
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998 461

An Iterative Algorithm for Delay-Constrained
Minimum-Cost Multicasting

Mehrdad Parsa, Qing Zhu, and J. J. Garcia-Luna-Aceves,Member, IEEE

Abstract—The bounded shortest multicast algorithm (BSMA)
is presented for constructing minimum-cost multicast trees with
delay constraints. BSMA can handle asymmetric link character-
istics and variable delay bounds on destinations, specified as real
values, and minimizes the total cost of a multicast routing tree.
Instead of the single-pass tree construction approach used in most
previous heuristics, the new algorithm is based on a feasible-
search optimization strategy that starts with the minimum-delay
multicast tree and monotonically decreases the cost by iterative
improvement of the delay-bounded multicast tree. BSMA’s ex-
pected time complexity is analyzed, and simulation results are
provided showing that BSMA can achieve near-optimal cost
reduction with fast execution.

Index Terms—Minimum-cost tree, multicast, multimedia, span-
ning tree.

I. INTRODUCTION

M ULTICASTING consists of concurrently sending the
same information from a source to a subset of all pos-

sible destinations in a computer network. Multicast service is
becoming a key requirement of computer networks supporting
multimedia applications. To carry large numbers of multicast
sessions, a network must minimize the sessions’ resource
consumption, while meeting their quality of service (QoS)
requirements. The current approach for efficiently supporting
a multicast session in a network consists of establishing a mul-
ticast tree for the session, along which session information is
transferred. Algorithms are needed in the network to compute
multicast trees; we call such algorithmsmulticast algorithms.

Different optimization goals can be used in multicast algo-
rithms to define what constitutes a good tree. One such goal
is providing the minimum delay from source to destinations
along the tree, which is important for delay-sensitive multime-
dia applications, such as real-time teleconferencing. Another
optimization goal is constructing the minimum-cost tree, which
is important in managing network resources efficiently. The
tree cost is defined as the total cost of the links of the tree.

Manuscript received June 1, 1995; reassigned to Editor M. Ammar April
10, 1997; revised March 20, 1998; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor M. Ammar. This work was supported in part by
the Defense Advanced Research Projects Agency (DARPA) under Contract
F19628-93-C-0175 and Contract F19628-96-C-0038. This paper was pre-
sented in part at the IEEE INFOCOM’95 Conference, Boston, MA.

M. Parsa was with the Computer Engineering Department, School of
Engineering, University of California, Santa Cruz, CA 95064 USA. He is now
with Metricom, Los Gatos, CA 95032 USA (e-mail: parsa@metricom.com).

Q. Zhu and J. J. Garcia-Luna-Aceves are with the Computer Engineering
Department, School of Engineering, University of California, Santa Cruz, CA
95064 USA (e-mail: qingz@cse.ucsc.edu; jj@cse.ucsc.edu).

Publisher Item Identifier S 1063-6692(98)05000-6.

We call this objectiveutilization-driven, because it minimizes
the total utilization of links.

Optimization techniques for multicasting proposed before
have considered the delay and cost optimization objectives,
but have treated them as distinct problems. Dijkstra’s shortest-
path algorithm [8] can be used to generate the shortest paths
from the source to destinations. This provides the optimal
solution for delay minimization. Multicast algorithms that
perform cost optimization have been based on computing
the minimum Steiner tree in a graph. A Steiner tree in a
graph must reach a subset of nodes in the graph, called
given nodes. The problem of finding the minimum Steiner
tree is known to be an NP-complete problem [12], and a
number of heuristics [15], [19], [22] have been developed to
solve this problem in polynomial time and producing near-
optimum results. In Kou, Markowsky, and Berman’s (KMB)
algorithm [15], a network is abstracted to a complete distance
graph consisting of edges that represent the shortest paths
between the source node and each destination node. The KMB
algorithm constructs a minimum spanning tree [18] in the
complete distance graph, and the Steiner tree of the original
network is obtained by achieving the shortest paths represented
by edges in the minimum spanning tree.

Bharath-Kumar and Jaffe [3] discussed minimizing both
cost and delay, assuming that cost and delay functions are
identical. Awerbuch, Baratz, and Peleg [1] proposed a heuristic
(which we call ABP) that starts from the minimum spanning
tree and refines the tree to bound the diameter of the tree. ABP
applies to only spanning trees and not Steiner trees. This same
idea is used in the work by Cong, Kahng, Robins, Sarrafzadeh,
and Wong [6] (which we call CKRSW) except that CKRSW
refines the tree to bound the radius of the tree. Both ABP and
CKRSW assume identical cost and delay functions. Kompella,
Pasquale, and Polyzos [14] proposed two heuristics (which we
call KPP) that address delay-bounded multicast trees. In their
formulation the delay bound for all destinations is the same;
furthermore, KPP assumes that link delays and the delay bound
are integer valued and that link costs and delays are symmetric.
KPP extends the KMB algorithm by taking into account the
constraint of the specified delay bound in the construction of
the complete distance graph [14].

This paper presents a new algorithm for the construction
of a minimum-cost multicast tree with delay constraints.
The algorithm, which we call the bounded shortest multicast
algorithm (BSMA)1 proceeds in two phases. It starts by

1The facts that BSMA also spells “Banana Slug Multicast Algorithm” and
that the authors’ affiliation is UCSC are entirely coincidental, of course.

1063–6692/98$10.00 1998 IEEE

462 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

obtaining a minimum delay tree using any of the well-known
shortest-path algorithms. (We use Dijkstra’s algorithm in our
implementation). Starting from this tree, BSMA iteratively
improves the cost of the delay-constrained tree. BSMA has
several novel features with respect to prior approaches to the
delay-constrained minimum-cost multicasting problem.

• Nonuniform, positive, and real-valued delay bounds are
accepted. When destinations have different delays in re-
ceiving messages from the source, variable delay bounds
of destinations are necessary. The capability to specify
arbitrary delay bounds allows BSMA to model delay-
bounded multicast instances more accurately and to al-
ways find a feasible solution. In contrast, KPP assumes a
unique integer-valued delay bound for all destinations.

• The delay function on links can take arbitrary positive
real values. This ability enables BSMA to model networks
more accurately and to always find a feasible solution. In
contrast, KPP assumes an integer-valued delay function.

• Instead of using a single pass to construct the tree as
in previous algorithms, BSMA employs a multiple-pass
approach to iteratively minimize the cost function of the
tree. The iterative nature of BSMA allows it to tradeoff
cost performance versus running time.

• BSMA can test the feasibility of a delay-bounded multi-
cast instance with delay bound in an -node graph in

In contrast, KPP requires .
• BSMA accepts asymmetric link costs and delays. The

ability to accept asymmetric link costs and delays makes
BSMA more versatile and applicable in actual networks
because actual networks must be considered as directed
graphs when bandwidth and delay must be managed
independently in each direction on a link. In contrast,
KPP assumes symmetric link costs and delays.

Consistent with the assumptions made in all prior ap-
proaches to delay-constrained minimum-cost multicasting,
throughout this paper we assume that a node running BSMA
has complete topology information. The algorithms and
associated protocols needed to deliver such information at
each node are beyond the scope of this work. Section II
describes the multicasting model assumed in BSMA. Section
III describes BSMA and proves the correctness of BSMA.
Section IV gives an analysis of BSMA’s time complexity.
Section V presents simulation results, indicating that BSMA
achieves near-optimum cost reduction and fast execution.
Section VI gives our concluding remarks.

II. DELAY-CONSTRAINED MULTICAST MODEL

The source node of a multicast is assumed to know all of
the information needed to construct the multicast tree. One
way to have this information is for each node in the network
to maintain an updated database of link weights and node
connections in the network. This requirement can be supported
using one of many topology-broadcast algorithms, which can
be based on flooding or other techniques [2], [11], [10].

A network is modeled as a directed weighted graph
, as shown in Fig. 1, with node set and

edge set The nodes represent routers or switches, and

Fig. 1. Network model. Link cost= cost metric, such as bandwidth utiliza-
tion or dollar cost. Link delay= queueing delay+ transmission delay+
propogation delay.�i = delay bound from the source to destinationi.

edges represent the communication link between them. An
edge from to is represented by

A path in is a sequence of
vertices such that edge for
The path contains the vertices and the edges

A path is simple if all
vertices in the path are distinct. The nodes in a
path are called internal nodes.

Nodes in can be of the following three types:

• source node: a node connecting to the source that sends
out the data stream;

• destination node: a node connecting to a destination that
receives the data stream;

• relay node: any node that is neither a source node nor a
destination node.

The following two positive real-valued functions are defined
on :

• link-cost function : the cost of a link, which
can be associated with the utilization of the link. A higher
utilization is represented by a higher link cost;

• link-delay function : the delay of a link
is the sum of the perceived queueing delay, transmission
delay, and propagation delay over that link.

Let be the source node and let be the set of destination
nodes. For each path fromto a destination node , the
delay of the path, orpath delay, is defined to be the sum of
link delays along the path. A set of path-delay upper bounds
are assigned to destinations by the following function.

Destination Delay-Bound Function or DDF :
DDF assigns an upper bound to the path delay from the source
to each destination in the multicast tree. Of course, can be
different from for destinations In the special case
that DDF assigns the same delay bound to all destinations, this
delay bound is denoted by

DDF determines the delay constraints that the multicast
tree is required to satisfy, while the cost of the multicast
tree is minimized. When different delay bounds are assigned
on destinations, the topology of the multicast tree has to be
updated to meet the delay bounds. The multicast tree that we
are interested in constructing is a delay-bounded minimum
Steiner tree (DBMST) and the minimization problem can be
formally described as follows.

DBMST Problem:Given a graph with a link-
cost function, a link-delay function, a source, a set of

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 463

Fig. 2. Methodology used by BSMA.

destinations , and a DDF, then construct a DBMST spanning
, such that the cost of the tree is minimized while DDF

is satisfied. The cost of the multicast tree is defined as the sum
of link costs in the multicast tree.

Consistent with prior work on delay-constrained multicast-
ing, how the delay, the cost of the links, and the destination
delay bounds are obtained are outside the scope of this work.
The DBMST problem can be reduced to a minimum Steiner
tree problem with the delay bound set to infinity, which is
known to be an NP-complete problem [12], and only heuristics
are of practical interest for its solution; BSMA is a new
heuristic designed to solve the DBMST problem.

III. D ESCRIPTION OFBSMA

The DBMST problem can be approached as a feasible-
search optimization problem [4] in which the feasible region
consists of all trees that satisfy the delay-bound requirement.
BSMA constructs a DBMST in two steps, as illustrated in
Fig. 2.

1) Initial step: Construct an initial tree with the minimum
delays from the source to all destinations.

2) Improvement step:Iteratively minimize the cost of the
tree while always satisfying the delay bounds.

To guarantee that a feasible solution is found that satisfies
the given delay bound, the initial tree is the minimum-
delay tree, which is constructed using Dijkstra’s shortest-path
algorithm [8]. In some cases the delay bounds given by DDF
may be too tight, i.e., they cannot be met even in the minimum-
delay tree. In such cases some negotiation is required to relax
the delay bounds of DDF before any feasible tree can be
constructed, as shown in the BSMA flowchart (Fig. 2). The
bounds given by DDF must be relaxed until they can be met
by the minimum-delay tree. The rest of this paper assumes
that DDF assigns the delay bounds that can be met by the
minimum-delay tree. A high-level specification of BSMA is
shown in Fig. 3.

Fig. 3. High-level description of BSMA.

BSMA’s improvement step iteratively transforms the tree
topology to decrease its cost monotonically, while satisfying
the delay bounds. Let denote the initial tree topology.
During the improvement step, at iteration, the current tree

is transformed to tree , and at iteration , the tree
is transformed to tree , and so on. The sequence

of trees is such that
, where is the objective function

being minimized. Delay bounds are satisfied throughout the
iterative improvement.

A. Delay-Bounded Path Switching

The transformation performed by BSMA at each iteration
of the improvement step consists of a delay-bounded path
switching, by which a path in is replaced by a new path
not in with smaller cost, resulting in a new tree topology

[25]. Ensuring an effective delay-bounded path-switching
improvement involves the following:

1) choosing the path to be taken out of and obtaining
two disjoint subtrees and ;

2) finding a new path to connect and , resulting in
the new tree topology with smaller cost, while the
delay bounds are satisfied.

A candidate path in for path-switching improvement is
called a superedge.

Definition (Superedge):A superedge is a simple path
such that all internal nodes, i.e., ,

are relay nodes which connect exactly two tree edges, and is
not contained in a longer path with the same property.

A superedge consists of one or more tree edges and zero
or more internal tree nodes. Removing a superedge from a
multicast tree corresponds to removing all of the tree edges
and internal nodes in the superedge. From the definition of a

464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

superedge, only relay nodes can be internal. A destination node
or a source node cannot be an internal node of a superedge.
This prevents the removal of destination nodes or the source
node from the tree as a result of removing a superedge.

Definition (Cost of Superedge):The cost of a superedge is
defined as thesum of link costs along the simple path that
corresponds to the superedge.

As shown in Fig. 3, all superedges are initialized as un-
marked. The superedge with the highest cost among allun-
markedsuperedges is selected to be removed. This superedge
selection for path switching is called the naive heuristic.
Removing the highest-cost superedgein breaks into
two disjoint subtrees and , where
A delay-bounded shortest path between and is used
to connect and to obtain the new tree topology ,
i.e., A delay-bounded shortest path
is defined as the path with the smallest cost, subject to the
constraint that is a delay-bounded tree.
Clearly, the cost of is not higher than the cost of

The search for the delay-bounded shortest pathused to
reconnect the two trees and starts with the shortest path
between the two trees. If, however, the shortest path results
in a violation of delay bounds, BSMA uses an incremental

-shortest-path algorithm [16], [24] to find a delay-bounded
shortest path to reconnect the two trees. The-shortest-
path problem consists of finding theth shortest simple path
connecting a given source–destination pair in a graph. Note
that in BSMA the -shortest path is between twotrees. To
find the -shortest path between two trees, a standard technique
introduces two additional nodes: one connected to all of the
nodes in one tree and the other connected to all of the nodes
in the other trees, with all the new connections having zero
cost. Then, finding the -shortest path between the two trees
is equivalent to finding the -shortest path between the two
new nodes.

The value of is known a posteriori, i.e., after the delay-
bounded shortest path is found. The incremental construction
of the -shortest paths between and proceeds with the
construction of the first, second, , th shortest-path, where

is the smallest value for which either of the following is true:

• the -shortest path has a smaller cost than the removed
superedge and satisfies the delay bounds;

• the -shortest path has the same cost as the removed
superedge.

It is possible for to be very large for some instances of
networks. However, the value thatcan take can be controlled
by making an input to BSMA. This way, BSMA can tradeoff
cost performance versus running time. This matter is further
discussed in Section IV.

One of two cases must happen whenis obtained:

1) path is the same as the path of ; or
2) path is different from the path of

Finding the delay-bounded shortest path always terminates,
because the path of the deleted superedgeis found again in
the worst case. If case 1) occurs, BSMA marksto indicate
that has been examined without improvement of the tree
cost. BSMA continues the path switching by examining the

next unmarked superedge in with the highest cost. If
case 2) occurs, BSMA unmarks all marked superedges in
and continues to do the path switching for the highest-cost
unmarked superedge.

In Fig. 4(a) the superedges in the order of decreasing path
cost are , , , and The highest-cost
superedge is deleted from the tree, resulting in two
disjoint trees. One tree consists of nodes, , , and and the
other tree consists of the singletonA delay-bounded shortest
path is used to reconnect the two trees to get tree,
as shown in Fig. 4(c).

BSMA terminates when all superedges become marked,
which occurs when all possible superedges in the tree have
been examined for path switching without success in reducing
the tree cost. The significant cost minimization of multicast
tree by BSMA is demonstrated by the simulation results in
Section V. The next theorem shows the correctness of BSMA
in finding a delay-bounded multicast tree.

Theorem 1: BSMA always finds a delay-bounded Steiner
tree if it exists.

Proof: The proof is by induction on , which is the
iteration number of tree topologies. is a minimum-delay
tree. If the minimum-delay tree cannot satisfy the specified
delay bounds DDF, a delay-bounded tree cannot exist for
the specified DDF. When is transformed to by the
delay-bounded path switching, the delay-bounded shortest path
between the two trees and by definition implies that the
new tree satisfies the delay bounds. Finding the delay-
bounded shortest path always terminates, because in the worst
case the path of the deleted superedge inis found again.

B. Example of Operation

This section gives a small example showing the initial and
improvement phases of BSMA. The network for the example
is given in Fig. 4. Notice that each link in the network has a
cost and a delay in each direction. The source is represented
by solid black disk and the destination nodes are solid black
squares.

Fig. 5 illustrates the steps of BSMA for utilization-driven
tree construction and minimization. The source node has
complete topology information. Each link is represented by
two directed edges, one for each direction, and each direction
has a cost and delay associated with it. Each destination has
a delay bound for the multicast indicated by
Notice that delay bounds are different real values for different
destinations. Although the cost of a link can be asymmetric,
we have set the same link costs in both link directions to
simplify the examples. The link costs and delays are shown
as cost, delaypairs in the figures.

Initially, the minimum delay tree is constructed as
shown in Fig. 5(a). This initial tree is iteratively improved
by selecting a superedge and performing path switching. The
overall cost reduction is 40% in the improvement phase.
During the improvement phase, the trees, , and
are constructed after the first, second, and third iterations,
respectively, such that they satisfy the delay bounds, as shown
in Fig. 5(b)–(d). The final tree is shown in Fig. 5(d).

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 465

(a) (b)

(c)

Fig. 4. Delay-bounded path-switching improvement. (a) Shortest delay tree (T0). Removing the highest-cost superedgehs; d; ci from T0. (b) Removing
superedgesc. T0 is partitioned to two disjoint treesT1

0
and T 2

0
. (c) Adding superedgefc. ReconnectingT 1

0
and T 2

0
by the delay-bounded shortest

path hf; a; ci between the two trees givesT1.

C. A Greedy Variant

A more sophisticated heuristic to use in superedge selection
for path switching is based on a greedy choice for cost
reduction. Let be a superedge in tree and let be the
corresponding delay-bounded shortest path used to reconnect
the tree when is removed from the tree. Denote the path
cost of and as and , respectively. Thegain of
path switching to is defined to be Then, the
greedy choice is to select the superedge in the current tree
which gives the maximum gain for path switching. BSMA
terminates when the maximum gain is zero. A high-level
description of BSMA based on the greedy heuristic is given
in Fig. 6.

In the greedy heuristic, path switching is performed on
each superedge tentatively to find the corresponding delay-
bounded shortest path and the gain. This is done inde-
pendently for each superedge; thus, the current tree stays
the same for each tentative path switching. After evaluating
all superedges in the current tree , the superedge with
the maximum gain is selected for definite path switching to
transform the current tree.

Empirical results are obtained in Section V to compare the
tree costs of the greedy heuristic with the naive heuristic given
in Section III-A. We found the difference in costs for final trees
to be quite small, i.e., less than 1% for all tested examples.
Although the greedy heuristic may make the behavior of
BSMA clearer or more obvious, it has a higher time complex-
ity without significantly lower cost than the naive heuristic.
By evaluating all superedges in the current tree for path
switching, the time complexity of the greedy-heuristic-per-tree
transformation is higher by a factor , where is the set
of superedges and for a network with nodes.

D. Adapting to Changes

The heuristic described in this paper can be incorporated
into an appropriate multicast protocol. This, however, would
require BSMA to adapt to changes to the multicast tree. To
make BSMA adapt to changes in the network topology or
group membership, BSMA can be easily extended to build
delay-constrained multicast trees dynamically. The steps of
BSMA for the dynamic construction of a delay-bounded
multicast tree are as follows.

466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

(a) (b)

(c) (d)

Fig. 5. Utilization-driven multicast tree construction and minimization. (a) Shortest delay tree (T0). (b) T1. (c) T2. (d) T3.

To add a destination to the multicast tree:

Step 1: Connect to the source by the minimum delay
path from the source.

Step 2: Iteratively perform path switching to lower the
cost of the tree.

To remove a destination from the multicast tree:

Step 1: If is connected to more than two edges in the
multicast tree, make the node as relay node;
else, delete the destination node along with its
connecting superedge from the tree.

Step 2: Iteratively perform path switching to lower the
cost of the tree.

When adding a new destination node, the delay bound is
first satisfied in Step 1 as in BSMA. Step 2 then iteratively
refines the new tree for low cost, using the delay-bounded
path-switching improvement technique described in this paper.
Note that the multicast tree isnot recomputed each time a

destination is added or removed. The fact that the multicast tree
is not completely rebuilt after each membership change makes
BSMA a practical candidate for solving the on-line variation
of the DBMST problem. When multiple destinations are added
and/or removed simultaneously, Step 1 can be performed for
these destinations; then the tree is iteratively refined in Step
2 to reduce the tree cost.

IV. TIME COMPLEXITY ANALYSIS

The complexity of BSMA is , where is the number
of path-switching operations and is the complexity of a
path-switching operation. In this section we examine the
complexities of and

The value of can be an input to BSMA. It can be a fixed
number or a function of the number of nodes or superedges as
desired. We use a stochastic model to get an expression for the
expectednumber of path-switching operations performed by

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 467

Fig. 6. A greedy variant of BSMA.

BSMA, when is not specified as an input. In order to derive
the expectation we make a probabilistic assumption about the
tree transformation process—a given tree is equally likely to
be transformed to any monotonically less costly tree. We show
that the expected time complexity of BSMA when using naive
heuristic is for general graphs and
for degree-bounded graphs. The complexity is increased by
a factor of when using the greedy heuristic of Section III-C.

Lemma 1: The expected number of path switchings per-
formed by BSMA when using the naive path-switching heuris-
tic is for a general network with nodes.

Proof: To analyze the maximum number of path switch-
ings done, we examine the behavior of an idealized algorithm
(IA), which can find the optimal solution of the DBMST
problem. IA is used to model the iterative behavior of BSMA.
IA constructs an initial Steiner tree and iteratively transforms
the tree such that the tree cost is monotonically decreased
to reach the global minimum. Note that we are not concerned
with how IA transforms the tree. The expected number of path
switchings is found by constructing a Markov chain, where
each state corresponds to a Steiner tree. The state transition
corresponds to possible transformation of one Steiner tree into
another. In order to account for unsuccessful path switchings
each state is replicated times, as there are at most
superedges. Each of thesereplicated states corresponds to the
same tree. An unsuccessful path switching, which is called an
identity transformation, corresponds to a state transition from a
state into one of its replicated states. By construction, IA may

perform an identity transformation on a tree for a maximum
of iterations.

By Cayley’s Theorem [5], there are possible spanning
trees on nodes. The number of distinct Steiner trees is no
greater than the number of spanning trees. The number of
Steiner trees is then bounded by

Construct a Markov chain of states, where each state
corresponds to a spanning tree. Sort these states with respect
to the cost of the Steiner tree (not the spanning tree) breaking
ties arbitrarily. Replace each state withcopies of itself to
get a total of states. Number the states sequentially,
starting from one at the cheapest cost state to at the most
expensive state. In this Markov chain, transition edges go from
a state to a state , such that It is assumed that
each of the possible transitions from a state is equally likely
in IA. Thus, the probability of transition from to is

for

and Let be the number of transitions needed to
go from state to state 1. The expected value can be found by
conditioning on the first transition from a given state. Let
be the random variable of the next state of the first transition

Using induction with , it can be shown that

Therefore, if IA starts in the most expensive state, i.e.,
, then the expected number of transitions, i.e., path

switchings, is This is for IA,
which by assumption can always find the global minimum.
BSMA is likely to terminate earlier at a local minimum, i.e.,
when path switching fails consecutively for every superedge.
Thus, the maximum expected number of path switchings done
by BSMA is also

We will next examine the complexity of each path-switching
operation. In our description and implementation of BSMA
we have used a -shortest-path algorithm to perform path
switching. The complexity of the -shortest-path algorithm2

is , where is the complexity of single-source
shortest-path algorithm [13]. However,can be exceedingly
large. For example, consider a grid graph, where all edges have
a unit cost, and some delay. The number of paths between
two nodes grows exponentially with the Manhattan distance
between the nodes, all of which have the same cost. Since

2Our implementation of thek-shortest path uses the algorithm described
by Lawler [16] which takesO(kn3):

468 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

a -shortest-path algorithm between two subtrees enumerates
all paths of the same cost, if the shortest path connecting
the two subtrees does not satisfy the delay bounds, then
can become very large.3 When using the -shortest-path path
switching, the running time of BSMA can be traded against
the cost performance by giving an upper bound onas an
input of BSMA (see Section V). Letting be a small value
will be faster, but the cost may not be as low, and vice versa.
By fixing , the running time of path switching becomes a
polynomial in only. However, in our experiments we have
observed the algorithm to be pretty fast (see Section V for
average execution times).

Theorem 2 gives the time complexity of BSMA when using
the naive superedge selection heuristic and-shortest-path
path switching. In the following theorems and corollaries we
let be the average number of shortest paths evaluated to get
the delay-bounded shortest path.

Theorem 2: The expected time complexity of BSMA when
using the naive superedge selection is for a
general network with nodes.

Proof: The computational time in every round of path
switching is dominated by the-shortest-path algorithm, which
uses a single-source shortest-path algorithm. A straightforward
implementation of Dijkstra’s algorithm has complexity.
Thus, Using more sophisticated data structures,

can be reduced to , where is the
number of edges in the network [9]. This complexity is better
for sparse graphs. By Lemma 1, the expected number of
path switchings to be performed is Thus, the
total time complexity of BSMA is

In practice we are more interested in degree-bounded net-
works in which the maximum degree of every node is upper
bounded and typically much smaller than the total number of
nodes.

Lemma 2: The expected number of iterations performed by
BSMA when using the naive superedge selection is for
a degree-bounded network with nodes.

Proof: The number of edges is upper bounded by
for a degree-bounded graph with the maximum degreeand
nodes. Therefore, by basic counting, the maximum number of
possible graphs is , which gives an upper bound on the
number of spanning trees. Following the same line of proof in
Lemma 1, we get the expected number of path switchings to
be

Lemma 2 leads to the time complexity of BSMA for a
degree-bounded network.

Theorem 3: The expected time complexity of BSMA when
using the naive superedge selection is for a degree-
bounded network with nodes.

For the greedy superedge selection, every superedge in the
tree is evaluated to find the superedge that gives the maximal

3One way to limitk is to examine the shortest paths from the nodes of one
subtree(T 1

j) to the nodes of the other(T2

j): In the worst case, there aren=2
nodes in each subtree; thus, there areO(n2) shortest paths to consider. The
complexity of this method for path switching isO(n3), which is dominated
by performing Dijkstra’s algorithmn times. We will not consider this method
for path switching any further, and will focus on thek-shortest-path algorithm
for path switching.

gain for cost reduction. The number of superedges in the tree
is For a general network, using a similar construction
as in Lemma 1, but without replicated states, we can see
that the number of path switchings using the greedy heuristic
is also However, each path switching involves
evaluating -shortest-path for superedges, taking

time. Thus, we have the following corollaries.
Corollary 1: The expected time complexity of BSMA when

using the greedy superedge selection is for a
general network with nodes.

Corollary 2: The expected time complexity of BSMA when
using the greedy superedge selection is for a degree-
bounded network with nodes.

V. SIMULATION RESULTS

BSMA has been implemented in The experiments
were carried out using the Arpanet topology and sparsely
connected random graphs. We used the Arpanet topology to
illustrate BSMA’s behavior in a topology of what once was
a real network. The random graphs used were designed to be
sparse with the average degree being less than five, simply
to capture the flavor of network topologies in which links
between nodes are still relatively expensive commodities. As
we expected, we obtained qualitatively similar results for all of
the different graphs. Group members were picked uniformly
from the set of nodes in the graph, excluding the nodes already
selected for the group.

The random graphs used in the simulation are constructed
using the method proposed by Waxman [23]. Thenodes of a
graph are randomly placed on a Cartesian coordinate grid with
unit spacing. The coordinates of each node was selected
uniformly from integers in Considering all possible pairs
of node, edges are placed connecting nodes with probability

where is the Manhattan distance between nodesand
, and is the maximum possible distance between two nodes.

The parameters and are in the range and can be
selected to obtain desired characteristics in the graph. For
example, a large gives nodes with a high average degree,
and a small gives long connections. It has been observed
that, with appropriate parameters, this method gives networks
that resemble “real-world” networks. The parametersand

are varied to obtain appropriately sparse networks, i.e., the
average degree of node is less than or close to five.

The cost of each edge was set to the Manhattan distance be-
tween its endpoints plus one. By adding one to the Manhattan
distance, the case of zero edge cost is eliminated. The delay of
an edge is set to a uniform random number in times its
cost plus one. This definition of delay is used to eliminate the
unrealistic possibility of zero delay. The graphs obtained for
the simulation runs have the average degree listed in Table I.

BSMA was run on 25-, 50-, 75-, and 100-node graphs. Three
different sizes were used for the number of destinations in
the runs: 4, 6, and For the sake of simplicity, the
delay bound is the same for all destinations (but it is not

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 469

(a) (b)

Fig. 7. Network cost of multicast tree as a function of graph size using the naive superedge selection. (a) Four destinations. (b) Six destinations.

TABLE I
AVERAGE DEGREE FOR THENETWORKS IN THE SIMULATIONS

necessarily an integer). The cost of each resulting multicast
tree is normalized by the cost of the KMB algorithm for the
same group instance. The resulting cost ratiois averaged
over the number of groups , i.e.,

The total number of groups is 2500 and 3500 for the set of runs
with four and six destinations, respectively. The total number
of groups with destinations is

The results using naive superedge selection are shown in
Fig. 7. The error bars represent 95% confidence intervals.
The cost of each sample is normalized by the cost of the
unconstrainedsolution obtained using the KMB algorithm.
The labelbsm-d is assigned to the cost ratio of the minimum
delay solution obtained using Dijkstra’s algorithm. This is the
starting solution of BSMA. For the sake of simplicity and
comparison, the delay bound is the same for all destinations.
The labelbsm-1 is given to the cost ratio of BSMA with
the delay bound equal to the maximum delay in the KMB
solution. The labelbsm-0 corresponds to the cost ratio of
BSMA with the delay bound equal to the maximum delay in
the minimum delay solution. The labelbsm-1/2 is assigned
to the cost ratio of BSMA with the delay bound halfway
between the two extremes of the KMB and minimum-delay
solutions. The cost ratio of the BSMA solution when the delay
bound is the same as the maximum delay of the KMB solution

Fig. 8. Average network cost when all nodes are in a group.jV j � 1

destinations.

indicates that the cost of the BSMA solution is actuallyless
than the unconstrained KMB solution.4 We suspect that the
superiority of BSMA over KMB is due to the iterative nature
of BSMA. The KMB solution has been shown to yield a
worst-case cost performance of , where is
the set of leaves in the optimal Steiner tree [15]. In practice
the average suboptimality of KMB is far below this limit and is
near optimal. Therefore, we conjecture from our experiments
that the quality of a solution found by BSMA is near optimal
in practice.

We expect BSMA to obtain smaller costs than those of
KPP, because KPP is based on the KMB algorithm. Recent

4The previous published results in INFOCOM’95 showed the cost of KMB
as being less, because path switching was also applied to the result of KMB
as a postprocessing, which further reduced the cost of KMB trees.

470 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

(a) (b)

Fig. 9. The comparison of minimization by greedy and naive superedge selection. (a) Four destinations. (b) (jV j � 1) destinations.

simulation results obtained by Salamaet al. [21] confirm that
the cost of BSMA is consistently lower than the cost of KPP;
their results also show that BSMA is better than KPP and all
of the other algorithms reported to date for delay-constrained
multicasting. Moreover, our experiments and the simulation
results by Salamaet al. [21] confirm that BSMA always
succeeded in constructing a tree if there is a feasible solution,
whereas KPP can fail if the granularity used to scale costs to
integer values is not of proper size.

Using the tightest possible delay bound, as determined by
the minimum-delay tree, the cost ratio indicates that the cost
of the BSMA tree is substantially better than the cost of the
minimum-delay tree. This is because the nonzero delay slack
(i.e., the difference between delay bound and actual delay) of
some destinations can be used to reduce the cost of the tree.
By controlling the delay bound between the two extremes,
namely, the KMB and minimum-delay solutions, a range of
minimum-cost solutions can be obtained.

Another set of runs was done with all the nodes in the
network belonging in one group and each node taking turn
as the source and the rest of the network being the set of
destinations. In this case, the Steiner tree problem reduces
to the minimum-weight spanning tree for the unconstrained
case. Finding the minimum-weight spanning tree can be solved
optimally in using Prim’s algorithm [18]. The results
are shown in Fig. 8, which uses the same labeling introduced
for Fig. 7. The cost ratio is normalized with respect to the
minimum spanning tree (instead of the KMB tree). The
error bars again represent 95% confidence interval. The cost
ratio of BSMA with the delay bound set to that of the
minimum-weight spanning tree is nearly identical to one.
Thus, the cost of the BSMA solution is nearly identical to
that of the minimum-weight spanning tree solution, which

Fig. 10. Different group sizes in 100-node graphs.

is the optimal solution. By tightening the delay bound, a
range of solutions can be obtained between the optimal cost
solution and the minimum-delay solution. Note that, com-
pared to KMB, the relative quality of the results obtained
with BSMA improves with the number of destinations in
the multicast group (this is apparent by comparing Figs. 7
and 8). Interestingly, it is not clear that the maximum
necessarily increases with the multicast membership for a
given network size.

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 471

Fig. 11. Arpanet topology.

The results of BSMA using the greedy superedge selection
were nearly identical (within 1%) to the naive selection. The
results for four and destinations are shown in Fig. 9.

Fig. 10 shows the cost ratio of BSMA in a graph of size 100,
when the group sizes are varied over a large range. The results
indicate similar behavior of BSMA for different group sizes.

BSMA was also applied using the Arpanet topology shown
in Fig. 11. The link cost and link delays were all set to equal
one. This choice of link cost and link delay tries to simulate
the situation in which link costs and link delays are correlated.
The number of group instances for each group size was at least
2500. Fig. 12 shows the results using the Arpanet topology.
The results agree with those obtained for the random graphs.

The delay bound given has a strong influence on the the
maximum value of in the -shortest path computed by
BSMA and thus on the execution time of BSMA. The value of

is a measure of the number of alternate paths considered to
lower the cost of a superedge. A tighter delay bound limits the
number of alternate lower-cost paths that can satisfy the delay
bound. A tighter delay bound results in a larger, because it is
quite likely that most of the lower cost paths cannot satisfy the
delay bound. For delay bounds larger than the minimum delay,
the simulations show the maximumto be small on average.
Fig. 13 shows the average maximum value offor different
delay bounds. The results for the maximumin the case when
the whole network is one group is shown in Fig. 14. It can be
seen that a slight relaxation of the delay bound often results
in considerably fewer computations. This is especially true for
larger networks. The observed values ofneeded when the
delay bounds are loose is quite small. Nevertheless, the value
of can become a tuning knob, by specifying the maximum

as an input BSMA, to tradeoff execution time of BSMA
against minimal cost.

Another set of simulations was run to illustrate how the cost
ratio can be traded against running time. In these simulations
the delay bound is set to the minimum possible for a given

Fig. 12. Different group sizes in the Arpanet.

TABLE II
AVERAGE EXECUTION TIME PER GROUP, GIVEN IN SECONDS, FOR

NAIVE BSMA AND KMB ON Sun Sparc1+ WORKSTATIONS

multicast group, because a tighter delay bound leads to larger
values needed for in order to minimize the tree cost (as can
be observed in Figs. 13 and 14). The simulations involved
12 000 instances of 30-member multicast groups in a 500-
node graph. As Fig. 15 illustrates, setting larger limits on
decreases the cost ratio but increases the running time, and
vice versa.

This relationship between the complexity of path switchings
used to minimize the cost of the tree (i.e., the value of)
and the amount of reductions in the cost obtained is quite
interesting. Since larger values of are needed when the
delay bounds are tighter, the amount of cost reduction obtained
with large values of is not very significant compared to the
cost reduction attained with small values. Larger values of
indicate larger cost alternate paths; thus, the cost reduction
from replacing a superedge with a new path becomes less. In
other words, there is a diminishing benefit from using larger
values of in both cost reduction and running time. In practice
this means that the maximum value ofallowed in a run
of BSMA can be fixed to a small value. In our experiments
values of smaller than five were sufficient to render good
cost reductions and small running times (Fig. 15).

The execution times of BSMA with the naive superedge
selection and KMB on the random graphs used in the sim-

472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

(a) (b)

Fig. 13. The average maximum number ofk-shortest paths computed to obtain constrained tree. As the delay bound is tightened, larger values of
k are computed.

Fig. 14. The average maximum number ofk shortest paths computed to
obtain constrained tree. As the delay bound is tightened, larger values ofk

are computed.

ulations are shown in Table II. The times for the algorithms
use the same labeling convention introduced for Fig. 7. The
results are very encouraging, considering that the times are
for execution on Sun Sparcstation 1and that the code is not
optimized for speed at all. Notice that the execution times of
kmb and bsm-1 are nearly identical. This is ideal, because
BSMA solves the relaxed problem as fast as KMB. As the
problem becomes more constrained, BSMA naturally requires
more time to solve it.

The running times of BSMA are much lower than the ones
reported by Salamaet al. [21]. Our simulation results for 30

members in a 100-node graph for the most stringent delay
bound are on the average about four times longer than KMB.
This should be the worst-case scenario for BSMA in that
the delay bound is tight and the group size is medium with
respect to the network size. BSMA took on average 4.88 s and
KMB took on average 1.11 s on a 167-MHz UltraSPARC. The
average number of is 23. The execution time of BSMA
is nevertheless on the same order of magnitude as KMB.
We conjecture that the differences between our results on
BSMA execution times and those reported by Salamaet al.
[21] are due to differences in the specific-shortest-path
algorithm used to implement BSMA and the implementation
of Dijkstra’s algorithm. Our implementation of the-shortest
path also uses Dijkstra’s algorithm implemented using a binary
heap data structure. Our simulations were carried out on sparse
graphs, that is, the number of edges is Using a
binary heap for the priority queue gives the complexity of

for Dijkstra’s algorithm in sparse graphs [7]. It is
also worthwhile noting that the-shortest-path algorithm used
in our own implementation of BSMA has time complexity
of , while -shortest-path algorithms exist of
complexity ; hence, BSMA could run even faster
than our own results indicate.

Moreover, as demonstrated earlier, the execution time of
BSMA can be traded off against the cost reductions by con-
trolling the maximum value of Since there is a diminishing
benefit from using larger values of in both cost reduction
and running time, the maximum value ofallowed in a run
of BSMA can be set in advance to a small value.

VI. CONCLUDING REMARKS

Multicast-tree construction is becoming an integral part of
multimedia application support. This paper proposed BSMA,
an algorithm based on complete topology information for

PARSA et al.: DELAY-CONSTRAINED MINIMUM-COST MULTICASTING 473

(a) (b)

Fig. 15. Tradeoff of cost versus running time for a group of size 30 in a 500-node graph.

the construction of delay-bounded minimum-cost multicast
trees. The contribution of our work lies both in the for-
mulation of the problem and the novelty of the algorithm
used to solve it. We allow variable delay bounds set for
different destinations or different media; this simulates tim-
ing requirements of realistic networks supporting multimedia
applications. BSMA minimizes the total link cost of the
tree, while satisfying the delay constraints. Instead of using
the one-pass growing of the multicast tree used in most
previous works, BSMA uses an iterative optimization process
to further minimize the tree cost. The cost minimization is
monotonically achieved after a series of delay-bounded path-
switching improvements. The simulation results show that
BSMA can produce delay-bounded multicast trees that have
low cost. Recent results by Salamaet al. [21] confirm our
results and show that BSMA is the best algorithm in terms
of cost and number of sessions established for computation
of delay-constrained minimum-cost multicast trees among all
of the constrained Steiner tree (CST) algorithms reported
to date.

Additional work is needed to make BSMA or other CST
heuristics scale to large-scale networks. We anticipate that
CST heuristics will be applied to large-scale networks within
the context of hierarchical routing, because the underlying
routing mechanisms used to disseminate topology data require
the aggregation of information in order to cope with network
size (e.g., open shortest path first (OSPF) [17]). In addition to
reducing the number of nodes and links that a node running
BSMA needs to know, BSMA’s running time can be made
faster by limiting the number of -shortest paths used in
BSMA’s iterations, at the expense of larger tree costs.

The iterative approach introduced in BSMA can also be
applied to related multicast problems, such as obtaining trees

of smallest cost with end-to-end delay bounds and delay-
variation bounds [20].

REFERENCES

[1] B. Awerbuch, A. Baratz, and D. Peleg, “Cost-sensetive analysis of
communication protocols,” inProc. ACM Symp. Principles Distributed
Computing, 1990, pp. 177–187.

[2] D. Bertsekas and R. Gallager,Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[3] K. Bharath-Kumar and J. Jaffe, “Routing to multiple destination in
computer networks,”IEEE Trans. Commun., vol. COM-31, pp. 343–351,
1983.

[4] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “A
survey of optimization techniques for integrated circuits,”Proc. IEEE,
vol. 69, pp. 1334–1362, 1991.

[5] A. Cayley, “A theorem on trees,”Quart. J. Math., vol. 23, pp. 376–378,
1889.

[6] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong,
“Provably good performance-driven global routing,”IEEE Trans.
Computer-Aided Design, vol. 11, pp. 739–752, 1992.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

[8] E. Dijkstra, “A note on two problems in connexion with graphs,”Numer.
Math., vol. 1, pp. 269–271, 1959.

[9] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,”J. ACM, vol. 34, no. 3, pp.
596–615, 1987.

[10] J. J. Garcia-Luna-Aceves, “Reliable broadcast of routing information
using diffusing computations,” inProc. IEEE GlOBECOM‘92, Orlando,
FL, Dec. 1992.

[11] J. J. Garcia-Luna-Aceves and J. Behrens, “Distributed, scalable routing
based on vectors of link states,”IEEE J. Select. Areas Commun., vol.
13, pp. 1383–95, Oct. 1995.

[12] M. Garey and D. Johnson,Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman, 1979.

[13] N. Katoh, T. Ibaraki, and H. Mine, “An efficient algorithm forK shortest
simple paths,”Networks, vol. 12, pp. 411–427, 1982.

[14] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicast routing
for multimedia communication,”IEEE/ACM Trans. Networking, vol. 1,
pp. 286–292, June 1993.

[15] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,”Acta Informatica, vol. 15, pp. 141–145, 1981.

474 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 4, AUGUST 1998

[16] E. Lawler,Combinatorial Optimization: Networks and Matroids. New
York: Holt, Rinehart and Winston, 1976.

[17] J. Moy, “OSPF version 2,”Internet Draft,RFC-1247, July 1991.
[18] R. Prim, “Shortest connection networks and some generalizations,”Bell

Syst. Tech. J., vol. 36, pp. 1389–1401, 1957.
[19] V. Rayward-Smith, “The computation of nearly minimal steiner trees

in graphs,”Int. J. Math. Educ. Sci. Technol., vol. 14, no. 1, pp. 15–23,
1983.

[20] G. N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay
and delay variation constraints,”IEEE J. Select. Areas Commun., vol.
15, pp. 346–356, Apr. 1997.

[21] H. F. Salama, D. S. Reeves, and Y. Viniotis, “Evaluation of multicast
routing algorithms for real-time communications on high-speed net-
works,” IEEE J. Select. Areas Commun., vol. 15, pp. 332–345, Apr.
1997.

[22] H. Takahashi and A. Matsuyama, “An approximate solution for the
steiner problem in graphs,”Math. Japonica, vol. 6, pp. 573–577, 1990.

[23] B. Waxman, “Routing of multipoint connections,”IEEE J. Select. Areas
Commun., vol. 6, pp. 1617–1622, Dec. 1988.

[24] J. Y. Yen, “Finding thek shortest loopless paths in a network,”Manage.
Sci., vol. 17, no. 11, pp. 712–716, 1971.

[25] Q. Zhu and W. M. Dai, “Delay-sounded steiner tree algorithm for
performance-driven layout,” Univ. California, Santa Cruz, Tech. Rep.
UCSC-CRL-93-46, Oct. 1993.

Mehrdad Parsa received the B.A. degree in mathe-
matics and physics in 1991, and the M.S. and Ph.D.
degrees in computer engineering in 1994 and 1998,
respectively, all from the University of California,
Santa Cruz.

He is currently with Metricom, Los Gatos, CA,
as a Software Engineer, where he does research
and development on mobility management and rout-
ing. His research interests include graph algorithms,
distributed algorithms, and reliable communication.

Qing Zhu, photograph and biography not available at the time of publication.

J. J. Garcia-Luna-Aceves(S’75–M’77) was born
in Mexico City, Mexico, on October 20, 1955. He
received the B.S. degree in electrical engineering
from the Universidad Iberoamericana, Mexico City,
Mexico, in 1977, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Hawaii, Honolulu, in 1980 and 1983, respectively.

He is currently with the University of Califor-
nia, Santa Cruz (UCSC), as Professor of computer
engineering. Prior to joining UCSC in 1993 as an
Associate Professor, he was with SRI International

in Menlo Park, CA, as a Center Director. He first joined SRI as an SRI
International Fellow in 1982. His current research interest is the analysis and
design of algorithms and protocols for computer communication. At UCSC,
he leads a number of research projects sponsored by the Defense Advanced
Research Projects Agency (DARPA) and industry that focus on wireless
networks and internetworking. He has co-authored the bookMultimedia Com-
munications: Protocols and Applications(Englewood Cliffs, NJ: Prentice-Hall,
1998) and has published more than 120 papers on computer communication
in journals and conferences. He is on the editorial boards of the IEEE/ACM
TRANSACTIONS ON NETWORKING, the ACM Multimedia Systems Journal, and
theJournal of High Speed Networks. He has been Chair of the Association for
Computing Machinery (ACM) special interest group on multimedia, General
Chair of the first ACM conference on multimedia, ACM MULTIMEDIA’93,
Program Chair of the IEEE MULTIMEDIA’92 Workshop, General Chair
of the ACM SIGCOMM’88 Symposium, and Program Chair of the ACM
SIGCOMM’87 Workshop and the ACM SIGCOMM’86 Symposium. He has
also been a Program Committee member for the International Federation for
Information Processing (IFIP) 6.5, ACM, IEEE, and Society of Photo-Optical
Instrumentation Engineers (SPIE) conferences on computer communication.
He received the SRI International Exceptional Achievement Award in 1985
for his work on multimedia communications, and again in 1989 for his work
on adaptive routing algorithms.

Dr. Garcia-Luna-Aceves is a member of the ACM.

