(vw) is
the maximum number of edges in a necklace that precagefus one. Thus, as in Lemma 2, we have an
assignment of the edges to the minimum number of arches. O

The proofs of Lemmata 1 and 2 hide an application of the ealyoh®ilworth’s Theorem [26] for
partitioning a poset int& antichains, wheré is the maximum size of a chain. In Lemmael f if e
is nested insidd, and in Lemma 2e < f if R(e) <¢ L(f). The problem of assigning edges to queues
in a fixed vertex ordering is equivalent to colouring a peratioh graph [32]. Assigning edges to arches
corresponds to partitioning an interval graph into cliques

3 Arch Layout Characterisation

A graphG is almost k-colourabléf there is a seS C V(G) of at mostk — 1 vertices such tha \ Sis
k-colourable.

Theorem 1. A graph G has arch-numben(G) < k if and only if G is almostk+ 1)-colourable.

Proof. («<=) First suppose thaG is almost(k + 1)-colourable. Then there is a set of verticBs=
{X1,%2,...,%} € V(G) such thatG\ Sis (k+ 1)-colourable. LeW1,V5,...,Vks1 be the colour classes
in such a colouring. Led be a vertex ordering such that

V1 <g X1 <g V2 <g X2 <g - <g Vk <o % <o Vis1 -

Clearly every necklace ia has at mosk edges. By Lemma 23 admits ak-arch layout ofG.

(=) The proofis by induction ok. Fork =0, the result is trivial. Suppose that(G) < k—1 implies
G is almostk-colourable. LeGG be ak-arch graph with vertex ordering = (vi,V2,...,Vn).

Let V<p = (V1,V2,...,Vp) andVsp = (Vp41,Vpi2,...,Vn). It is simple to verify that the maximum
number of edges in a necklace\iap, is equal to, or one less than, the maximum number of edges in a
necklace irv<py1, forall 1 < p < n— 1. Consequently, there is maximum numbsuch thai/<; admits
a (k—1)-arch layout. By the maximality af V<1 contains &-edge necklace. Therefo¥g,i;1 is an
independent set db, otherwise an edge db[V-i1] together with the&k-edge necklace d¥<i;1 would
comprise gk + 1)-edge necklace. Therefori8[V-i] is a forest, at most one component of which is a star
centred atj; 1, and the remaining components are isolated vertices.

By the induction hypothesis there is a Sgt1 of k— 1 vertices such thab[V<; \ Sc_1] is k-colourable.
SinceG|Vsi] is a star centred a1 with some isolated vertices, it follows that f8 = Sc_1 U {Vi+1},
the induced subgrapB[V \ & is (k+ 1)-colourable. Thereford; is almost(k + 1)-colourable. O

Arch-number and chromatic number are tied in the followitrgrsg sense.

Theorem 2. The arch-number of every graph G satisfies:
an(G) +1<x(G) < 2an(G) + 1.

Proof. By Theorem 1,G is almost(an(G) + 1)-colourable. Thus it i§2an(G) + 1)-colourable. Con-
versely,G is almosty(G)-colourable, andn(G) < x(G) — 1 by Theorem 1. O
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Theorem 2 implies that any graph family that has boundedmobtiz-number also has bounded arch-
number. Examples include graphs with bounded maximum @egraphs with bounded tree-width, and
graphs with an excluded clique minor, and so on.

Lemma 4. Planar graphs have arch-number at most three and this bositigfnt.

Proof. The Four Colour Theorem and Theorem 1 imply that all planapbs have arch-number at most
three. Any planar grap containing three vertex-disjoitts subgraphs is not almost 3-colourable. By
Theorem 1an(G) = 3. O

4 Computational Complexity

The 1-stack graphs are precisely the outerplanar graphatjd]thus can be recogniseddn) time [78].
2-stack graphs are characterised as the subgraphs of plangltonian graphs [4], which implies that it
is AP-complete to test ifn(G) < 2 [107]. Heath and Rosenberg [59] characterised 1-queughgras
the ‘arched levelled’ planar graphs, and proved that ft(i®-complete to recognise such graphs.

Lemma 5. There is a @n(n+ m)) time algorithm to determine if a given n-vertex m-edge gréphas
arch-numbenn(G) < 1.

Proof. By Theorem 1an(G) < 1 if and only if there is a vertex such thaiG\ v is bipartite. The result
follows since bipartiteness can be teste®im + m) time by breadth-first search. O

Note that almost bipartite graphs have been studied by &rénal.[90].
Open Problem 1. Is there a sub-quadratic time algorithm for determining thkean(G) < 1?

Theorem 3. Given a graph G and an integerk 2, itis A'P-complete to determine if G has arch-number
an(G) < k.

Proof. The problem is clearly im\(?. The remainder of the proof is a reduction from the grdph
colourability problem: given a grap® and an integek, is x(G) < k? LetG' be the graph comprised &f
components each isomorphic® We claim thaix(G) < k if and only if G' is almostk-colourable. The
result will follow from Theorem 1 and since gragkcolourability isA’P-complete [67].

If Gis k-colourable then so i€, and thusG' is almostk-colourable. Conversely, &' is almostk-
colourable then there is a sBbf at mostk — 1 vertices such thg{(G'\ S) < k. Since|]§| <k—1,G'\S
contains a component isomorphic® and thusG is k-colourable. O

The next result follows from the reduction in Theorem 3 amdsiit isA’P-complete to determine if a
4-regular planar graph is 3-colourable [19, 44].

Corollary 1. It is AlP-complete to determine if a givefregular planar graph G has arch-number
an(G) < 2. O
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5 Extremal Questions

In this section we consider the extremal questions:
e whatis the maximum number of edges in a particular type asldy
¢ what is the maximum chromatic number of a graph admittingréiqudar type of layout?

The answer to the first question for stack layouts has beesradd by many authors.

Lemma 6. [4, 18, 68]Every s-stack n-vertex graph has at m{st 1)n— 3s edges, and this bound is
tight for allevenn>4and all1 <s< 3.

Proof. It will be beneficial to view the vertex orderingo, V1, - . ., Va-1) as circular. Each edgev(i 1) modn
is said to be @oundaryedge. Each stack has at most-23 edges, since a 1-stack graph is outerplanar.
Every boundary edge can be assigned to any stack. Thus tfeea mosin — 3 non-boundary edges in
each stack, and at masboundary edges, giving a total of at me&t — 3) + n= (s+ 1)n— 3sedges.

Now for the lower bound. As illustrated in Figure 3(a), foch®<i <s—1, let

E={vjvk: [3(j+K]=i (mod])} .

ThenEg,E;,...,Es 1 are edge-disjoint paths, each of which is a stack ef3 non-boundary edges.
Adding the boundary edges to any stack, we obtais-atack graph with the desired number of edges.
Note that withs = 3, we obtain arj-stack layout oK. O

Fig. 3: Edge-maximal layouts: (a) 2-stack, (b) 2-queue.

As observed by Bernhart and Kainen [4], Lemma 6 implies tbegify induced subgraph of) arstack
graph has a vertex of degree less thas-2, and is therefore verteg2s+ 2)-colourable by the minimum-
degree-greedy algorithm. This result can be improved faalks 1-stack graphs are outerplanar, which
are 3-colourable, and 2-stack graphs are planar, which-atéourable.

Open Problem 2. What is the maximum chromatic numbgerof the s-stack graphs? In generg{,e
{2s,2s+ 1,25+ 2} sincex(Kn) = 2sn(Kp) for evenn.
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Now consider the maximum number of edges ik-gueue graph. The answer foe= 1 was given by
Heath and Rosenberg [59] and Pemmaraju [88]. We now give plsiproof for this case. The proof by
Heath and Rosenberg [59] is based on the characterisatibigoéue graphs as the arched levelled planar
graphs. The proof by Pemmaraju [88] is based on a relatipriséiiween queue layouts and ‘staircase
covers of matrices’. The observant reader will notice galsbetween the following proof and that of the
lower bound on the volume of three-dimensional drawingstdugoseet al.[13].

Lemma 7. A queue in a graph with n vertices has at mast- 3 edges.

Proof. By Observation 2, distinct edges with the same midpoint astad. Since every midpoint is in
{%, 2, 2%, ...,n— %}, there are at most2- 3 midpoints. The result follows since no two edges in a queue
are nested. O

An immediate generalisation of Lemma 7 is that edeueue graph has at mdgen — 3) edges [59].
The following improved upper bound was first discovered bynReraju [88] with a longer proof. That
this bound is tight for all values aof andk is new.

Lemma 8. Every k-queue graph with n vertices has at m2lat — k(2k + 1) edges. For every k and
n> 2k + 1, there exists an n-vertex graph with queue-number k2kmd- k(2k + 1) edges

Proof. By Observation 2, distinct edges with the same midpoint &sted. Since at mo&tedges are
pairwise nested in B-queue layout, at mostedges have the same midpoint. Moreover, for all integers
1<i <k, at mosti — 1 edges have a midpoint afand at most — 1 edges have a midpoint of- % At

the other end of the vertex ordering, for all integers 1< k— 1, at mosi edges have a midpoint of- i,

and at most edges have a midpoint of— i + % It follows that the number of edges is at most

Z_i(i1)+(2n4k+1)k+ Zgi = 2kn—k(2k+1) .

We now prove the lower bound. As illustrated in Figure 3(B)Ff denote thes" power of then-vertex
pathP,. That is,P5 hasV (P]) = {v1,V2,...,vn} andE(P;) = {viv; : |i — j| < s}. Heath and Rosenberg
[59] proved thatin(P?¢) = k, where for each X ¢ <k, the set of edgefvivj : 20— 1< |i— j| < 2/} isa
queue in the vertex orderin@s, vz, . . ., V). (This is Observation 1.) Swaminathatal.[100] proved that
P2 has &xn— k(2k+ 1) edges. S appears in [59, 100] with regard to the relationship betwiserd-width
and queue- and stack-number, respectively.) O

Lemma 8 implies that (every induced subgraph dfyqueue graph has a vertex of degree less than 4
and is thereforek-colourable by the minimum-degree-greedy algorithm.

Open Problem 3. What is the maximum chromatic numberof a k-queue graph? We know thate
{2k+1,2k+2,...,4k} sincex(Kn) = 2qn(K,) + 1 for oddn (by Lemma 1). Note that the extremal

3 3

exampleP2X in Lemma 8 also has chromatic numbér21.
We now prove that the lower bound in Open Problem 3 is attdénialihe case ok = 1.

Lemma 9. Everyl-queue graph G i8-colourable.
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Proof. Let o be the vertex ordering in a 1-queue layout of a gr&phPartition the vertices into inde-
pendent set¥1,Vo, ..., Vk such thato = (V1,V>, ..., V), and for all 1< i < k-1, there exists an edge in
G[Vi UVi;1]. Such a partition can be computed by starting with each xéntés own set, and repeat-
edly merging consecutive sets that have no edge between tRermall s > 3, there is no edge in any
G|V UVi4 4|, as otherwise it would be nested with an edg&sii 1 U Vi1 ). Thus for each & j < 2,
W =U{Vi:i=] (mod 3} is an independent set, aftp, W1, Wo} is a 3-colouring ofG. O

The next lemma shows that, in terms of the maximum number gégdarch layouts behave very
differently from stack and queue layouts. Even 1-arch lagoway have a quadratic number of edges.

Lemma 10. The maximum number of edges in a k-arch layout with n verticasmost

kn(n+2) — k(2k+1)
2(k+1) ’

1)

which is attainable wheneverk1 divides n— k.

Proof. Let G be ak-arch graph witm vertices and the maximum number of edges. By Theore@ i,
almost(k + 1)-colourable. That is, there is a SBC V(G) of at mostk vertices such thab \ Sis (k+ 1)-
colourable. Each vertexe Sis adjacent to every other vertex @ as otherwisé is not edge-maximal.
The (k+ 1)-colourable graph with the maximum number of edges is theptera(k + 1)-partite graph
with partitions whose sizes are as equal as possible. Bh&is this graph. When the partitions have the
same size we obtain the most edges. HéreSis obtained fronK,,_x by removingk + 1 vertex-disjoint
copies of the complete graph ¢n— k) /(k+ 1) vertices. Thus the number of edges is

(2) (k+1) <(nk)£(k+ 1)) 7

which is easily seen to reduce to (1). O

6 Biconnected Components

Clearly the stack-number (respectively, queue-numbes)grfaph is at most the maximum stack-number
(queue-number) of its connected components. Bernhart aiiel [4] proved that the stack-number of
a graph is at most the maximum stack-number of its maximalrbiected componentslocky. We now
prove an analogous result for queue layouts.

Lemma 11. Every graph G has queue-numhgr(G) < 1+ max{qgn(B) : B is a block of G.

Proof. Clearly we can assume th@tis connected. LeT be theblock-cut-treeof G. That is, there is
a node inT for each block and for each cut-vertex @f Two nodes ofT are adjacent if and only if
one corresponds to a blog&k and the other corresponds to a cut-vereandv € V(B). T is a tree, as
otherwise a cycle i would correspond to a single block @ RootT at a node corresponding to an
arbitrary blockR of G.

Consider a cut-vertex of G. The block containing that corresponds to the parent nodevaf T is
called theparentblock ofv. The other blocks containingare callecchild blocks ofv.
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There are no nested edges in any breadth-first vertex oglefifi [17]. Let o be a breadth-first vertex
ordering of T starting atR, such that cut-nodes &f with a common parent blocB are ordered ino
according to their order in the given queue layouBof

Now create a vertex orderimgof G from o, as illustrated in Figure 4. Specifically, delete framall
the nodes corresponding to cut vertice&pfeplacer by the given queue layout & and for each block
B # Rwhose parent node ifi corresponds to a cut vertaxof G, replace the node ia that corresponds
to B by the given queue layout &\ v.

An edge ofG that is incident to a cut-vertexand is contained in a child block efis called ajump
edge According to the above algorithm, a cut-vertex®fs positioned within its parent block il Thus,
if two non-jump edges are nested, then they are in the sanok Bloand are nested in the given queue
layout of B. Since the blocks are separated, non-jump edges can itiharigueue assignment from the
queue layout of their block.

Since the edges af are not nested, and by the choice of ordering for cut-noddswith a common
parent block, jump edges are not nested, and thus can fornrm@mejueue. Thus the total number of
queues is as claimed. O

Fig. 4: Constructing a queue layout 6f from queue layouts of the biconnected componen$.of

7 A Bound on the Queue-Number

Malitz [76] proved that the stack-number of aredge graph i©(,/m). The exact bound is in fact {2m.
Heath and Rosenberg [59] (see also Shahrokhi and Shi [95Preéd that an analogous method proves
that queue-number B(,/m). We now establish this result using a simplified version efdhgument of
Malitz [76] and with an improved constant.

Theorem 4. Every graph G with m edges has queue-nunypéfs) < e/m, wheree is the base of the
natural logarithm.

Proof. Letn = |V(G)|. Let o be a random vertex ordering &. For all positive integerk, let A, be the
event that there existskaedge rainbow iro. Then the probability

PriAd < <T><2”k>2kk(rr1]7—2k)

—— N —,—,.—

L © ®3)

where:
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(1) is an upper bound on the numbereédge matchinghl,
(2) is the number of vertex positions infor M, and
(3) is the probability tha with fixed vertex positions is a rainbow.

Thus

mk n! 2%KI(n—2k)!  (2m)
PIAG < @iz @

k _

By Stirling’s formula,P{A¢} < (%";) . Letko = [ey/m]. Thus,P{Ag} >1—(3) /M S 0. Thatis,
with positive probability a random vertex ordering haskgeedge rainbow. Hence there exists a vertex
ordering with nokg-edge rainbow. By Lemma G has a queue layout witkh — 1 < e,/mqueues. O
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