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ABSTRACT 
Statistical language models have been proposed recently for 
several information retrieval tasks, including the resource 
selection task in distributed information retrieval.  This paper 
extends the language modeling approach to integrate resource 
selection, ad-hoc searching, and merging of results from different 
text databases into a single probabilistic retrieval model.  This 
new approach is designed primarily for Intranet environments, 
where it is reasonable to assume that resource providers are 
relatively homogeneous and can adopt the same kind of search 
engine.  Experiments demonstrate that this new, integrated 
approach is at least as effective as the prior state-of-the-art in 
distributed IR. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval - retrieval models.  H.3.4 [Information Storage 
and Retrieval]: Systems and Software – distributed systems 

General Terms 
Algorithms, Experimentation 

Keywords 
Language model, Distributed information retrieval. 

1. INTRODUCTION 
Language Modeling has a long history of being used successfully 
in the fields of speech recognition and statistical natural language 
processing.  It has been applied to information retrieval and 
studies [2,3] have shown its effectiveness in the ad-hoc 
information retrieval task.  Some work has been done to apply 
language-modeling techniques to do resource selection in 
distributed retrieval task.  However, little work has been done in 
distributed IR using a single integrated language model 
framework.  The difference between ad-hoc information retrieval 
and the distributed information retrieval is that ad-hoc information 
retrieval assumes that all the documents can be copied into a 
single centralized database for the purpose of indexing and 
searching while distributed information retrieval targets the cases 

when documents can’t be obtained or stored in a single database.  
The task of distributed information retrieval can be important 
when the information is proprietary or access of the information is 
not free.  With the proliferation of online searchable databases on 
local area networks and the Internet, the significance of the 
distributed information retrieval is becoming more and more 
serious [1].  

There are various scenarios in distributed information retrieval 
[15].  In this paper, we focus on the intranet environment, where 
we can assume each individual database uses the same kind of 
search engine.  

There are three important sub-problems in distributed information 
retrieval: first, the content of each text database must be 
represented in a suitable form; second, given an information need 
(a query), several relevant databases must be selected to do the 
search; third, the results from all the selected databases have to be 
merged into a single final list [1].  A lot of research has been done 
in these three sub-fields.  CORI algorithm [1,4] is one of the well-
known examples.  It assumes that each database uses Inquery 
search engine.  It uses query-based sampling [5] for describing the 
content of each individual database, the CORI collection selection 
algorithm for choosing databases most relevant to the user’s query 
and the CORI merging algorithm for fusing results from different 
databases together.  Experiments showed that the CORI 
distributed information retrieval algorithm has achieved decent 
performance in many different environments [18]. 

In this paper, we will present an integrated language modeling 
approach to the distributed information retrieval problem.  In this 
framework, language modeling is applied to every aspect of the 
distributed information retrieval problem.  When a query is 
issued, a language model based collection selection algorithm is 
used for choosing a subset of databases that are most likely to 
provide documents relevant to the query.  Then, within the 
selected database, a language model based retrieval algorithm is 
used for finding relevant documents.  Finally, with the returned 
document information from the individual databases, a language 
model based merging approach is performed to integrate the 
results.  

As for the three steps mentioned above, the language model based 
retrieval algorithm for a single database has been extensively 
studied and therefore is not the focus of this paper.  The major 
contribution of this paper is on how to accomplish the phase of 
resource selection and the phase of results merging using 
language modeling framework.  Compared with the CORI 
algorithm, this framework tends to be better justified by 
probability theory.  On the standard TREC123 and TREC4 
datasets, experiments have shown that the new framework 
significantly outperforms the well-known CORI distributed 
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information retrieval algorithm when the scores from the 
individual databases are normalized without cooperation from 
individual databases and is slightly better or at the same level than 
the CORI algorithm in case that the operation of score 
normalization is performed with cooperation [1]. 

2. PREVIOUS WORK 
This work is closely related to the language model approaches for 
ad-hoc information retrieval, including the risk model proposed 
by Ponte and Croft [3], a simple unigram model by Song and 
Croft [2] and the two states hidden Markov model by the BBN 
group [19].  Although the details are different between these 
approaches, the basic idea is the same.  Each document is seen as 
a sample generated from a special language.  Therefore, a 
language model for each document is estimated beforehand.  
Then, the relevance for a document to an information need 
(represented as a query) is computed as how likely the query can 
be generated from the language model for that document.  More 
specifically, the likelihood for a query Q to be generated from a 
document D is computed as: 

∏
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where q  is a query item in the query Q, P(q|D) is the probability 
for the query term q to appear in the document D, P(q|C) is the 
probability for the term q to be used in the collection C to which 
the document D belongs, and λ is a weighting parameter between 
0 and 1.  As seen from Equation (1), the role of term P(q|C) is to 
smooth the probability for the document D to generate the query 
term q, particularly when P(q|D) is zero.  Furthermore, as pointed 
out in [20], the idea of smoothing document-based language 
model with the collection-based language model is similar to the 
tf.idf term weight scheme [21] used in vector model where 
‘common’ words are discouraged by giving low weights and 
‘rare’ words are emphasized with the high weights. 

Unlike the ad-hoc information retrieval task, the distributed 
information retrieval task assumes that each individual database 
performs retrieval without the knowledge of other databases.  
Simply applying Equation (1) to the case of distributed 
information retrieval will be not feasible because each database 
has a different word statistics P(q|C).  therefore, each database has 
a different sense of common words and rare words which makes 
the scores from different databases not directly comparable.  One 
important aspect of applying language modeling to distributed 
information retrieval is to wipe out the score differences caused 
by the differing statistics of databases and make the scores 
comparable.  The basic idea is to take advantage of the document 
sets sampled from the individual databases.  Assuming the 
sampled document sets share the similar word statistics with the 
original databases, we can gather the approximated word statistics 
for each individual database and use it as the way to adjust the 
document scores from the individual databases.  

To accomplish this, we need to acquire the resource description 
for each database.  Approaches such as the STARTS protocol and 
query-based sampling have been used to obtain the resource 
description for databases [5,6].  The difference between them is 
that the STARTS protocol requires each database to provide word 
statistics information directly while query-based sampling only 
asks the individual search engines to run queries and return a list 
of documents that are downloadable.  In practice, the approach of 

query-based sampling has been shown to acquire rather accurate 
resource descriptions using a relatively small number of randomly 
generated queries (e.g. 75) to retrieve a relatively small number of 
documents (e.g. 300). 

For resource selection, we need to find the subset of the databases 
that are most relevant to the user’s query.  There are many 
successful resource selection algorithms.  Among them, gGlOSS 
[7,8], CORI, and CVV [9] are three best-known resource-ranking 
algorithms.  Gravano et al. proposed GlOSS, the Glossary-of-
Servers Server, as an approach to the resource selection for the 
Boolean IR model and it is generalized as gGlOSS to be used for 
any IR model.  It needs each database to provide the document 
frequency for each word in its database, and the sum of the term 
weights in each document of the database.  The CVV resource 
selection algorithm uses a combination of document frequency 
and cue validity variance information.  In this algorithm, 
document frequency information is used to estimate the 
importance of a term within a database; the CVV component 
estimates whether a term is useful for differentiating one database 
from another.  The CORI collection selection algorithm creates a 
resource selection index in which each database is represented by 
its terms and their document frequencies.  Databases are ranked 
by the belief of P(Q|Ck) which is determined by the sum of the 
beliefs of all query items generated by the corresponding database 
[1].  Previous research has shown that the CORI algorithm is the 
most stable and effective of the three algorithms [10,11].  But the 
ranking value, which is the belief, does not have a valid 
probabilistic explanation.  It is hard to incorporate it into a 
probabilistic distributed information retrieval task. 

The problem of merging results with incomparable scores from 
individual data collections has been studied extensively in the 
field of distributed information retrieval. Some methods take the 
approach of normalizing document scores, which needs individual 
databases to provide their corpus statistics or has to download the 
documents and recalculate the scores at the client side, which has 
very high communication and computation costs [10].  Other 
methods try to avoid either the requirement of the cooperation 
from individual databases or the cost of downloading the 
documents and recalculating the scores.  For example, simply 
interleaving the retrieved documents from different databases in 
the order of their ranks has been used in [12].  CORI merging 
method [1,4] is based on a linear combination of the score of the 
database and the score of the document.  The “normalized” score 
suitable for merging is calculated as shown below. 
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maxR  and minR  are two normalizing parameters that can be 

calculated by the CORI’s resource selection algorithm only from 
the information in the resource selection index [1].  So equation 
(2) is the normalized database weighting score.  Equation (3) 
needs the individual search engines to cooperate by providing 



maxD  and minD .  In the absence of cooperation, maxD  is set to the 

maximum document score returned by the search engine and 

minD  is set to the minimum. 

To test the effectiveness of our language model for distributed 
information retrieval, we used the standard CORI distributed 
information retrieval system as the baseline system, which 
incorporate the algorithm of query-based sampling, the CORI 
resource selection algorithm and the CORI merging method.  
Previous studies have shown that the CORI system achieved 
generally good performance on different kinds of testbeds.   

3. THE LANGUAGE MODEL APPROACH 
In the section, we will give the full description of our language 
model approach.  As already mentioned in the introduction 
section, the problem of distributed information retrieval comprises 
of three components, namely a component for acquiring the 
resource description, a component for selecting most relevant 
databases and a component for merging results returned from 
different databases.  The following three subsections will focus on 
each of these three components.  Besides these three sub-problems 
we have made the assumption that all individual databases use a 
language model search engine, which is a valid assumption for the 
intranet environment of distributed information retrieval. 

3.1 Acquiring Resource Descriptions  
As already discussed in the section of related work, one difficulty 
imposed by the distributed information retrieval problem is that 
the document scores returned from different database may not be 
comparable since each database has a different word statistics.  
One solution to this problem is to acquire an approximate word 
frequency distribution and adjust the document scores based on 
the obtained word distribution. Meanwhile, the resource 
description is critical to the phase of database selection where a 
subset of databases is chosen based on how similar the resource 
description is to the query.  

In this framework, we adopt the technique of query-based 
sampling.  All the queries used in the query-based sampling were 
one-term queries. The initial query term was selected randomly 
from a background language model.  Then, the subsequent queries 
terms were selected randomly by the language model, which was 
learned from the documents already retrieved from the database 
by previous queries.  The top four documents retrieved by each 
query were examined to update the resource description.  
Duplicate documents, which were already retrieved by previous 
queries, were simply discarded.  This results in some queries 
retrieving less than four documents.  Detailed experiments in [1,5] 
have shown that this method can get an adequate description with 
only a small amount of queries and a relatively small number of 
documents from each database.   

After three hundred documents were retrieved from each 
database, a collection based language model P(q|C) will be built 
for each database C and the retrieved documents of all databases 
were collapsed together to build a global language model P(q|G).  
By looking at the difference between the collection based word 
distribution P(q|C) and the global word distribution P(q|G), we 
can tell which collection may overestimate the document-query 
similarity and which collection does the opposite and make the 
corresponding adjustments.  Furthermore, by comparing the 
collection based word distribution to the query, we are able to tell 

which collection is more likely to provide relevant documents and 
which collection will not. 

3.2 Resource Selection 
In the resource selection phase, we need to select most relevant 
collections to a query based on the information we got in the 
resource description phase.  Therefore, the key issue here is how 
to compute the collection-query similarity.  To take advantage of 
the language model used for computing the document-query 
similarity, we can simply collapse the sampled documents for a 
database together as one single giant ‘document’ and perform the 
similar computation for the document-query similarity.  More 
formally, we need to find the collections that have largest 
probabilities of P(Q|C), i.e. the probability of generating the query 
Q from the text collection C.  Following the principle of language 
model, the value of P(Q|C) is calculated in the following way: 
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where P(Q|C) is the language models for the collection C and 
P(Q|G) is language model for the whole collection.  Linear 
interpolation constantλ smoothes the collection-based language 
model with the global language model.  Collections with the 
largest generation probabilities P(Q|C) will be selected as the 
most relevant collections. 

Notice, our collection selection method is very similar to the 
Kullback-Leibler (KL) divergence based collection selection 
method used by Xu and Croft [14].  In their work, the Kullback-
Leibler divergence between the word frequency distribution of the 
query and the database is used to measure how well the content of 
the database matches with the query.  More specifically, the KL 
divergence between query Q and collection C is computed as: 
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Note that collections are ranked using the negative of the KL 
divergence.  Both our method and KL divergence method are 
using the word distribution as the basis of the similarity 
measurement.  It is not difficult to show that these two methods 
are actually equivalent by simply taking the logarithm of Equation 
(5) and noticing that the term ∑ ∈ Qq QqQqP )|log()|(  in 

Equation (6) is a query-specific constant. 

3.3 Results Merging 
The last step of distributed information retrieval is merging the 
results.  It is a difficult task because different databases may use 
different ranking algorithms and therefore the scores returned 
from the individual databases may not be comparable.  
Furthermore, even all the individual databases can be assumed to 
use the same ranking algorithm; the large variance in corpus 
statistics for different databases can still make the scores 
incomparable [15].  In our framework, we rule out the first factor 
by requiring all the individual databases use the language model 
based algorithm for retrieving relevant documents.  Then, the 
second factor, i.e. the heterogeneous corpus statistics varying 
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widely from one database to another, becomes the major concern 
of our results merging algorithm. 

With the assumption that all the search engines are using the same 
language modeling based retrieval algorithm, the document scores 
returned from the individual search engines can be interpreted as 
generation probabilities for a given query.  More specifically, for 
a given query Q, the score of the j th document Dij returned by the 
i th database Ci, should be the probability P(Q| Dij, Ci), i.e. the 
probability of generating query Q given the document Dij and the 
database Ci. According to Equation (1), the probability P(Q| Dij, 
Ci) can be expressed as: 
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∈
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As it can be seen from the above equation, the probabilities 
P(Q|D,C) returned from individual search engines can be 
significantly influenced by the heterogeneous corpus statistics 
P(q|C) for different databases.  The task of the merging algorithm 
is to take these probabilities for documents as inputs and together 
with all the information of individual databases obtained in the 
resource description and resource collection phases to effectively 
erase the bias caused by the corpus statistics and calculate the 
final comparable scores for all the returned documents.  

Since the ‘unfairness’ within the document scores comes from the 
factor of database Ci in probability P(Q|Dij, Ci), we would like to 
compute the ‘fair’ scores for documents as P(Q|Dij) which don’t 
have dependency on database Ci.  In order to compute the ‘fair’ 
document score P(Q|Dij) based on the probability P(Q|Dij, Ci) and 
the word distribution of individual databases obtained in the phase 
of acquiring resource description, we need to decompose the 
probability P(Q|Dij, Ci) into two parts, with one part dependent 
only on the document Dij and the other part influenced only by the 
database Ci.  A simple solution would be to rewrite the probability 
P(Q|Dij, Ci) as a linear interpolation of probability P(Q|Ci) and 
P(Q|Dij) as: 

( ) ( ) ( ) ( )ijiiji DQPCQPDCQP |1|,| αα −+=  (7) 

With the known information of P(Q|Dij, Ci) and P(Q|Ci) 
(computed in the phase of collection selection), P(Q||Dij) can be 
computed by simply subtracting P(Q|Ci) from P(Q|Dij, Ci).   
Unfortunately, this simple approach is not feasible because the 
values for probability P(Q|Ci) and P(Q|Dij) are not comparable. A 
collection usually contains many more words than a document 
and therefore the word generation probability P(q|Ci) is usually 
much lower than P(q|Dij), which usually results in a significantly 
smaller value for P(Q|Ci) than P(Q|Dij). 

A better solution would be to decompose P(Q|Dij, Ci) into some 
kind of product. Therefore, according to the Bayesian rule, we 
have P(Q|Dij, Ci) expanded as 
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By assuming that the two evidences in the probability of 
P(Ci|Q,Dij) can be linearly separable, we will have 

( ) ( ) ( ) ( )ijiiiji DCPQCPDQCP |1|,| αα −+=  (9) 

whereα is the parameter that represent the relative importance of 
two evidence of Q and Dij.  Substituting Equation (9) for 
P(Ci|Q,Dij) in Equation (8) and rewriting, we have the expression 
for P(Q|Dij,Ci) as 
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By taking the logarithm on both sides of the above formula, we 
will have: 
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Then, the logarithm of probability P(Q|Dij), i.e. the final ‘fair’ 
document score ,  can be expressed as: 

( ) ( ) ( )
( )

( ) ( ) 









+

−
−

−−=

1
|1

|
log

1log,|log|log

iji

i

iijij

DCP

QCP

CDQPDQP

α
α

α

 

  
(12) 
 

Since α is a constant, term log(1-α) is a constant contribution to 
every log(P(Q|Dij)) and therefore can be ignored.  Furthermore, 
since the contents of different databases are already predefined, by 
assuming the assignment of document Dij  to collection Ci is 
usually correct, we can have P(Ci|Dij) approximated as a constant 
p which is close to 1.  With these two considerations, the final 
expression for the logarithm of probability P(Q|Dij) as 
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where β is a constant and is defined as 
)1( α

α
−

.  This is the core 

formula for our results merging algorithm.  As easily seen from 
Equation (13), the influence of corpus statistics on the document 
score is represented in the term P(Ci|Q).  By subtracting P(Ci|Q) 
from the original score P(Q|Dij, Ci) returned from the individual 
databases, we are able to eliminate the factor of different corpus 
statistics and therefore results in a more ‘fair’ scores for 
documents.  For term P(Ci|Q), since we have already computed 
P(Q|Ci) in the phase of resource selection, with the help of 
Bayesian rule, we can have the following expression for P(Ci|Q) 
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4. EXPERIMENTAL METHODOLOGY 
In this section, we describe the experiment design.  The detailed 
description of the testbeds used for the experiment is presented in 
Section 4.1 and the presentation of experiments setting is given in 
Section 4.2. 



4.1 Testbeds 
Testbeds play a very important role in distributed information 
retrieval experiments since the performance of distributed 
information retrieval systems is highly influenced by the testbed 
characteristics.  Two different testbeds were used in our 
experiments.  The goal was to test the effectiveness of our 
algorithm in different degrees of heterogeneity and different types 
of queries. 

“By source” testbed: trec123 
In this testbed, there were altogether 100 databases created from 
TREC CDs 1,2 and 3.  The databases were organized by source 
and publication date [1,5], and are somewhat heterogeneous.  50 
short queries were created from the title fields of TREC topics 51-
100.   

“By subject” testbed: trec4_kmeans 
For this testbed, there were altogether 100 databases created from 
TREC 4 data.  A k-means clustering algorithm was used to cluster 
the databases by topic automatically [22], so the databases are 
homogenous and the word distributions are very skewed.  50 
longer queries were created from the description fields of TREC 
topics 201-250. 

The characteristics of these two testbeds are shown in Table 1.  
Meanwhile, the characteristics of their corresponding queries are 
shown in Table 2. 

Name 
TREC 

Topic Set 
TREC 

Topic Field 

Average 
Length  
(Words) 

Trec123 51-100 Title 3 
Trec4_kmeans 201-250 Description 7.2 

                         Table2:  Query set statistics 

4.2 Experiment Settings 
To test the effectiveness of our language model approach, we 
compared our algorithm to the CORI algorithm.  To make the 

comparison fair, we try to make the setup for both algorithms as 
close as possible. 

In order to reduce the cooperation needed from each individual 
search engines, query-based sampling technique was used to 
acquire the database description for both our algorithm and CORI 
algorithm.  300 documents from each of the 100 databases of both 
testbeds were sampled.  All the documents from the same 
database were merged together to make the description of the 
corresponding database.  For the part of resource selection, the top 
10 databases were selected for each query, which has been a 
common choice in many previous researches [1,14,15].  At most 
100 documents were retrieved from each database. The 
documents returned by the selected databases were merged into 
the final result lists.  This results list is fed into an evaluation 
program for computing precision. 

The language modeling based search engine for each database is 
implemented using the Lemur toolkit [17].  All the weighting 
parameters λ used in Equation (1) are set to 0.5.  The parameter β 
in Equation (13) is empirically set to be 19 for both testbeds. 

Searching only a fraction of the databases will surely cause some 
relevant documents to be missed.  Precision at high recall will 
suffer.  But in most environments, users are only concerned with 
the top several dozen documents.  Therefore, precision at top 5, 
10, 15, 20 and 30 are the most important evaluation measures in 
distributed information retrieval [1,14,15], which is the measure 
used in our experiments.  

5. EXPERIMENTAL RESULTS – 
COMPARISON WITH CORI 

CORI algorithm is a well-known framework that has been shown 
to work very effectively in different environments.  In the section 
for related work, we have already briefly covered the three 
important components for CORI algorithm, i.e. the component for 
acquiring resource description, the component for resource 
selection and the component for the results merging.  More 
detailed descriptions can be found in [1,4].  Experiments in this 

Number of documents Megabytes (MB) 
Name 

Query 
Count 

Size 
(GB) Min Avg Max Min Avg Max 

Trec123 50 3.2 752 10782 39713 28.1 32 41.8 
Trec4_kmeans 50 2.0 301 5675 82727 3.9 20 248.6 

Table1: Testbed statistics 
 

 

 
Precision at Doc 

Rank CORI without Cooperation CORI with Cooperation LM f or Distributed IR 

 5 docs 0.4280 0.4480 (+ 4.67%) 0.4680 (+ 9.35%) (+ 4.46%) 

10 docs 0.3840 0.4220 (+ 9.90%) 0.4420 (+15.10%) (+ 4.74%) 

15 docs 0.3933 0.4053 (+ 3.50%) 0.4413 (+12.20%) (+ 8.88%) 

20 docs 0.3720 0.3820 (+ 2.69%) 0.4240 (+13.98%) (+10.99%) 

30 docs 0.3593 0.3627 (+ 0.95%) 0.3940 (+ 9.66%) (+ 8.63%) 

Table 3. The distributed retrieval results for trec123 testbed by CORI algorithm, scores normalized without cooperation from 
individual databases, scores normalized without cooperation from individual databases and Language Model for distributed 
information retrieval.  (The first baseline in CORI with cooperation and Language Model for distributed information retrieval is the 
performance of CORI algorithm without cooperation; the second baseline in Language Model for distributed information retrieval is 
the performance of CORI algorithm with cooperation) 



section were designed to compare the performance of our 
language model distributed information retrieval algorithm with 
CORI.  

As described in Section 2, there are two versions of the CORI 
merging algorithm.  As indicated by Equation (4), in order to 
calculate the normalized document score, we need the maximum 
possible document score and minimum possible document score 
for the individual database.  In the cooperation case, CORI 
merging algorithm assumes that it can get these scores from the 
individual search engines.  If it is not possible, it simply uses the 
maximum and minimum document scores returned by the search 
engine.  Notice that our language model algorithm does not need 
this kind of cooperation from individual database to provide the 
normalization scores.  

Table 3 and Table 4 show the retrieval results by three distributed 
information retrieval algorithms, namely CORI algorithm without 
cooperation (normalization), CORI algorithm with cooperation 
(normalization) and the language model algorithm for distributed 
information retrieval, carried both on trec123 and trec4_kmeans 
testbeds.  The CORI algorithm without cooperation from 
databases is used a baseline. It can be seen that both CORI 
algorithm with cooperation and language model algorithm always 
outperform CORI without cooperation.  Someone may argue that 
the cooperation needed by CORI can be implemented as an 
internal procedure in individual Inquery search engines, but it still 
needs to modify the original Inquery retrieval algorithm [1,18].  
On the trec4_kmeans testbed, the language model algorithm is at 
the same level as CORI algorithm with cooperation. On the 
trec123 testbed, Language Model for distributed information 
retrieval has a notable improvement over the CORI with 
cooperation. 

6. CONCLUSIONS 
This paper presents a language modeling based framework for 
distributed information retrieval task in intranet environment, 
where all databases use a language model based search engine.  
Under this framework, the three sub-problems within the 
distributed information retrieval have been viewed as components 
of an integrated task.  In the resource description, it uses query-
based sampling to acquire language models description of each 
individual database.  In the resource selection, it ranks the 
databases based on how likely a given query can be generated 
from the language model of every database.  In the results 
merging, it computes the ‘fair’ scores for documents by removing 

the bias within the original document scores caused by the 
different corpus statistics. 

Our experiments carried on two testbeds of different 
characteristics in Section 5 demonstrate that the language model 
algorithm always outperforms the CORI algorithm without 
normalization cooperation from individual databases.  It is better 
than the CORI algorithm with normalization cooperation on one 
testbed and at the same level on the other testbed.  Therefore, we 
tend to conclude that the simple language model for distributed 
information retrieval is an effective approach for finding relevant 
documents in the intranet distributed information retrieval 
environment. 

One problem left in the new framework is the parameter β, which 
was empirically set to 19.  To test the sensitiveness of our 
algorithm to the value of the parameter β, we varied it from 1 to 
99 and repeated the experiments over testbeds trec123 and 
trec4_kmenas. The results are quite similar on both testbeds.  
Therefore, the performance of the new framework appears to be 
insensitive to the setup of the parameter β.  More investigation 
needs to be done over different environments.  We hope that a 
regression algorithm could be used set this parameter 
automatically [15].   
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