Appears inProceedings of the 11th IEEE International Conference otwidik ProtocolgICNP 2003)

Exploiting Routing Redundancy via
Structured Peer-to-Peer Overlays

Ben Y. Zhao, Ling Huang, Jeremy Stribling,
Anthony D. Joseph, and John D. Kubiatowicz
Computer Science Division, U. C. Berkeley
{ravenben, hling, strib, adj, kubitron}@s.berkeley. edu

Abstract detect a fault, construct a new path, and reroute traffic. Re-
cent work has analyzed the fault-recovery time of intra-AS

Structured peer-to-peer overlays provide a natural in- Protocols such as IS-IS for large IP backbone networks [11].
frastructure for resilient routing via efficient fault dete It found that while overall recovery is on the order of five
tion and precomputation of backup paths. These overlaysOr six seconds, the majority of delay is not due to fault-
can respond to faults in a few hundred milliseconds by detection or path recalculation; it arises from timed delay
rapidly shifting between alternate routes. In this papes, w between fault-detection and update of routing entriesén th
present two adaptive mechanisms for structured overlayslinecards. The latter is exacerbated by hardware features o
and illustrate their operation in the context of Tapestry, a currentrouters. Without these factors, it is reasonabéto
fault-resilient overlay from Berkeley. We also describe a Pect IS-IS to respond to route failures in two or three sec-
transparent, protocol-independent traffic redirectionane ~ onds.
anism that tunnels legacy application traffic through over-  Wide-area route convergence on BGP [24] is signifi-
lays. Our measurements of a Tapestry prototype show it tocantly slower. Recent work has identified interactions be-
be a highly responsive routing service, effective at circum tween protocol timers as the fundamental cause of de-
venting a range of failures while incurring reasonable cost layed convergence. Because BGP disseminates reachabil-
in maintenance bandwidth and additional routing latency. ity updates hop by hop between neighbors, full propaga-

tion across a network can taRén seconds, where is the
longest alternative path between a source and any destina-
tion AS, and 30 is the length of a typical BGP rate limit-
1. Introduction ing timer [17]. Unfortunately, studies have shown a signifi-
cant growth in BGP routing tables fueled by stub ASes [2],

With the continued growth of the Internet, developers meaning the delayed convergence problem will only grow
are deploying new and larger scale network applications, in severity with time.
such as file sharing, instant messaging, streaming multime- One commonality between deployed protocols is that the
dia and voice-over-IP (VolP). These applications are plac- network is treated as an unstructured graph with arbitrary
ing increasingly heavy demands on the Internet infrastruc- connections, implying the potential for any-to-any depen-
ture, requiring highly reliable delivery and quick adajat dencies between peers. Local changes must therefore be
in the face of failure. propagated to all other peers in the network. Attempts to

Unfortunately, it is becoming increasingly difficult to aggregate such state to reduce bandwidth is a primary mo-
meet these criteria. The growing size and complexity of the tivation for several of the timers that contribute to theteou
network lead to frequent periods of wide-area disconnec- convergence delay. Addressing schemes such as CIDR [23]
tion or high packet loss. A variety of factors contribute to that introduce hierarchy and structure into the namespace
this, including router reboots, maintenance schedules? BG reduce the amount of routing state, and potentially reduce
misconfigurations, cut fibers and other hardware faults. Thethe need for long term timers. The problem remains that

resulting loss and jitter on application traffic createig inter-AS routing is driven by peering agreements and pol-
cant roadblocks to the widespread deployment of “realtime” icy, making state reduction a difficult problem.
applications such as VolP. In this paper, we make two contributions to address these

The magnitude of this loss and jitter is a function of the issues. First, we propose the use of structured peer-to-pee
routing protocol’s response time to faults, including titne ~ (P2P) overlay networks [6] as resilient routing infrastruc



work to quickly detect routing failures and route around
them using precomputed backup paths. Then, Section 3 de-
scribes the architecture of a fault-tolerant traffic tummgl
service built with such an overlay. We evaluate of our de-
sign in Section 4. Finally, we discuss related work in Sec-
tion 5 and conclude in Section 6.
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Figure 1. Tunneling traffic through a wide-area overlay_egacy .
application nodes tunnel wide-area traffic through the ovelay. 2. Fault Tolerant Overlay Routing

In this section, we examine the fault-tolerant rout-
ing properties of structured peer-to-peer overlay network
First, we give an overview of these overlays and their gen-
neralized properties. Our algorithms require only the ba-
sic key-to-node mapping function common to all of these
protocols. While we motivate our examples and per-
form measurements using a locally designed protocol
(Tapestry), our results should extend to others. We then dis
cuss mechanisms for efficient fault detection. Finally, we
propose techniques for routing around link failures and
loss, and for maintaining routing redundancy across fail-

res.

tures. Since they support efficient fault detection and pre-
computation of backup paths, P2P overlays can rapidly
switch between alternate paths during network failure- Sec
ond, we describe a general redirection and addressing mec
anism that transparently redirects IP traffic from legacy ap
plications through the overlay—providing stable communi-
cation to legacy applications in the face of a variety oftsul
Figure 1 illustrates this high level architecture.

Structured P2P overlays utilize local routing resources of
O(Log(N)), resulting in low control traffic and fast prop-
agation of route updates. In contrast, previous unstredtur
approaches, like Resilient Overlay Networks [1], exhibé t
same state management problem as seen in BGP. Conse-

quently, unstructured networks incar(N?) total beacon  2.1. Structured Peer-to-Peer Overlays
messages for fault detection and backup path construction,

preventing the system from scaling to hundreds of nodes.  structured peer-to-peer (P2P) overlay networks have re-
Two adaptive routing mechanisms that are straightfor- cently gained popularity as a platform for the construction
ward to implement in structured overlays dfiest Reach- of resilient, large-scale distributed systems [9, 19, 28, 2

able Link (FRLS) and constrained multicastThe first 26, 28, 33]. Structured overlays conform to a specific graph
chooses between one of a set of routing paths that arestructure that allows them to locate objects by exchanging
most stable, while the second sends duplicate pack-O(log V) messages in an overlay 8f nodes.
ets along alternate paths to adapt to high packet loss. A noderepresents an instance of a participant in the over-
To maintain their level of routing redundancy, struc- lay (one or more nodes may be hosted by a single physi-
tured P2P networks must continually refresh their rout- cal IP host). Participating nodes are assignedelDsuni-
ing tables. The result is a decoupling of the discovery formly at random from a largielentifier spaceApplication-
of backup paths (“precomputation”) from rapid adapta- specific objects are assigned unique identifiers s
tion to failure (‘route selection”). Precomputation ski®l  selected from the same identifier space. For example, Pas-
applications from slower route convergence at the net-try [26], Tapestry [10, 33], Chord [28], Kademlia [20] and
work layer. Skipnet [9] use an identifier spacefbit integers modulo
In the following, we demonstrate the benefits of over- 2" (n = 160 for Chord, Kademlia, Skipnet and Tapestry,
lay routing through structured P2P overlays using a com- n = 128 for Pastry).
bination of analysis, simulation, and experimental mea-  Overlays dynamically map each key to a unique live
surements. We deploy a prototype of the Tapestry sys-node, called itsroot. These overlays support routing of
tem [10, 33], a fault-resilient overlay that implementss#be  messages with a given key to its root node, cakey-
adaptive mechanisms. We show that Tapestry can recoveBased Routing6]. To deliver messages efficiently, each
from network failures in under 700 milliseconds while us- node maintains @outing tableconsisting of the nodelDs
ing less than 7 Kilobytes/second of per-node beaconingand IP addresses of the nodes to which the local node main-
traffic—agile enough to support most streaming multime- tains overlay links. Messages are forwarded across overlay
dia applications. Our design should be scalable and easy folinks to nodes whose nodelDs are progressively closer to the
Internet Service Providers (ISPs) to deploy, providindtfau  key in the identifier space, such as in Figure 2. Each system
resilient routing services to legacy applications. defines a function that maps keys to nodes. For example,
The remainder of this paper is as follows: Section 2 de- Tapestry maps a key to the live node whose nodelD has the
scribes how to utilize a structured peer-to-peer overlay ne longest prefix match, where the node with the next higher
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Figure 2. Routing example in TapestryRouting path taken by a Figure 3. Fault-detection BandwidthUnstructured overlay net-
message from nodé&230 towards node8954 in Tapestry us- works consume far more maintenance bandwidth than struc-
ing hexadecimal digits of length four. As with other key-bagd tured P2P networks. Bandwidth here is measured in beacons
routing (KBR) overlays, each hop resolves one digit. per node per beacon period.

nodelD value is chosen for a digit that cannot be matchedresponse timel) is the sum of fault detection tim&’f)
exactly. and path discovery timel}): 17, = 1y + 1),. Proactively

An important benefit of Key-Based Routing (KBR) is maintaining backup paths allows us to immediately redi-
that any node satisfying the namespace constraints cam servrect traffic after failure detection, eliminating path dise
as a next routing hop. For example, in Tapestry or Pastry, theery time (I}, ~ T). We now focus on minimizing’;.
first hop of a message routing to the key 1111 requires only  Application-level protocols generally depend on soft-
that the node’s nodelD begins with 1. This property allows state beacons (or heartbeat messages) to detect link and
each overlay node to proactively maintain a small number node failures. BandwidthE) is often the limiting factor,
of backup routes in its routing table. Upon detecting a thile and is proportional to the product of the number of entries
outgoing link, a router can rapidly switch to a backup link, in each routing tableX) and the heartbeat frequendy)
providingfast failover In the background, the overlay net- B o« E-F. Nodes in structured peer-to-peer overlays main-
working algorithms can adapt to failure by restoring-( tain routing state £) that grows logarithmically to the net-
pairing) the redundancy in backup links. We discuss this work size (V): E « log(/N). Compared to unstructured
further in Section 2.3. protocols [1] with linear growth routing state®( o« N),

Most structured P2P protocols support Key-Based Rout-these overlays can send beacons at significantly higher fre-
ing, but differ in the performance tradeoffs they make. quencies while consuming identical bandwidth. Figure 3
Where appropriate, we will use details of Tapestry to illus- shows the number of heartbeats sent per period for both un-
trate our points in later discussions. Tapestry [33] isacstr  Structured overlays such as RON and structured P2P over-
tured peer-to-peer overlay that uses prefix matching teerout lays such as Tapestry and Chord.
messages to keys, where each additional hop matches th
key by one or more digits. For each routing entry, Tapestry
tries to locate the nearest node with the required prefixsin it
nodelD using a nearest neighbor search algorithm [10].

One discerning factor iproximity routing the latency
optimization of routes using knowledge of physical network

:Z::2gle?f]i”:gefxgggz??gsttrr?ct?qn;g gng:ale.:ni'nme'rea” more accurate measure is tfietal Bandwidth Consump-
Y- v . uting verlay 1S g aly tion (TBC), measured as a bandwidth distance product:
measured as the Relative Delay Penalty (RDP), the ratio of

overl.ay routing. Ia.tency to IP latency. As we will show in TBC = (msgs/sec) - (bytes/msg) - [P Hops (1)
Section 4, proximity enabled overlays such as Tapestry pro-
vide low overhead over IP. Thus, tunneled IP traffic gains This metric reflects the fact that longer paths have a greater
resilience to faults without unreasonable increases iaydel opportunity cost since they consume more total resources.
Crossing fewer IP hops also means routes with low TBC
2.2. Efficient Fault Detection have fewer chances of encountering failures.
Messages routing across latency-optimized over-
Over 70% of Internet failures have durations less than lays cross a smaller number of IP routers and incur a lower
two minutes [7], making fast response time the key objec- TBC. We further quantify this effect in Figure 10 in Sec-
tive for any fault-resilient routing mechanism. Traditaly, tion 4.1, by comparing simulated TBC for a single struc-

fotal Bandwidth Consumption: The number of beacons
sent per period is useful, but does not capture their true im-
pact on the network. Since queuing delay and congestion
happen on a per IP router basis, identical messages travers-
ing different overlay hops can place different stressedien t
network depending on the number of IP hops traversed. A
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Figure 6. Path convergence with prefix routingRouting path
from 5230 to 8954 in prefix-based protocol. Note that with
each additional hop, the expected number of nearby next hop
routers decreases, causing paths to rapidly converge.

define how routes are chosen under failure and lossy condi-
tions. In our discussions, we refergamaryandbackupen-

tries in the routing table, where backups are next hop nodes
that satisfy the routing constraint but are further awayhim t

Primary Route —x Multicast Path
————— > Secondary Route network.

Figure 5. Constrained Multicast.Two examples of constrained First Reachable Link Selection: We first define a sim-
multicast showing the multicast occurring at different pos- ple policy calledFirst Reachable Link SelectiofiFRLS),
tions on the overlay path. to route messages around failures. A node observes link or
node failures as near-total loss of connectivity on an outgo
ing route. From a set of latency sorted backup paths, FRLS
chooses the first route whose link quality is above a defined
thresholdl's,;s. See Figure 4 for two examples.

tured P2P protocol (Tapestry), constructed with and withou
overlay hop latency information.

Link Quality Estimation: To measure the quality of rout-
ing links, nodes send periodic beacons on outgoing links. Constrained Multicast: Simple link selection is less ef-
At longer periodic intervals, each node replies with an ag- fective when multiple links are experiencing high loss. We
gregated acknowledgment message. Each ack includes sd2roposeconstrained multicastvhere a message entering a
quence numbers for beacons received, allowing the sendelossy region of the network is duplicated, and the copies
to gauge overall link quality and loss rates. Backup routes are sent on multiple outgoing hops. Constrained multicast
need to be probed periodically as well. To conserve band-is complementary to FRLS, and is triggered when no next
width, we send beacons to primary entries using one beacorhop path has estimated link quality higher thgg, ;.
rate, and probe backup entries at half that rate. For example, a node monitors three possible paths to the
We derive an estimated link quality from the current next hop, (A, B, and C), and stores and sorts them sorted
measured loss rate and a history of past values. To avoidby latency. A typicall'y,;s might be 70%. After a link fail-
overreacting to intermittent problems (and avoid route-flap ure onA, estimated link qualities might be 5% (A), 95% (B)
ping), we introduce damping by estimating loss rate as: ~ and 85% (C). FRLS chooses the first link in order with the
minimum link quality (B). In case of high loss, link quali-
Ly=Q0=a) Lya+a-L, (@) ties might be 45%, 40%, and 60%. Since no path satisfies
whereL, is an instantaneous loss rate from the current pe- £7+1s, messages are duplicated and sent on some subset of
riod, anda is the hysteresis factor. We explore the appropri- the available paths.

ate damping factor in Section 4. Figure 5 shows two examples of constrained multicast
occurring at different points in the routing path. A discus-
2.3. Resilient Routing Policies sion of routing policies that provide a controlled tradeoff

between bandwidth and reliability is available in [32].
Having described mechanisms to maintain and monitor ~ While naive use of constrained multicast can exacerbate
backup paths, we need to define how such paths are usetbssy links when loss is due to congestion, the additional
to evade routing failures. We describe here two policies tha traffic is sent on an alternate (likely independent) path. We
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Efficiency via Path Convergence:We observe that the

overhead of routing away from the primary path can be con-
trolled on protocols that demonstrate “path convergence,”
where paths to a common destination intersect at a rate pro
portional to the distance between the source nodes. Figure
shows path convergence in Tapestry.

Figure 7. Proxy architecture. Architectural components in-
volved in routing messages from sourced to destination B.
Destination B stores its proxy ID with a hash of its IP ad-

éjress as an object in the overlay. The source proxy retrieves

B'’s proxy ID from the overlay and routes A’s traffic to it.

This property is ex_hibit(_ed in protocols that consider net- ther away nodes. For example, a Tapestry node can query
work proximity in conjunction with ID-based constraints on  pearby nodes for nodes that match prefixor query nodes

intermediate overlay routers. Pastry and Tapestry are pro-ip jts routing table that already shafefor similar nodes.
tocols that implement proximity routing based on a pre-

fix routing scheme. With each additional hop, the expected
number of nodes in a network that qualify as a next hop
router decreases linearly. Therefore, nearby nodes are in-

creasingly likely to choose a common next hop as they zerojeq 4.y application traffic through the P2P overlay so that it
in on their destination by name and the number of possible .5, henefit from the fault tolerance of Section 2; tunneled

routers decreases. Recent work shows that underlying netyafic jeverages overlay mechanisms to route around link
work geometries for most protocols demonstrate path con-,,4 node failures

vergence properties [8].
With path convergence, a message that takes a backu% 1. Transparent Tunneling
route is likely to converge back to the primary path on

the next hop. This minimizes the impact of taking a single  Figure 7 shows an architecture that tunnels application
backup path on end-to-end latency. For constrained multi- ¢y 5ffic through an overlay via nearby proxy nodes. Clients
cast, convergence allows routers to detect and drop dupli-contain overlay-aware daemons that make themselves ad-
cate packets, minimizing the stress put on the network by gressable in the overlay by locating nearby proxies and ad-
the duplicate. Routers identify messages by a flow ID and yertising mappings between their native IP addresses and
a monotonically increasing sequence number. Each routelpyerlay proxy addresses. With each new outgoing IP con-
can effectively detect and drop duplicates with efficierd us nection, a client daemon determines whether the destina-
of a finite queue of sequence numbers. tion is reachable through the overlay; if so, the daemon redi

Self-Repair: While much of our discussion has focused on rects traffic to the_negrby proxy where iF enters the 0‘.’6”‘?‘3"
routing on alternate paths when network links have failed, routes to the destlna\_tlon proxy, t_hen exits to the desonati
we note that self-repair algorithms must be present to re-nOde' We elaborate in the following paragraphs.
plenish backup paths after recovering from a failure. Other Proxy traffic redirection: Traffic redirection involves two
wise, primary and backup paths will all eventually fail fea  steps, registering a routeable ID for each legacy node in
ing some paths unreachable. When the overlay detects anyhe overlay ID space, and publishing a mapping from the
path failure, it must act to replace the failed route and re- node’s IP address to that ID. To register an ID, the dae-
store the pre-failure level of path redundancy. mon on the legacy noded] first chooses a nearby overlay
Algorithms for self-repair are specific to each overlay node as its proxy using an introduction service or out-of-
protocol. In general, their goal is to find additional nodes band directory. Recall that in a structured P2P overlay, IDs
with a specific constraint (matching a certain prefix or hav- in the namespace are mapped to a specific “root” node. The
ing a certain position in a linear or coordinate namespace),proxy (P) assigns4 an ID in the ID space:#(A)), such
given some nodes with that property. Two general strate-that P(A) is the closest unused id t8 inside its range,
gies are possible. A node can query nearby nodes to min-where range is defined by the routing protocol. Figure 8 il-
imize repair latency, or query other nodes that already sat-lustrates registration and tunneling.
isfy the constraint. The latter strategy gives a much higher For example, legacy nodes registering with a Chord
chance of a successful repair, at the cost of contacting fur-proxy would receive sequentially decreasing identifiers be

3. Tunneling Traffic via Structured Overlays

In this section, we discuss an architecture that tunnels



addresses to determine whether they are reachable via the
overlay, and cache the result. When the application starts a
connection to an address routeable by the overlay, the dae-
mon notifies the proxy, which locates the destination node’s
proxy identifier by performing get (SHA-1(1R.s;)).

Redundant Proxy Management:While the overlay pro-
vides a scalable way to route around failures in the network,
a proxy may still fail or become disconnected from the over-
lay or the destination nodes it is responsible for. We oatlin

Figure 8. Registering with proxy nodesLegacy application _three pqssible solutions. In each case, a legacy M'_
nodes register with nearby proxies and are allocated proxyDs isters with a s_maII _numbem()_ of proxy nodes, sorteo_i n
which are closeto the name of the proxy node. Legacy nodes  order by a policy-driven metric such as latencyltpavail-

can address each other with these new proxy names, routing ~ able bandwidth, or proxy load (defined by node registrations
through the overlay to reach one another. or bandwidth consumption). The overlay maps the destina-

tion IP to its set of destination proxy identifiers. The sende

ginning with P — 1. This insures that messages addressedPOXY also caches this information during connection setup

to P(A) are delivered toP despite changes in the over- The naive solution assumes that the overlay returns an er-
lay membership. Assuming nodelDs are assigned uniformly "0f for each gndeliverable message, which are resent from
at random, the probability that a given proxy node with ~ the sender-side proxy to the next entry on the destina-
legacy clients loses one of them to a new overlay node istiOn'S identifier list. Th|s solution requires buffering ﬁt_e

I/N whereN is the size of the namespace. Giyeactive sender’s proxy, ar_ld incurs a roundtrip delay aftgr faﬂqre.
proxy nodes, the chance of any proxy losing a legacy nodeAn_aIternate solution embeds the backup proxy |der_1t|f|ers

is then(l - p) /N For example, in a 160 bit namespace over- inside each message. As a message encounters a failed hop,
lay of 10,000 nodes each averaging 10 legacy clients thelt replaces its destination with the next identifier from the

probability of a new node “hijacking” one of them from its list, and tries to route to that proxy. The additional rogtin
proxy is (10 - 10,000) /2160, or 2~ 145 logic can be implemented on top of the proposed common

The next step is to establish a mapping frais IP ad- up-call interface for structured P2P overlays [6].
dress to its overlay ID. This allows the overlay to do a An alternate solution is to use RAID-like striping to send

“DNS-like” name translation. Since most structured P2P the data stream across multiple proxies. The source proxy

overlays already have a storage layer such as a Distributech"“‘n s.?ndlgach @:;* lb_seq_uential packgts gl) prlz)xiesh;r; the
Hash Table (DHT), we opt to utilize that instead. Therefore, 'dentifier list, and a bit-wise XOR parity block to t

the proxy stores in the overlay a mapping between a hash ofPTOXY- Any missing packet can be reconstructed from the
the legacy node’s IP and its proxy identifietSHA-1(IP,), remaining packets. This design provides fast and transpar-

P(A) >), either using theput call on a DHT interface, or e_n_t recovery from single proxy failure_s at the cost of an ad-
by storing the mapping locally and using theblishcall on ditional1/(n — 1) proportional bandwidth.
the DOLR interface [6].

3.2. Challenges to Deployment
Application Interface at Endpoints: The client-side dae-

mon is implemented as a set of packet forwarding rules and  Finally, we consider issues that arise when deploying
a packet encapsulation process. The daemon can capturgault-resilient overlays across the Internet. Since aerl
packets using general rules in LiniRk-chainsor FreeBSD  nodes function as application-level traffic routers, they r
divert socketslt processes them, using IP-IP encapsulation quire low-latency, high-bandwidth connectivity to the net
to forward certain packets to the proxy and the remainderwork. We expect Internet Service Providers (ISPs) to de-
unchanged back onto the normal network interface. ploy these overlays on their internal networks and offer re-
The daemon has two responsibilities: register the local silient traffic tunneling as a value-added service to thes-c
IP address as a routeable destination in the overlay and ditomers. An ISP chooses the number and location of traf-
vert appropriate outgoing traffic to the overlay. We exp€ct| fic overlay nodes. Adding overlay nodes in the interior in-
registration to occur when the daemon starts, as describectreases the number of backup paths and overlay resiliency,
above. Since not all destinations will have made themselveswhile placing nodes closer to customers reduces the likeli-
reachable through the overlay, the daemon monitors outgo-hood of failures between the client and the overlay.
ing traffic and selects flows for tunneling. This can be done  One issue is that a deployed overlay is limited by the
in a local, user-transparent fashion by hijacking all DNS re reach of the ISP’s network. Connections that cross ISP
guests and new connection requests. We query the new Iboundaries require a cross-domain solution. One podgibili
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Figure 9. Tapestry PerformanceRelative Delay Penalty (RDP) Figure 10. Maintenance Advantage of Proximity (Simulation).
for packets routing the Tapestry network on the PlanetLab Proximity reduces relative bandwidth consumption (TBC) of
network testbed. Tapestry provides relatively low overhed beacons over randomized, prefix-based routing schemes.
compared to IP in the wide area.

is for smaller ISPs to “merge” their overlays with those of worldwide. To gain additional nodes, we invoke multi-
larger ISPs, allowing them to fully share the namespace andple virtual nodes per physical node. Figure 9 illustrates
share routing traffic. A 160-bit namespace ensures that thethe basic routing performance of the Tapestry implemen-
probability of namespace collisions will remain statiatig tation by measuring the increase in latency that a packet
insignificant. A second solution is to set up well defined experiences when tunneling through the overlay. The la-
peering points between each ISP’s overlay by using wide-tency overhead is low, particularly for wide-area routes.
area routing similar to that proposed by the Brocade interdo The high variability on short routes is due to a combina-
main overlay work [31]. Peering points can form their own tion of virtual nodes competing for highly loaded CPUs
overlay and advertise local addresses as objects on the se@nd queuing delays in the event handling layer [33].
ondary overlay. The resulting hierarchy has properties sim
ilar to BGP. Further comparisons are beyond the scope of4 1. Analysis and Simulation
this paper.
To evaluate the potential for adaptation, we start by ex-
4. Evaluation of Adaptive Mechanisms amining several microbenchmarks in simulation. To do this,
we implemented a network simulator using the Stanford
To explore the potential for adaptive fault tolerance as Graph Base libraries [15]. In the following measurements,
described in previous sections, we present simulation re-We utilize seven different 5000-node transit stub topasgi
sults as well as measurements from a functioning Tapestryunless otherwise specified, we then construct Tapestry over
system [33]. Tapestry comprises 55,000 lines of Java writ- 12y networks of size 4096 nodes against which to measure
ten in event-driven style on top of SEDA [29] for fast, Ourresults.

non-blocking 1/0. This version of Tapestryncludes all Proximity Routing and TBC: As mentioned previously,
of the mechanisms of Sectipn 2, includin_g components for Tapestry provides proximity routing. We start by illustrat
beacon-based fault detection across primary and backuRne advantage of proximity-based structures in reducieg th
paths, first-reachable link selection (FRLS), and consé@i  1q5] Bandwidth Consumption (TBC) of monitoring bea-
multicast with duplicate packet detection. _ cong. To perform the comparison, we construct overlays
In this section, we take an in-depth look at the impact of gifferent sizes both with and without proximity; with-
of the adaptive mechanisms proposed in this paper. Starting, ¢ proximity means that we construct random topologies
with baseline Tapestry, we examine the impact of the pro- that adhere to the basic prefix-routing scheme but which
posed routing policies through both simulation and experi- 4o not utilize network proximity in their construction. The
mental measurements. We also test Tapestry’s ability to ex-Tgc saving with a proximity-enabled overlay is plotted in
ploitunderlying network redundancy, and explore the trade Figyre 10. We see that maintenance traffic with proximity
off between beacon rate and responsiveness to failures. routing provides a significant reduction (up to 50%) in re-

Tapestry has been deployed on the Planetlabsoyrces. Section 4.2 will explore the absolute amount of
testbed [21], a network of 160 machines at 65 sites maintenance traffic.

1 The Tapestry implementation is available for public davaa at 2 Recall from Section 2.2 that the TBC is computed by muliigythe
http://oceanstore. cs. berkel ey. edu/. beacon bit rate by distance—either in number of IP hops eniat



2.5 T T T 2.4 T r T
] Hop 0 —— Hop 0 ——
2 A Hop 1 - ) L Hop 1 - ]
% 2t Hop 2 = g 22 Hop 2 =
3< Hop 3 2 z Al Hop 3 -2
2 " Hop 4 ---#--- 3
2g 151 S
23 \ 0
5% g
1 =
g2 1 >
o6 . &
I= [}
[}
g ost 3
a Lo e o

P P g

Figure 11.Latency Cost of Backup Paths (Simulationfiere we
show the end-to-end proportional increase in routing latesy

20 40 60 80 100 120 140 160 180

Latency from Source to Destination (ms)

when Tapestry routes around a single failure.

- )

= 1 T T Q 1y

-"é Hop 0 —— 2

S Hop 1 - x 0.9 1y,

= . No Working Route

S 0.8} Hop 2 = o 08} 2,

o Hop 3 = 2 5

£ Hop 4 ---=--- r 07y i

° % g, Route Exists, IP/T both fail

@ 06 a 06

g N I 05¢ o :

c ", u— *.. T succeeds, IP fails

3 04r % - S 04 s

5 g 031 P ds, Ttais

= e succeeds, T fails o

g o2} g 02 *

s =

] o 0.1+t Both IP/T succeed -

a a 0 TEE— ]
0

20

40 60 80 100 120 140 160

Figure 12.Convergence Rate (SimulationJhe number of over-
lay hops taken for duplicated messages in constrained mutti

3 4 5 6 7 8 9
Length of overlay path in IP hops

cast to converge, as a function of path length.

0

0

0.05 0.1

Latency from Source to Destination (ms)
Figure 13.Bandwidth Overhead of Constrained Multicast (Sim-
ulation). The proportional increase in bandwidth consumed by
using a single constrained multicast.

Percentage of Broken Links
Figure 14. Routing Around Failures with FRLS.Simulation of
the routing behavior of a Tapestry overlay (2 backup routes)
and normal IP on a transit stub network (4096 overlay nodes
on 5000 nodes) against randomly placed link failures.

Overhead of FRLS: To ensure our resilient routing policies sumed by the duplicated packets, assuming they are
do not impose unreasonable overhead on tunneled trafficdropped when they converge paths with the originals. The
we simulate their impact on end-to-end latency and band-additional bandwidth is plotted as a ratio to the end-to-end
width consumption through simulation. We first measure bandwidth consumed. Again, failures closer to the des-
the increase in latency we incur by using FRLS to route tination are more costly, but the bandwidth overhead is
around a failure. We expect that by taking locally subop- generally low & 20%).

timal backup routes, we are increasing end-to-end routing

latency. Figure 11 shows the proportional increase in rout- Reachability Simulation: In this experiment, we simulate
ing latency when routing around a single failure. We see the impact of random link failures on a structured overlay in
that when backup routes are taken closer to the destinatiorthe wide area. We construct a 4096 node Tapestry topology
(37’d or 4th onaé6 hop Over|ay path)' the overhead incurred On a 5000-node transit stub network, USing base 4 dlglts for
is higher. Overall, the latency cost is generally very small prefix routing and 2 backups per routing entry.

(< 20% of the end-to-end path latency). We monitor the connectivity of pair-wise paths between
all overlay nodes, and incrementally inject randomly pthce
link errors into the network. After each new set of failures

. g ) - is introduced, we measure the resulting connectivity of all
constrained multicast, assuming a protocol with path con- naihs routed through IP (estimated by the shortest path) and
vergence. First, we verify that Tapestry routing pro- hrgh Tapestry with FRLS. We assume a time frame of

vides path convergence. Path convergence allows Us tGne or two seconds, tolerable delay for buffered multime-
limit the amount of bandwidth consumed by duplicate mes- i3 gppiications, but insufficient time for IP level routeeo

sages in constrained multicast. As Figure 12 shows
duplicate messages generally converge with the original af
ter 1 hop, minimizing additional bandwidth used.

Constrained Multicast and Path ConvergenceWe con-
tinue by quantifying the expected bandwidth cost of

'vergence. We plot the results in Figure 14 as a probability
graph, showing the proportion of all paths which succeed
or fail under each protocol. The results show that Tapestry

Next, Figure 13 measures the additional bandwidth con- routing performs almost ideally, succeeding for the large
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Figure 15. Hysteresis TradeoffA simulation of the adaptivity Figure 16. Route Switch Time vs. Probing Frequencylea-
of a function to incorporate hysteresis in fault estimationusing sured time between failure and recovery is plotted againstte
periodic beacons. Curves show response time after both a kn probing frequency. For this experiment, the hysteresis faors
failure and a loss event causing 50% loss. a = 0.2 and a = 0.4 are shown.
majority of paths where connectivity is maintained after 04t
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4.2. Microbenchmarks of a Deployed System B 04
<o
5} -0.6
Next, we use microbenchmarks to illustrate properties S 08l
of the Tapestry implementation deployed on PlanetLab. To .1 ‘ ‘ ‘ ‘
probe Tapestry’'s adaptation behavior, we implemented a 0 1 2 3 4 5
fault-injection layer that allows a centralized controlte Position of Detour on Overlay Path

inject network faults into running nodes. Nodes can be in-
structed to drop some or all incoming network traffic based in latency incurred when a packet takes a backup path. Data

on message type(g.data or control) and message sourcc_—:‘; separated by which overlay hop encounter the detour. Pair-
we then report the results. In general, we present median

. S h ; wise overlay paths are taken from PlanetLab nodes, and have

values, with error bars representi®9’” percentile and . )

. h . a maximum hop count of six.
minimum values. We use tH#'* percentile values to re-
move outlier factors such as garbage collection and vitual
ization scheduling problems. con period. As expected, switch-over time scales linearly t
. . ' . the probing period with a small constant. With a reasonable
Failover Time: Our first microbenchmark measures the beaconing period of 300ms, response times for botal-

correlat!on between fail-over time and Iength of the bea-_ ues (660ms and 580ms) are well within the acceptable lim-
con period. We start by selecting an appropriate hysteresis

factor« for link quality estimation (Equation 2). Figure 15 '(;.S of interactive applications, mcludmg streaming niroi-
: . . ia. No messages were lost after traffic was redirected.
illustrates how quickly estimated values converge to dctua
link quality for different values ofx and link loss rate. Us-  Redirection Penalty: To quantify the latency cost in redi-
ing this, we can see that anvalue between 0.2 and 0.4 pro- recting traffic onto a backup path, we deploy a Tapestry net-
vides a reasonable compromise between response rate anglork of 200 nodes using digits of base 4 across the Plan-
noise tolerance. etLab network. We probe all pair-wise paths to select a
For the experiment, we deploy a small overlay of 4 random sample of source-destination pairs with sufficientl
nodes, including nodes at U.C. Berkeley, U. Washington, distinct IDs to require five overlay hops. On each path, we
U.C. San Diego and MIT. NodelDs are assigned such thatmeasure the change in latency resulting from taking a sin-
traffic from Berkeley routes to MIT via Washington, with gle backup path, plotted against the hop where the backup
UCSD as backup. The round-trip distance of the failing link path was taken. The results are shown in Figure 17.
(Berkeley-Washington) is approximately 30ms. The results mirror results shown in Figure 11, and con-
Using hysteresis factors of 0.2 and 0.4, we inject faults firm that taking a single backup path has little impact on
at random intervals, and measure the elapsed time to deend-to-end routing latency. In fact, because of the small
tect and redirect traffic around the fault. Figure 16 plots number of nodes in our PlanetLab overlay, taking an alter-
the min, median and0t” percentile values against the bea- nate path can sometimes shorten the number of hops and re-

Figure 17. Overhead of Fault-Tolerant RoutingThe increase
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Figure 18. Overhead of Constrained MulticasThe total band- Figure 19. Cost of Monitoring. Here we show bandwidth used
width penalty for sending a duplicate message when loss isde  for fault-detection as a function of overlay network size. h-
tected at the next hop, plotted as a fractional increase ovaror- dividual curves represent different monitoring periods, and

mal routing. Data separated by which overlay hop encounters bandwidth is measured in kilobytes per second per node.
the split.

duce overall latency. For example, given 3 nodes at Duke  While low-rate transient failures can be handled with
(000), Georgia Tech (213) and MIT (222), a route from techniques from Section 2, long term stability depends cru-
Duke to MIT would point to Georgia Tech as the optimal cially on mechanisms thagpair redundancy ancestorelo-

first hop and keep MIT as a backup. If a failure occurs on cality. Without continuous “precomputation” and path dis-
the primary route, a message will use the backup path andcovery, path redundancy will slowly degrade as backup
route directly to MIT, improving end-to-end latency. This routes fail over time. In the case of Tapestry, this means
explains the low minimum values in Figure 17. that entries in the routing table must be refreshed at a rate

Constrained Multicast Penalty: To characterize the cost thatkeeps ahead of network failures and changes.

of constrained multicast, we start with a deployed network 10 illustrate this point, we deploy Tapestry nodes in a
of 200 nodes on PlanetLab. We select a group of paths withtAN cluster and subject them to abrupt and continuous
5 overlay hops, and plot the bandwidth overhead as a func-change; since this expgrlmentfocuses on faultresiliende a
tion of the hop where the duplicate message was sent outnOt latency, we do notimpose a network topology or packet
Without knowledge of IP level routers under PlanetLab, we delay on the system. We then measure ovecaynectiv-
approximate the TBC metric by using the bandwidth la- ity by measuring t_he rate of_success in routing requests b_e-
tency product. Figure 18 shows that our deployed proto- tween r_ano!om pairs of IDs in the namespace. The result is
type performs as expected, with duplicate messages incurShown in Figures 20 and 21.

ring less than 30% of the end-to-end bandwidth consump-  Both of these figures illustrate an experiment that initial-
tion. This figure reports the proportional increase in total izes the network with 150 nodes, then introduces a massive
bandwidth consumption (TBC) over the original path and failure event at T=5 minutes by manually killing (kill -9) 22
can be compared with simulation results in Figure 13. nodes. At T=10 minutes, we add 75 nodes to the network
in parallel. Finally, at T=15 minutes, 20 nodes in the over-

: : . lay begin to participate in a random churn test, where ev-
overhead of our Tapestry implementation by measuring the ry 10 seconds they enter and leave the network according
total bandwidth used by beacon messages, and plotting thaf

against the size of the overlay network. Figure 19 shows the oa randor_mzed gtochasUc process, each with a mean dura-
; . tion of 2 minutes in the network.

result as kilobytes per second sent by each node in the over- ] ]

lay, using a beacon period of 300ms. Each routing entry has Ve plot the number of nodes in the system along with

two backups, each beaconed every 600ms. The bandwidtfRverage query latency and the success rate of routing re-

used is low and scales logarithmically with the network size quests. Withoutrepair, Figure 20 shows that routing suces

Furthermore, our measurements are consistent with bandfate quickly degrades after the massive fail event, andmeve

width estimates in Section 2.2. Note that along with Fig- F€COVers. Furthermore, nodes in the churn test slowly lose

ure 16, this figure shows that moderate to large overlays cantheir redundant paths as neighbors leave the network, lead-

respond to link failures in under 700ms, while keeping bea- ing to a steady decline in route connectivity. In contraigt; F

Beaconing OverheadWe quantify the periodic beaconing

coning traffic low € 7KB/s). ure 21 shows that Tapestry with self-repair quickly recaver
after massive failure and join events to restore routing suc
4.3. The Importance of Self-Repair cess to 100%. Even under constant churn, our algorithms re-

pair routes fast enough to maintain high routing avail&pili
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Figure 20. Pair-wise Routing without RepairSuccess rate of Figure 21. Pair-wise Routing with Self-RepairSuccess rate of
Tapestry routing between random pairs of nodes with self- Tapestry routing between random pairs of nodes with self-
repair mechanisms disabled during massive failure, massiv repair enabled during massive failure, massive join, and co-
join, and constant churn conditions. stant churn conditions.

Note that the relatively low routing latency shown in Fig- in ourwork, P’s trigger placement is done manually. Secure
ure 20 is due to the fact that inconsistent routes led to a por-Overlay Services (SOS) [14] places protected serversensid
tion of the massive join failing, resulting in shorter rosite  the overlay domain, and filters tunneled application traific

and lower latency for successful requests. the edge nodes to prevent denial of service attacks. The De-
tour project proposes a network of deployed routers that di-
4.4, Putting It All Together rect tunneled traffic to study efficiency and loss rates of In-

ternet routing paths [27]. Detour focuses on using routers

Experiments and analysis quantify the benefits of our to gather network information to benefit the transport pro-
proposal, and verify its feasilibity. While simulationscst tocol, and does not provide scalable methods for detecting
that FRLS exploits the majority of routing redundancy faults and managing backup paths.
presentin a network, measurements show that our prototype Previous research quantified the loss of network connec-
can adapt to failure in under 700 milliseconds, even with tivity on the wide-area network. Bharat. al. performed a
a reasonable dampeningfactor. Furthermore, the band- quantitative analysis of service availability across a WAN
width required to support such high adaptivity is low. Fi- and developed a failure model parameterized by failure lo-
nally, we show that in addition to circumventing link fail- cation and failure duration [3]. This work focused on un-
ures in the network, the overlay self-repairs following rod  derstanding the cause and consequences of BGP failures.

failures in order to maintain high availability. Labovitzet. al. examined the latencies in Internet path fail-
ure, fail-over, and repair resulting from the convergence
5. Related Work properties of BGP routing algorithms [16]. Recent work by

Mahajanret. al.quantified the occurence of BGP misconfig-

Structured peer-to-peer overlays provide scalable, load-urations by measurement and by ISP surveys [18].
balanced routing of messages to objects or endpoints. The
design of the first protocols ([22, 26, 28, 33]) have led to the 6. Conclusion
design of scalable wide-area applications ([4, 5, 25]) and
the development of new protocols with specialized proper-  In this paper, we show that structured peer-to-peer (P2P)
ties [9, 12, 19, 30]. Our work requires only the key-based overlay networks can provide efficient, responsive fault re
routing API [6], and can be implemented on a number of silient routing to legacy applications. These overlaysdma
these protocols. precomputation of backup paths and efficient use of soft-
Resilient Overlay Networks allow application traffic tun- state beacons for fault detection. While we illustrate our
neling through a small number of overlay nodes and demon-ideas using a prototype of the Tapestry overlay network, our
strates its feasibility [1]. Its pair-wise communicatiogrr  designs are directly applicable to other P2P protocols.
sults in O(N?) messages and limits its scale to tens of At each routing hop, Tapestry routing chooses between
nodes. The Internet Indirection Infrastructuré) (ises trig- optimal or near optimal local paths, while soft-state besco
gers embedded in the infrastructure to redirect applicatio continuously probe the network to detect failures and main-
traffic for mobility and resilience, with a similar approach tain path redundancy. We showed that two simple routing
for handling legacy applications. Unlike redirection pisin  policies can be used to achieve near-optimal fault-rexike
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while incurring low overhead in terms of latency and band- [14] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
width relative to a fault-free network. A moderate sized
overlay can respond to link failures in under 700 millisec- [15]

onds while using less than 7 Kilobytes/second of beacon-

ing traffic, agile enough to support most streaming multi-
media applications. These techniques show great promisél‘s]

for addressing the reliability and responsiveness neegled b

today’s global-scale network applications.
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