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An Iterative Algorithm for Delay-Constrained
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Abstract—The bounded shortest multicast algorithm (BSMA) We call this objectiveutilization-driven because it minimizes
is presented for constructing minimum-cost multicast trees with the total utilization of links.
delay constraints. BSMA can handle asymmetric link character- Optimization techniques for multicasting proposed before
istics and variable delay bounds on destinations, specified as real . ST L
values, and minimizes the total cost of a multicast routing tree. have considered the de'aY a_md cost OptImIZ“atIOI’] ,ObJeCt'Ves’
Instead of the single-pass tree construction approach used in most but have treated them as distinct problems. Dijkstra’s shortest-
previous heuristics, the new algorithm is based on a feasible- path algorithm [8] can be used to generate the shortest paths
search optimization strategy that starts with the minimum-delay  from the source to destinations. This provides the optimal
multicast tree and monotonically decreases the cost by iterative solution for delay minimization. Multicast algorithms that

improvement of the delay-bounded multicast tree. BSMA’s ex- f t optimizati h b based i
pected time complexity is analyzed, and simulation results are PEMOrM COSL oplimization have been based on computing

provided showing that BSMA can achieve near-optimal cost the minimum Steiner tree in a graph. A Steiner tree in a
reduction with fast execution. graph must reach a subset of nodes in the graph, called
Index Terms—Minimum-cost tree, multicast, multimedia, span- g|ven. nodes. The problem of finding the minimum Steiner
ning tree. tree is known to be an NP-complete problem [12], and a
number of heuristics [15], [19], [22] have been developed to
solve this problem in polynomial time and producing near-

optimum results. In Kou, Markowsky, and Berman’s (KMB)
ULTICASTING consists of concurrently sending thealgorithm [15], a network is abstracted to a complete distance
same information from a source to a subset of all pograph consisting of edges that represent the shortest paths
sible destinations in a computer network. Multicast service ®tween the source node and each destination node. The KMB
becoming a key requirement of computer networks supportiatgorithm constructs a minimum spanning tree [18] in the
multimedia applications. To carry large numbers of multicasbmplete distance graph, and the Steiner tree of the original
sessions, a network must minimize the sessions’ resourework is obtained by achieving the shortest paths represented
consumption, while meeting their quality of service (QoS)y edges in the minimum spanning tree.
requirements. The current approach for efficiently supportingBharath-Kumar and Jaffe [3] discussed minimizing both
a multicast session in a network consists of establishing a mabst and delay, assuming that cost and delay functions are
ticast tree for the session, along which session informationigentical. Awerbuch, Baratz, and Peleg [1] proposed a heuristic
transferred. Algorithms are needed in the network to computehich we call ABP) that starts from the minimum spanning
multicast trees; we call such algorithmaulticast algorithms tree and refines the tree to bound the diameter of the tree. ABP
Different optimization goals can be used in multicast alg@pplies to only spanning trees and not Steiner trees. This same
rithms to define what constitutes a good tree. One such gadga is used in the work by Cong, Kahng, Robins, Sarrafzadeh,
is providing the minimum delay from source to destinationand Wong [6] (which we call CKRSW) except that CKRSW
along the tree, which is important for delay-sensitive multimeefines the tree to bound the radius of the tree. Both ABP and
dia applications, such as real-time teleconferencing. AnotheKRSW assume identical cost and delay functions. Kompella,
optimization goal is constructing the minimum-cost tree, whicRasquale, and Polyzos [14] proposed two heuristics (which we
is important in managing network resources efficiently. Theall KPP) that address delay-bounded multicast trees. In their
tree cost is defined as the total cost of the links of the trdfermulation the delay bound for all destinations is the same;
furthermore, KPP assumes that link delays and the delay bound
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obtaining a minimum delay tree using any of the well-known relay node
shortest-path algorithms. (We use Dijkstra’s algorithm in our

implementation). Starting from this tree, BSMA iteratively N
improves the cost of the delay-constrained tree. BSMA has )
several novel features with respect to prior approaches to the :

_ =S g ; source node destinations
delay-constrained minimum-cost multicasting problem. ,

/

* Nonuniform, positive, and real-valued delay bounds are J
accepted. When destinations have different delays in re- cost.delay ’
ceiving messages from the source, variable delay bounds < > - A,

of destinations are necessary. The capability to spec‘%_ 1. Network model. Link cost cost metric, such as bandwidth utiliza-

arbitrary delay bounds allows BSMA to model delayron or dollar cost. Link delay= queueing delayt transmission delay-
bounded multicast instances more accurately and to mlepogation delayA; = delay bound from the source to destination

ways find a feasible solution. In contrast, KPP assumes a

unique integer-valued delay bound for all destinations. gqges represent the communication link between them. An
e The delay function on links can take arbitrary positiv%dgee c Effomuv € V tou € V is represented by
real values. This ability enables BSMA to model networks — (v,w). A path in G is a sequencéuo,vr,---,v1) Of

more accurately and to always find a feasible solution. ([ tices such that edo@; 1,v;) € Efori = 1,2,-- k.

contrast, KPP assumes an integer-valued delay functiofy,q path contains the verticas,v,---,vx and the edges

 Instead of using a single pass to construct the tree (30% v), (o1, v9), - (vher,ve). A path is simple if all
in previous algorithms, BSMA employs a muItipIe-pas§emCes in the path are distinct. The nodes- - -, v,_1 in a

approach to iteratively minimize the cost function of thr?)ath (vo,v1,- -, u,) are called internal nodes.
tree. The iterative nature of BSMA allows it to tradeoff \odes it can be of the following three types:

Cost performance versus running time. ¢ source nodea node connecting to the source that sends
« BSMA can test the feasibility of a delay-bounded multi- . 9
out the data stream;

cast2|nstance with delay b°”’?“*’ Inan Z}'”Ode graphin destination nodea node connecting to a destination that
O(n?). In contrast, KPP require&Q(An?). . _
receives the data stream;

* BSMA accepts asymmetric link costs and delays. The relay node any node that is neither a source node nor a
ability to accept asymmetric link costs and delays makes y no y
. . : destination node.
BSMA more versatile and applicable in actual networks ) o ) ]
because actual networks must be considered as directedNe following two positive real-valued functions are defined
graphs when bandwidth and delay must be manag8d £- _ _ _
independently in each direction on a link. In contrast, * link-cost function(c: E — R): the cost of a link, which
KPP assumes Symmetric link costs and de|ay5_ can be associated with the utilization of the link. A higher
utilization is represented by a higher link cost;

Consistent with the assumptions made in all prior ap- ~ , ,
link-delay function(d: E — R*): the delay of a link

proaches to delay-constrained minimum-cost multicasting,* ’ 2 "
throughout this paper we assume that a node running BSMA S the sum of the perceived queueing delay, transmission
has complete topology information. The algorithms and 9elay, and propagation delay over that link.

associated protocols needed to deliver such information at-€t s be the source node and IBxbe the set of destination
each node are beyond the scope of this work. Sectionn@des. For each path fromto a destination node € D, the
describes the multicasting model assumed in BSMA. Sectigglay of the path, opath delay is defined to be the sum of

Il describes BSMA and proves the correctness of BSMAINk delays along the path. A set of path-delay upper bounds
Section IV gives an analysis of BSMA’s time complexityare assigned to destinations by the following function.
Section V presents simulation results, indicating that BSMA Destination Delay-Bound Function or DDg: D — #+):

achieves near-optimum cost reduction and fast executi@¥PF assigns an upper bound to the path delay from the source
Section VI gives our concluding remarks. to each destination in the multicast tree. Of coufgé) can be

different fromé(y) for destinations # j. In the special case
that DDF assigns the same delay bound to all destinations, this
[I. DELAY-CONSTRAINED MULTICAST MODEL delay bound is denoted by(s) = A,Vi € D.

The source node of a multicast is assumed to know all of DDF determines the delay constraints that the multicast
the information needed to construct the multicast tree. Otree is required to satisfy, while the cost of the multicast
way to have this information is for each node in the networtkee is minimized. When different delay bounds are assigned
to maintain an updated database of link weights and node destinations, the topology of the multicast tree has to be
connections in the network. This requirement can be supporigadated to meet the delay bounds. The multicast tree that we
using one of many topology-broadcast algorithms, which came interested in constructing is a delay-bounded minimum
be based on flooding or other techniques [2], [11], [10].  Steiner tree (DBMST) and the minimization problem can be

A network is modeled as a directed weighted grapiermally described as follows.

G = (V,E), as shown in Fig. 1, with node sé&f and DBMST Problem:Given a graphG = (V, E) with a link-
edge setF. The nodes represent routers or switches, amdst function, a link-delay function, a sourece a set of
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INPUT:
Step 1: Construct a shortest delay multicast tree G(V, E) = graph, s = source node,
(where the delay from the source to every D = set of destination nodes,
destination is the minimum) DB = set of delay bounds for destination nodes,
T; = the tree at iteration j.
OUTPUT:

A delay bounded Steiner tree spanning D U {s}.
PROCEDURE MulticastTree(G(V, E), s, D, DB) {
J«0;
T; + minimum-delay tree spanning D U {s} by
Dijkstra’s algorithm;
Initialize all superedges of T; as unmarked;

Delay bounds

are satisfted?

o - loop
Negotiate with destinations | | D +{— the highest-cost unmarked superedge
about delay violations among all unmarked superedges in Tj;
if (p, = NULL) then
Return;
Step 2: Refine the multicast tree iteratively to Mark superedge pa;

Remove p;, from T}, to obtain le and 7}2;
ps < delay-bounded shortest path between le and T]2
Tj + P UT; UT
if (p, # pa)
Fig. 2. Methodology used by BSMA. Unmark all marked superedges;
Jei+L
}
destinationsD, and a DDF, then construct a DBMST spanning  }
Du{s}, such that the cost of the tree is minimized while DDFEiy 3. High-level description of BSMA.
is satisfied. The cost of the multicast tree is defined as the sum
of link costs in the multicast tree. . ) .

Consistent with prior work on delay-constrained multicast- BSMA’'s improvement step iteratively transforms the tree
ing, how the delay, the cost of the links, and the destinatidpPology to decrease its cost monotonically, while satisfying
delay bounds are obtained are outside the scope of this wdfie delay bounds. Lef, denote the initial tree topology.
The DBMST problem can be reduced to a minimum Stein&Uring the improvement step, at iteratign the current tree
tree problem with the delay bound set to infinity, which id; iS transformed to tre@,,, and at iteratiory + 1, the tree
known to be an NP-complete problem [12], and only heuristids+1 1S transformed to tred,, and so on. The sequence
are of practical interest for its solution; BSMA is a nevPf treesZy, 11, -, Thnal is such thatost(1p) > cost(11) >

heuristic designed to solve the DBMST problem. ... = cost(Tgnal), Wherecost(T;) is the objective function
being minimized. Delay bounds are satisfied throughout the

iterative improvement.

minimize the cost, while guaranteeing path
delays to destinations always satisfy the delay bounds

I1l. DESCRIPTION OFBSMA

The DBMST problem can be approached as a feasibf®: P€lay-Bounded Path Switching
search optimization problem [4] in which the feasible region The transformation performed by BSMA at each iteration
consists of all trees that satisfy the delay-bound requiremeat. the improvement step consists of a delay-bounded path
BSMA constructs a DBMST in two steps, as illustrated iswitching, by which a path ir¥}; is replaced by a new path

Fig. 2. not in 7; with smaller cost, resulting in a new tree topology
1) Initial step: Construct an initial tree with the minimumZ;+1 [25]. Ensuring an effective delay-bounded path-switching
delays from the source to all destinations. improvement involves the following:
2) Improvement steptteratively minimize the cost of the 1) choosing the path to be taken outBf and obtaining
tree while always satisfying the delay bounds. two disjoint subtreesffL and7;%;
To guarantee that a feasible solution is found that satisfies?) finding a new path to connet* andZ;?, resulting in
the given delay bound, the initial tree is the minimum-  the new tree topolog¥’;: with smaller cost, while the

delay tree, which is constructed using Dijkstra’s shortest-path ~ delay bounds are satisfied.

algorithm [8]. In some cases the delay bounds given by DDFA candidate path irf; for path-switching improvement is
may be too tight, i.e., they cannot be met even in the minimuroalled a superedge.

delay tree. In such cases some negotiation is required to relapefinition (Superedge)A superedge is a simple path
the delay bounds of DDF before any feasible tree can key,v;,---, ;) such that all internal nodes, i.ey, - - -, vg_1,
constructed, as shown in the BSMA flowchart (Fig. 2). Thare relay nodes which connect exactly two tree edges, and is
bounds given by DDF must be relaxed until they can be meot contained in a longer path with the same property.

by the minimum-delay tree. The rest of this paper assumesA superedge consists of one or more tree edges and zero
that DDF assigns the delay bounds that can be met by tkemore internal tree nodes. Removing a superedge from a
minimum-delay tree. A high-level specification of BSMA ismulticast tree corresponds to removing all of the tree edges
shown in Fig. 3. and internal nodes in the superedge. From the definition of a
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superedge, only relay nodes can be internal. A destination noaxt unmarked superedge ; with the highest cost. If

or a source node cannot be an internal node of a superedgise 2) occurs, BSMA unmarks all marked superedgés; in
This prevents the removal of destination nodes or the souled continues to do the path switching for the highest-cost
node from the tree as a result of removing a superedge. unmarked superedge.

Definition (Cost of Superedge)The cost of a superedge is In Fig. 4(a) the superedges in the order of decreasing path
defined as thesumof link costs along the simple path thatcost are(s,d,c), {s,g), (s, f), and {f,¢). The highest-cost
corresponds to the superedge. superedg€(s, d, ¢) is deleted from the tree, resulting in two

As shown in Fig. 3, all superedges are initialized as uwlisjoint trees. One tree consists of nodeg, g, ands and the
marked. The superedge with the highest cost among alh- other tree consists of the singleterA delay-bounded shortest
markedsuperedges is selected to be removed. This supere@ig¢h (/. a, ¢} is used to reconnect the two trees to get feg
selection for path switching is called the naive heuristi@s shown in Fig. 4(c).

Removing the highest-cost superedgein 7; breaksZ; into ~ BSMA terminates when all superedges become marked,
two disjoint subtreeTj1 ande, whereT; :phuleuTj?_ which occurs when all possible superedges in the tree have
A delay-bounded shortest path betweerﬂ’jl and Tf is used been examined for path switching without success in reducing
to connectl’s and7? to obtain the new tree topolod¥, the tree cost. The significant cost minimization of multicast
i.e, Tjy1 = ps U le U Tf- A delay-bounded shortest pathtree by BSMA is demonstrated by the simulation results in
is defined as the path with the smallest cost, subject to tRgction V. The next theorem shows the correctness of BSMA
constraint thatlj 41 = p, UT} UT? is a delay-bounded tree.in finding a delay-bounded multicast tree. _
C|ear|y, the cost Oi)s is not h|gher than the cost @ﬁb_ Th_eo_rem .1: BSMA always finds a delay-bounded Steiner

The search for the delay-bounded shortest patiised to tree if it exists. ' _ ' o
reconnect the two treest and7? starts with the shortest path ~ Proof: The proof is by induction ory, which is the
between the two trees. If, however, the shortest path resiig§ation number of tree topologieds is a minimum-delay
in a violation of delay bounds, BSMA uses an increment#fie€- If the minimum-delay tre, cannot satisfy the specified
k-shortest-path algorithm [16], [24] to find a delay-bounde@ielay bounds DDF, a delay-bounded tree cannot exist for
shortest path to reconnect the two trees. Thshortest- the specified DDF. Wheff; is transformed tdl;,; by the
path problem consists of finding thigh shortest simple path delay-bounded path switching, the de_la_y_-bOl_mde_d shortest path
connecting a given source-destination pair in a graph. Ndtgtween the two tree; andZ7 by definition implies that the
that in BSMA the k-shortest path is between twieees To New treeTj, satisfies the delay bounds. Finding the delay-
find thek-shortest path between two trees, a standard techni@inded shortest path always terminates, because in the worst
introduces two additional nodes: one connected to all of th@Se the path of the deleted superedgéjins found again.

nodes in one tree and the other connected to all of the nodes -

in the other trees, with all the new connections having zepp .
o . Example of ration

cost. Then, finding thé&-shortest path between the two trees -a pe- © O_pe atio _ o

is equivalent to finding the:-shortest path between the two This section gives a small example showing the initial and

new nodes. improvement phases of BSMA. The network for the example

bounded shortest path is found. The incremental constructfg®st and a delay in each direction. The source is represented

of the k-shortest paths betwedf} and7? proceeds with the by solid black disk and the destination nodes are solid black

J
construction of the first, second, -, kth shortest-path, where Sduares.

I is the smallest value for which either of the following is true: Fig- 5 illustrates the steps of BSMA for utilization-driven
 the k-shortest path has a smaller cost than the removggri (lzotnsiructllon alr;(f:i rnr:]mtlimr;zaltz_lonh -II;:E isorurcre ncr)]ctje q fLas
superedge and satisfies the delay bounds; complete topology intormation. ach link 1S represented by
tWé) directed edges, one for each direction, and each direction
 the k-shortest path has the same cost as the remove . L L
superedge has a cost and delay associated with it. Each destination has
P ge. a delay bound for the multicast indicated dyelay_bound}.

It is possible fork to be very large for some instances ofytice that delay bounds are different real values for different
networks. However, the value thiatan take can be controlled yogtinations. Although the cost of a link can be asymmetric,

by makingk an input to BSMA. This way, BSMA can tradeoff e have set the same link costs in both link directions to

C(_Jst performance versus running time. This matter is furthgll;np“fy the examples. The link costs and delays are shown
discussed in Section IV. as cost, delaypairs in the figures.

One of tWO_ cases must happen whenis obtained: Initially, the minimum delay treeZ} is constructed as
1) pathp; is the same as the path pi; or shown in Fig. 5(a). This initial tree is iteratively improved
2) pathp; is different from the path op;,. by selecting a superedge and performing path switching. The

Finding the delay-bounded shortest path always terminateggerall cost reduction is 40% in the improvement phase.
because the path of the deleted superaggis found again in During the improvement phase, the tre€s, 1>, and 73
the worst case. If case 1) occurs, BSMA magksto indicate are constructed after the first, second, and third iterations,
that p;, has been examined without improvement of the tregespectively, such that they satisfy the delay bounds, as shown
cost. BSMA continues the path switching by examining thi@ Fig. 5(b)—(d). The final tree is shown in Fig. 5(d).
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Legend:
. source node

l destination node {multicast defay bound}

O relay node

O

Fig. 4. Delay-bounded path-switching improvement. (a) Shortest delay Tige Removing the highest-cost superedged, c) from Tp. (b) Removing
superedgese. Ty is partitioned to two disjoint treedy} and TZ. (c) Adding superedgefc. Reconnectingly and T by the delay-bounded shortest
path {f,a,c) between the two trees gives).

C. A Greedy Variant Empirical results are obtained in Section V to compare the

A more sophisticated heuristic to use in superedge selectitfe costs of the greedy heuristic with the naive heuristic given
for path switching is based on a greedy choice for cogl Section IlI-A. We found the difference in costs for final trees

reduction. Letp be a superedge in treE; and letq be the to be quite small, i.e., Iess_ than 1% for all tested examples.
corresponding delay-bounded shortest path used to recondfdgfough the greedy heuristic may make the behavior of
the tree wherp is removed from the tree. Denote the patﬁiSMA clearer or more obvious, it has a higher time complex-
cost of p and ¢ as ¢, and ¢,, respectively. Thegain g of ity without §ignificantly lower cqst than the naive heuristic.
path switchingp to ¢ is defined to bey = ¢, — ¢,. Then, the By. evgluatlng .aII superedges in the current treg for path
greedy choice is to select the superedge in the currentitreeSWitching, the time complexity of the greedy-heuristic-per-tree
which gives the maximum gaig for path switching. BSMA transformation is higher by a factor(|U|), whereU is the set
terminates when the maximum gaifi is zero. A high-level Of superedges and/| = O(n) for a network withn nodes.
sneT:ing?n of BSMA based on the greedy heuristic is glveB' Adapting to Changes

In the greedy heuristic, path switching is performed on The heuristic described in this paper can be incorporated
each superedge tentatively to find the corresponding delayinto an appropriate multicast protocol. This, however, would
bounded shortest path and the gain. This is done inde-require BSMA to adapt to changes to the multicast tree. To
pendently for each superedge; thus, the current tree staygke BSMA adapt to changes in the network topology or
the same for each tentative path switching. After evaluatiggoup membership, BSMA can be easily extended to build
all superedges in the current trég, the superedge with delay-constrained multicast trees dynamically. The steps of
the maximum gain is selected for definite path switching 8SMA for the dynamic construction of a delay-bounded
transform the current tree. multicast tree are as follows.
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Fig. 5. Utilization-driven multicast tree construction and minimization. (a) Shortest delayZr¢e (b) 1. (c) 1. (d) I5.

To add a destination to the multicast tree: destination is added or removed. The fact that the multicast tree
Step 1: Connectz to the source by the minimum delayis not completely rebuilt after each membership change makes
path from the source. BSMA a practical candidate for solving the on-line variation
Step 2: lteratively perform path switching to lower the©f the DBMST problem. When multiple destinations are added
and/or removed simultaneously, Step 1 can be performed for

cost of the tree. Ve St : ) ;
I . . these destinations; then the tree is iteratively refined in Step
To remove a destinatiom from the multicast tree:
2 to reduce the tree cost.

Step 1: If x is connected to more than two edges in the
multicast tree, make the node as relay node;
else, delete the destination node along with its IV. TIME COMPLEXITY ANALYSIS
connecting superedge from the tree. The complexity of BSMA isO(pt), wherep is the number
Step 2: Iteratively perform path switching to lower theof path-switching operations and is the complexity of a
cost of the tree. path-switching operation. In this section we examine the
When adding a new destination node, the delay bounddsmplexities ofp and¢.
first satisfied in Step 1 as in BSMA. Step 2 then iteratively The value ofp can be an input to BSMA. It can be a fixed
refines the new tree for low cost, using the delay-boundedmber or a function of the number of nodes or superedges as
path-switching improvement technique described in this papdesired. We use a stochastic model to get an expression for the
Note that the multicast tree isot recomputed each time aexpectechumber of path-switching operations performed by
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INPUT: perform an identity transformation on a tree for a maximum
G(V, E) = graph, s = source node, of n — 1 iterations.
D = set of destination nodes, By Cayley’s Theorem [5], there arg*~2 possible spanning
DB = set of delay bounds for destination nodes, o : :
_ N trees onn nodes. The number of distinct Steiner trees is no
T; = the tree at iteration 7, R
OUTPUT: greater than the number of spanning trees. The number of
A delay bounded Steiner tree spanning D U {s}. Steiner trees is then bounded h972.
PR_OC(;‘EDURE GreedyMulticastTree(G(V, E), s, D, DB) { Construct a Markov chain af"—?2 states, where each state
je0 i i
T, « minimum-delay tree spanning D U {s} corresponds to a spanning tree. Sort these ;tates with respect
by Dijkstra’s algorithm; t_o the cpst (_)f the Steiner tree (not the_ spanning trge) breaking
do { ties arbitrarily. Replace each state withcopies of itself to
?* ‘—OL T get a total ofn"~! states. Number the states sequentially,
OE:;OVS‘;pfiﬁg; b gei)T{l and T2 starting from one at the cheapest cost state"to! at the most
g ¢ delay bounded shortest path between T} and T2 expensive state. In this Markov chain, trangition edges go from
¢y « cost of p: a stateS; to a stateS;, such thatj < ¢. It is assumed that
¢q = cost of g; each of the possible transitions from a state is equally likely
g Cp —Cg; i i it . S
if (g < g) then { in IA. Thus, the probability of transition frons; to .S; is
g g 1 o
Drest < -Pij:ﬁa forl <j<i
Qoest < G b

and P;; = 1. Let T; be the number of transitions needed to

T UT U T
FEPEAT UL go from state to state 1. The expected value can be found by

)

if (¢* > 0) then { conditioning on the first transition from a given state. &t
Remove py,; from 7 to get T} and T7; be the random variable of the next state of the first transition
I_‘j*l — Gbest U 7—}'1 U,Z-JQV
Je ity E[T;] = E[E[T|Y]]
}
} while (g > 0); =Y EL)Y =y|P{Y =y}
} Y
1
Fig. 6. A greedy variant of BSMA. = < = [
9 greedy > EmlY 0
Y
BSMA, whenp is not specified as an input. In order to derive 1 S (1+ E[1,])
the expectation we make a probabilistic assumption about the -1 —~ v
tree transformation process—a given tree is equally likely to = .
be transformed to any monotonically less costly tree. We show —14 1 Z E[1,)
that the expected time complexity of BSMA when using naive N i—1 v
heuristic is O(kn®log(n)) for general graphs an@(kn?) Y
for degree-bounded graphs. The complexity is increased Bging induction with E[71] = 0, it can be shown that

a factor ofn when using the greedy heuristic of Section II-CE[Z;] = E;;ll 1/y = log(é).

Lemma 1: The expected number of path switchings per- Therefore, if 1A starts in the most expensive state, i.e.,
formed by BSMA when using the naive path-switching heurig-= »" 1, then the expected number of transitions, i.e., path
tic is O(nlog(n)) for a general network wittn nodes. switchings, isO(log(n"~')) = O(nlog(n)). This is for IA,

Proof: To analyze the maximum number of path switchwhich by assumption can always find the global minimum.
ings done, we examine the behavior of an idealized algorithtBSMA is likely to terminate earlier at a local minimum, i.e.,
(1A), which can find the optimal solution of the DBMSTwhen path switching fails consecutively for every superedge.
problem. IA is used to model the iterative behavior of BSMAThus, the maximum expected number of path switchings done
IA constructs an initial Steiner tree and iteratively transformdy BSMA is alsoO(n log(n)). O
the tree such that the tree cost is monotonically decreasedVe will next examine the complexity of each path-switching
to reach the global minimum. Note that we are not concernégeration. In our description and implementation of BSMA
with how IA transforms the tree. The expected number of pafte have used &-shortest-path algorithm to perform path
switchings is found by constructing a Markov chain, whergwitching. The complexity of the:-shortest-path algorithfn
each state corresponds to a Steiner tree. The state transifof?(ks(n)), where s(n) is the complexity of single-source
corresponds to possible transformation of one Steiner tree igfeprtest-path algorithm [13]. Howevekt,can be exceedingly
another. In order to account for unsuccessful path switchinggge. For example, consider a grid graph, where all edges have
each state is replicated— 1 times, as there are at most-1 @ unit cost, and some delay. The number of paths between
superedges. Each of theseeplicated states corresponds to th&V0 nodes grows exponentially with the Manhattan distance
same tree. An unsuccessful path switching, which is called Bftween the nodes, all of which have the same cost. Since
identity transformation, corresponds to a state transition from &0yr implementation of thé:-shortest path uses the algorithm described
state into one of its replicated states. By construction, |1A may Lawler [16] which takeD(kn?).
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a k-shortest-path algorithm between two subtrees enumeragesn for cost reduction. The number of superedges in the tree
all paths of the same cost, if the shortest path connectiiggO(n). For a general network, using a similar construction
the two subtrees does not satisfy the delay bounds, theras in Lemma 1, but without replicated states, we can see
can become very largeWhen using thek-shortest-path path that the number of path switchings using the greedy heuristic
switching, the running time of BSMA can be traded against also O(nlog(n)). However, each path switching involves
the cost performance by giving an upper bound/oas an evaluatingt-shortest-path fo©(n) superedges, taking(kn?-
input of BSMA (see Section V). Letting be a small value n) = O(kn?®) time. Thus, we have the following corollaries.
will be faster, but the cost may not be as low, and vice versa.Corollary 1: The expected time complexity of BSMA when
By fixing &, the running time of path switching becomes asing the greedy superedge selectiorigin*log(n)) for a
polynomial inn only. However, in our experiments we havegeneral network witm nodes. O
observed the algorithm to be pretty fast (see Section V forCorollary 2: The expected time complexity of BSMA when
average execution times). using the greedy superedge selectio®ign*) for a degree-
Theorem 2 gives the time complexity of BSMA when usingpounded network with, nodes. O
the naive superedge selection heuristic dndhortest-path
path switching. In the following theorems and corollaries we
let & be the average number of shortest paths evaluated to get ] . ]
the delay-bounded shortest path. BSMA has been mplemented if4++. The experiments
Theorem 2: The expected time complexity of BSMA whenWere carried out using the Arpanet topology and sparsely
using the naive superedge selection(¢kn?log(n)) for a f:onnected random grap_hs. _We used the Arpanet topology to
general network with: nodes. illustrate BSMA’s behavior in a topology of what once was
Proof: The computational time in every round of patif real network. The random graphs used were designed to be

switching is dominated by thieshortest-path algorithm, which SParse with the average degree being less than five, simply
uses a single-source shortest-path algorithm. A straightforwdfdcapture the flavor of network topologies in which links
implementation of Dijkstra’s algorithm ha®(n?) complexity. Petween nodes are still relatively expensive commodities. As
Thus,s(n) = O(n?). Using more sophisticated data structuredV€ egpected, we obtained qualitatively similar results fo_r all of
s(n) can be reduced t@(m + nlogn), where m is the the different graphs. Group members were picked uniformly

number of edges in the network [9]. This complexity is bettdfom the set of nodes in the graph, excluding the nodes already

for sparse graphs. By Lemma 1, the expected number $§i€cted for the group. . _ .

path switchings to be performed @(nlog(n)). Thus, the The random graphs used in the simulation are constructed

total time complexity of BSMA isO(ks(n) - nlog(n)) = USING the method proposed by Waxman [23]. 'ﬁhqaodes ofa _

O(kn? - nlog(n)) = O(kn?log(n)). O 9graph are randomly placed on a Cartesian coordinate grid with
In practice we are more interested in degree-bounded n@fit spacing. Théz, y) coordinates of each node was selected

works in which the maximum degree of every node is uppélplformly from integers iff0, »]. Considering all possible pairs

bounded and typically much smaller than the total number 8f Node, edges are placed connecting nodes with probability
nodes.

V. SIMULATION RESULTS

. . _d(uv U)
Lemma 2: The expected number of iterations performed by P(u,v) = fexp ol
BSMA when using the naive superedge selectio®{s) for
a degree-bounded network with nodes. whered(u,v) is the Manhattan distance between nodesnd

Proof: The number of edges is upper boundedday2 4 andL is the maximum possible distance between two nodes.
for a degree-bounded graph with the maximum degreedn  The parameters: and 3 are in the rangd0, 1] and can be
nodes. Therefore, by basic counting, the maximum numbergdlected to obtain desired characteristics in the graph. For
possible graphs ig%"/2, which gives an upper bound on thesxample, a larged gives nodes with a high average degree,
number of spanning trees. Following the same line of proof khd a smally gives long connections. It has been observed
Lemma 1, we get the expected number of path switchingstitat, with appropriate parameters, this method gives networks

be O(log(n2%"/2)) = O(n). . _ 0 that resemble “real-world” networks. The parametarsnd
Lemma 2 leads to the time complexity of BSMA for a3 are varied to obtain appropriately sparse networks, i.e., the
degree-bounded network. average degree of node is less than or close to five.

Theorem 3: The expected time complexity of BSMA when  The cost of each edge was set to the Manhattan distance be-
using the naive superedge selectiorligkn?®) for a degree- tween its endpoints plus one. By adding one to the Manhattan
bounded network wittn nodes. 0 distance, the case of zero edge cost is eliminated. The delay of

For the greedy superedge selection, every superedge in fd€edge is set to a uniform random numbef(ni] times its
tree is evaluated to find the superedge that gives the maxirggkt plus one. This definition of delay is used to eliminate the

30ne way to limitk is to examine the shortest paths from the nodes of onlénre‘fj_‘“s’tIC pOSSIblllty of zero delay. The graphs ObtamEd for
subtree(T’}) to the nodes of the oth¢e?). In the worst case, there arg/2 the simulation runs have the average degree listed in Table I.
nodes in each subtree; thus, there @@ ?) shortest paths to consider. The BSMA was run on 25-, 50-, 75-, and 100-node graphs. Three

by performing Dijkstra’s algorithme times. We will not consider this method

for path switching any further, and will focus on theshortest-path algorithm the runs: 4, 63 anq|V| — 1. For the Sal.(e qf simplicity, .the
for path switching. delay bound is the same for all destinations (but it is not
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Fig. 7. Network cost of multicast tree as a function of graph size using the naive superedge selection. (a) Four destinations. (b) Six destinations.

TABLE | . T . . , r . .
AVERAGE DEGREE FOR THENETWORKS IN THE SIMULATIONS 154 d-bsm re—
0-bsm H—
7 -4
[V ] [ average degree Vzbem o
25 3.76 15f
50 5.04 o
75 4.88 wal R
100 5.00 e
E
g 131
necessarily an integer). The cost of each resulting multicast §
tree is normalized by the cost of the KMB algorithm for the  ; t'2f
same group instance. The resulting cost ratics averaged ey 3
over the number of groupgV/|, i.e., I3 S T g
Z COSt TBSMA) 1} 99 S
a |M| cost(TkmB)
0 . . . s . . . ;
The total number of groups is 2500 and 3500 for the set of runs . T

with four and six destinations, respectively. The total number

of groups With|V| — 1 destinations iS}V| Ziegstlia“?r\llserage network cost when all nodes are in a grddf. — 1
The results using naive superedge selection are shown'i

Fig. 7. The error bars represent 95% confidence mtervals.
The cost of each sample is normalized by the cost of tlidicates that the cost of the BSMA solution is actud#gs
unconstrainedsolution obtained using the KMB algorithm.than the unconstrained KMB solutiénwe suspect that the
The labelbsm-d is assigned to the cost ratio of the minimunsuperiority of BSMA over KMB is due to the iterative nature
delay solution obtained using Dijkstra’s algorithm. This is thef BSMA. The KMB solution has been shown to yield a
starting solution of BSMA. For the sake of simplicity andvorst-case cost performance 2f1 — (1/|Z])), where Z is
comparison, the delay bound is the same for all destinatiotise set of leaves in the optimal Steiner tree [15]. In practice
The labelbsm-1 is given to the cost ratio of BSMA with the average suboptimality of KMB is far below this limit and is
the delay bound equal to the maximum delay in the KMBear optimal. Therefore, we conjecture from our experiments
solution. The labebsm-0 corresponds to the cost ratio ofthat the quality of a solution found by BSMA is near optimal
BSMA with the delay bound equal to the maximum delay iin practice.
the minimum delay solution. The labbém-1/2 is assigned We expect BSMA to obtain smaller costs than those of
to the cost ratio of BSMA with the delay bound halfwayKPP, because KPP is based on the KMB algorithm. Recent
between the two extremes of the KMB and minimum-delay , . _ _ ,

. . . The previous published results in INFOCOM'95 showed the cost of KMB
solutions. The cost ratio of the BSMA solution when the dela% being less, because path switching was also applied to the result of KMB
bound is the same as the maximum delay of the KMB soluti@g a postprocessing, which further reduced the cost of KMB trees.
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Fig. 9. The comparison of minimization by greedy and naive superedge selection. (a) Four destinatidihg. b} ) destinations.

simulation results obtained by Salaretal. [21] confirm that 19 — : : < T T .
the cost of BSMA is consistently lower than the cost of KPP;
their results also show that BSMA is better than KPP and all ~ '&} bsbrﬁ[q/g hS
of the other algorithms reported to date for delay-constrained bsm-1 6
multicasting. Moreover, our experiments and the simulation 7|~
results by Salamaet al. [21] confirm that BSMA always e
succeeded in constructing a tree if there is a feasible solution, i * e
whereas KPP can fail if the granularity used to scale costs t@ sk
integer values is not of proper size. :
Using the tightest possible delay bound, as determined bg 1al
the minimum-delay tree, the cost ratio indicates that the cos§
of the BSMA tree is substantially better than the cost of the° 13tk
minimum-delay tree. This is because the nonzero delay slack
(i.e., the difference between delay bound and actual delay) of t2F
some destinations can be used to reduce the cost of the tree.
By controlling the delay bound between the two extremes, ''r
namely, the KMB and minimum-delay solutions, a range of — .
minimum-cost solutions can be obtained. L -
Another set of runs was done with all the nodes in the 0s 1 , ) . , .
network belonging in one group and each node taking turn 1 2 3 40 50 60 70

as the source and the rest of the network being the set of Humoer of Destrators

destinations. In this case, the Steiner tree problem redu€és 10. Different group sizes in 100-node graphs.

to the minimum-weight spanning tree for the unconstrained

case. Finding the minimum-weight spanning tree can be solved

optimally in O(n?) using Prim’s algorithm [18]. The resultsis the optimal solution. By tightening the delay bound, a
are shown in Fig. 8, which uses the same labeling introduceghge of solutions can be obtained between the optimal cost
for Fig. 7. The cost ratio is normalized with respect to thsolution and the minimum-delay solution. Note that, com-
minimum spanning tree (instead of the KMB tree). Theared to KMB, the relative quality of the results obtained
error bars again represent 95% confidence interval. The cegth BSMA improves with the number of destinations in
ratio of BSMA with the delay bound set to that of thethe multicast group (this is apparent by comparing Figs. 7
minimum-weight spanning tree is nearly identical to onend 8). Interestingly, it is not clear that the maximum
Thus, the cost of the BSMA solution is nearly identical tmecessarily increases with the multicast membership for a
that of the minimum-weight spanning tree solution, whichgiven network size.
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. _Fig. 12. Different group sizes in the Arpanet.
The results of BSMA using the greedy superedge selection

were nearly identical (within 1%) to the naive selection. The
results for four andV| — 1 destinations are shown in Fig. 9. TABLE Il

Fig. 10 shows the cost ratio of BSMA in a graph of size 100,  Averace Execution TiME PER GROUP, GIVEN IN SECONDS FOR
when the group sizes are varied over a large range. The results ~ NAvE BSMA ano KMB on Sun Sparc3- WORKSTATIONS

indicate similar behavior of BSMA for different group sizes. | V| | D|=4 |D|=6
BSMA was also applied using the Arpanet topology shown kmb [ bsm-1 [ bsm-1/2 | kmb | bsm-1 [ bsm-1/2
in Fig. 11. The link cost and link delays were all set to equal 25 0.2 0.2 03] 03 0.3 0.4
one. This choice of link cost and link delay tries to simulate 50 0.5 0.5 08| 07| 07 1.1
the situation in which link costs and link delays are correlated. 7> 0.7 0.8 L7) 11} 12 2.1
The number of group instances for each group size was at least 20 0.9 11 28| 14 1.7 34

2500. Fig. 12 shows the results using the Arpanet topology.

The results agree with those obtained for the random graphgy|ticast group, because a tighter delay bound leads to larger
The delay bound given has a strong influence on the thgjues needed fat in order to minimize the tree cost (as can
maximum value ofk in the k-shortest path computed bype observed in Figs. 13 and 14). The simulations involved
BSMA and thus on the execution time of BSMA. The value Oj[z 000 instances of 30-member multicast groups in a 500-

k is a measure of the number of alternate paths consideredghtye graph. As Fig. 15 illustrates, setting larger limits /on
lower the cost of a superedge. A tighter delay bound limits thgcreases the cost ratio but increases the running time, and
number of alternate lower-cost paths that can satisfy the delaye versa.
bound. A tighter delay bound results in a largebecause itis  This relationship between the complexity of path switchings
quite likely that most of the lower cost paths cannot satisfy thged to minimize the cost of the tree (i.e., the valuekpf
delay bound. For delay bounds larger than the minimum delayhd the amount of reductions in the cost obtained is quite
the simulations show the maximuito be small on average. interesting. Since larger values &f are needed when the
Fig. 13 shows the average maximum valuekofor different delay bounds are tighter, the amount of cost reduction obtained
delay bounds. The results for the maximérin the case when with large values of: is not very significant compared to the
the whole network is one group is shown in Fig. 14. It can hgst reduction attained with small values. Larger values of
seen that a slight relaxation of the delay bound often restuitglicate larger cost alternate paths; thus, the cost reduction
in considerably fewer computations. This is especially true fffom replacing a superedge with a new path becomes less. In
larger networks. The observed valuesioheeded when the other words, there is a diminishing benefit from using larger
delay bounds are loose is quite small. Nevertheless, the valigdues ofk in both cost reduction and running time. In practice
of k£ can become a tuning knob, by specifying the maximuthis means that the maximum value bfallowed in a run
k as an input BSMA, to tradeoff execution time of BSMAof BSMA can be fixed to a small value. In our experiments
against minimal cost. values ofk smaller than five were sufficient to render good
Another set of simulations was run to illustrate how the cosbst reductions and small running times (Fig. 15).
ratio can be traded against running time. In these simulationsThe execution times of BSMA with the naive superedge
the delay bound is set to the minimum possible for a giveselection and KMB on the random graphs used in the sim-
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Fig. 13. The average maximum number kfshortest paths computed to obtain constrained tree. As the delay bound is tightened, larger values of
k are computed.

4 ; , . . r v . . members in a 100-node graph for the most stringent delay
bound are on the average about four times longer than KMB.
351 VM1 destnatons; Vi instances 1 This should be the worst-case scenario for BSMA in that
the delay bound is tight and the group size is medium with
VE bsm e 1 respect to the network size. BSMA took on average 4.88 s and
guicho 2 KMB took on average 1.11 s on a 167-MHz UltraSPARC. The
sl y average number ok is 23. The execution time of BSMA
is nevertheless on the same order of magnitude as KMB.
We conjecture that the differences between our results on
BSMA execution times and those reported by Salahal.
5t ] [21] are due to differences in the specifieshortest-path
algorithm used to implement BSMA and the implementation
Py of Dijkstra’s algorithm. Our implementation of theshortest
T path also uses Dijkstra’s algorithm implemented using a binary
heap data structure. Our simulations were carried out on sparse
graphs, that is, the number of edgesis O(n). Using a
— e binary heap for the priority queue gives the complexity of
»  » 0 % & 8 %0 10 O(nlog(n)) for Dijkstra’s algorithm in sparse graphs [7]. It is
also worthwhile noting that the-shortest-path algorithm used
Fig. 14. The average maximum number /ofshortest paths computed i our own implementation of BSMA has time complexity
obtain constrained tree. As the delay bound is tightened, larger values o’f 9 . . .
are computed. of O(kn”log(n)), while k-shortest-path algorithms exist of
complexityO(knlog(n)); hence, BSMA could run even faster
than our own results indicate.
. : . . Moreover, as demonstrated earlier, the execution time of
ulations are shown in Table Il. The times for the aIgonthmé ) .
. L . SMA can be traded off against the cost reductions by con-
use the same labeling convention introduced for Fig. 7. The . . . . L
. S . trolling the maximum value ok. Since there is a diminishing
results are very encouraging, considering that the times are  ° . ; .
for execution on Sun Sparcstationand that the code is not enefit from using larger values @&f in both cost reduction
i X! L:jlf L:j tpll N t'l ch t th » tl aFd running time, the maximum value bfallowed in a run
optimized for speed at all. Notice hat the execution UMes @ oA can be set in advance to a small value.
kmb and bsm-1 are nearly identical. This is ideal, because
BSMA solves the relaxed problem as fast as KMB. As the
problem becomes more constrained, BSMA naturally requires VI. CONCLUDING REMARKS
more time to solve it. Multicast-tree construction is becoming an integral part of
The running times of BSMA are much lower than the onasultimedia application support. This paper proposed BSMA,
reported by Salamat al. [21]. Our simulation results for 30 an algorithm based on complete topology information for

Average Maximum k
=2
w
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of cost versus running time for a group of size 30 in a 500-node graph.

the construction of delay-bounded minimum-cost multicasf smallest cost with end-to-end delay bounds and delay-

trees. The contribution of our work lies both in the forvar
mulation of the problem and the novelty of the algorithm
used to solve it. We allow variable delay bounds set for
different destinations or different media; this simulates tim-
ing requirements of realistic networks supporting multimediga]
applications. BSMA minimizes the total link cost of the
tree, while satisfying the delay constraints. Instead of using,
the one-pass growing of the multicast tree used in most
previous works, BSMA uses an iterative optimization proces?]
to further minimize the tree cost. The cost minimization is
monotonically achieved after a series of delay-bounded pati¥l
switching improvements. The simulation results show that
BSMA can produce delay-bounded multicast trees that havg)
low cost. Recent results by Salanea al. [21] confirm our
results and show that BSMA is the best algorithm in termée]
of cost and number of sessions established for computation
of delay-constrained minimum-cost multicast trees among alf’!
of the constrained Steiner tree (CST) algorithms reporteg
to date.

Additional work is needed to make BSMA or other CST [
heuristics scale to large-scale networks. We anticipate that
CST heuristics will be applied to large-scale networks withif9l
the context of hierarchical routing, because the underlying
routing mechanisms used to disseminate topology data requirg
the aggregation of information in order to cope with network
size (e.g., open shortest path first (OSPF) [17]). In addition g
reducing the number of nodes and links that a node runnin%
BSMA needs to know, BSMA'’s running time can be madé&!
faster by limiting the number of:-shortest paths used in[14]
BSMA's iterations, at the expense of larger tree costs.

The iterative approach introduced in BSMA can also bgs,
applied to related multicast problems, such as obtaining trees

iation bounds [20].
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