
Provably-Secure and Communication-Efficient Scheme for

Dynamic Group Key Exchange

Junghyun Nam Sungduk Kim Seungjoo Kim Dongho Won

May 17, 2004

School of Information and Communication Engineering,
Sungkyunkwan University, Korea

jhnam@dosan.skku.ac.kr, sdkim@koscom.co.kr, skim@ece.skku.ac.kr,

dhwon@simsan.skku.ac.kr

Abstract

Group key agreement protocols are designed to solve the fundamental problem of securely
establishing a session key among a group of parties communicating over a public channel.
Although a number of protocols have been proposed to solve this problem over the years,
they are not well suited for a high-delay wide area network; their communication overhead
is significant in terms of the number of communication rounds or the number of exchanged
messages, both of which are recognized as the dominant factors that slow down group key
agreement over a networking environment with high communication latency. In this paper
we present a communication-efficient group key agreement protocol and prove its secu-
rity in the random oracle model under the factoring assumption. The proposed protocol
provides perfect forward secrecy and requires only a constant number of communication
rounds for any of group rekeying operations, while achieving optimal message complexity.

Keywords: group key agreement, authenticated key agreement, provable security, factor-
ing

1 Introduction

Group key agreement protocols enable a group of parties communicating over an open net-
work to reach an agreement for a common secret key (called a session key). Typically, this
session key is used to facilitate standard security services, such as confidentiality and data
integrity, in numerous group-oriented applications including audio/video conferencing, dis-
tributed database, and various collaborative computing systems. In other words, the goal of
group key agreement protocols is to efficiently implement secure group communication chan-
nels over untrusted, public networks. To this end, it is of prime importance for a group key
agreement protocol to satisfy the property referred to as implicit key authentication, whereby
each member is assured that no one other than the group members can obtain any informa-
tion about the value of the session key. Therefore, as a result of the increased popularity
of group-oriented applications, the design of an efficient authenticated group key agreement
protocol has recently received much attention in the literature [4, 29, 15, 25, 10, 11].

Many problems related to group key agreement have been tackled and solved, especially
over the last ten years, resulting in some constant-round protocols [25, 11] with provable se-
curity in concrete, realistic setting. However, all provably-secure protocols achieving forward
secrecy so far are too expensive for dynamic groups, where current members may leave the
group and new members may join the group at any time in an arbitrary manner. A group

1

key agreement scheme for such a dynamic group must ensure that the session key is updated
upon every membership change, so that subsequent communication sessions are protected from
leaving members and previous communication sessions are protected from joining members.
Although this can be achieved by running any authenticated group key agreement protocol
from scratch whenever group membership changes, alternative approaches to handle this dy-
namic membership more efficiently would be clearly preferable. Indeed, several dynamic group
key agreement schemes have been proposed to minimize the cost of the rekeying operations
associated with group updates [1, 12, 13, 23, 24, 29].

1.1 Related Work

The original idea of extending the 2-party Diffie-Hellman scheme [17] to the multi-party setting
dates back to the classical paper of Ingemarsson et al. [21], and is followed by many works
[27, 16, 22, 4, 23, 3, 29, 30, 24] offering various levels of complexity. However, regardless
of whether they explicitly deal with the case where group membership is dynamic, all these
approaches simply assume a passive adversary, or only provide an informal/non-standard
security analysis for an active adversary. As a result, some of these protocols [3, 30] have been
found to be flawed in [26] and [10], respectively.

Research on provably-secure group key agreement in a formal security model is fairly new.
It is only recently that Bresson et al. [15, 12, 13] have presented the first group key agreement
protocols proven secure in a well-defined security model which extends earlier work of Bellare
et al. [6, 8, 5] to the multi-party setting. The initial work [15] assumes that group membership
is static, whereas later works [12, 13] focus on the dynamic case. But one drawback of their
scheme is that in case of initial key agreement, its round complexity is linear in the number
of group members. Moreover, the simultaneous joining of multiple users also takes a linear
number of rounds with respect to the number of new members. Consequently, as the group size
grows large, this scheme becomes impractical particularly in a wide area network environment
where the delays associated with communication are expected to dominate the cost for group
key agreement.

More recently, Katz and Yung [25] have proposed the first constant-round protocol for
group key agreement that has been proven secure against an active adversary; the protocol
requires three rounds of communication and achieves provable security under the Decisional
Diffie-Hellman assumption in the standard model. Specifically, they provide a formal proof
of security for the two-round protocol of Burmester and Desmedt [16], and introduce a one-
round compiler that transforms any group key exchange protocol secure against a passive
adversary into one that is secure against an active adversary with powerful capabilities. In
this protocol all group members behave in a completely symmetric manner; in a group of
size n, each member sends one broadcast message per round, and computes three modular
exponentiations, O(n log n) modular multiplications, and O(n) signature verifications. While
the protocol is very efficient in general, this full symmetry negatively impacts the protocol
performance in a scenario similar to our setting; the communication overhead is significant
with three rounds of n broadcasts, and furthermore, the protocol has to restart from scratch
in the presence of any membership change.

In [10] Boyd and Nieto have introduced a one-round group key agreement protocol which is
provably secure in the random oracle model [7]. This protocol is computationally asymmetric
and thus, as is the case with other asymmetric protocols [29, 24, 12, 13], appears to be easily
extended to address the dynamic case. But unfortunately, this protocol does not achieve
forward secrecy even if its round complexity is optimal. Thus it still remains an open problem
to find a forward-secure group key exchange scheme running in a single round.

Most recently, Bresson and Catalano [11] have presented another provably-secure protocol

2

Table 1: Complexity comparison among group key agreement schemes that achieve both
provable security and forward secrecy

Communication Computation
Rounds Messages Unicasts Broadcasts Exp. Ver.

IKA n1) n n− 1 1 O(n2) O(n)

[12] Join j + 1 j + 1 j2) 1 O(jn) O(n)
Leave 1 1 1 O(n) O(n)

[25] 3 3n 3n O(n) + O(n2 log n)3) O(n2)

IKA 2 n n− 1 1 O(n)4) O(n)

Here Join 2 j + 1 j 1 O(n)4) O(n)

Leave 1 1 1 O(n)4) O(n)
IKA: Initial Key Agreement, Exp: Modular Exponentiation, Ver: Signature Verification

1) The number of users in a newly updated group
2) The number of joining users
3) O(n2 log n): the number of modular multiplications
4) The number of exponentiations in G defined in Section 2.1

which completes in two rounds of communication. Interestingly, unlike previous approaches,
they construct the protocol by combining the properties of the ElGamal encryption scheme [19]
with standard secret sharing techniques [28]. However, this protocol suffers from a significant
communication overhead both in terms of the number of messages sent by all members during
the protocol execution and in terms of the number of bits communicated throughout the
protocol. Moreover, like the protocol of Katz and Yung [25], this protocol intends to exchange
a session key in a scenario where the membership is static.

1.2 Our Contribution

The unsatisfactory situation described above has prompted this work aimed at designing an
efficient and provably-secure key agreement scheme for a dynamic group where users commu-
nicate over a high-delay network environment. We provide a rigorous proof of security of the
scheme in the model of Bresson et al. [15, 12, 13] in which an adversary controls all commu-
nication flows in the network. The concrete security reduction we exhibit in the ideal hash
model is tight; breaking the semantic security of our scheme almost always leads to solving the
well-established factoring problem, provided that the signature scheme used is existentially
unforgeable. Our group key agreement scheme also provides perfect forward secrecy [18]; i.e.,
disclosure of long-term secret keys does not compromise the security of previously established
session keys.

In wide area network environments, the main source of delay is not the computational
time needed for cryptographic operations, but the communication time spent in the network.1

Moreover, the power of computers continues to increase at a rapid pace. We refer the reader
to the literature [2, 24] for detailed discussions of comparison between the communication
latency in wide area networks and the computation time for modular exponentiation. As the
experiment results of [2] also indicate, it is widely accepted that the number of communication
rounds and the number of exchanged messages are two most important factors for efficient
key agreement over a high-delay network.

Table 1 compares the efficiency of our scheme given in Section 5 with other provably-secure

1For example, the computation of a modular exponentiation xy mod z with |x| = |y| = |z| = 1024 takes
about 9 ms using the big number library in OpenSSL on a Athlon XP 2100+ PC, whereas a 100-300 ms
round-trip delay in wide area networks is common.

3

schemes that provide forward secrecy [12, 25]. As for computational costs, the table lists the
total amount of computation that needs to be done by group members. As shown in the
table, the scheme of [12] requires n communication rounds for initial key agreement which
occurs at the time of group genesis, and j communication rounds for the rekeying operation
that follows the joining of j new users. The protocol of [25], as already mentioned, requires
n broadcast messages to be sent in each of three rounds, both for initial key agreement and
for every group rekeying operation. In contrast, our scheme takes at most 2 communication
rounds while maintaining low message complexity, in any of the three cases. Therefore, it is
straightforward to see that our dynamic group key agreement scheme is well suited for network-
ing environments with high communication latency. In particular, due to its computational
asymmetry, our scheme is best suited for unbalanced networks consisting of mobile hosts with
restricted computational resources and stationary hosts with relatively high computational
capabilities.

The remainder of this paper is organized as follows. We begin with some notations and
background in Section 2. We continue with a description of the standard security model for
group key agreement protocols in Section 3. Then, in Section 4, we define the security of
an authenticated key agreement protocol for a dynamic group, and describe the underlying
assumptions on which the security of our scheme is based. Finally, we introduce a dynamic
group key agreement scheme in Section 5 and give a security proof for this scheme in the
random oracle model in Section 6.

2 Preliminaries

In this section we first set up some notations which will be used throughout this paper (even if
some other notations are given locally near its first use). Then, as a preliminary step towards
the security proof in Section 6, we describe some number theoretic properties of the finite
cyclic group defined below.

2.1 Notations

Let N be the product of two large distinct primes p and q of equal length such that p = 2p′+1
and q = 2q′ + 1, where p′ and q′ are also prime integers. Then such an N is a Blum integer
since p ≡ q ≡ 3 (mod 4). We denote by Z

∗
N the multiplicative group modulo N . An element

v ∈ Z
∗
N is called a quadratic residue modulo N if there exists an x ∈ Z

∗
N such that x2 ≡ v

(mod N). If no such x exists, then v is called a quadratic non-residue modulo N . We denote
by g 6= 1 a quadratic residue that is chosen uniformly at random in the set of quadratic
residues in Z

∗
N . Using this quadratic residue g, we define the finite group G, over which we

must work, to be G = 〈g〉 where 〈g〉 is the cyclic subgroup of Z
∗
N generated by g.

2.2 Background

Jacobi Symbol. The Jacobi symbol (v
N) of an element v ∈ Z

∗
N is a polynomial time com-

putable function which is defined as

(
v

N
) = (

v

p
)(

v

q
),

where the symbols on the right are the Legendre symbols. However, the Jacobi symbol (v
N) can

be efficiently computed even if the factorization of N is unknown, and moreover, it provides
some information about the quadratic residuosity of v in Z

∗
N . If (v

N) is −1, then (v
p) = −1 or

(v
q) = −1 and thus v is a quadratic non-residue modulo N . If v is a quadratic residue modulo

N , then the Jacobi symbol (v
N) evaluates to 1. However, (v

N) = 1 does not imply that v is a

4

quadratic residue modulo N . In summary, v is a quadratic residue modulo N only if (v
N) is

1, and (v
N) is −1 only if v is a quadratic non-residue modulo N .

Blum Integers. It is well known that a Blum integer N = p · q has the following properties.

• Among four square roots of each quadratic residue modulo N , there exists exactly one
square root that is also a quadratic residue modulo N . In other words, squaring is a
permutation over the set of quadratic residues in Z

∗
N . To see this, it is enough to note

that (−1
p) = −1 and (−1

q) = −1, and for v ∈ Z
∗
N , v is a quadratic residue modulo N if

and only if (v
p) = 1 and (v

q) = 1.

• For u, v ∈ Z
∗
N , let (u

N) = 1 and (v
N) = −1, and let u2 ≡ v2 (mod N). Then u 6=

±v mod N and therefore Pr[gcd(u − v, N) ∈ {p, q}] = 1. To see this, it suffices to
observe that (−1

N) = 1.

Quadratic Residues. We now describe some properties of quadratic residues in Z
∗
N observed

in the work of Biham et al. [9]. Let QRN denote the set of quadratic residues in Z
∗
N . Then

the cardinality of QRN is odd which is evident from

|QRN | = ϕ(N)/4 = (p− 1) · (q − 1)/4 = p′q′, (1)

where ϕ(·) denotes the Euler Phi function.
From Equation (1) and since QRN forms a multiplicative subgroup of Z

∗
N , it follows that

the order of any quadratic residue α ∈ Z
∗
N is odd (i.e., 1, p′, q′, or p′q′). Then, because 2

is relatively prime to m = |G| = |〈g〉| (i.e., gcd(2, m) = 1), we know that 2 ∈ Z
∗
m. Namely,

2−1 mod m exists and is nothing but (m + 1)/2. Therefore, g2−1 mod m mod N is equal to
g(m+1)/2 mod N which is not only a quadratic residue modulo N , but also a square root
of g. Similarly, g2−2 mod m mod N = g((m+1)/2)2 mod m mod N is the unique square root of
g2−1 mod m mod N that is a quadratic residue modulo N .

3 The Model

Since the work of Bresson et al. [15], the formal security model described here has been
widely used in the literature [12, 13, 14, 25, 10] to properly analyze the security of group key
agreement schemes. In this work we slightly modify the model of Bresson et al. [12] which is
the first formal security model that explicitly deals with the dynamic case.

Participants. Let U = {U1, U2, . . . , Upu(k)} be the universe of all users that can participate in
a group key agreement scheme, where pu(k) is a polynomial function of the security parameter
k. Let MG be a subset of U called a multicast group, the users of which wish to establish
a session key among them. Then, in MG, one user plays a special role which will be made
clear in the description of the scheme in Section 5. We call this user the controller and each
of the other users in MG a non-controller. The role of each user as either a controller or a
non-controller is assigned by the adversary A, as shown later in this section.

In initialization phase each user Ui in U obtains a long-term public/private key pair
(PKi, SKi) by running a key generation algorithm G(1k). The set of public keys of all users
is assumed to be known a priori to all parties including the adversary A.

Partnering. Intuitively, the partner ID for any user is the set of all the users that should
compute the same session key as that user in a protocol execution. The partner ID is defined

5

via the session ID which in turn is defined as a function of the messages exchanged among
users in that protocol execution.

Before we define partnering among users, we first need to describe the basic structure of our
scheme. The scheme consists of three protocols IKA1, LP1, and JP1 for initial group forma-
tion, user leave, and user join, respectively. In each protocol participants are one controller and
one or more non-controllers; the controller exchanges messages with all other non-controllers
whereas a non-controller exchanges messages only with the controller. In a protocol execution
a user is said to accept when it has computed a session key as per protocol specification.

With the above in mind, we now define the session ID for each user Ui which is denoted
by SIDi. The session ID for a user is initially set to ∅ in a protocol execution and is defined
when the user accepts in that execution. Specifically, if Ui is a non-controller, then SIDi is
defined as SIDi = {M}, where M is the concatenation of all messages sent and received by
Ui. If instead Ui is the controller, we define SIDi as

SIDi = {M j
i | Uj ∈ Pi},

where Pi is the set of all users with which user Ui has exchanged some messages, and M j
i is

the concatenation of all messages that Ui has exchanged with Uj .
Using the session ID defined above, we now define the partner ID for user Ui which is

denoted by PIDi. Let ACCi be a variable that is TRUE if Ui has accepted, and FALSE otherwise.
Then we define the partner ID for Ui to be

PIDi = {Uj | SIDi ∩ SIDk 6= ∅ ∧ SIDk ∩ SIDj 6= ∅ ∧

ACCi = ACCk = ACCj = TRUE, for some Uk}.

Note that in the above definition of partner ID, it is possible that Ui = Uk. Therefore,
the conjunction simply says that user Uj is a partner of user Ui if SIDi ∩ SIDj 6= ∅ and
ACCi = ACCj = TRUE, or they share the same partner Uk. All SIDs and PIDs are public and
hence available to the adversary A.

Adversary. Along with a set of protocol participants, the model also includes the adversary
A who controls all communication flows in the network. The adversary interacts with users
through various queries, each of which captures a capability of the adversary. Listed below
are the queries which are allowed for adversary A to make.

• Send(Ui, m): This query models the ability of adversary A sending a message m to a
user Ui. Upon receiving the message m, user Ui is assumed to proceed as specified in
the protocol in which it is participating; the user updates its state and sends out a
response message as needed. The response message is returned to adversary A. Queries
of the form Send(Ui, m1 : MG : m2), where m1 ∈ {“IKA1”, “LP1”, “JP1”} and m2 ∈
{“controller”, “non-controller”}, allow adversary A to initiate a protocol execution
among the users inMG, specifying the role of Ui in this execution.

• Reveal(Ui): This query models the misuse of the session key by the users. If Ui has
accepted holding a session key K, then the query divulges K to adversary A.

• Corrupt(Ui): This query outputs the long-term private key SKi of user Ui.

• Test(Ui): This query models the semantic security of the session key K and is answered
as follows: one flips a secret coin b, and returns the real session key K if b = 1 or else a
random string chosen from {0, 1}ℓ if b = 0, where ℓ is the length of the session key to be
distributed in the protocol. This query can be made at most once, only to a fresh user
(see below for the definition of “fresh user”).

6

Freshness. As mentioned above, the query Test(Ui) can be asked only when user Ui is fresh.
We say that a user Ui is fresh in the current protocol execution if all the following conditions
hold: (1) ACCi = TRUE, (2) no one in PIDi has been asked for a Reveal query (note that
Ui ∈ PIDi unless PIDi 6= ∅), and (3) no one in U has ever been asked for a Corrupt query since
the initialization phase.

4 Security Definitions

In this section we first define what it means to securely distribute a session key within the
security model given above and then explore the underlying assumptions on which the security
of our scheme rests.

Authenticated Group Key Agreement. The security of an authenticated group key
agreement scheme P is defined in the following context. The adversary A, equipped with
all the queries described in the security model, executes the protocols IKA1, LP1, and JP1
as many times as she wishes in an arbitrary order, of course, with IKA1 being the first one
executed. During executions of the protocols, the adversary A, at any time, asks a Test query
to a fresh user, gets back an ℓ-bit string as the response to this query, and at some later point
in time, outputs a bit b′ as a guess for the secret bit b. Let GG (Good Guess) be the event
that the adversary A correctly guesses the bit b, i.e., the event that b′ = b. Then we define
the advantage of A in attacking P as

AdvAP (k) = 2 · Pr[GG]− 1.

We say that a group key agreement scheme P is secure if AdvAP (k) is negligible for any prob-
abilistic polynomial time adversary A.

Secure Signature Schemes. We review here the standard definition of a digital signa-
ture scheme. A digital signature scheme Γ = (G,S,V) is defined by the following triple of
algorithms:

• A probabilistic key generation algorithm G, on input 1k, outputs a pair of matching
public and private keys (PK, SK).

• A signing algorithm S is a (possibly probabilistic) polynomial time algorithm that, given
a message m and a key pair (PK, SK) as inputs, outputs a signature σ of m.

• A verification algorithm V is a (usually deterministic) polynomial time algorithm that
on input (m, σ, PK), outputs 1 if σ is a valid signature of the message m with respect
to PK, and 0 otherwise.

We denote by SuccAΓ (k) the probability of an adversary A succeeding with an existential
forgery under adaptive chosen message attack [20]. We say that a signature scheme Γ is
secure if SuccAΓ (k) is negligible for any probabilistic polynomial time adversary A. We denote
by SuccΓ(t) the maximum value of SuccAΓ (k) over all adversaries A running in time at most t.

Factoring Assumption. Let FIG be a factoring instance generator that on input 1k, runs
in time polynomial in k and outputs a 2k-bit integer N = p · q, where p and q are as defined in
Section 2.1. Then, we define SuccAN (k) as the advantage of adversary A in factoring N = p · q
chosen from FIG(1k). Namely,

SuccAN (k) = Pr[A(N) ∈ {p, q} | N(= pq)←− FIG(1k)].

7

We say that FIG satisfies the factoring assumption if for all sufficiently large k, SuccAN (k) is
negligible for any probabilistic polynomial time adversary A. Similarly as before, we denote
by SuccN (t) the maximum value of SuccAN (k) over all adversaries A running in time at most
t.

5 The Proposed Scheme

We now present a dynamic group key agreement scheme consisting of three protocols IKA1,
LP1, and JP1 for initial group formation, user leave, and user join, respectively.

Let N be any possible output of FIG(1k), and let g 6= 1 and G be as defined in Section
2.1. For the rest of the paper, we denote by Uc the controller in a multicast group MG, and
by H : {0, 1}∗ → {0, 1}ℓ a hash function modelled as a random oracle in the security proof
of the scheme. For simplicity, we will often omit “mod N” from expressions if no confusion
arises.

5.1 Initial Key Agreement: Protocol IKA1

Assume a multicast group MG = {U1, U2, . . . , Un} of n users who wish to establish a session
key by participating in protocol IKA1. Then IKA1 runs in two rounds, one with n−1 unicasts
and the other with a single broadcast, as follows:

1. Each Ui picks a random ri ∈ [1, N] and computes zi = gri mod N . Ui 6= Uc then signs
Ui‖zi to obtain signature σi and sends mi = Ui‖zi‖σi to the controller Uc.

2. Upon receiving each message mi, Uc verifies the correctness of mi and computes yi =
zrc

i mod N . After receiving all the n− 1 messages, Uc computes Y as Y =
∏

i∈[1,n]\{c} yi

modN if n is even, and as Y =
∏

i∈[1,n] yi mod N if n is odd. Uc also computes the set

T = {Ti | i ∈ [1, n] \ {c}} where Ti = Y · y−1
i mod N . Let Z = {zi | i ∈ [1, n]}. Then, Uc

signsMG‖Z‖T to obtain signature σc and broadcasts mc =MG‖Z‖T ‖σc to the entire
group.

3. Upon receiving the broadcast message mc, each Ui 6= Uc verifies the correctness of
mc and computes Y = zri

c · Ti mod N . All users in MG compute their session key as
K = H(T ‖Y), and store their random exponent ri and the set Z for future use.

To take a simplified example as an illustration, consider a multicast group MG = {U1, U2,
. . . , U5} and let Uc = U5. Then, in IKA1, the controller U5 receives {gr1 , gr2 , gr3 , gr4} from
the rest of the users, and broadcasts Z = {gr1 , gr2 , gr3 , gr4 , gr5} and T = {gr5(r2+r3+r4+r5),
gr5(r1+r3+r4+r5), gr5(r1+r2+r4+r5), gr5(r1+r2+r3+r5)}. All users in MG compute the same key:
K = H(T ‖Y), where Y = gr5(r1+r2+r3+r4+r5).

5.2 User Leave: Protocol LP1

Assume a scenario where a set of users L leaves a multicast groupMGp. Then protocol LP1 is
executed to provide each user of the new multicast groupMGn =MGp \L with a new session
key. Any remaining user can act as the controller in the new multicast group MGn. LP1
requires only one communication round with a single broadcast and it proceeds as follows:

1. Uc picks a new random r′c ∈ [1, N] and computes z′c = gr′c mod N . Using r′c, z′c and
the saved set Z, Uc then proceeds exactly as in IKA1, except that it broadcasts mc =
MGn‖zc‖z

′
c‖T ‖σc where zc is the random exponential from the previous controller.

8

2. Upon receiving the broadcast message mc, each Ui 6= Uc verifies that: (1) V(MGn‖zc‖z
′
c‖

T , σc, PKc) = 1 and (2) the received zc is equal to the one that is received in the previous
session. All users in MGn then compute their session key as K = H(T ‖Y) and update
the set Z.

We assume that in the previous example, a set of users L = {U2, U4} leaves the multicast
group MGp = {U1, U2, . . . , U5} and hence the remaining users form a new multicast group
MGn = {U1, U3, U5}. Also assume that U5 remains as the controller in the new multicast
group MGn. Then U5 chooses a new random value r′5, and broadcasts z5, z′5 = gr′5 , and
T = {gr′5(r3+r′5), gr′5(r1+r′5)}. All users in MGn compute the same key: K = H(T ‖Y), where
Y = gr′5(r1+r3+r′5).

5.3 User Join: Protocol JP1

Assume a scenario in which a set of j new users, J , joins a multicast group MGp to form
a new multicast group MGn =MGp ∪ J . Then the join protocol JP1 is run to provide the
users of MGn with a session key. Any user from the previous multicast group MGp can act
as the controller in the new multicast groupMGn. JP1 takes two communication rounds, one
with j unicasts and the other with a single broadcast, and it proceeds as follows:

1. Each Ui ∈ J picks a random ri ∈ [1, N] and computes zi = gri mod N . Ui ∈ J then
generates signature σi of Ui‖zi, sends mi = Ui‖zi‖σi to Uc, and stores its random ri.

2. Uc proceeds in the usual way, choosing a new random r′c, computing z′c, Y , T and K =
H(T ‖Y), updating the set Z with new zi’s, and then broadcasting mc = MGn‖zc‖Z‖
T ‖σc.

3. After verifying the correctness of mc (including the verification by Ui ∈ MGp \ {Uc}
that the received zc is equal to the one received in the previous session), each Ui 6= Uc

proceeds as usual, computing Y = z′ri

c · Ti mod N and K = H(T ‖Y). All users inMGn

store or update the set Z.

Consider the same example as used for LP1 and assume that a set of users J = {U2} joins the
multicast groupMGp = {U1, U3, U5} to form a new multicast groupMGn = {U1, U2, U3, U5}.
Also assume that controller Uc = U5 remains unchanged fromMGp toMGn. Then, U5 receives
{gr′2} from the users in J , and broadcasts z′5, Z = {gr1 , gr′2 , gr3 , gr′′5 } and T = {gr′′5 (r′2+r3),
gr′′5 (r1+r3), gr′′5 (r1+r′2)} to the rest of the users, where r′′5 is the new random exponent of controller
U5. All users inMGn compute the same key: K = H(T ‖Y), where Y = gr′′5 (r1+r′2+r3).

6 Security Analysis

Theorem 1. Let AdvP (t, qse, qh) be the maximum advantage in attacking P , where the max-

imum is over all adversaries that run in time t, and make qse Send queries and qh random

oracle queries. Then we have

AdvP (t, qse, qh) ≤ 2 · SuccN (t′) + 2pu(k) · SuccΓ(t′′),

where t′ = t + O(qsepu(k)texp + qhtexp), t′′ = t + O(qsepu(k)texp), and texp is the time required

to compute a modular exponentiation in G.

In the following we briefly outline the proof of Theorem 1. The proof is divided into
two cases: (1) the case that the adversary A breaks the scheme by forging a signature with

9

respect to some user’s public key, and (2) the case that A breaks the scheme without forging
a signature. We argue by contradiction, assuming that there exists an adversary A who has
a non-negligible advantage in attacking P . For the case (1), we reduce the security of scheme
P to the security of the signature scheme Γ, by constructing an efficient forger F who given
as input a public key PK and access to a signing oracle associated with this key, outputs
a valid forgery with respect to PK. For the case (2), the reduction is from the factoring
problem; given the adversary A, we build an efficient factoring algorithm B which given as
input N = p · q generated by FIG(1k), outputs either p or q.

Proof. Assume by contradiction that there exists an adversary A who has a non-negligible
advantage in attacking the scheme P . Then we will show that either an efficient signature
forger F against Γ or an efficient factoring algorithm B for N can be constructed from the
adversary A.

6.1 Signature Forger F

Assume that the adversary A gains its advantage by forging a signature with respect to some
user’s public key. Then we build from A a signature forger F against the signature scheme Γ.
The forger F , given as input a public key PK and access to a signing oracle associated with
this key, outputs a valid forgery (m, σ) with respect to PK, i.e., V(m, σ, PK) = 1 such that
σ was not previously output by the signing oracle as a signature on the message m.
F begins by choosing at random a user Uf ∈ U , and setting PKf to PK. For all other

users, F honestly generates a public/private key pair by running the key generation algorithm
G(1k). F then invokes A and simulates the queries from A as follows:

• Send(Ui, m): If i 6= f , F knows the private signing key of Ui, and hence can answer the
queries following the scheme exactly as specified. If instead i = f , then F does not have
the private signing key of Ui. Nevertheless, F can obtain signatures of any messages it
wants by accessing the signing oracle associated with PK.

• Reveal(Ui) / Test(Ui): These queries are answered in the obvious way.

• Corrupt(Ui): If Ui 6= Uf , then F simply hands the private key SKi which was generated
by F itself. However, if A corrupts Ui = Uf , then F does not have the associated private
key, and so halts and outputs “fail”.

The simulation provided above is perfectly indistinguishable from the real execution unless
adversary A makes the query Corrupt(Uf). Throughout this simulation, F monitors each Send
query from A, and checks if it includes a valid message/signature pair (m, σ) with respect to
PK. If no such query is made until A stops, then F halts and outputs “fail”. Otherwise, F
outputs (m, σ) as a valid forgery with respect to PK.

Now, we quantify the success probability of F in outputting a forgery in the simulation
above. Let Forge be the event that A outputs a valid forgery with respect to the public key
PKi of some user Ui ∈ U before making the query Corrupt(Ui). Then, since SuccFΓ (k) =
Pr[Forge]/pu(k), it follows by definition that

Pr[Forge] ≤ pu(k) · SuccΓ(t′′). (2)

In the simulation above, F performs at most pu(k) modular exponentiations to answer a
Send query, and all other queries (Reveal, Corrupt or Test) can be trivially answered. Therefore,
since the running time of F is the running time of A plus the time required to process all the
queries from A, we have t′′ = t + O(qsepu(k)texp) as claimed.

10

6.2 Factoring Algorithm B

The basic idea of the proof given here is inspired by the technique of Biham, et al. [9], where
they showed that breaking the generalized Diffie-Hellman assumption modulo a Blum integer
is at least as hard as factoring Blum integers.

Assume that the adversary A breaks the scheme P without forging a signature. Then,
we construct from A an efficient factoring algorithm B which given as input a Blum integer
N = p · q chosen from FIG(1k), outputs either p or q. B begins by running G(1k) to generate
(PKi, SKi) for each user Ui ∈ U , and setting g = v22

mod N where v is an integer chosen
uniformly at random in Z

∗
N such that the Jacobi symbol (v

N) is −1. Because N is a Blum
integer, v2 is a uniformly distributed quadratic residue in Z

∗
N and furthermore, squaring is a

permutation on the set of quadratic residues in Z
∗
N . Therefore, g is also a uniformly distributed

quadratic residue in Z
∗
N . Let d be the order of g in Z

∗
N , which of course is unknown to B.

Then, since d is always odd, we have that 2 ∈ Z
∗
d; i.e., 2−1 mod d exists. For brevity, we use

g2−i

mod N to denote g2−i mod d mod N for i = 1, 2. B now invokes A and simulates all the
queries from A as follows.

• Send: B handles all the Send queries of A as per the specifications of the protocols,
except that it computes each zi in the following different yet indistinguishable way. B
first selects a random ai ∈ [1, N] and then computes zi as

zi = gri = gai+2−1
= gai · g2−1

= gai · v2,

where the computations are all mod N . Notice that the random exponent ri denotes
the value ai + 2−1 mod d which, of course, is unknown to B. B records the tuple 〈zi, ai〉
for its own use.

We now show that B can correctly compute the set T even if it does not know any of
the random exponents. Without loss of generality, let MG = {U1, U2, . . . , Un} be the
multicast group of n users who are participating in the current protocol execution and
assume that B has obtained all the tuples 〈zi, ai〉 for i ∈ [1, n]. Then if n is odd, B
computes each Ti as follows:

Ti =
∏

j∈[1,n]\{i}

zrc

j

= grc·
∑

j∈[1,n]\{i} rj

= (grc)(n−1)/2+
∑

j∈[1,n]\{i} aj

= z(n−1)/2
c ·

∏

j∈[1,n]\{i}

z
aj
c ,

where the computations are all mod N . The equation for the case of even n requires
only a minor modification to the equation above, and we omit it here.

• H/Reveal: B simulates the random oracle H by assigning a random string hδ from {0, 1}ℓ

to each fresh query δ, and then adding the tuple 〈δ, hδ〉 to the random oracle simulation
list HL. If the query δ is not new, then the answer is retrieved from the list HL.

We now describe how to answer Reveal queries. As can be seen from the way B han-
dles the Send queries from A, there is no session key available to B in this simulation.
However, all Reveal queries can be simulated by using the fact that the session keys
distributed in the scheme are outputs of random oracle H. To aid the simulation, B
maintains a special list RL which contains information related to all the revealed (fake)

11

session keys. To be concrete, suppose that A has made the query Reveal(Ui) when no
one in PIDi has been asked for a Reveal query. Then B selects a random string hT from
{0, 1}ℓ to represent the genuine session key H(T ‖ Y), answers the query Reveal(Ui) with
hT , and adds the tuple 〈T , hT 〉 to the list RL. If instead some user in PIDi has been
revealed before the query Reveal(Ui) is made, then RL must contain a tuple 〈T , hT 〉. In
this case B simply returns the random string hT taken from the list RL.

There remains one thing to consider before we proceed to describe how to simulate
other queries. Observe that H may have been queried on T ‖ Y at some time before
the query Reveal(Ui) is made, or vice versa. This means that there is a possibility of
inconsistency between answers of Reveal queries and random oracle queries. In other
words, to represent the same value H(T ‖ Y), B could end up using two different
values: one as the answer to the random oracle query T ‖ Y and the other as the
answer to the query Reveal(Ui). The main difficulty in providing the solution for this
potential problem is the fact that the value Y is unknown to B. But fortunately, we can
circumvent this difficulty by using the following observation. Assume again a multicast
groupMG = {U1, U2, . . . , Un} of n users. Then, since for some i ∈ [1, n] \ {c},

Y ≡ (zc)
ri · Ti ≡ grc·ri · Ti

≡ g(ac+2−1)·(ai+2−1) · Ti

≡ gac·ai+2−1·(ac+ai)+2−2
· Ti (mod N),

it is immediate that

g2−2
≡ Y · (gac·ai · g2−1(ac+ai) · Ti)

−1

≡ Y · (gac·ai · (v2)ac+ai · Ti)
−1 (mod N).

(3)

From (3) and since (g2−2
mod N
N) = 1, it follows that given a value Y ′ ∈ Z

∗
N , the unknown

value Y is equal to Y ′ only if

u2 ≡ v2 (mod N) and (
u

N
) = 1, (4)

where u = Y ′ · (gai·ac · (v2)ai+ac · Ti)
−1 mod N . Put succinctly, if (u

N) = −1 or u2 is not
congruent to v2 mod N , then Y 6= Y ′. Otherwise, since (v

N) = −1 and N is a Blum
integer, it must be the case that u 6= ±v mod N and thus Pr[gcd(u−v, N) ∈ {p, q}] = 1.

This implies that B remains always able to answer correctly all the random oracle queries
and Reveal queries of A as follows. Suppose that the query Reveal(Ui) is made by A.
If no one in PIDi has been asked for a Reveal query, then B searches all tuples in HL
such that δ = T ‖ Y ′ for some Y ′ ∈ Z

∗
N . For each such a tuple 〈δ, hδ〉, B can either

factor N or conclude Y 6= Y ′, by using Equation (4). In the former case, B halts all
the simulations and outputs gcd(u − v, N) as the final outcome. In the latter case, B
proceeds to answer the query in the usual way, i.e., by returning a random string hT

from {0, 1}ℓ and adding the tuple 〈T , hT 〉 to RL.

The case that the adversary A makes the random oracle query δ of the form T ‖ Y ′ can
be worked out in an analogous way.

• Corrupt: These queries are answered in the obvious way.

• Test: B simply returns a random string chosen from {0, 1}ℓ.

12

Now, given the simulation above, let’s consider the success probability of B in factoring
N . Without loss of generality, we assume that A has made the Test query to a user whose
unknown (real) session key is H(Tte ‖ Yte). Let Ask be the event that A makes a query to H
on Tte ‖ Yte. At some point, when A terminates and outputs its guess b′, B simply checks the
list HL to see if the event Ask has occurred, using the same way as it did for Reveal queries.
If so, then B succeeds in factoring N . This is true because we are assuming here the case that
A gains its advantage without forging a signature. Therefore, we have

SuccBN (k) ≥ Pr[Forge ∧ Ask], (5)

where the inequality is due to the possibility that B can succeed in factoring while answering
Reveal queries or random oracle queries. Furthermore, since A cannot gain any advantage
in guessing the bit b without making a query to H on Tte ‖ Yte, we obtain that Pr[GG |
Forge ∧ Ask] = 1/2 and thus Pr[GG ∧ Forge ∧ Ask] ≤ 1/2. Now, from the assumption that the
advantage of A in breaking P without forging a signature is non-negligible, it must be the
case that Pr[Forge ∧ Ask] is non-negligible. But then, by (5), this leads to the contradiction
that there exists an factoring algorithm B whose success probability in factoring N is non-
negligible. Therefore, we arrive at the conclusion that the advantage of A in breaking P
without forging a signature is negligible.

Regarding the running time of B, we see, as before, that processing the Send queries
from A takes O(qsepu(k)texp). In addition, the amount of time required to process random
oracle queries and Reveal queries is bounded by O(qhtexp). Hence we have that t′ = t +
O(qsepu(k)texp + qhtexp), since the running time of B is the running time of A added to the
time needed to process all the queries from A.

Now, it remains to quantify the advantage of A in attacking our scheme. A straightforward
probability calculation shows that:

AdvAP (k) = 2 · Pr[GG]− 1

= 2 · Pr[GG ∧ Forge] + 2 · Pr[GG ∧ Forge]− 1

≤ 2 · Pr[Forge] + 2 · Pr[GG ∧ Forge]− 1

= 2 · Pr[Forge] + 2(Pr[GG ∧ Forge ∧ Ask] + Pr[GG ∧ Forge ∧ Ask])− 1.

Since Pr[GG ∧ Forge ∧ Ask] ≤ 1/2, we have

AdvAP (k) ≤ 2 · Pr[Forge] + 2 · Pr[GG ∧ Forge ∧ Ask].

Finally, it follows from Equations (2) and (5) that

AdvAP (k) ≤ 2pu(k) · SuccΓ(t′′) + 2 · SuccN (t′).

This completes the proof of Theorem 1.

7 Conclusion

In this paper we have presented a dynamic group key agreement scheme. The scheme is simple
and practical while meeting strong notions of security. Compared with other provably-secure
schemes published up to date, our scheme incurs much lower communication overhead for
initial group formation and for group updates, both in terms of the number of communication
rounds and the number of messages sent by all users. Due to its communication efficiency, our
family of protocols for dynamic group key agreement is well suited for a lossy and high-delay
network environment.

13

References

[1] D.A. Agarwal, O. Chevassut, M.R. Thompson, and G. Tsudik: An Integrated Solution for
Secure Group Communication in Wide-Area Networks. In Proc. of 6th IEEE Symposium
on Computers and Communications, pp.22–28, 2001.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik: On the Performance of
Group Key Agreement Protocols. In Proc. of 22nd IEEE International Confer-
ence on Distributed Computing Systems, pp.463–464, 2002. Full version available at
http://www.cnds.jhu.edu/publications/.

[3] G. Ateniese, M. Steiner, and G. Tsudik: New multiparty authentication services and key
agreement protocols. IEEE Journal on Selected Areas in Communications, vol.18, no.4,
pp.628–639, April 2000.

[4] K. Becker, and U. Wille: Communication complexity of group key distribution. In Proc.
of 5th ACM Conf. on Computer and Communications Security, pp.1–6, 1998.

[5] M. Bellare, D. Pointcheval, and P. Rogaway: Authenticated key exchange secure against
dictionary attacks, Eurocrypt’00, LNCS 1807, pp.139–155, 2000.

[6] M. Bellare and P. Rogaway: Entity authentication and key distribution. Advances in
Cryptology, Crypto’93, LNCS 773, pp.232-249, 1993.

[7] M. Bellare and P. Rogaway: Random oracles are practical: A paradigm for designing
efficient protocols. In Proc. of 1st ACM Conf. on Computer and Communications Security
(CCS’93), pp.62–73, 1993.

[8] M. Bellare and P. Rogaway: Provably secure session key distribution — the three party
case. In Proc. of 27th ACM Symposium on the Theory of Computing (STOC), pp.57–66,
1995.

[9] E. Biham, D. Boneh, and O. Reingold: Breaking generalized Diffie-Hellman modulo a
composite is no easier than factoring. Information Processing Letters (IPL), vol.70, no.2,
pp.83–87, 1999.

[10] C. Boyd and J.M.G. Nieto: Round-optimal contributory conference key agreement.
PKC2003, LNCS 2567, pp.161–174, 2003.

[11] E. Bresson and D. Catalano: Constant round authenticated group key agreement via
distributed computation. Proc. 7th International Workshop on Practice and Theory in
Public Key Cryptography (PKC’04), LNCS 2947, pp.115–129, 2004.

[12] E. Bresson, O. Chevassut, and D. Pointcheval: Provably authenticated group Diffie-
Hellman key exchange — the dynamic case. Asiacrypt’01, LNCS 2248, pp.290–309, 2001.

[13] E. Bresson, O. Chevassut, and D. Pointcheval: Dynamic group Diffie-Hellman key ex-
change under standard assumptions. Eurocrypt’02, LNCS 2332, pp.321–336, 2002.

[14] E. Bresson, O. Chevassut, and D. Pointcheval: Group Diffie-Hellman key exchange secure
against dictionary attacks. Asiacrypt’02, LNCS 2501, pp.497–514, 2002.

[15] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater: Provably authenticated
group Diffie-Hellman key exchange. In Proc. of 8th ACM Conf. on Computer and Com-
munications Security, pp.255–264, 2001.

14

[16] M. Burmester and Y. Desmedt: A secure and efficient conference key distribution system.
Eurocrypt’94, LNCS 950, pp.275–286, 1994.

[17] W. Diffie and M.E. Hellman: New Directions in cryptography. IEEE Transactions on
Information Theory, vol.22, pp.644-654, 1976.

[18] W. Diffie, P. van Oorschot, and M. Wiener: Authentication and authenticated key ex-
changes. Designs, Codes, and Cryptography, vol.2, pp.107–125, 1992.

[19] T. ElGamal: A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Trans. on Information Theory, vol.31, no.4, pp.469–472, July 1985.

[20] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against adap-
tive chosen-message attacks. SIAM Journal of Computing, vol.17, no.2, pp.281–308, 1988.

[21] I. Ingemarsson, D. Tang, and C. Wong: A conference key distribution system. IEEE
Trans. on Information Theory, vol.28, no.5, pp.714–720, September 1982.

[22] M. Just and S. Vaudenay: Authenticated multi-party key agreement. Asiacrypt’96, LNCS
1163, pp.36-49, 1996.

[23] Y. Kim, A. Perrig, and G. Tsudik: Simple and fault-tolerant key agreement for dynamic
collaborative groups. In Proc. of 7th ACM Conf. on Computer and Communications
Security, pp.235–244, 2000.

[24] Y. Kim, A. Perrig, and G. Tsudik: Communication-efficient group key agreement. In Proc.
of International Federation for Information Processing — 16th International Conference
on Information Security (IFIP SEC’01), pp.229–244, June 2001.

[25] J. Katz and M. Yung: Scalable protocols for authenticated group key exchange.
Crypto’03, LNCS 2729, pp.110–125, August 2003.

[26] O. Pereira and J.-J. Quisquater: A security analysis of the Cliques protocols suites. Proc.
14th IEEE Computer Security Foundations Workshop, pp.73–81, June 2001.

[27] D.G. Steer, L. Strawczynski, W. Diffie, and M. Wiener: A secure audio teleconference
system. Crypto’88, LNCS 403, pp.520–528, 1988.

[28] A. Shamir: How to share a secret. Communications of the ACM, vol.22, no.11, pp.612–
613, November 1979.

[29] M. Steiner, G. Tsudik, and M. Waidner: Key agreement in dynamic peer groups. IEEE
Trans. on Parallel and Distrib. Syst., vol.11, no.8, pp.769–780, August 2000.

[30] W.-G. Tzeng and Z.-J. Tzeng: Round-efficient conference key agreement protocols with
provable security. Asiacrypt’00, LNCS 1976, pp.614–627, 2000.

15

