
A Language Modeling Framework for
Resource Selection and Results Merging

Luo Si
School of Computer Science
Carnegie Mellon University

(+1)412-268-3951

lsi@cs.cmu.edu

Rong Jin
School of Computer Science
Carnegie Mellon University

(+1)412-268-4050

rong+@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

(+1)412-268-4525

callan+@cs.cmu.edu

Paul Ogilvie
School of Computer Science
Carnegie Mellon University

(+1)412-268-5606

pto+@cs.cmu.edu

ABSTRACT
Statistical language models have been proposed recently for
several information retrieval tasks, including the resource
selection task in distributed information retrieval. This paper
extends the language modeling approach to integrate resource
selection, ad-hoc searching, and merging of results from different
text databases into a single probabilistic retrieval model. This
new approach is designed primarily for Intranet environments,
where it is reasonable to assume that resource providers are
relatively homogeneous and can adopt the same kind of search
engine. Experiments demonstrate that this new, integrated
approach is at least as effective as the prior state-of-the-art in
distributed IR.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - retrieval models. H.3.4 [Information Storage
and Retrieval]: Systems and Software – distributed systems

General Terms
Algorithms, Experimentation

Keywords
Language model, Distributed information retrieval.

1. INTRODUCTION
Language Modeling has a long history of being used successfully
in the fields of speech recognition and statistical natural language
processing. It has been applied to information retrieval and
studies [2,3] have shown its effectiveness in the ad-hoc
information retrieval task. Some work has been done to apply
language-modeling techniques to do resource selection in
distributed retrieval task. However, little work has been done in
distributed IR using a single integrated language model
framework. The difference between ad-hoc information retrieval
and the distributed information retrieval is that ad-hoc information
retrieval assumes that all the documents can be copied into a
single centralized database for the purpose of indexing and
searching while distributed information retrieval targets the cases

when documents can’t be obtained or stored in a single database.
The task of distributed information retrieval can be important
when the information is proprietary or access of the information is
not free. With the proliferation of online searchable databases on
local area networks and the Internet, the significance of the
distributed information retrieval is becoming more and more
serious [1].

There are various scenarios in distributed information retrieval
[15]. In this paper, we focus on the intranet environment, where
we can assume each individual database uses the same kind of
search engine.

There are three important sub-problems in distributed information
retrieval: first, the content of each text database must be
represented in a suitable form; second, given an information need
(a query), several relevant databases must be selected to do the
search; third, the results from all the selected databases have to be
merged into a single final list [1]. A lot of research has been done
in these three sub-fields. CORI algorithm [1,4] is one of the well-
known examples. It assumes that each database uses Inquery
search engine. It uses query-based sampling [5] for describing the
content of each individual database, the CORI collection selection
algorithm for choosing databases most relevant to the user’s query
and the CORI merging algorithm for fusing results from different
databases together. Experiments showed that the CORI
distributed information retrieval algorithm has achieved decent
performance in many different environments [18].

In this paper, we will present an integrated language modeling
approach to the distributed information retrieval problem. In this
framework, language modeling is applied to every aspect of the
distributed information retrieval problem. When a query is
issued, a language model based collection selection algorithm is
used for choosing a subset of databases that are most likely to
provide documents relevant to the query. Then, within the
selected database, a language model based retrieval algorithm is
used for finding relevant documents. Finally, with the returned
document information from the individual databases, a language
model based merging approach is performed to integrate the
results.

As for the three steps mentioned above, the language model based
retrieval algorithm for a single database has been extensively
studied and therefore is not the focus of this paper. The major
contribution of this paper is on how to accomplish the phase of
resource selection and the phase of results merging using
language modeling framework. Compared with the CORI
algorithm, this framework tends to be better justified by
probability theory. On the standard TREC123 and TREC4
datasets, experiments have shown that the new framework
significantly outperforms the well-known CORI distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CIKM ’02, November 4--9, 2002, McLean, Virginia, USA
Copyright 2002 ACM 1-58113-492-4/02/0011…$5.00.

information retrieval algorithm when the scores from the
individual databases are normalized without cooperation from
individual databases and is slightly better or at the same level than
the CORI algorithm in case that the operation of score
normalization is performed with cooperation [1].

2. PREVIOUS WORK
This work is closely related to the language model approaches for
ad-hoc information retrieval, including the risk model proposed
by Ponte and Croft [3], a simple unigram model by Song and
Croft [2] and the two states hidden Markov model by the BBN
group [19]. Although the details are different between these
approaches, the basic idea is the same. Each document is seen as
a sample generated from a special language. Therefore, a
language model for each document is estimated beforehand.
Then, the relevance for a document to an information need
(represented as a query) is computed as how likely the query can
be generated from the language model for that document. More
specifically, the likelihood for a query Q to be generated from a
document D is computed as:

∏
∈

−+=
Qq

CqPDqPDQP))|()1()|(()|(λλ
(1)

where q is a query item in the query Q, P(q|D) is the probability
for the query term q to appear in the document D, P(q|C) is the
probability for the term q to be used in the collection C to which
the document D belongs, and λ is a weighting parameter between
0 and 1. As seen from Equation (1), the role of term P(q|C) is to
smooth the probability for the document D to generate the query
term q, particularly when P(q|D) is zero. Furthermore, as pointed
out in [20], the idea of smoothing document-based language
model with the collection-based language model is similar to the
tf.idf term weight scheme [21] used in vector model where
‘common’ words are discouraged by giving low weights and
‘rare’ words are emphasized with the high weights.

Unlike the ad-hoc information retrieval task, the distributed
information retrieval task assumes that each individual database
performs retrieval without the knowledge of other databases.
Simply applying Equation (1) to the case of distributed
information retrieval will be not feasible because each database
has a different word statistics P(q|C). therefore, each database has
a different sense of common words and rare words which makes
the scores from different databases not directly comparable. One
important aspect of applying language modeling to distributed
information retrieval is to wipe out the score differences caused
by the differing statistics of databases and make the scores
comparable. The basic idea is to take advantage of the document
sets sampled from the individual databases. Assuming the
sampled document sets share the similar word statistics with the
original databases, we can gather the approximated word statistics
for each individual database and use it as the way to adjust the
document scores from the individual databases.

To accomplish this, we need to acquire the resource description
for each database. Approaches such as the STARTS protocol and
query-based sampling have been used to obtain the resource
description for databases [5,6]. The difference between them is
that the STARTS protocol requires each database to provide word
statistics information directly while query-based sampling only
asks the individual search engines to run queries and return a list
of documents that are downloadable. In practice, the approach of

query-based sampling has been shown to acquire rather accurate
resource descriptions using a relatively small number of randomly
generated queries (e.g. 75) to retrieve a relatively small number of
documents (e.g. 300).

For resource selection, we need to find the subset of the databases
that are most relevant to the user’s query. There are many
successful resource selection algorithms. Among them, gGlOSS
[7,8], CORI, and CVV [9] are three best-known resource-ranking
algorithms. Gravano et al. proposed GlOSS, the Glossary-of-
Servers Server, as an approach to the resource selection for the
Boolean IR model and it is generalized as gGlOSS to be used for
any IR model. It needs each database to provide the document
frequency for each word in its database, and the sum of the term
weights in each document of the database. The CVV resource
selection algorithm uses a combination of document frequency
and cue validity variance information. In this algorithm,
document frequency information is used to estimate the
importance of a term within a database; the CVV component
estimates whether a term is useful for differentiating one database
from another. The CORI collection selection algorithm creates a
resource selection index in which each database is represented by
its terms and their document frequencies. Databases are ranked
by the belief of P(Q|Ck) which is determined by the sum of the
beliefs of all query items generated by the corresponding database
[1]. Previous research has shown that the CORI algorithm is the
most stable and effective of the three algorithms [10,11]. But the
ranking value, which is the belief, does not have a valid
probabilistic explanation. It is hard to incorporate it into a
probabilistic distributed information retrieval task.

The problem of merging results with incomparable scores from
individual data collections has been studied extensively in the
field of distributed information retrieval. Some methods take the
approach of normalizing document scores, which needs individual
databases to provide their corpus statistics or has to download the
documents and recalculate the scores at the client side, which has
very high communication and computation costs [10]. Other
methods try to avoid either the requirement of the cooperation
from individual databases or the cost of downloading the
documents and recalculating the scores. For example, simply
interleaving the retrieved documents from different databases in
the order of their ranks has been used in [12]. CORI merging
method [1,4] is based on a linear combination of the score of the
database and the score of the document. The “normalized” score
suitable for merging is calculated as shown below.

()

()minmax

min’
RR

RR
C i

i −
−

= (2)

()

()minmax

min
’

DD

DD
D

−
−

= (3)

4.1

**4.0 ’’’
’’ iCDD

D
+

= (4)

maxR and minR are two normalizing parameters that can be

calculated by the CORI’s resource selection algorithm only from
the information in the resource selection index [1]. So equation
(2) is the normalized database weighting score. Equation (3)
needs the individual search engines to cooperate by providing

maxD and minD . In the absence of cooperation, maxD is set to the

maximum document score returned by the search engine and

minD is set to the minimum.

To test the effectiveness of our language model for distributed
information retrieval, we used the standard CORI distributed
information retrieval system as the baseline system, which
incorporate the algorithm of query-based sampling, the CORI
resource selection algorithm and the CORI merging method.
Previous studies have shown that the CORI system achieved
generally good performance on different kinds of testbeds.

3. THE LANGUAGE MODEL APPROACH
In the section, we will give the full description of our language
model approach. As already mentioned in the introduction
section, the problem of distributed information retrieval comprises
of three components, namely a component for acquiring the
resource description, a component for selecting most relevant
databases and a component for merging results returned from
different databases. The following three subsections will focus on
each of these three components. Besides these three sub-problems
we have made the assumption that all individual databases use a
language model search engine, which is a valid assumption for the
intranet environment of distributed information retrieval.

3.1 Acquiring Resource Descriptions
As already discussed in the section of related work, one difficulty
imposed by the distributed information retrieval problem is that
the document scores returned from different database may not be
comparable since each database has a different word statistics.
One solution to this problem is to acquire an approximate word
frequency distribution and adjust the document scores based on
the obtained word distribution. Meanwhile, the resource
description is critical to the phase of database selection where a
subset of databases is chosen based on how similar the resource
description is to the query.

In this framework, we adopt the technique of query-based
sampling. All the queries used in the query-based sampling were
one-term queries. The initial query term was selected randomly
from a background language model. Then, the subsequent queries
terms were selected randomly by the language model, which was
learned from the documents already retrieved from the database
by previous queries. The top four documents retrieved by each
query were examined to update the resource description.
Duplicate documents, which were already retrieved by previous
queries, were simply discarded. This results in some queries
retrieving less than four documents. Detailed experiments in [1,5]
have shown that this method can get an adequate description with
only a small amount of queries and a relatively small number of
documents from each database.

After three hundred documents were retrieved from each
database, a collection based language model P(q|C) will be built
for each database C and the retrieved documents of all databases
were collapsed together to build a global language model P(q|G).
By looking at the difference between the collection based word
distribution P(q|C) and the global word distribution P(q|G), we
can tell which collection may overestimate the document-query
similarity and which collection does the opposite and make the
corresponding adjustments. Furthermore, by comparing the
collection based word distribution to the query, we are able to tell

which collection is more likely to provide relevant documents and
which collection will not.

3.2 Resource Selection
In the resource selection phase, we need to select most relevant
collections to a query based on the information we got in the
resource description phase. Therefore, the key issue here is how
to compute the collection-query similarity. To take advantage of
the language model used for computing the document-query
similarity, we can simply collapse the sampled documents for a
database together as one single giant ‘document’ and perform the
similar computation for the document-query similarity. More
formally, we need to find the collections that have largest
probabilities of P(Q|C), i.e. the probability of generating the query
Q from the text collection C. Following the principle of language
model, the value of P(Q|C) is calculated in the following way:

() () () ()()∏
∈

−+=
Qq

GqPCqPCQP |1|| λλ
(5)

where P(Q|C) is the language models for the collection C and
P(Q|G) is language model for the whole collection. Linear
interpolation constantλ smoothes the collection-based language
model with the global language model. Collections with the
largest generation probabilities P(Q|C) will be selected as the
most relevant collections.

Notice, our collection selection method is very similar to the
Kullback-Leibler (KL) divergence based collection selection
method used by Xu and Croft [14]. In their work, the Kullback-
Leibler divergence between the word frequency distribution of the
query and the database is used to measure how well the content of
the database matches with the query. More specifically, the KL
divergence between query Q and collection C is computed as:

(6)

Note that collections are ranked using the negative of the KL
divergence. Both our method and KL divergence method are
using the word distribution as the basis of the similarity
measurement. It is not difficult to show that these two methods
are actually equivalent by simply taking the logarithm of Equation
(5) and noticing that the term ∑ ∈ Qq QqQqP)|log()|(in

Equation (6) is a query-specific constant.

3.3 Results Merging
The last step of distributed information retrieval is merging the
results. It is a difficult task because different databases may use
different ranking algorithms and therefore the scores returned
from the individual databases may not be comparable.
Furthermore, even all the individual databases can be assumed to
use the same ranking algorithm; the large variance in corpus
statistics for different databases can still make the scores
incomparable [15]. In our framework, we rule out the first factor
by requiring all the individual databases use the language model
based algorithm for retrieving relevant documents. Then, the
second factor, i.e. the heterogeneous corpus statistics varying

()

() ()
() () ()∑

∈ 







−+

=

Qq ii GqPCqP

QqP
QqP

CQKL

|1|

|
log|

,

λλ

widely from one database to another, becomes the major concern
of our results merging algorithm.

With the assumption that all the search engines are using the same
language modeling based retrieval algorithm, the document scores
returned from the individual search engines can be interpreted as
generation probabilities for a given query. More specifically, for
a given query Q, the score of the j th document Dij returned by the
i th database Ci, should be the probability P(Q| Dij, Ci), i.e. the
probability of generating query Q given the document Dij and the
database Ci. According to Equation (1), the probability P(Q| Dij,
Ci) can be expressed as:

() () () ()()∏
∈

−+=
Qq

iijiij CqPDqPCDQP |1|,| λλ
(1’)

As it can be seen from the above equation, the probabilities
P(Q|D,C) returned from individual search engines can be
significantly influenced by the heterogeneous corpus statistics
P(q|C) for different databases. The task of the merging algorithm
is to take these probabilities for documents as inputs and together
with all the information of individual databases obtained in the
resource description and resource collection phases to effectively
erase the bias caused by the corpus statistics and calculate the
final comparable scores for all the returned documents.

Since the ‘unfairness’ within the document scores comes from the
factor of database Ci in probability P(Q|Dij, Ci), we would like to
compute the ‘fair’ scores for documents as P(Q|Dij) which don’t
have dependency on database Ci. In order to compute the ‘fair’
document score P(Q|Dij) based on the probability P(Q|Dij, Ci) and
the word distribution of individual databases obtained in the phase
of acquiring resource description, we need to decompose the
probability P(Q|Dij, Ci) into two parts, with one part dependent
only on the document Dij and the other part influenced only by the
database Ci. A simple solution would be to rewrite the probability
P(Q|Dij, Ci) as a linear interpolation of probability P(Q|Ci) and
P(Q|Dij) as:

() () () ()ijiiji DQPCQPDCQP |1|,| αα −+= (7)

With the known information of P(Q|Dij, Ci) and P(Q|Ci)
(computed in the phase of collection selection), P(Q||Dij) can be
computed by simply subtracting P(Q|Ci) from P(Q|Dij, Ci).
Unfortunately, this simple approach is not feasible because the
values for probability P(Q|Ci) and P(Q|Dij) are not comparable. A
collection usually contains many more words than a document
and therefore the word generation probability P(q|Ci) is usually
much lower than P(q|Dij), which usually results in a significantly
smaller value for P(Q|Ci) than P(Q|Dij).

A better solution would be to decompose P(Q|Dij, Ci) into some
kind of product. Therefore, according to the Bayesian rule, we
have P(Q|Dij, Ci) expanded as

() () ()
()iji

ijiij
iij DCP

DQCPDQP
CDQP

|

,||
,| =

 (8)

By assuming that the two evidences in the probability of
P(Ci|Q,Dij) can be linearly separable, we will have

() () () ()ijiiiji DCPQCPDQCP |1|,| αα −+= (9)

whereα is the parameter that represent the relative importance of
two evidence of Q and Dij. Substituting Equation (9) for
P(Ci|Q,Dij) in Equation (8) and rewriting, we have the expression
for P(Q|Dij,Ci) as

()

() () ()
() () 










+

−
−= 1

|1

|
|1

,|

iji

i
ij

iij

DCP

QCP
DQP

CDQP

α
α

α

(10)

By taking the logarithm on both sides of the above formula, we
will have:

() () ()
()

() () 









+

−
+

+−=

1
|1

|
log

|log1log,|log

iji

i

ijiij

DCP

QCP

DQPCDQP

α
α

α

(11)

Then, the logarithm of probability P(Q|Dij), i.e. the final ‘fair’
document score , can be expressed as:

() () ()
()

() () 









+

−
−

−−=

1
|1

|
log

1log,|log|log

iji

i

iijij

DCP

QCP

CDQPDQP

α
α

α

(12)

Since α is a constant, term log(1-α) is a constant contribution to
every log(P(Q|Dij)) and therefore can be ignored. Furthermore,
since the contents of different databases are already predefined, by
assuming the assignment of document Dij to collection Ci is
usually correct, we can have P(Ci|Dij) approximated as a constant
p which is close to 1. With these two considerations, the final
expression for the logarithm of probability P(Q|Dij) as

() ()
()()1|log

,|log|log

+−
∝

QCP

CDQPDQP

i

iijij

β
 (13)

where β is a constant and is defined as
)1(α

α
−

. This is the core

formula for our results merging algorithm. As easily seen from
Equation (13), the influence of corpus statistics on the document
score is represented in the term P(Ci|Q). By subtracting P(Ci|Q)
from the original score P(Q|Dij, Ci) returned from the individual
databases, we are able to eliminate the factor of different corpus
statistics and therefore results in a more ‘fair’ scores for
documents. For term P(Ci|Q), since we have already computed
P(Q|Ci) in the phase of resource selection, with the help of
Bayesian rule, we can have the following expression for P(Ci|Q)

() () ()
() ()∑

=

i
ii

ii
i CPCQP

CPCQP
QCP

|

|
|

 (14)

4. EXPERIMENTAL METHODOLOGY
In this section, we describe the experiment design. The detailed
description of the testbeds used for the experiment is presented in
Section 4.1 and the presentation of experiments setting is given in
Section 4.2.

4.1 Testbeds
Testbeds play a very important role in distributed information
retrieval experiments since the performance of distributed
information retrieval systems is highly influenced by the testbed
characteristics. Two different testbeds were used in our
experiments. The goal was to test the effectiveness of our
algorithm in different degrees of heterogeneity and different types
of queries.

“By source” testbed: trec123
In this testbed, there were altogether 100 databases created from
TREC CDs 1,2 and 3. The databases were organized by source
and publication date [1,5], and are somewhat heterogeneous. 50
short queries were created from the title fields of TREC topics 51-
100.

“By subject” testbed: trec4_kmeans
For this testbed, there were altogether 100 databases created from
TREC 4 data. A k-means clustering algorithm was used to cluster
the databases by topic automatically [22], so the databases are
homogenous and the word distributions are very skewed. 50
longer queries were created from the description fields of TREC
topics 201-250.

The characteristics of these two testbeds are shown in Table 1.
Meanwhile, the characteristics of their corresponding queries are
shown in Table 2.

Name
TREC

Topic Set
TREC

Topic Field

Average
Length
(Words)

Trec123 51-100 Title 3
Trec4_kmeans 201-250 Description 7.2

 Table2: Query set statistics

4.2 Experiment Settings
To test the effectiveness of our language model approach, we
compared our algorithm to the CORI algorithm. To make the

comparison fair, we try to make the setup for both algorithms as
close as possible.

In order to reduce the cooperation needed from each individual
search engines, query-based sampling technique was used to
acquire the database description for both our algorithm and CORI
algorithm. 300 documents from each of the 100 databases of both
testbeds were sampled. All the documents from the same
database were merged together to make the description of the
corresponding database. For the part of resource selection, the top
10 databases were selected for each query, which has been a
common choice in many previous researches [1,14,15]. At most
100 documents were retrieved from each database. The
documents returned by the selected databases were merged into
the final result lists. This results list is fed into an evaluation
program for computing precision.

The language modeling based search engine for each database is
implemented using the Lemur toolkit [17]. All the weighting
parameters λ used in Equation (1) are set to 0.5. The parameter β
in Equation (13) is empirically set to be 19 for both testbeds.

Searching only a fraction of the databases will surely cause some
relevant documents to be missed. Precision at high recall will
suffer. But in most environments, users are only concerned with
the top several dozen documents. Therefore, precision at top 5,
10, 15, 20 and 30 are the most important evaluation measures in
distributed information retrieval [1,14,15], which is the measure
used in our experiments.

5. EXPERIMENTAL RESULTS –
COMPARISON WITH CORI

CORI algorithm is a well-known framework that has been shown
to work very effectively in different environments. In the section
for related work, we have already briefly covered the three
important components for CORI algorithm, i.e. the component for
acquiring resource description, the component for resource
selection and the component for the results merging. More
detailed descriptions can be found in [1,4]. Experiments in this

Number of documents Megabytes (MB)
Name

Query
Count

Size
(GB) Min Avg Max Min Avg Max

Trec123 50 3.2 752 10782 39713 28.1 32 41.8
Trec4_kmeans 50 2.0 301 5675 82727 3.9 20 248.6

Table1: Testbed statistics

Precision at Doc

Rank CORI without Cooperation CORI with Cooperation LM f or Distributed IR

 5 docs 0.4280 0.4480 (+ 4.67%) 0.4680 (+ 9.35%) (+ 4.46%)

10 docs 0.3840 0.4220 (+ 9.90%) 0.4420 (+15.10%) (+ 4.74%)

15 docs 0.3933 0.4053 (+ 3.50%) 0.4413 (+12.20%) (+ 8.88%)

20 docs 0.3720 0.3820 (+ 2.69%) 0.4240 (+13.98%) (+10.99%)

30 docs 0.3593 0.3627 (+ 0.95%) 0.3940 (+ 9.66%) (+ 8.63%)

Table 3. The distributed retrieval results for trec123 testbed by CORI algorithm, scores normalized without cooperation from
individual databases, scores normalized without cooperation from individual databases and Language Model for distributed
information retrieval. (The first baseline in CORI with cooperation and Language Model for distributed information retrieval is the
performance of CORI algorithm without cooperation; the second baseline in Language Model for distributed information retrieval is
the performance of CORI algorithm with cooperation)

section were designed to compare the performance of our
language model distributed information retrieval algorithm with
CORI.

As described in Section 2, there are two versions of the CORI
merging algorithm. As indicated by Equation (4), in order to
calculate the normalized document score, we need the maximum
possible document score and minimum possible document score
for the individual database. In the cooperation case, CORI
merging algorithm assumes that it can get these scores from the
individual search engines. If it is not possible, it simply uses the
maximum and minimum document scores returned by the search
engine. Notice that our language model algorithm does not need
this kind of cooperation from individual database to provide the
normalization scores.

Table 3 and Table 4 show the retrieval results by three distributed
information retrieval algorithms, namely CORI algorithm without
cooperation (normalization), CORI algorithm with cooperation
(normalization) and the language model algorithm for distributed
information retrieval, carried both on trec123 and trec4_kmeans
testbeds. The CORI algorithm without cooperation from
databases is used a baseline. It can be seen that both CORI
algorithm with cooperation and language model algorithm always
outperform CORI without cooperation. Someone may argue that
the cooperation needed by CORI can be implemented as an
internal procedure in individual Inquery search engines, but it still
needs to modify the original Inquery retrieval algorithm [1,18].
On the trec4_kmeans testbed, the language model algorithm is at
the same level as CORI algorithm with cooperation. On the
trec123 testbed, Language Model for distributed information
retrieval has a notable improvement over the CORI with
cooperation.

6. CONCLUSIONS
This paper presents a language modeling based framework for
distributed information retrieval task in intranet environment,
where all databases use a language model based search engine.
Under this framework, the three sub-problems within the
distributed information retrieval have been viewed as components
of an integrated task. In the resource description, it uses query-
based sampling to acquire language models description of each
individual database. In the resource selection, it ranks the
databases based on how likely a given query can be generated
from the language model of every database. In the results
merging, it computes the ‘fair’ scores for documents by removing

the bias within the original document scores caused by the
different corpus statistics.

Our experiments carried on two testbeds of different
characteristics in Section 5 demonstrate that the language model
algorithm always outperforms the CORI algorithm without
normalization cooperation from individual databases. It is better
than the CORI algorithm with normalization cooperation on one
testbed and at the same level on the other testbed. Therefore, we
tend to conclude that the simple language model for distributed
information retrieval is an effective approach for finding relevant
documents in the intranet distributed information retrieval
environment.

One problem left in the new framework is the parameter β, which
was empirically set to 19. To test the sensitiveness of our
algorithm to the value of the parameter β, we varied it from 1 to
99 and repeated the experiments over testbeds trec123 and
trec4_kmenas. The results are quite similar on both testbeds.
Therefore, the performance of the new framework appears to be
insensitive to the setup of the parameter β. More investigation
needs to be done over different environments. We hope that a
regression algorithm could be used set this parameter
automatically [15].

7. ACKNOWLEDGEMENTS
This material is based on work supported by NSF grants EIA-
9983253, IIS-0118767, and DUE-0085834, NSF Cooperative
Agreement IRI-9817496, and Advanced Research and
Development Activity (ARDA) contract MDA908-00-C-0037.
Any opinions, findings, conclusions or recommendations
expressed in this material are the authors', and do not necessarily
reflect those of the sponsor.

8. REFERENCES
[1] J. Callan. Distributed information retrieval. In W.B. Croft,

editor, Advances in information retrieval, chapter 5, pages
127-150. Kluwer Academic Publishers, 2000.

[2] F. Song and W. B. Croft. A general language model
information retrieval. In Proc of the 22nd Annual Int’l ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1999.

[3] J. Pone and W. B. Croft. A language modeling approach to
information retrieval. In Proc of the 21st Annual Int’l ACM

Precision at Doc
Rank CORI without Cooperation CORI with Cooperation LM f or Distributed IR

 5 docs 0.3600 0.4240 (+17.78%) 0.4320 (+20.00%) (+ 1.89%)

10 docs 0.3540 0.3860 (+ 9.04%) 0.3800 (+ 7.34%) (- 1.55%)

15 docs 0.3187 0.3400 (+ 6.68%) 0.3413 (+ 7.09%) (+ 0.38%)

20 docs 0.2900 0.3140 (+ 8.28%) 0.3270 (+12.76%) (+ 4.14%)

30 docs 0.2600 0.2753 (+ 5.88%) 0.2953 (+13.58%) (+ 7.26%)

Table 4. The distributed retrieval results for trec4_kmeans testbed by CORI algorithm, scores normalized without cooperation from
individual databases, scores normalized without cooperation from individual databases and Language Model for distributed
information retrieval. (The first baseline in CORI with cooperation and Language Model for distributed information retrieval is the
performance of CORI algorithm without cooperation; the second baseline in Language Model for distributed information retrieval is
the performance of CORI algorithm with cooperation)

SIGIR Conference on Research and Development in
Information Retrieval, 1998.

[4] J. Callan, Z. Lu, and W. B. Croft. Searching Distributed
Collections with Inference Networks. In Proc. of the 18th
Annual Int’l ACM SIGIR Conference on Research and
Development in Information Retrieval, 1995.

[5] J. Callan and M. Connell. Query-based sampling of text
databases. ACM Transactions on Information Systems, 19(2):
97-130, 2001.

[6] L. Gravano, C. Chang, H. Garcia-Molina, and A. Paepcke.
STARTS: Stanford Proposal for Internet Meta-Searching. In
Proc. of the ACM-SIGMOD Int’l Conference on
Management of Data, 1997.

[7] L. Gravano, H. Garcia-Molina, and A. Tomasic. The
Effectiveness of GlOSS for the Text Database Discovery
Problem. In Proc. of the ACM-SIGMOD Int’l Conference on
Management of Data, 1994.

[8] L. Gravano and H. Garcia-Molina. Generalizing GlOSS to
Vector-Space Databases and Broker Hierarchies. In
Proceedings of the 21st International Conference on Very
Large Databases (VLDB), 1995.

[9] D. Hawking, and P. Thistlewaite. Methods for information
server selection. ACM Transactions on Information Systems,
17(1):40-76, 1999.

[10] N. Craswell, D. Hawking, and P. Thistlewaite. Merging
Results from Isolated Search Engines. In Proc. of the Tenth
Australasian Database Conf., pages 189--200, 1999

[11] J.C. French, A.L. Powell, J. Callan, C.L. Viles, T. Emmitt,
K.J. Prey, and Y. Mou. Comparing the performance of
database selection algorithms. In Proc of the 22nd Annual
Int’l ACM SIGIR Conference on Research and Development
in Information Retrieval, 1999.

[12] A F. Smeaton and F. Crimmins Using A Data Fusion Agent
for Searching the WWW. In Proc of The Sixth International
World Wide Web Conference, 1997.

[13] D. Hawking, and P. Thistlewaite. Methods for information
server selection. ACM Transactions on Information Systems,
17(1):40-76, 1999.

[14] J. Xu and J. Callan. Cluster-based Language Models For
Distributed Retrieval. In Proc of the 22nd Annual Int’l ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1999.

[15] L. Si and J. Callan. Using Sampled Data and Regression to
Merge Search Engine Results. In Proc of the 25th Annual
Int’l ACM SIGIR Conference on Research and Development
in Information Retrieval, 2002.

[16] L. Larkey, M. Connell, and J. Callan. Collection selection
and results merging with topically organized U.S. patents and
TREC data. In Proceedings of Conference of Information
and Knowledge Management, 2000.

[17] Lemur Toolkit http://www.cs.cmu.edu/~lemur

[18] J. Callan, W.B. Croft, and J. Broglio, TREC and TIPSTER
experiments with INQUERY. Information Processing and
Management, 31(3):327-343, 1995.

[19] D R. H. Miller, T. Leek, and R. M. Schwartz. A Hidden
Markov Model Information Retrieval System. In Proc of the
22nd Annual Int’l ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999.

[20] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proc of the 24th Annual Int’l ACM SIGIR Conference on
Research and Development in Information Retrieval, 2000.

[21] C. Buckley, A. Singhal, M. Mitra, and G. Salton, New
retrieval approaches using SMART. In Proceedings of 1995
Text REtrieval Conference (TREC-3). National Institute of
Standards and Technology, special publication.

