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Abstract

Abstract programming supports the separation of logical concerns from
issues of control in program construction. While this separation of con-
cerns leads to reduced code size and increased reusability of code, its main
disadvantage is the computational overhead it incurs. Fusion techniques
can be used to combine the reusability of abstract programs with the
efficiency of specialized programs.

Stratego is a language for program transformation based on the paradigm
of rewriting strategies. In Stratego, transformation rules define basic trans-
formation steps and user-definable strategies control the application of
rules to a program. Since the problem-specific rules and the highly generic
strategies which apply them are kept separate, these elements can be
combined in a mix-and-match fashion to produce a variety of program
transformations. In some instances this separation of concerns leads to
inefficient implementations.

In this paper we show how such inefficiencies can be remedied using fu-
sion. Furthermore, we show how fusion can be implemented using rewrit-
ing strategies by studying in detail the application of rewriting strategies
to the fusion of the generic innermost strategy with sets of arbitrary-but-
specific rewrite rules. Both the optimization and the programs to which
the optimization applies are specified in Stratego.

The contributions of this work are twofold. In the first place, we show
how to optimize and reason about rewriting strategies, which opens up
a new area of strategy optimization. In the second place, we demon-
strate how such optimizations can be implemented effectively using local,
application-specific transformations. These techniques are applicable to
transformation of programs in languages other than Stratego.
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1. Introduction

Abstract programming techniques support the generic definition of algorithmic
functionality in such a way that different configurations of algorithms can be ob-
tained by composing appropriate specializations of generic components. Generic
components can be specialized in many different ways, and their resulting in-
stances can be reused in many combinations. The advantages of abstract pro-
gramming are reduced code size and increased modularity of programs.

One disadvantage of abstract programming is that the separation it supports
between logical concerns and issues of control in program construction can in-
troduce considerable overhead, even for simple computations. By contrast, code
written specifically to implement one particular problem instance can effectively
intermingle logic and control to arrive at a more efficient implementation than
is possible generically. The challenge of abstract programming is to maintain a
high-level separation of concerns while simultaneously achieving the efficiency of
such intermingled programs.

1.1. Fusing Compositions of Abstract Programs

Fusion techniques mitigate the tension between modularity and efficiency by
automatically deriving more efficient versions of programs from their abstract
composite versions. This is achieved by intermingling pieces of generic com-
ponents with code relevant to specific problem instances. In deforestation of
functional programs, for example, intermediate data structures are eliminated
by fusing together function compositions [23, 28]. In the Sophus style of nu-
meric programming, fusion enables transformation from an algebraic style of
programming resembling the mathematical specification of numeric programs to
an updating style in which function arguments are overwritten in order to reuse
memory allocated to large matrices [4, 8].

Since fusion can optimize both individual software components and complete
applications constructed from them, its automation packs enormous potential
for programming-in-the-large. While an experienced programmer might easily
optimize a small abstract program at the keyboard, hand optimization of even
modest programs can be both difficult and error-prone. And as programs become
larger and more complex, the difficulty of fusing programs by hand becomes even
more pronounced. Automatic fusion tools allow the programmer to program in
a more abstract style without compromising program efficiency.

1.2. Abstract Programming in Stratego

In this paper we consider abstract programming in, and fusion techniques for,
Stratego [25, 27]. Stratego is a domain-specific language for the specification of
program transformation systems based on the paradigm of rewriting strategies.
It separates the specification of basic transformation rules from the specification
of strategies by means of which those rules are applied. Strategies that control
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the application of transformation rules can be programmed using a small set
of primitive strategy combinators. These combinators support the definition of
very generic patterns of control, which in turn allows strategies and rules to be
composed as necessary to achieve various program transformations. The result-
ing abstract style of programming leads to concise and reusable specifications of
program transformation systems. However, due to their genericity, some strate-
gies do not have enough information to perform their tasks efficiently — even
though specializations of those strategies could be implemented efficiently.

1.3. Generic Innermost Strategy

One pattern of control of particular interest is innermost term traversal. In-
nermost traversal has been the foundation of successful evaluation mechanisms
for a variety of programming languages, and has also found widespread use in
automated deduction. An innermost evaluation strategy can be obtained by spe-
cializing a generic innermost traversal strategy — parameterized by a particular
set of rules to be applied to the subject term during an innermost traversal —
to a set of evaluation rules; innermost normalization strategies suitable for other
applications can be obtained in a similar manner. Despite the ease with which
generic innermost traversal strategies can be defined in Stratego, efficiency con-
cerns prevented most Stratego programmers from using them much in practice.

The innermost normalization strategy innermost(s) takes as argument a
transformation s and normalizes terms with respect to this transformation. An
application of innermost of the form innermost(R1 <+ ... <+ Rn) can be
optimized for the specific transformation rules Ri. Innermost normalization pro-
ceeds by traversing a subject term from the bottom up, applying the specified
transformation rules to each subterm. However, whenever a rule Ri successfully
reduces a subterm, the strategy innermost(R1 <+ ... <+ Rn) must be applied
bottom-up to the reduct as well in order to normalize it. As a result, subterms
of the reduct which are also subterms of the original subterm are reconsidered
for normalization. In fact, depending on the structure of the right-hand side of
Ri, subterms of the reduct that correspond to variables on the left-hand side of
Ri may be reconsidered for normalization a number of times. Of course, these
subterms were already normalized before Ri was applied to the subject term,
and so they need not be considered for renormalization at all! Fusing the control
captured by innermost with the logic embodied in a set of rules R1, ..., Rn yields
an implementation of innermost(R1 <+ ... <+ Rn) in which renormalization
of such “variable subterms” is completely avoided.

1.4. Fusing Innermost with Transformation Rules

In this paper we develop a transformation on Stratego programs which fuses the
generic innermost traversal with the set of rules with which it is instantiated.
This optimization is fully automatable, and is implemented in Stratego itself. In
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Section 8 we prove it correct with respect to the operational semantics of the
Stratego programs it transforms.

The contributions of this work are twofold. In the first place, we show how rea-
soning about and optimizing strategies based on rewriting can proceed, opening
up a new area of symbolic computation with strategies. In the second place, we
demonstrate the effective implementation of such optimizations in Stratego using
a combination of interesting techniques and idioms. Writing transformations in
the concrete syntax of the object language makes the specification much easier
to understand [26]. The use of dynamic rules allows the definition of context-
sensitive transformations [24]. Finally, we introduce the idiom of cascading, local,
and application-specific transformations, which allows the specification of com-
plex transformations using sets of simple rules.

The application of the techniques in this paper is not restricted to the partic-
ular optimization of innermost traversals studied here, but can also be used for
other optimizations on Stratego programs, as well as for transformations on pro-
grams in other languages. The fusion optimization described in this paper and all
techniques used to implement it are part of the Stratego compiler (version 0.9∗).

1.5. Outline

The remainder of this paper is organized as follows. In Section 2 we cover the
basics of Stratego and introduce the generic Stratego specification of innermost
normalization. In Section 3 we explore different idioms for program transfor-
mation and sketch their realization in Stratego. In particular, we explain the
concepts of local and application-specific transformations. In Section 4 we dis-
cuss some shortcomings of the modular specification of innermost, present an
optimized version of the innermost strategy, and argue that automatic derivation
of optimized programs from modular ones is needed. Section 5 shows, informally,
how the optimized specification of innermost can be derived in a systematic way
from the original specification. In Sections 6 through 8 we discuss the implemen-
tation of this transformation in Stratego. Section 6 formalizes the syntax and
semantics of Stratego. Section 7 explains how Stratego programs can be used
to transform other Stratego programs. Section 7.4 formalizes the transformation
rules from Section 5. Section 8 presents the strategy that combines these rules
into the complete fusion transformation. Novel uses of Stratego are highlighted
as they are used in defining the fusion transformation strategy, and the correct-
ness of each transformation is established as it is introduced. Finally, Section 9
discusses previous, related, and future work.

∗See http://www.stratego-language.org for the distribution of the Stratego compiler
and library.
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2. Rewriting Strategies in Stratego

Stratego is a language for specifying program transformations. A key design
choice of the language is the separation of logic and control. The logic of pro-
gram transformations is captured by rewrite rules, while programmable rewriting
strategies control the application of those rules.

In this section we informally describe the subset of Stratego that is the object
of transformations in this paper. To illustrate it, we show a small specification
which simplifies expressions over natural numbers with addition using a generic
specification of innermost normalization. A formal description of the syntax and
operational semantics of the subset of Stratego with which we are concerned in
this paper is given in Section 6.

2.1. Signatures and Terms

In Stratego, programs to be transformed are expressed as first-order terms. Sig-
natures describe the structure of terms. A term over a signature S is either
a nullary constructor C from S or the application C(t1,...,tn) of an n-ary
constructor C from S to terms ti over S. For example, Zero, Succ(Zero), and
Plus(Succ(Zero),Zero) are terms over the signature in Figure 1. Note that
terms are variable-free by definition.

2.2. Rewrite Rules

Rewrite rules express basic transformations on terms. A rewrite rule has the
form L : l -> r, where L is the label of the rule, and the term patterns l and r

are its left-hand side and right-hand side, respectively. A term pattern is either
a variable, a nullary constructor C, or the application C(p1,...,pn) of an n-ary
constructor C to term patterns pi. We write Vars(p) for the variables occurring
in the pattern p, and regard terms as term patterns containing no variables.
Figure 1 shows rewrite rules A and B that simplify sums of natural numbers. As
indicated there, Stratego provides a simple module structure that allows modules
to import other modules.

module peano
signature

sorts Nat
constructors

Zero : Nat
Succ : Nat -> Nat
Plus : Nat * Nat -> Nat

rules
A : Plus(Zero, x) -> x
B : Plus(Succ(x), y) -> Succ(Plus(x, y))

Figure 1: An example Stratego module with signature and rewrite rules.
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module apply-peano
imports innermost peano
strategies

main = innermost(A <+ B)

Figure 2: Using Peano rules.

A rule L: l -> r applies to a term t when the pattern l matches t, i.e.,
when the variables of l can be replaced by terms in such a way that the result is
precisely t. Applying L to t has the effect of transforming t to the term obtained
by replacing the variables in r with the subterms of t to which they correspond.
For example, rule B transforms the term Plus(Succ(Zero),Succ(Zero)) to the
term Succ(Plus(Zero,Succ(Zero))). Here, x corresponds to Zero and y cor-
responds to Succ(Zero).

In the normal interpretation of term rewriting, terms are normalized by ex-
haustively applying rewrite rules to it and its subterms until no further applica-
tions are possible. The term Plus(Succ(Zero),Zero), for instance, normalizes
to the term Succ(Zero) under rules A and B. But because normalizing a term
with respect to all rules in a specification is not always desirable, and because
rewrite systems need not be confluent or terminating, more careful control is
often necessary. A common solution is to introduce additional constructors into
signatures and then use them to encode control by means of additional rules
which specify where and in what order the original rules are to be applied. Pro-
grammable rewriting strategies provide an alternative mechanism for achieving
such control while avoiding the introduction of new constructors or rules.

2.3. Combining Rules with Strategies

Figures 2 and 3 illustrate how strategies can be used to control rewriting. Figure 3
gives a generic definition of the notion of innermost normalization under some
transformation s. This strategy can be instantiated with any selection of rules
to achieve normalization of terms under those rules. In Figure 2, for instance,
the strategy main is defined to normalize Nat terms using the innermost strategy
instantiated with rules A and B from Figure 1. In general, transformation rules
and reduction strategies can be defined independently and can be combined in
various ways. A different selection of rules can be made, or the rules can be
applied using a different strategy. It is thus possible in Stratego to develop a
library of valid transformation rules to be applied under various strategies as
needed.

2.4. Rewriting Strategies

A rewriting strategy is a program that transforms terms or fails at doing so. In
the case of success, the result is a transformed term (which can, of course, be
the original term). In the case of failure, there is no result.
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module innermost
strategies

try(s) = s <+ id
bottomup(s) = all(bottomup(s)); s
innermost(s) = bottomup(try(s; innermost(s)))

Figure 3: Generic traversal strategies.

Rewrite rules are just strategies which apply transformations to the roots
of terms. Strategies can be combined into more complex strategies by means
of Stratego’s strategy operators. The identity strategy id always succeeds and
leaves its subject term unchanged. The failure strategy fail always fails. The
sequential composition s1 ; s2 of strategies s1 and s2 first attempts to apply s1

to the subject term. If that succeeds, it applies s2 to the result; otherwise it fails.
The deterministic choice s1 <+ s2 of strategies s1 and s2 first attempts to apply
s1 to the subject term. If s1 fails, then it attempts to apply s2 to the subject
term. If s1 and s2 both fail, then it fails as well. The recursive closure rec x(s)

of a strategy s attempts to apply to the subject term the strategy obtained by
replacing each occurrence of the variable x in s by the strategy rec x(s). The
negation not(s) of a strategy s succeeds with the identity transformation if s
fails, and fails if s succeeds.

A strategy definition f(x1,...,xn) = s introduces a new strategy operator f
parameterized with strategies x1,...,xn and having body s. Definitions can be
recursive. In fact, the recursion operator rec x(s) is shorthand for a recursive
definition let x = s in x.

2.5. Term Traversal

The strategy combinators just described combine strategies which apply trans-
formation rules to the roots of their subject terms. In order to apply a rule to a
subterm of a subject term, the term must be traversed.

Stratego defines several primitive operators which expose the direct subterms
of a constructor application. These can be combined with the operators described
above to define a wide variety of complete term traversals. For the purposes
of this paper we restrict the discussion of traversal operators to congruence
operators and the all operator.

Congruence operators provide one mechanism for term traversal in Stratego.
For each constructor C there is a corresponding congruence operator, also de-
noted C. If C is an n-ary constructor, then the corresponding congruence operator
defines the strategy C(s1,...,sn). Such a strategy applies only to terms of the
form C(t1,...,tn). It results in the term C(t1’,...,tn’), provided the ap-
plication of each strategy si to each term ti succeeds with result ti’. If the
application of si to ti fails for any i, then the application of C(s1,...,sn) to
C(t1,...,tn) also fails.
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While congruence operators support the definition of traversals that are spe-
cific to a data type, Stratego also provides combinators for composing generic
traversals. The operator all(s) applies s to each of the direct subterms ti of
a constructor application C(t1,...,tn). It succeeds if and only if the appli-
cation of s to each direct subterm succeeds. In this case the resulting term is
the constructor application C(t1’,...,tn’), where each term ti’ is obtained
by applying s to ti. Note that all(s) is the identity on constants, i.e., on
constructor applications without children.

An example of the use of all is the definition of the strategy bottomup(s) in
Figure 3. There, the strategy expression (all(bottomup(s)); s) specifies that
s is first applied recursively to all direct subterms — and thus to all subterms —
of the subject term. If that succeeds, then s is applied to the resulting term. This
definition of bottomup thus captures the generic notion of a bottom-up traversal
over a term.

2.6. Innermost Normalization

The innermost strategy in Figure 3 is defined using bottomup. It performs a
bottom-up traversal over a term, applying the strategy try(s;innermost(s))

to each subterm. Thus, for each subterm, after applying try(s;innermost(s))

to each of its subterms, the transformation s is applied to it. If that succeeds,
the reduct resulting from the transformation is recursively normalized. If s fails,
however, the subterm must be in s-normal form.

The innermost strategy in Figure 3 captures the notion of parallel innermost
reduction. Other specifications of innermost normalization are possible since
Stratego representations of strategies are not, in general, unique. In particular,
by unfolding the definition of innermost twice and then folding again using a
local recursion, we arrive at the following alternative specification:

innermost(s)

= bottomup(try(s; innermost(s)))

= bottomup(try(s; bottomup(try(s; innermost(s)))))

= bottomup(rec r(try(s; bottomup(r))))

3. Transformation Techniques and Idioms

In this section we will briefly outline the extension of Stratego with concrete
syntax and dynamic rules, and then discuss a number of useful transformation
idioms and show how Stratego naturally supports their implementation. On the
one hand, these idioms motivate the use of programmable strategies. On the
other, they are tools that will be applied in the fusion transformation later in
this paper.
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3.1. Concrete Syntax

In the previous section we saw that Stratego can be used to define transfor-
mations on abstract syntax trees representing the programs to be transformed,
rather than on their text-based representations. But the direct manipulation of
abstract syntax trees can be unwieldy for larger program fragments. Therefore,
Stratego supports the specification of transformation rules using the concrete
syntax of the object language [26]. For example, using concrete syntax, one can
declare the following transformation on strategy expressions:

SeqOverLChoiceR :
|[ (s1 <+ s2); s3 ]| -> |[ (s1; s3) <+ (s2; s3) ]|

instead of the equivalent transformation on abstract syntax trees:

SeqOverLChoiceR :
Seq(LChoice(s1, s2), s3) -> LChoice(Seq(s1, s3), Seq(s2, s3))

Concrete syntax is merely syntactic sugar for the specification of transformations
on its corresponding abstract syntax.

3.2. Dynamic Rules

Programmable rewriting strategies provide control over the application of rewrite
rules. But one limitation of pure rewriting is that rewrite rules are context-free.
That is, a rewrite rule can only use information obtained by pattern matching
on the subject term or, in the case of conditional rewriting, from the subterms of
the subject term. Yet, for many transformations, information from the context of
a program fragment is needed. The extension of strategies with scoped dynamic
rules [24] makes it possible to access this information.

Unlike standard rewrite rules in Stratego, dynamic rules are generated at run-
time, and can access information available from their generation contexts. For
example, in the following strategy, the transformation rule InlineStrat defines
the replacement of a call f(ss) by the appropriate instantiation of the body s
of its definition:

declare-inline-rule =
?|[ f(as) = s ]|;
rules(

InlineStrat :
Strategy|[ f(ss) ]| -> <ssubs> (as’, ss, s’)
where <strename> |[ f(as) = s ]| => |[ f(as’) = s’ ]|

)

The rule InlineStrat is generated in the context of the definition of the strategy
f, but applied at the call sites f(ss). (See Section 8 for more details.) Dynamic
rules are first-class entities and can be applied as part of a global term traversal.
It is possible to restrict the application of dynamic rules to certain parts of
subject terms using rule scopes, which limit the live range of rules.
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3.3. Cascading Transformations

The basic idiom of program transformation achieved with term rewriting is that
of cascading transformations. Instead of applying a single complex transforma-
tion algorithm to a program, a number of small, independent transformations
are applied in combination throughout a program or program unit to achieve
the desired effect. Although each individual transformation step achieves little,
the cumulative effect can be significant, since each transformation feeds on the
results of the ones that came before it. Cascading transformations are the key,
for example, to the compilation-by-transformation approach [5] applied in the
Glasgow Haskell Compiler [20]. GHC applies a large number of small, almost
trivial program transformations throughout programs to achieve large-scale op-
timization by accumulating small program changes.

One common cascading of transformations is accomplished by exhaustively
applying rewrite rules to a subject term. In Stratego the definition of a cascading
normalization strategy with respect to rules R1, ... ,Rn can be formalized using
an innermost strategy:

simplify = innermost(R1 <+ ... <+ Rn)

However, other strategies are possible. For example, the GHC simplifier applies
rules in a single traversal over a program tree in which rules are applied both on
the way down and on the way up. This is expressed in Stratego by the strategy

simplify = downup(repeat(R1 <+ ... <+ Rn))
downup(s) = s; all(downup(s)); s
repeat(s) = try(s; repeat(s))

3.4. Staged Transformations

Cascading transformations apply a number of rules one after another to an entire
program. But in some cases this is not appropriate. For instance, two transfor-
mations may be inverses of one another, so that repeatedly applying one and
then the other would lead to non-termination. To remedy this difficulty, Stratego
supports the idiom of staged transformation.

In staged computation, transformations are not applied to a subject term all
at once, but rather in stages. In each stage, only rules from some particular
subset of the entire set of available rules are applied. In the TAMPR program
transformation system [2, 3] this idiom is called sequence of normal forms, since
a program tree is transformed in a sequence of steps, each of which performs a
normalization with respect to a specified set of rules. In Stratego this idiom can
be expressed directly as

simplify =
innermost(A1 <+ ... <+ Ak)
; innermost(B1 <+ ... <+ Bl)
; ...
; innermost(C1 <+ ... <+ Cm)
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Staged transformations can be applied fruitfully in combination with cascading
transformations: a transformation is expresssed as a sequence of stages, where
each stage is a cascading transformation. Indeed, the GHC simplifier mentioned
above, is in effect a staged transformation in which the simplification traversal
over a program tree is repeated and alternated with various analyses. On the
other hand, the steps in a staged transformation can use quite different idioms
from one another, and can even involve complex monolithic computations.

The advantage of separating rules from strategies is particularly compelling
in this case of staged transformations. Since rules are defined independently of
the particular stages in which they are used, it is easy to reuse them in many
different stages.

3.5. ‘Local’ Transformations

In conventional program optimization, transformations are applied throughout
a program. In optimizing imperative programs, for example, complex trans-
formations are applied to entire programs [17]. In GHC-style compilation-by-
transformation, small transformation steps are applied throughout programs.

In this paper we introduce a style of transformation that is a mixture of these
ideas. Instead of applying a complex transformation algorithm to a program we
use staged, cascading transformations to accumulate small transformation steps
for large effect. However, instead of applying transformations throughout the
subject program, we often wish to apply them locally, i.e., only to selected parts
of the subject program. This allows us to use transformations rules that would
not be beneficial if applied everywhere.

One example of a strategy which achieves such a transformation is

transformation =
alltd(

trigger-transformation
; innermost(A1 <+ ... <+ An)

)
alltd(s) = s <+ all(alltd(s))

The strategy alltd(s) descends into a term until a subterm is encountered for
which the transformation s succeeds. In this case the strategy trigger-trans-

formation recognizes a program fragment that should be transformed. Thus,
cascading transformations are applied locally to terms for which the transforma-
tion is triggered. Of course more sophisticated strategies can be used for finding
application locations, as well as for applying the rules locally. Nevertheless, the
key observation underlying this idiom remains: Because the transformations to
be applied are local, special knowledge about the subject program at the point
of application can be used. This allows the application of rules that would not
be otherwise applicable.

13



3.6. Application-Specific Transformations

Optimizers are usually based on generic transformations, i.e., on transformations
derived from the semantics of the programming language under consideration,
and generic analyses applied to its subject programs. However, when knowl-
edge about the specific application at hand is available, it is sometimes possi-
ble to achieve better results. Application-specific transformations allow special
knowledge about a specific application, or about a specific library to be used in
transformations.

Conventional fusion techniques for functional programming languages — such
as foldr/build fusion [6], destroy/unfoldr fusion [22], and hylo fusion [29]
— are based on application-specific transformations. The foldr/build rule, for
example, relies on programs being written in terms of the specialized program
constructs build and foldr, which encode uniform production and consump-
tion of algebraic data structures, respectively. The rule assumes that these con-
structs exhibit particular operational behaviors — although this is in no way
verified by the compiler before fusion — and performs a program transformation
which is correct with respect to that assumption. It is now possible to provide
such application-specific transformations to GHC via user-definable rewrite rules
which are applied as part of simplification [18].

The fusion transformation on innermost in this paper also relies on library
knowledge rather than on general program analysis. In order to ensure that the
innermost strategy used in a program conforms to its expected semantics, its
definition is matched against our own library definition. Only when matching
is successful is the strategy inlined and the call then optimized. The general
approach of the transformation is based on the cascading style in which lo-
cally applicable transformation rules are applied. However, the key step in the
transformation is based on insight into the algorithm, rather than syntactic ma-
nipulation, and our transformation can be considered an encoding of this insight.
Thus, using syntax-directed application-specific program transformations we can
achieve a greater degree of optimization more effectively than is possible with
only general program analysis.

4. An Optimized Specification of Innermost Reduction

In the previous sections we have seen that a variety of generic rewriting strategies
can be composed from a few combinators, and that these strategies can in turn
be used to encode a wide variety of transformation idioms. Moreover, this can
all be done even while preserving the separation between rules and strategies.
Such generality does, however, come at a price. Inspection of the specification
for the innermost strategy in Figure 3 reveals an inefficiency resulting from the
up-and-down way in which it traverses terms. The difficulty is that subterms
which have already been normalized may be reconsidered for normalization a
number of times.

Consider again the transformation of a term with the innermost(A <+ B)
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module apply-peano
strategies

main =
bottomup(rec r(

{x: ?Plus(Zero, x); !x}
<+ {x, y: ?Plus(Succ(x), y); !<r> Succ(<r> Plus(x, y))}
<+ id

))

Figure 4: Optimized strategy.

strategy from Figure 2. By the definition of innermost, when (A <+ B) is ap-
plied to a subterm, all its proper subterms are already in normal form. For
example, in any term matching the left-hand side Plus(Succ(x),y) of the rule
B, the subterms corresponding to the variables x and y must already have been
normalized. Nevertheless, once the appropriate instance of the right-hand side
Succ(Plus(x,y)) of B is constructed, it must be normalized with innermost(A

<+ B). This entails that the terms bound to x and y are completely renormal-
ized: These “variable subterms” are completely traversed, and the rules A and
B are tried at each of their subterms. Since the variable subterms terms are in
normal form, no actual transformation occurs, of course, but the specification
of innermost in Figure 3 still requires their traversal. Traversing in its entirety
each subterm resulting from each application of each rule leads to suboptimal
performance of the normalization strategy.

4.1. Optimizing Innermost

The suboptimal complexity of the innermost strategy is a direct result of the
separation of concerns between the generic strategy and the rules with which it is
parameterized. With knowledge of the specific rules to be used in normalization
in hand, an efficient implementation of the innermost strategy can be achieved.

For example, in the specific case of innermost normalization with respect to
the rules A and B, an efficient definition is the one given in Figure 4. This defi-
nition completely avoids renormalization of variable subterms. Like the original
definition of innermost(A <+ B), the optimized definition performs innermost
normalization of a term with respect to rules A and B. However, rather than
renormalizing every subterm of the term resulting from a single-step reduction
by A or B, the optimized strategy recursively applies the reduction strategy only
to the non-variable subterms of the reduct.

Examination of the optimized strategy shows how this is accomplished. Like
the original innermost strategy, the strategy performs a bottom-up traversal.
At each node, a recursive strategy r tries to apply either rule A or rule B, or else
vacuously succeeds with id. Instead of separating the rules from the strategy, the
rules have been intertwined with it. To do this most effectively, the rules have
been rephrased in terms of the true primitive actions of rewriting, i.e., pattern
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matching (?pat) and pattern instantiation (!build). Thus, rule A is rephrased
as

{x: ?Plus(Zero, x); !x}

and rule B is rephrased as

{x,y: ?Plus(Succ(x), y); !<r> Succ(<r> Plus(x,y))}

In these rephrasings, the scope of the pattern variables x and y is delimited
by the scope construct {x1,...,xn:s}. (See Section 6 for formal definitions of
?pat, !pat, and variable scope.)

Now, instead of applying the complete innermost strategy to the reduct of
a rule application, the inner recursive strategy r is invoked only on those sub-
terms of the reduct that may not be in normal form. In particular, r is not
applied to variable subterms from the left-hand side of the rule, since these are
already known to be in normal form. The notation <s> t denotes the appli-
cation of strategy s to the instance of the term t determined by the current
bindings. The first scoped strategy above thus replaces a subject term of the
form Plus(Zero, t) with its subterm t. Similarly, the second replaces a term
of the form Plus(Succ(t), t’) with the term obtained by applying the strat-
egy r to the term obtained by applying Succ to the term obtained by applying
r to Plus applied to t and t’.

4.2. Effect of the Optimization

The entangling of rules and strategy is quite effective, as can be seen from the
benchmark results in Figure 5. In the benchmark, innermost(A <+ B) is used
to reduce terms of the form Plus(Succ(...), Zero) nested n deep. Since the
reduction of each Plus requires n + 1 steps, the entire reduction requires (n+3)n

2

steps. The results show that the run-time for the original strategy grows much
faster than that of the optimized version.

By fusing strategies and the rules they apply, significantly more efficient imple-
mentations of transformations can be achieved. However, writing such tangled
specifications of rewrite systems is not attractive since it leads to much more
complex specifications, as well as to specifications in which rules are tied to spe-
cific transformations and so cannot be reused in other ones. Furthermore, the
explicit recursive invocation of the transformation in the right-hand side of rules
make it less clear what belongs to the original transformation rule, and what
belongs to the strategy. This makes understanding, and therefore maintaining,
the rules more difficult.

Thus, while the entangled specification is more efficient, the modular one is
better for development. Automatically fusing the generic strategy with its ar-
guments is therefore attractive. As we will see, it is also possible. In the next
section we will show that the optimized version can be derived from the generic
version. In Section 8 we will show that automatic fusion can derive the optimized
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n #rewrites plain fused
time rewr/sec time rewr/sec

25 350 0.01 35000.00 0.00 -
30 495 0.02 24750.00 0.00 -
35 665 0.02 33250.00 0.00 -
40 860 0.03 28666.67 0.00 -
45 1080 0.05 21600.00 0.00 -
50 1325 0.07 18928.57 0.00 -

100 5150 0.47 10957.45 0.01 515000.00
200 20300 3.55 5718.31 0.01 2030000.00
300 45450 11.88 3825.76 0.02 2272500.00
400 80600 27.93 2885.79 0.05 1612000.00
500 125750 55.66 2259.25 0.06 2095833.33
600 180900 95.05 1903.21 0.09 2010000.00
700 246050 144.17 1706.67 0.11 2236818.18
800 321200 196.38 1635.60 0.14 2294285.71
900 406350 280.07 1450.89 0.20 2031750.00

1000 501500 384.47 1304.39 0.24 2089583.33
2000 2003000 3115.09 643.00 1.43 1400699.30

f(0) = Zero
f(n + 1) = Plus(Succ(f(n)),Zero)

Figure 5: Benchmark results for unoptimized and optimized transformation innermost(A
<+ B) applied to terms generated by f(n). The table shows the number of rewrites, i.e., rule
applications that are performed, and for each of the strategies, the time in seconds, and the
number of rewrite steps per second. The benchmarks were performed on a 2GHz Pentium 4
with 1GB RAM (of which the benchmark uses only 0.5%.)

definition of innermost from its generic version. That the original and optimized
versions have the same operational semantics will be proved in that section.

5. Deriving the Optimized Specification

In this section we show how the optimized implementation of Figure 4 can be
derived from the strategy innermost(A <+ B) by systematic transformation.
Although we demonstrate the derivation technique by applying it to the specific
program innermost(A <+ B) from Figure 2, it can be used to optimize the
application of innermost to any selection of rules equally well. In the remainder
of the paper we will formalize in Stratego the transformation rules we use here,
and then develop a strategy for automatically applying them in the correct order.

The goal of the derivation is to fuse the recursive invocation of innermost with
the right-hand sides of the rules A and B. To achieve this, we first desugar the
rules and then inline (unfold) strategy definitions in order to arrive at a single
expression containing the complete specification of the innermost strategy. The
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bottomup strategy can then be distributed over the right-hand sides of the rules
to which innermost is applied.

5.1. Desugaring Rules

In Stratego, rules are not primitives. Instead, rules are expressed in terms of the
constructs ?t and !t. A rule L: l -> r is just syntactic sugar for the strategy
definition L = {x1,...,xn:?l;!r}, where the xi are the variables occurring
in the rule. The similarities between the original definition of innermost from
Figure 2 and the optimized definition from Figure 4 become more apparent once
we observe that the rules A and B from Figure 1 represent the strategy definitions

A = {x: ?Plus(Zero, x); !x}

and

B = {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}

respectively.

5.2. Inlining Definitions

The first step of the derivation consists in inlining definitions, i.e., in replacing
each call to a strategy by the body of its definition. If f(x1,...,xn) = s is
the definition of strategy operator f, then a call f(s1,...,sn) to that operator
can be replaced by s[s1:=x1,...,sn:=xn], i.e., by the strategy obtained by
replacing the formal parameters of the body of f by its actual arguments. In the
case of the main strategy in Figure 2, inlining gives

(1) innermost(A <+ B)

By the definition of innermost and the derivation on page 10 this expands to

(2) bottomup(rec r(try((A <+ B); bottomup(r))))

Inlining the definitions of rules A and B gives

(3) bottomup(rec r(try
({x: ?Plus(Zero, x); !x}
<+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}
); bottomup(r)
))

5.3. Sequential Composition over Choice

In the next step of the derivation we right distribute the bottomup strategy over
the deterministic choice operator using the rule

(x <+ y); z -> (x; z) <+ (y; z)
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This rule is not valid for all strategy expressions. Consider a term t for which x

and y both succeed, (x;z) fails, and (y;z) succeeds. The strategy (x <+ y); z

will fail if application of x is attempted, but (x;z) <+ (y;z) will always succeed
since (y;z) does. On the other hand, the rule does hold whenever z is guaranteed
to succeed; in this situation, the success or failure of both sides of the rule is
determined wholly by the success or failure of x and y.

Since id always succeeds, the strategy try(s) succeeds for any parameter
strategy s. Thus, r in the recursive strategy (3) is guaranteed to succeed as
well. This in turn implies that bottomup(r) is guaranteed to succeed, and so
right distribution of bottomup(r) according to the rule above is valid. This gives

(4) bottomup(rec r(try
({x: ?Plus(Zero, x); !x}; bottomup(r)
<+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}; bottomup(r)
)))

5.4. Sequential Composition over Scope

In order to apply bottomup(r) to the right-hand sides of the argument rules to
try, we need to bring it under the scope of the rules by applying the transfor-
mation

{xs: s1}; s2 -> {xs: s1; s2}

This rule is valid whenever the variables in xs are not free in s2. Its application
transforms (4) into

(5) bottomup(rec r(try
({x: ?Plus(Zero, x); !x; bottomup(r)}
<+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y)); bottomup(r)}

)))

5.5. Strategy Application

We can now apply bottomup(r) to the term built in the right-hand side of each
rule. We get

(6) bottomup(rec r(try
({x: ?Plus(Zero, x); !<bottomup(r)> x}
<+ {x,y: ?Plus(Succ(x), y); !<bottomup(r)> Succ(Plus(x, y))}

)))

5.6. Distribution of bottomup

The application of bottomup(r) to a constructor application leads to the follow-
ing derivation:

19



<bottomup(r)> C(t1,...,tn)
= {definition of bottomup}

<all(bottomup(r)); r> C(t1,...,tn)
= {semantics of sequential composition}

<r> (<all(bottomup(r))> C(t1,...,tn))
= {semantics of all}

<r> C(<bottomup(r)>t1,..., <bottomup(r)>tn)

By repeatedly applying the rule

<bottomup(r)> C(t1,...,tn) ->
<r> C(<bottomup(r)> t1,...,<bottomup(r)> tn)

bottomup(r) can be distributed over the term constructions in the right-hand
sides of rules until variables are encountered. Doing so for our running example
gives

(7) bottomup(rec r(try
({x : ?Plus(Zero, x); !<bottomup(r)> x}
<+ {x,y: ?Plus(Succ(x), y);

!<r> Succ(<r> Plus(<bottomup(r)> x, <bottomup(r)> y))}
)))

5.7. Avoiding Renormalization

We may now use the observation that

<bottomup(r)> v -> v

if v is a variable originating in the left-hand side of a rule to rewrite the right-hand
sides of the rule arguments to try. In other words, if vs contains all variables
occurring in l’, v is in vs, and {vs:?l’;!r’} is a strategy, then occurrences
of <bottomup(r)>v in r’ can be replaced by v itself. This observation is valid
because terms matching variables from the left-hand side of a rule are already in
normal form. Although this observation relies on non-local information (it needs,
for example, to know which variables in r’ also appear in l’), it does give rise
to a transformation that is local in the sense that it is applied only within a
single strategy. More specifically, the transformation <bottomup(r)> v -> v is
applied to a selected part of a program under the control of a particular program
transformation strategy. Using it, we arrive at the desired optimized version of
innermost(A <+ B):

(8) bottomup(rec r(try
({x: ?Plus(Zero, x); !x}
<+ {x, y: ?Plus(Succ(x), y); !<r> Succ(<r> Plus(x, y))}
)))
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sp := d1 ... dn

d := f(x1,...,xn) = s

s := ?mpat | !bpat | {x1,...,xn: s} | where(s) | all(s) |
s1 ; s2 | s1 <+ s2 | not(s) | f(s1,...,sn) |
C(s1,...,sn) | rec x(s) | id | fail

mpat := x | C(mpat1,...,mpatn)

bpat := x | C(bpat1,...,bpatn) | <s> bpat

t := C(t1,...,tn)

p := (t, E)

E := {x1 := t1, ..., xn := tn}

Figure 6: Abstract syntax of Stratego (subset)

6. Syntax and Semantics of Stratego

In this section we formalize the syntax and operational semantics of Stratego
described informally in Sections 2 and 4. Concrete syntax will aid definition of
the transformations we use to optimize applications of innermost, and a well-
defined operational semantics will enable us to prove that the transformations
are correct. We formalize only those elements of Stratego that are needed to
present our results.

6.1. Syntax

The abstract syntax for the subset of Stratego with which we are concerned in
this paper appears in Figure 6. There, x is a name that stands for a strategy,
term, or pattern, depending on its context. Each numbered item in the figure is
of the same syntactic class as its unnumbered counterpart.

A Stratego program sp is a listing of strategy definitions. A strategy definition
d introduces a parameterized strategy operator. A strategy is either an applica-
tion of the match primitive ?mpat to a match pattern, an application of the build
primitive !bpat to a build pattern, a scoped strategy, a where clause, an applica-
tion of the all traversal operator to a strategy, a sequential composition of two
strategies, a deterministic choice of two strategies, the negation of a strategy, an
application of a defined strategy operator to an appropriate number of argument
strategies, an application of a congruence operator to an appropriate number of
strategies, a recursive closure of a strategy, the identity strategy, or the failure
strategy. Most of these constructs have already been introduced informally in
Sections 2.4 and 4.1. A formal semantics is given in the next subsection.
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A match pattern mpat is either a variable or a fixed-arity constructor applied
to an appropriate number of match patterns. A build pattern bpat is either a
variable, a fixed-arity constructor applied to an appropriate number of build
patterns, or a strategy applied to a build pattern.

Stratego rules can have conditions which are introduced using the keyword
where. The operation where(s) applies the strategy s to the subject term. If s
succeeds, then the original subject term is restored, and only the newly obtained
variable bindings are kept. A conditional rule has the form L: l -> r where(s),
and denotes a strategy definition L = {x1,...,xn: ?l; where(s); !r}. The
body of the strategy first matches l and then attempts to satisfy the condition
s. If s succeeds, then the appropriate instance of r is built. Conditional rules
thus apply only if the conditions in their where clauses succeed.

A term t is a fixed-arity constructor applied to an appropriate number of
terms. A pair p has a term as its first component and an environment as its
second. An environment E is a function from variables to terms with a finite
domain. We write dom(E) for the domain of the environment E.

6.2. Operational Semantics

Figure 7 gives the operational semantics of the subset of Stratego with which we
are concerned in this paper. The rules in this figure formalize our earlier, informal
notion of applying strategies to terms. Formally, strategies are always applied
to term-environment pairs to produce new such pairs. If s is a strategy and p

is a pair, then we write s @ p to denote the application of s to p. Informally,
however, we speak of applying a strategy to a term, with no explicit reference
to its accompanying environment.

The symbol F denotes failure of a strategy application. Figure 7 only lists the
positive rules for Stratego. But if, for any strategy application s @ p, no rule
applies at the root of the term component of p, then the application fails. It is,
of course, also possible for computations to be nonterminating.

The notion of one environment extending another is used in the rule for match
patterns. We say that E’ extends E if every binding in E also appears in E’. In this
case we write E’ > E. In addition, if E is an environment and pat is a pattern,
then E(pat) is the instance of pat obtained by replacing all occurrences of
variables in pat by their bindings in E. Finally, if E is an environment containing
bindings for x1,...,xn, then E-{x1,...,xn} denotes the environment derived
from E by “undoing” the bindings of the xi. The union of two environments E

and E’ with disjoint domains is denoted E + E’.
When we write f(x1,...,xn) = s, we really mean that that strategy defini-

tion is in the Stratego program currently under consideration. So evaluation is
always relative to a given Stratego program.

Two features of Stratego’s operational semantics are worth calling out for
special attention. First, the relation => is deterministic, i.e., for any strategy s
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id @ p => p fail @ p => F

s1 @ p => p’’ s2 @ p’’ => p’

(s1; s2) @ p => p’

s @ p => F

not(s) @ p => p

s1 @ p => p’

(s1 <+ s2) @ p => p’

s1 @ p => F s2 @ p => p’

(s1 <+ s2) @ p => p’

f(x1,...,xn) = s s[x1:=s1,...,xn:=sn] @ p => p’

f(s1,...,sn) @ p => p’

s[x:=rec x(s)] @ p => p’

rec x(s) @ p => p’

E’ > E E’(pat) = t dom(E’) = dom(E) + (Var(pat)-dom(E))

?pat @ (t, E) => (t, E’)

E(x) = t’

!x @ (t, E) => (t’, E)

(!pat; s) @ p => p’

!<s>pat @ p => p’

!pat1 @ (t, E0) => (t1,E1) ... !patn @ (t, En-1) => (tn,En)

!C(pat1,...,patn) @ (t, E0) => (C(t1,...,tn),En)

s @ (t, E-{x1,...,xn}) => (t’, E’)

{x1,...,xn : s} @ (t,E) => (t’, E’-{x1,...,xn} + {...xi:=E(xi)...})

s @ (t, E) => (t’, E’)

where(s) @ (t, E) => (t, E’)

s @ (t1, E0) => (t1’, E1) .... s @ (tn, En-1) => (tn’, En)

all(s) @ (C(t1,...,tn), E0) => (C(t1’,...,tn’), En)

s1 @ (t1, E0) => (t1’, E1) .... sn @ (tn, En-1) => (tn’, En)

C(s1,...,sn) @ (C(t1,...,tn), E0) => (C(t1’,...,tn’), En)

Figure 7: Operational semantics of Stratego (subset)

and any term-environment pair p, there is exactly one possible pair which can
result from application of s to p. As a consequence, => is necessarily confluent.

Second, Stratego’s operational semantics is structural, i.e., is compositional.
As a result, standard, syntax-directed induction techniques can be used to prove
properties of the relation =>. We will use such techniques in Sections 7.4 and 8
to prove that our transformations for optimizing applications of innermost are
correct with respect to the operational semantics of Stratego.
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7. Stratego Transformations in Stratego

In the next two sections we discuss and implement a transformation on Stratego
programs which fuses applications of innermost with the rules to which it is
applied. In this section we introduce the basic transformation rules that are used
in the transformation and prove their correctness. In the next section we present
the strategy that is used to apply these rules and prove it correct. The strategy
transformations used to optimize applications of innermost will themselves be
implemented as Stratego strategies.

7.1. Concrete Syntax

As discussed in Section 3, we use the concrete syntax of Stratego defined in
Figure 6 in specifying the program transformations. In order to distinguish the
syntax of object-expressions that are the subjects of the transformations from
the meta-expressions that implement transformations we use quotations. That
is, Term|[ pat ]| indicates a term pattern being transformed, and Strategy|[

s ]| represents a strategy expression. Where no ambiguities arise we leave out
the Term and Strategy prefixes.

7.2. Correctness of Transformations

The correctness of each optimizing transformation will be proved when the trans-
formation is introduced. Informally, a strategy transformation is said to be cor-
rect if the meaning of the input strategy to the transformation is the same as
the meaning of the transformed strategy. Depending on the application, meaning
can be assigned to strategies in many different ways. In the study of strategy
transformations, it is the operational behavior of strategies that is of interest.

We can formalize the notion of correctness as follows. Let s1 and s2 be strategy
expressions. The transformation of s1 to s2 is correct if, for all pairs p and p’,
s1 @ p => p’ iff s2 @ p => p’.

Since Stratego’s semantics is compositional, applying a meaning-preserving
transformation to a strategy “in context” — i.e., other than at the root of the
object language term which represents it — also preserves the meaning of that
strategy. Any sequence of meaning-preserving strategy transformations out of
any strategy term is therefore meaning-preserving as well. Moreover, since strate-
gies are just ways to apply transformation rules to parts of terms in context, once
we establish the correctness of the individual rules that are applied to optimize
innermost strategies, we are assured that any strategy used to apply them to
various parts of terms is also correct.

7.3. Preprocessing and Desugaring

Some preprocessing and desugaring takes place before transformation begins.
The preprocessing consists of renaming various identifiers, and the desugaring
expands rules according to their definitions as scoped match-build strategies.
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module fusion-rules
imports stratego
rules

AssociateR :
|[ (s1; s2); s3 ]| -> |[ s1; (s2; s3) ]|

IntroduceApp :
|[ !pat; s ]| -> |[ !<s> pat ]|

AppToSeq :
Term|[ <s1> (<s2> pat) ]| -> Term|[ <s2; s1> pat ]|

SeqOverLChoiceL :
|[ s1; (s2 <+ s3) ]| -> |[ (s1; s2) <+ (s1; s3) ]|

seq-over-choice =
?|[ s3 ]|;
rules(

SeqOverLChoiceR :
|[ (s1 <+ s2); s3 ]| -> |[ (s1; s3) <+ (s2; s3) ]|

)

SeqOverScopeR :
|[ {xs : s1}; s2 ]| -> |[ {xs : s1; s2} ]|

SeqOverScopeL :
|[ s1; {xs : s2} ]| -> |[ {xs : s1; s2} ]|

BottomupOverConstructor :
Term|[ <bottomup(s)> c(ts1) ]| -> Term|[ <s> c(ts2) ]|
where <map(\ t -> Term|[ <bottomup(s)> t ]| \ )> ts1 => ts2

Figure 8: Distribution and association rules.

Preprocessing and desugaring clearly preserve the meanings of strategies. For
example, the correctness of strategy inlining follows from the semantics of strat-
egy definitions given in Figure 7.

7.4. The Transformation Rules

The rules used in the derivation in Section 5 are formalized as Stratego rules
in Figure 8. Here we prove the correctness of each rule. In the next section we
combine these rules into a strategy that optimizes occurrences of the innermost
strategy in Stratego specifications.
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Associate Composition Right

The rule AssociateR associates sequential composition of strategies to the right.

Proposition 7.1: For all pairs p and p’,

((s1; s2); s3) @ p => p’ iff (s1; (s2; s3)) @ p => p’.

Proof: If ((s1; s2); s3) @ p => p’, then there must exist a pair p1 such
that (s1; s2) @ p => p1 and s3 @ p1 => p’. The former in turn implies the
existence of a pair p2 such that s1 @ p => p2 and s2 @ p2 => p1. But then
s2 @ p2 => p1 and s3 @ p1 => p’ imply (s2; s3) @ p2 => p’. Together with
the fact that s1 @ p => p2, this gives (s1; (s2; s3)) @ p => p’ as desired.
The converse is similar. 2

Introduce Application

The IntroduceApp rule formalizes the assertion in Section 4.1 that <s> pat is
shorthand for !pat; s.

Proposition 7.2: For all pairs p and p’,

(!pat; s) @ p => p’ iff (!<s> pat) @ p => p’.

Proof: This follows immediately from the semantics of <s> pat in Figure 7. 2

Application to Sequence

The rule AppToSeq replaces an application of a strategy to an application of an-
other strategy with the sequential composition of the two strategies. According
to Figure 6, the only place a pattern pat can appear in a strategy is in a build
pattern. But then from the syntax of build patterns we see that pat must ap-
pear in some term pattern context. To prove correctness of AppToSeq, we must
therefore show that the effects of its left- and right-hand sides in context are the
same.

Proposition 7.3: For all pairs p and p’ and any term pattern context Con[.]

!Con[<s1> (<s2> pat)] @ p => p’ iff !Con[<s2; s1> pat] @ p => p’.

Proof: By induction over the context Con[.]. First assume the context is empty.
We have (!<s1> (<s2> pat)) @ p => p’ iff (!<s2> pat; s1) @ p => p’. But
the latter holds iff there exists a p1 such that (!<s2> pat) @ p => p1 and s1

@ p1 => p’. By Proposition 7.2, (!<s2> pat) @ p => p1 holds iff (!pat; s2)

@ p => p1, i.e., iff there exists a pair p2 such that !pat @ p => p2 and s2 @

p2 => p1. But the latter holds iff s2 @ p2 => p1 and s1 @ p1 => p’, which
in turn hold iff (s2; s1) @ p2 => p’. Thus (!<s1> (<s2> pat)) @ p => p’
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holds iff !pat @ p => p2 and (!pat; (s2; s1)) @ p => p’, i.e., iff (!<s2;

s1> pat) @ p => p’.
Now assume that the proposition has been proven for contexts of depth n. If

Con[.] is a context of depth n+1, then it must be of the form C(..., Con’[.],

...) with Con’[.] a context of depth n. Hence, !Con[<s1> (<s2> pat)] @

p => p’ iff !C(pat1,..,Con’[<s1> (<s2> pat)],...,patn) @ p => p’. But
this is the case iff p is of the form (C(t1,...,tn),E0), p’ is of the form
(C(t1’,...,tn’),En), and, for each argument term ti, !pati @ (ti, Ei-1)

=> (ti’, Ei). In particular, this happens iff !Con[<s1> (<s2> pat)] @ (ti,

Ei-1) => (ti’, Ei). By induction, this is the case iff !Con[<s2; s1> pat]

@ (ti, Ei-1) => (ti’, Ei), which in turn holds iff !C(pat1,..,Con’[<s2;

s1> pat],...,patn) @ p => p’, i.e., iff !Con[<s2; s1> pat] @ p => p’. 2

Sequence over Choice (Left)

The rule SeqOverLChoiceL distributes sequential composition on the left over
the deterministic choice of two strategies.

Proposition 7.4: For all pairs p and p’,

(s1; (s2 <+ s3)) @ p => p’ iff ((s1; s2) <+ (s1; s3)) @ p => p’.

Proof: If (s1; (s2 <+ s3)) @ p => p’, then there exists some p’’ such that
s1 @ p => p’’ and (s2 <+ s3) @ p’’ => p’. Since (s2 <+ s3) @ p’’ => p’,
either s2 @ p’’ => p’ or else s2 @ p’’ => F and s3 @ p’’ => p’. In the
first case, s1 @ p => p’’ and s2 @ p’’ => p’, so that (s1; s2) @ p => p’.
In the second, s1 @ p => p’’ and s2 @ p’’ => F and s3 @ p’’ => p’, so
that (s1; s2) @ p => F and (s1; s3) @ p => p’. In either case we have
((s1; s2) <+ (s1; s3)) @ p => p’.

If ((s1; s2) <+ (s1; s3)) @ p => p’, then either (s1; s2) @ p => p’,
or else (s1; s2) @ p => F and (s1; s3) @ p => p’. In the first case, there
must exist a pair p’’ such that s1 @ p => p’’ and s2 @ p’’ => p’. But the
latter implies that s1 @ p => p’’ and (s2 <+ s3) @ p’’ => p’, so that we
have (s1; (s2 <+ s3)) @ p => p’ as desired.

In the second case, (s1; s2) @ p => F and there must exist a p’’ such that
s1 @ p => p’’ and s3 @ p’’ => p’. Since (s1; s2) @ p => F, it must be the
case that s2 @ p’’ => F. Thus, (s2 <+ s3) @ p’’ => p’. Since s1 @ p => p’’

and (s2 <= s3) @ p’’ => p’, we may conclude that (s1; (s2 <+ s3)) @ p

=> p’ in this case as well. 2

Sequence over Choice (Right)

The rule SeqOverLChoiceR distributes sequential composition on the right over
the deterministic choice of two strategies. As discussed in Section 5.3, it is valid
only when s3 is guaranteed to succeed. This is reflected in the implementation
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in Figure 8, by means of the dynamic rules mechanism. The seq-over-choice

strategy should be applied for a strategy expression which is known to always
succeed. It matches the strategy expression against s3, and then the dynamic
rule SeqOverLChoiceR is generated for this specific strategy. Here we prove the
correctness of the generated rule, assuming that s3 is guaranteed to succeed.

Proposition 7.5: For all pairs p and p’, if s3 always succeeds, then

((s1 <+ s2); s3) @ p => p’ iff ((s1; s3) <+ (s2; s3)) @ p => p’.

Proof: If ((s1 <+ s2); s3) @ p => p’, then there must exist a pair p’’ such
that (s1 <+ s2) @ p => p’’ and s3 @ p’’ => p’. The former entails that
either s1 @ p => p’’, or else s1 @ p => F and s2 @ p => p’’. In the first
case we have (s1; s3) @ p => p’; in the second, (s1; s3) @ p => F and
(s2; s3) @ p => p’. In either case, ((s1; s3) <+ (s2; s3)) @ p => p’.

If ((s1; s3) <+ (s2; s3)) @ p => p’, then either (s1; s3) @ p => p’,
or else (s1; s3) @ p => F and (s2; s3) @ p => p’. In the first case, there
must exist a p’’ such that s1 @ p => p’’ and s3 @ p’’ => p’. Thus, we have
(s1 <+ s2) @ p => p’’, and so ((s1 <+ s2); s3) @ p => p’.

In the second case, either s1 @ p => F, or else s1 @ p => p’’’ holds and
s3 @ p’’’ => F. But s3 always succeeds by hypothesis, so we must have that
s1 @ p => F. Furthermore, (s2; s3) @ p => p’ implies that there exists a
pair p’’ such that s2 @ p => p’’ and s3 @ p’’ => p’. We therefore have
(s1 <+ s2) @ p => p’’, and therefore ((s1 <+ s2); s3) @ p => p’ as de-
sired. 2

Sequence over Scope (Right)

The rule SeqOverScopeR extends a scope to include a strategy which is composed
with it on the right.

Proposition 7.6: For all pairs p and p’,

({xs : s1}; s2) @ p => p’ iff {xs : s1; s2} @ p => p’.

Proof: By renaming, we can assume that the variables xs occur only in s1. Thus
{xs : s1}; s2 and {xs : s1; s2} both have the effect of delimiting the scope
of xs to s1 in the composition s1; s2, and so both behave as the strategy
s1; s2 on any input pair. 2

Sequence over Scope (Left)

The rule SeqOverScopeL extends a scope to include a strategy which is composed
with it on the left.

Proposition 7.7: For all pairs p and p’,
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(s1; {xs : s2}) @ p => p’ iff {xs : s1; s2} @ p => p’.

Proof: By renaming, we can assume that the variables xs occur only in s2. Thus
s1; {xs : s2} and {xs : s1; s2} both have the effect of delimiting the scope
of xs to s2 in the composition s1; s2, and so both behave as the strategy
s1; s2 on any input pair. 2

Bottomup over Constructor

Finally, rule BottomupOverConstructor distributes bottomup over constructor
application. The rule uses the map strategy operator to distribute the application
of bottomup over the list of arguments of the constructor. Thus, the rule trans-
forms a build pattern of the form <bottomup(s)> c(pat1,...,patn) to the
build pattern <s> c(<bottomup(s)> pat1,...,<bottomup(s)> patn). In this
transformation we assume that there are no pattern matches in the constructor
pattern, nor in the strategy s.

Proposition 7.8: Suppose no pattern matches over free variables are done by
s or any pati. Then for all pairs p and p’, and any term pattern context Con[.],

!Con[<bottomup(s)> c(pat1,...,patn)] @ p => p’ iff
!Con[<s> c(<bottomup(s)> pat1,...,<bottomup(s)> patn)] @ p => p’.

Proof: By induction on the depth of the context. We give the proof only for the
base case — when Con is the empty context — since the inductive case is similar
to that for AppToSeq.

By the definition of bottomup, we have !<bottomup(s)> c(pat1,...,patn)

@ p => p’ iff !<all(bottomup(s)); s> c(pat1,...,patn) @ p => p’. But
this holds iff (!c(pat1,...,patn); all(bottomup(s)); s) @ p => p’, i.e.,
iff there exist pairs p1 and p2 such that !c(pat1,...,patn) @ p => p1, and
all(bottomup(s)) @ p1 => p2, and s @ p2 => p’. Now, let p be (t,E). Then
!c(pat1,...,patn) @ (t,E) => (c(t1,...,tn),E) iff for each sub-pattern
pi, we have !pati @ (t,E) => (ti,E). (Here, E is constant throughout by
the assumption that pati does not bind any variables.) But this holds iff p1 is
precisely (c(t1,...,tn),E). By the semantics of the operator all, this happens
iff all(bottomup(s)) @ (c(t1,...,tn),E) => (c(t1’,...,tn’),E), where
bottomup(s) @ (ti,E) => (ti’,E) for each i, and therefore p2 is precisely
(c(t1’,...,tn’),E). But this is the case iff (!pati; bottomup(s)) @ (t, E)

=> (ti’,E), i.e., iff (!<bottomup(s)> pati) @ (t, E) => (ti’,E), which is
the case iff !c(<bottomup(s)> pat1,...,<bottomup(s)> patn) @ p => p1.
Since this holds iff !<s> c(<bottomup(s)> pat1,...,<bottomup(s)> patn)

@ p => p’, the correctness of BottomUpOverConstructor is proved in the base
case. 2
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8. The Transformation Strategy

In the derivation in Section 5 we implicitly used a particular strategy to apply
the rewrite rules which optimize applications of innermost. More specifically,
we applied the rules to certain subterms in a certain order. In this section we
make explicit the strategy we used, show how it can be coded in Stratego, and
argue that the optimized strategies resulting from its application have the same
observable behavior as the ones from which they are derived.

8.1. Fusion Strategy

The overall strategy employed is the strategy fusion in Figure 9. The strategy
transforms a complete Stratego specification, and is composed of three main
substrategies:

1. declare-inline-rules which generates, for each strategy operator defini-
tion, a rewrite rule that inlines calls to that strategy operator.

2. check-library-definitions, which verifies that the library definitions of
certain strategy operators conform to their expected semantics.

3. innermost-fusion, which uses a top-down traversal to fuse all calls to
innermost.

We consider these substrategies in detail in the next three subsections. Note
that the iowrap(s) combinator turns a transformation s into a program that
can deal with command-line options and input/output of terms.

Our goal in this section is to argue that fusion preserves meanings of speci-
fications:

Proposition 8.1: For any strategy definition f(as) = s in a specification, if
s is transformed to s’ by fusion, then for all pairs p and p’, s @ p => p’ iff
s’ @ p => p’.

We do this by arguing that each of its constituent strategies declare-inline-rules,
check-library-definitions, and alltd(innermost-fusion) preserves the mean-
ings of strategies, i.e., is correct.

fusion =
iowrap(

declare-inline-rules
; check-library-definitions
; alltd(innermost-fusion)

)

Figure 9: Fusion strategy.
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declare-inline-rules =
Specification([Signature(id),

Strategies(map(declare-inline-rule))])

declare-inline-rule =
?|[ f(as) = s ]|;
rules(

InlineStrat :
Strategy|[ f(ss) ]| -> <ssubs> (as’, ss, s’)
where <strename> |[ f(as) = s ]| => |[ f(as’) = s’ ]|

)

inline-rules =
rec x(try(

LChoice(x, x)
<+ Scope(id, Seq(Match(id),Build(id)))
<+ Scope(id, Seq(Match(id),Seq(id,Build(id))))
<+ InlineStrat; x

))

Figure 10: Inline strategy definitions

8.2. Inlining

Initially, the argument to innermost is a deterministic choice of rules. In or-
der to specialize innermost to a choice of rules, each rule’s definition must
first be desugared into its scoped match-build representation. This ensures that
the innermost strategy to be optimized is in the right form for processing by
inline-rules.

8.2.1. Generating Inlining Rules

Figure 10 defines the strategy declare-inline-rules which generates, for each
strategy definition in a specification, an inlining rule InlineStrat. This is done
by mapping declare-inline-rule over the list of strategy definitions in a spec-
ification. The strategy declare-inline-rule matches a strategy definition and
then generates an InlineStrat rule specific for that definition. Since each such
rule is generated dynamically, it inherits the bindings of the variables f, as, and
s from the context of its corresponding strategy definition.

Each generated inlining rule matches a strategy application f(s1,...,sn)

and replaces it with the body of the strategy definition of f in which the formal
parameters a1,...,an are replaced with the actual parameters s1,...,sn. In
order to prevent name capture, the original strategy definition is renamed using
strename, which renames bound strategy and term pattern variables. Substi-
tution of actuals for formals is then achieved using the substitution strategy
ssubs.
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Proposition 8.2: For each InlineStrat rule generated by an application of
declare-inline-rule to a strategy definition f(a1,...,an) = s, if s is the
result of applying InlineStrat to the strategy expression f(s1,...,sn), then

f(s1,...,sn) @ p => p’ iff s @ p => p’

Proof: Since s corresponds to the body of f in which formal parameters have
been replaced by actual parameters, this follows immediately from the semantics
of strategy calls. 2

Correctness of declare-inline-rules follows immediately from the following
proposition.

Proposition 8.3: The strategy declare-inline-rules (1) is the identity trans-
formation on specifications and (2) generates for each strategy definition a mean-
ing preserving inlining rule InlineStrat.

Proof: (1) Neither the congruence strategy in declare-inline-rules, the match
against the strategy definition in declare-inline-rule, nor the rules con-
structed in declare-inline-rule changes the term to which it is applied. (2)
The declare-inline-rule is applied to each strategy definition in turn by map

and, according to the previous proposition, generates a correct inlining rule. 2

8.2.2. Using Inlining Rules

After inlining rules have been generated, they can be applied anywhere without
changing the meanings of programs. However, replacing every call everywhere is
not a useful strategy from the point of view of code size, and there is also the
danger of non-termination of the inliner when expanding recursive calls. Inlining
is, therefore, best applied selectively. In the case of the current transformation,
only the rules passed as arguments to the innermost strategy are inlined.

The inline-rules strategy inlines calls in a strategy expression, but only top-
level calls and calls in arguments to the deterministic choice operator are inlined.
In particular, inlining stops when a (desugared) rule is encountered. Moreover,
calls which are embedded in where clauses in rules are not inlined. However,
whenever a strategy call is inlined, inline-rules is applied recusively to the
instantiated body of that strategy. This properly handles definitions of the form

simplify = innermost(rule-set1 <+ rule-set2)

where

rule-set1 = A1 <+ ... <+ An

rule-set2 = B1 <+ ... <+ Bm

in which abstractions over sets of rules are passed as arguments to innermost.
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check-library-definitions =
check-that-try-is-try
; check-that-innermost-is-innermost
; check-that-bottomup-is-bottomup

check-that-innermost-is-innermost =
where(

new => x
; <InlineStrat> Strategy|[ innermost(x()) ]|
; ?|[ bottomup(try(x(); innermost(x()))) ]|

)

Figure 11: Check implementations of generic strategies

Proposition 8.4: The strategy inline-rules (1) is a meaning preserving trans-
formation on strategy expressions and (2) reduces strategy expressions to the form
s1 <+ ... <+ sn, where none of the si are strategy calls.

Proof: (1) As stated by Proposition 8.2, InlineStrat is meaning preserving.
Since the entire computational effect of inline-rules is to apply InlineStrat

to some subexpressions, it is meaning preserving. (2) The strategy replaces each
call residing under a left choice operator by its definition. 2

8.3. Verifying Library Definitions

Our innermost fusion strategy is application-specific, i.e., it makes assumptions
about the semantics of certain strategy operators in the library. In particular,
the specifications of innermost, bottomup, and try are assumed to have (the
meaning of) the forms given in Figure 3. We could just make these assumptions
and leave it up to the programmer or library writer to make sure this is the case.
However, since libraries are subject to change and can be extended, it is safer to
build in a check that these assumptions are actually valid.

The strategy check-library-definitions verifies that the assumptions are
indeed valid using three check-... strategies, each of which checks the form of a
specific strategy definition. The strategy check-that-innermost-is-innermost,
for example, first inlines the definition of innermost from the library with a
newly named strategy as its argument. The strategy resulting from the inlining is
then matched against the expected result. The match succeeds iff the library def-
inition of innermost has the proper form. The strategies check-that-try-is-
-try and check-that-bottomup-is-bottomup perform similar verifications.

Even though it is possible to match against several (semantically equivalent)
variants of a strategy definition, this will never account for all possible defi-
nitions that implement that particular strategy. Verifying library definitions is
thus application-specific. Instead of providing a general program analysis to de-
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tect that a definition implements a particular strategy, we use knowledge of the
application at hand to enable a transformation.

Proposition 8.5: The strategy check-library-definitions (1) is the iden-
tity transformation on specifications and (2) when it succeeds in the context of
a set of InlineStrat rules, the definitions for try, innermost, and bottomup

have the expected semantics.

Proof: (1) A where(s) strategy does not change the term to which it is applied.
(2) The check-f-is-f strategies match the definition of try, innermost, and
bottomup against their expected definitions, and fail if incompatible definitions
are found. 2

8.4. Innermost Fusion

The last step of the fusion strategy in Figure 9 is the traversal of the specifi-
cation using a one-pass traversal which tries to apply innermost-fusion. The
innermost-fusion rule defined in Figure 12 consists of three parts. The first
part prepares the argument to the call to innermost for fusion, the second part
performs the fusion of the build with bottomup, and the third part realizes the
goal of the transformation, i.e., it prevents the renormalization of variable sub-
terms. It is assumed that desugaring, inlining, and verification have already been
performed prior to application of innermost-fusion. We therefore assume that
we have inlining rules for each strategy definition at our disposal, and that the
library functions all have their expected meanings.

8.4.1. Preparing for Fusion

The innermost-fusion rule recognizes a call to innermost and replaces it
with a canonical implementation in which the argument strategy is inlined and
fused. The rule first generates a fresh variable using the new strategy primitive.
This primitive creates a new name that is guaranteed not to occur anywhere
in any term being processed by the transformation. Using this fresh variable,
the rule replaces innermost(s1) by an unfolding of that strategy. The replace-
ment is correct according to the following proposition and the observation that,
in innermost-fusion, the strategies s1 and s2 have the same semantics by
Proposition 8.4.

Proposition 8.6: For any strategy s, any strategy variable x not occurring in
s, and any pairs p and p’, we have that

innermost(s) @ p => p’ iff
bottomup(rec x(try(s; bottomup(x)))) @ p => p’

Proof: By definition of innermost we have that innermost(s) @ p => p’ iff
bottomup(try(s; innermost(s))) @ p => p’. By again applying the defini-
tion of innermost we get
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innermost-fusion :
|[ innermost(s1) ]| -> |[ bottomup(rec x(try(s3))) ]|
where new => x

; <seq-over-choice> Strategy|[ bottomup(x) ]|
; <bottomup-to-var> Strategy|[ bottomup(x) ]|
; <inline-rules> s1 => s2
; <fuse-with-bottomup> |[ s2; bottomup(x) ]|
; prevent-renormalization => s3

Figure 12: The innermost fusion strategy

bottomup(try(s; bottomup(try(s; innermost(s))))) @ p => p’

The recursive pattern thus emerging can be folded to

bottomup(rec x(try(s; bottomup(x)))) @ p => p’

Unfolding this strategy leads to the same sequence of transformations as the
unfolding of innermost. 2

Based on knowledge of this local context, the innermost-fusion rule then
generates dynamic rules. First, the seq-over-choice strategy generates an in-
stance of the SeqOverLChoiceR rule with bottomup(x) as the term to distribute.
This is justified according to the following propositions.

Proposition 8.7: If s always succeeds, then bottomup(s) always succeeds, i.e.,
for any term t and environment E there exist a term t’ and environment E’ such
that bottomup(s) @ (t, E) => (t’, E’).

Proof: By induction on terms. In the base case, t must be of the form C(). By the
semantics of all, we have that all(bottomup(s)) @ (C(),E) => (C(),E). By
the semantics of sequential composition and the fact that s always succeeds, there
must exist t’ and E’ such that all(bottomup(s)); s @ (C(),E) => (t’,E’).
By the definition of bottomup, we have bottomup(s) @ (C(),E) => (t’,E’).

In the inductive case, t must be of the form C(t1,...,tn) for terms t1,
..., tn. By the induction hypothesis, there must exist t1’ and E1 such that
bottomup(s) @ (t1, E) => (t1’, E1), there must exist t2’ and E2 such that
bottomup(s) @ (t2, E1) => (t2’, E2),..., and there must exist tn’ and En

such that bottomup(s) @ (tn, En-1) => (tn’, En). Thus, by the semantics
of all, all(bottomup(s)) @ (C(t1,...,tn), E) => (C(t1’,..,tn’), En).
Now, by the semantics of sequential composition and the fact that s always suc-
ceeds, there must exist t’ and E’ such that all(bottomup(s)); s @ (C(t1’,..,

tn’), En) => (t’,E’). Therefore, bottomup(s) @ (C(t1’,..,tn’), E) =>

(t’, E’) by the definition of bottomup. 2

Proposition 8.8: In the context of the strategy
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fuse-with-bottomup =
innermost(

SeqOverLChoiceR
<+ SeqOverScopeR
<+ AssociateR
<+ IntroduceApp
<+ BottomupOverConstructor

)

Figure 13: Fuse with bottomup

bottomup(rec x(try(s; bottomup(x))))

the strategy bottomup(x) is guaranteed to succeed.

Proof: First observe that, for any s, try(s) is guaranteed to succeed. Indeed,
try(s) = s <+ id, so that even if the application of s fails, try(s) still suc-
ceeds. In particular, try(s; bottomup(x)) always succeeds. From this we con-
clude that x always succeeds. Then, by previous proposition, bottomup(x) al-
ways succeeds. 2

Next, the strategy bottomup-to-var generates rules that eliminate the appli-
cation of bottomup(x) to variables from the left-hand side of rules. This will be
elaborated below.

After these preparatory steps, rule innermost-fusion first inlines rules in the
argument s1 of innermost. This results in a strategy s2 which is equivalent to s1

by Proposition 8.4. Subsequently these inlined rules are fused with bottomup(x),
and finally, the applications of bottomup(x) to variables from the left-hand sides
of rules are eliminated by prevent-renormalization.

8.4.2. Performing Fusion

The fusion of the right-hand sides of the rules with the bottomup(x) strategy is
implemented by the fuse-with-bottomup strategy in Figure 13. Together, the
rules SeqOverScopeR, AssociateR, IntroduceApp, BottomupOverConstructor,
and SeqOverLChoiceR have the effect of applying the inner occurrence of bottomup
to each variable occurrence in the right-hand side of each normalizing rule. This
transformation is correct by the correctness of the individual transformation
rules; Proposition 8.8 ensures the correctness of SeqOverLChoiceR in this in-
stance.

8.4.3. Preventing Renormalization

The final step of the fusion transformation is the transformation of applications
of bottomup of the form <bottomup(x)>y to just y whenever y is a variable oc-
curring in the left-hand side of one of the normalization rules, and the application
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prevent-renormalization =
apply-to-rules(BottomupToVarIsId-UnCond

<+ BottomupToVarIsId-Cond)

apply-to-rules(s) =
rec x(try(LChoice(x, x) <+ Scope(id, x) <+ s))

bottomup-to-var = ?bu;
rules(

BottomupToVarIsId-UnCond :
|[ ?t1; !t2 ]| -> |[ ?t1; !t3 ]|
where <replace-application> (bu, t1, t2) => t3

BottomupToVarIsId-Cond :
|[ ?t1; where(s); !t2 ]| -> |[ ?t1; where(s’); !t3 ]|
where <replace-application> (bu, t1, (s, t2)) => (s’, t3)

)

replace-application :
(s, t1, t2) -> t3
where {| Replace :
<tvars> t1
; map({?x; rules(Replace : Term|[ <s> x ]| -> Term|[ x ]|)})
; <alltd(Replace)> t2 => t3

|}

Figure 14: Prevent renormalization

occurs in the right-hand side of the rule. This transformation is implemented by
the strategy prevent-renormalization in Figure 14. The strategy performs
a traversal over the fused argument of innermost using the traversal strategy
apply-to-rules(s), which applies s to the branches of a choice under the scope
of a rule. To each rule it applies one of the BottomupToVarIsId rules. These rules
are generated by bottomup-to-var for the specific bottomup(x) expression with
which the rules were fused.

The actual application replacement is done by the rule replace-application.
It takes a triple (s,t1,t2) of the strategy s to be removed, the left-hand side
t1, and the right-hand side t2 of the rule. The strategy tvars yields the list of
variables in a term pattern. Thus, the map expression generates for each variable
x in the left-hand side a Replace rule, which replaces an occurrence of <s> x

with just the variable x. These Replace rules are then applied to the right-hand
side t2 using the alltd traversal yielding the new right-hand side t3.
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8.5. Correctness

So far we have shown all steps correct except the last prevent-renormalization
one. What remains to be proven is that is valid to replace <bottomup(x)> y by
y, if y is a variable from the left-hand side of one of the argument rules of
innermost. What we need to prove is that bottomup(x) is the identity on terms
bound to variables on the left-hand side of a rule, since those terms are already
in normal form.

Definition: Given a strategy s, we say that t is in s-normal form if, for all
environments E, and each subterm t’ of t, we have s @ (t’, E) => F, i.e., s
does not apply to any subterm.

Proposition 8.9: If a term t is in s-normal form, then

innermost(s) @ (t,E) => (t,E)

that is, innermost(s) is the identity transformation on terms in s-normal form.

Proof: In the base case, when t is a nullary constructor application c, we reason
as follows:

innermost(s) @ (c,E) => (c,E)

iff all(innermost(s)); try(s; innermost(s)) @ (c,E) => (c,E)

iff try(s; innermost(s)) @ (c,E) => (c,E)

Since c is in s-normal form, we have that s @ (c,E) => F. Therefore, we have
that try(s; innermost(s)) succeeds by id, i.e., id @ (c,E) => (c,E) as de-
sired.

In the inductive case, t is c(t1,...,tn) and we assume that, for all smaller
terms than t, the proposition holds. Then

innermost(s) @ (t,E) => (t,E)

iff all(innermost(s)); try(s; innermost(s)) @ (t,E) => (t,E)

iff there exist t’ and E’ such that
all(innermost(s)) @ (t,E) => (t’,E’)

and try(s; innermost(s)) @ (t’,E’) => (t,E)

But all(innermost(s)) @ (t,E) => (t’,E’) holds iff

innermost(s) @ (t1,E) => (t1’,E1),
innermost(s) @ (t2,E1) => (t2’,E2),

...
innermost(s) @ (tn,En-1) => (tn’,E’)

By the induction hypothesis,
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innermost(s) @ (t1,E) => (t1,E),
innermost(s) @ (t2,E1) => (t2,E1),

...
innermost(s) @ (tn,En-1) => (tn,En-1)

so that ti’ is precisely ti for each i, and E = E1 = E2 = .... = En-1 = E’.
Thus t and t’ must be identical, so that

try(s; innermost(s)) @ (t’,E’) => (t, E)

iff try(s; innermost(s)) @ (t,E) => (t, E)

iff id @ (t,E) => (t, E) since t is in s-normal form

From this we conclude that innermost(s) @ (t,E) => (t,E) holds if and only
if all(innermost(s)) @ (t,E) => (t,E). Since we saw above that the latter
holds, the theorem is proved. 2

Corollary 8.1: If t is in s-normal form then

bottomup(innermost(s)) @ (t,E) => (t,E),

that is bottomup(innermost(s)) is the identity transformation on terms in s-
normal form.

Proof: Since bottomup(innermost(s)) just applies innermost(s) to subterms
of its subject term, Proposition 8.9 ensures that it is the identity on terms in
s-normal form. 2

Proposition 8.10: If innermost(s) @ (t,E) => (t’, E’) then t’ is in s-
normal form, that is, innermost(s) reduces terms to s-normal form.

Proof: By induction on the depth of the derivation which witnesses the fact that
innermost(s) @ (t, E) => (t’, E’). In the base case we must consider the
shortest such derivation. This occurs when t is a nullary constructor c, and
s @ (c,E) => F. Then all(innermost(s)) @ (c,E) => (c,E) by the seman-
tics of all, and try(s; innermost(s)) @ (c,E) => (c,E). (This is because
try(s; innermost(s)) @ (c,E) must be id @ (c,E) in this case.) By the se-
mantics of sequential composition we have innermost(s) @ (c,E) => (c, E).

For the inductive case, assume that innermost(s) @ (t,E) => (t’, E’)

holds, and that the proposition has been proven for all derivations shorter than
that of innermost(s) @ (t,E) => (t’, E’). Then we reason as follows:

innermost(s) @ (t,E) => (t’, E’)

iff all(innermost(s)); try(s; innermost(s)) @ (t,E) => (t’, E’)

iff there exist t’’ and E’’ such that
all(innermost(s)) @ (t,E) => (t’’, E’’)

and try(s; innermost(s)) @ (t’’,E’’) => (t’, E’)

39



Let t be c(t1,...,tn). Then by semantics of all, there must be terms t1’, ...,
tn’ and environments E1, ..., En such that

innermost(s) @ (t1,E) => (t1’,E1)

...
innermost(s) @ (tn,En-1) => (tn’,En)

By the induction hypothesis we have that the terms t1’, ..., tn’ are in s-normal
form. Hence, t’’ is c(t1’,...,tn’) and E’’ is En.

We now distinguish two cases: We either have s @ (t’’, E’’) => F or else
s @ (t’’, E’’) => (t’’’,E’’’) for some t’’’ and E’’’. In the first case,
try(s; innermost(s)) @ (t’’,E’’) => (t’’,E’’), so that t’’ is t’ and
E’’ is E’. But then t’ = c(t1’,...,tn’) with each ti’ in s-normal form,
s @ (t’,E’) => F. Since each proper subterm of t’ is in s-normal form, and
since s does not apply to t’, we must have that t’ is itself in s-normal form.

In the second case, we have that innermost(s) @ (t’’’,E’’’) => (t’,E’).
By the induction hypothesis, t’ must be in s-normal form. 2

Corollary 8.2: If

all(innermost(s)) @ (c(t1,...,tn),E0) => (c(t1’,...,tn’), En)

then all ti’ are in s-normal form.

Proof: Immediately by the semantics of all and previous proposition. 2

Proposition 8.11: If, in an application of the form innermost(s) @ (t,E),
the strategy s is applied to the root of a term t’, then all proper subterms of t’
are in s-normal form.

Proof: If, in an application of the form innermost(s) @ (t,E), s is applied to
the root of a term t’, then there must exist t’’, E’’, t3, E3, E’, c, and t1’,
..., tn’ such that t’ is precisely c(t1’,...,tn’), and all(innermost(s)) @

(t’’,E’’) => (t’,E’) and try(s; innermost(s)) @ (t’,E’) => (t3,E3).
By Corollary 8.2, each ti’ is in s-normal form, i.e., each proper subterm of t’
is in s-normal form. 2

Corollary 8.3: In an application of the form innermost(s) @ (t,E), and
if s is a choice of the form s1 <+ ... <+ sn and si is a rule of the form
{xs: ?t1; !t2}, then the terms bound to variables in ?t1 are in s-normal form,
and the recursive application of innermost(s) to these terms in the right-hand
side !t2 is the identity transformation.

Hence, the replacement of the application <bottomup(x)> y by y for variables
y that are bound in the left-hand side of a rule is valid.
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Corollary 8.4: Assuming that InlineStrat rules are available for all defini-
tions in the Stratego program at hand and assuming that library definitions for
try, bottomup, and innermost have the expected semantics, then the transfor-
mation rule innermost-fusion transforms an application of innermost into an
equivalent strategy expression.

Corollary 8.5: The fusion transformation is a meaning preserving transfor-
mation on Stratego specifications.

9. Conclusion and Discussion

We have shown how local, application-specific transformations can be used to
optimize abstract programs by fusing logic and control. Strategies play two im-
portant roles in our approach. First, they appear as abstract programming de-
vices that are subject to optimization. Second, when taken together with local,
application-specific transformation rules, they provide a language in which au-
tomatic optimizations of strategy-based programs can be specified in an elegant
manner. Indeed, in this paper we have shown how strategies can be used to spec-
ify elegant, automatic optimizing transformations which reduce the inefficiencies
associated with the genericity of strategies as programming tools.

Our approach makes use of a number of interesting transformation techniques
and idioms. We avoid the manipulation of large and unwieldy abstract syntax
trees by specifying the transformation rules on which our optimization is based
in terms of the concrete syntax of the object language. In addition, our opti-
mizing strategy relies heavily on Stratego’s ability to generate rewrite rules at
run-time. Since these dynamic rules can access information available from their
generation contexts, they allow the specification of transformations that would
not be possible to express with standard, context free rewrite rules alone.

Since our transformation strategies are based on rewriting, they necessarily
perform their work using cascading transformations, i.e., by applying in combi-
nation a number of small, independent transformations to achieve a large-scale
effect. But to limit the availability of certain such transformations to specific
parts of computations, we also use the idiom of staged transformation to break
our overall transformation into several phases.

Like staged computations, local transformations also allow us to limit the ap-
plicability of transformation rules, albeit in a different way. A local transforma-
tion uses special knowledge about its subject program at the point of application
to perform computations that would not be beneficial if applied throughout the
entire program. Unlike staged transformations, local transformations are often
available throughout a computation, even though they are applicable to a subject
term only when certain criteria are met.

Application-specific transformations take the use of special knowledge one step
further, allowing certain information about a specific library or an entire specifi-
cation to be used in transformation. We use application-specific transformations
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in our optimization of innermost normalization to ensure that library functions
have appropriate forms and semantics.

Stratego supports all six of these transformation idioms. The optimization
strategy presented in this paper, which relies on them, is included as an opti-
mization phase in the Stratego compiler (version 0.9).

The specialization of the innermost strategy with the rules it is applied to,
decreases the complexity from O(n2) to O(n) in the number of rewrite steps, thus
reaching up to 2 million rewrites per second for the example rewrite system. It
should be noted that for rules with a more complex left-hand side the cost per
rewrite step is higher. However, the efficiency improvement with respect to the
unoptimized case is dramatic.

9.1. Previous Work

This paper is an elaboration of an earlier paper [11] on the implementation
of innermost fusion. Since that earlier paper appeared in print, Stratego has
been extended with dynamic rules and conrete syntax, both of which are used
extensively in the specification presented here. Use of these extensions has greatly
improved and clarified the specification.

Strategies have also been used to optimize programs which are not themselves
defined in terms of strategies. In [10], for example, they are used to eliminate
intermediate data structures from functional programs. In [27], strategies are
used to build optimizers for an intermediate format for ML-like programs. In
both cases, strategies are used — as they are here — in conjunction with small
local transformations to achieve large-scale optimization effects.

9.2. Related Work

9.2.1. Staged, Cascading Transformation

Small local transformations have been dubbed “humble transformations” in [20].
Such transformations are used extensively in optimizing compilers based on the
compilation-by-transformation idiom [13, 14, 1, 19]. They are also used to some
degree in most compilers, although not necessarily recognizable as rewrite rules
in the implementation. The advantage of the programmable strategies approach
is that transformation steps can indeed be formulated as separate rewrite rules,
which can be combined into optimization phases by means of strategies.

9.2.2. Traversal Optimization

The optimization of innermost presented in this paper was inspired by more
general work on functional program optimization. In [9], an optimization scheme
for compositions of functions that uniformly consume algebraic data structures
with functions that uniformly produce substitution instances of them is given.
This scheme is generic over data structures, and has been proved correct with
respect to the operational semantics of Haskell-like languages. Future work will
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involve more completely incorporating the ideas underlying this scheme into
strategy languages to arrive at more generally applicable and provably correct
optimizations of strategy-based program patterns. In particular, we aim to see
the innermost fusion technique described in this paper as the specialization
to innermost of a generic and automatable fusion strategy which is provably
correct with respect to the operational semantics.

The importance of optimizing term traversals in functional transformation
systems is discussed in [15]. Term traversals are modelled there by fold func-
tions but, since the fold algebras under consideration are updateable, standard
fusion techniques for functional programs [28, 16, 29] are not immediately appli-
cable. The fusion techniques presented here may nevertheless provide a means
of implementing optimizations which automatically shortcut recursion in term
traversals. If, as suggested in [15], shortcuts of recursion in term traversals should
be regarded as program specialization then, since specialization can be seen as
an automated instance of the traditional fold/unfold program optimization
methodology [12], optimization of traversals should indeed be achievable via
fold/unfold transformations. These connections are deserving of further inves-
tigation.

9.2.3. Application-Specific Optimization

While modern programming languages are well suited to expressing abstract
programs, the compilers for these languages cannot always derive efficient im-
plementations for combinations of abstractions. While generic optimizations can
be clever, they are always at a disadvantage with respect to the programmer,
who has additional information about the semantics of a program. Therefore, an
emerging approach is that of domain-specific or even application-specific opti-
mization, i.e., extending the capabilities of compilers by letting the programmer
specify additional information about their programs. Examples are the Broadway
Compiler [7], which aims to make software libraries more portable and efficient
by allowing them to be automatically customized for different hardware and soft-
ware environments. User-definable rules in the Glasgow Haskell Compiler GHC
[18] allow the programmer to state identities over program expressions that are
used by the compiler to simplify programs. In the Simplicissimus project [21]
compilers are adapted such that they can make use of semantic information
about an ADT at its natural abstraction level. The transformation described in
this paper uses the same approach, that is, uses reasoning by the programmer
about a specific library definition, i.e., the definition of innermost to derive more
efficient implementations. While this specification currently is a stage provided
by the compiler, in the future we aim to make the Stratego compiler extensible
by arbitrary user-definable transformations.
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9.3. Future Work

The results of this paper demonstrate that rewriting strategies for optimiz-
ing programs can be implemented both effectively and elegantly using local,
application-specific transformations. The optimizing strategy presented here fuses
innermost normalizations of terms with respect to collections R1, ..., Rn of stan-
dard rewrite rules. Optimizing strategies for applications of bottomup, down-up,
and other common term traversals to choices of standard rewrite rules would
also be useful.

The rewrite rules with respect to which a term is to be normalized generate
side conditions — usually equality of certain subterms modulo normalization —
that must be verified in order to assure applicability. In these cases, a version
of our innermost fusion strategy which handles applications of innermost to
choices of such conditional rewrite rules would be useful.

We may also try to extend our fusion technique along both dimensions (traver-
sal and rules) simultaneously. More generally, we may aim to develop a general
theory of traversal fusion for Stratego. Additional measurements are needed to
evaluate the optimizations achieved by the innermost fusion strategy presented
here, and similar benchmarks for any extensions of this strategy will also be in
order.

Finally, it would be interesting to know whether mechanical derivation of in-
nermost fusion and its extensions is possible from the definitions of the strategies
themselves, as well as to what degree the Stratego compiler itself can be fused.
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