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Chapter 1abstratThis paper presents a new programming language for implementing dis-tributed algorithms enoded by means of loal omputations [32℄. The lan-guage, alled LIDiA , is based on a two-level transition system model: the �rstlevel is used to speify the behavior of eah single omponent, whereas theseond level aptures their interations. Transitions are basially expressedin a preondition-e�et style. Furthermore, LIDiA depends on a logi L�1that is used to express the preonditions of eah transition. The logi L�1is an extension of �rst-order logi by means of new ounting quanti�ers andadditional omputation symbols. We illustrate the di�erent aspets of im-plementations in LIDiA using various lassial distributed algorithms.
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Chapter 2Introdution2.1 The ModelLoal omputations on graphs, and partiularly graph relabelling systems,have been introdued in [4℄ as a suitable tool for enoding distributed al-gorithms, for proving their orretness and for understanding their power.In this model, a network is represented by a graph whih verties denoteproessors, and edges denote ommuniation links. The loal state of a pro-essor (resp. link) is enoded by the label attahed to the orrespondingvertex (resp. edge). A relabelling rule is a rewriting rule whih has the sameunderlying �xed graph for its left-hand side and its right-hand side, but withan update of the labels. Aording to its own state and to the states ofits neighbours, eah vertex may deide to realize an elementary omputa-tion step. After this step, the states of this vertex, of its neighbours and ofthe orresponding edges may hange aording to some spei� omputationrules. Using this solid theoretial basis, we have developed the LIDiA pro-gramming language for expressing and programming distributed algorithms[32℄.2.2 Related ModelsThe language LIDiA an be viewed as a oordination language that allowsusers to design and implement onurrent systems. The model provides apreise way of desribing and reasoning about system omponents that in-terat with eah other and that operate at di�erent speeds. Our approahonsists of de�ning an operational model for LIDiA , based on a two-leveltransition system. The �rst level onsists of a number of transition systems,eah of whih de�nes the behaviour of a single proess. The behaviour of aproess depends on the states of its neighbourhood. The seond level on-sists of a single transition system that de�nes the interations among the�rst-level transition systems. Multi-level transition systems were �rst used5



to de�ne the formal semanti of oordination languages in [40℄ and [41℄. Thisformalism is not spei� to any language nor to ontrol-oriented oordina-tion. Indeed, multi-level transition systems are muh more general and seemto be suitable for formalizing data-oriented oordination models and lan-guages as well, as illustrated in [8℄. Moreover, LIDiA is not based on anyautomaton model. Our goal was simply to develop a programming languagewhih should be as simple as possible and ould express all transition de�ni-tions needed to desribe any given distributed algorithm enoded by meansof loal omputations.Although, the multi-level transition system is powerful enough to modeldistributed algorithms, the power of LIDiA is addited to the desriptiveomplexity of the logi L�1. Similar logis have been studied by other au-thors, and shown to be partiularly robust by [38, 17, 22℄. The most impor-tant aspet of the language L�1 is, among other things, its ability to expressounting. In fat, ounting is a fundamental operation of numerous algo-rithms. Counters onstitute also an essential primitive of query languages. Inrelational databases, pratial query languages, suh as SQL, provide oun-ters as built-in funtions of the languages. Counters map relations to inte-gers. They are of great importane from a pratial point of view. Moreover,ounters raise hallenging theoretial problems. Logial languages generallylak the ability to express ounting, though it is very easy to ount on anyomputational devie [1℄.2.3 Other ModelsThe LIDiA model is similar to the labelled transition system models used tode�ne semantis for proess algebrai languages like CSP [23℄ and CCS [31℄.In ontrast to suh languages, LIDiA does not de�ne parallel omposition andeah omponent has only two external ations: Send and Reeive. LIDiA isexatly devoted to the design and implementation of distributed algorithmsenoded by means of loal omputations. Other languages for desribingonurrent systems are based on several types of automata, with di�erentnotions of omposition and external behaviour; for instane, TLA [24℄ andUNITY [6℄ are based on state automata that ombine via shared variables.The ommuniation in LIDiA is due to a messages passing system that isenoded in the seond level transition system.Although IOA [15℄ and LIDiA use transition de�nition (guarded om-mands) onsisting of preonditions and e�ets, the preonditions in LIDiAare exlusively desribed in the logi L�1. We have shown that this logi hasenough desriptive power to fully desribed all PTIME queries in the stru-tures used in LIDiA . Finally, this partiularity of L�1 has help us to statethe ompleteness of LIDiA . 6



Chapter 3Loal Computations forEnoding DistributedAlgorithmsIn this Setion, we give a few de�nitions of loal omputations, and parti-ularly of graph relabelling systems. As usual, suh a network is represented by a graph whose verties stand for proessors and edges for (bidire-tional) links between proessors. At every time, eah vertex and eah edgeis in some partiular state and this state will be enoded by a vertex or edgelabel. Aording to its own state and to the states of its neighbours, eahvertex may deide to realize an elementary omputation step. After this step,the states of this vertex, of its neighbours and of the orresponding edgesmay have hanged aording to some spei� omputation rules. Let us reallthat graph relabelling systems satisfy the following requirements:(C1) they do not hange the underlying graph but only the labelling of itsomponents (edges and/or verties), the �nal labelling being the result,(C2) they are loal, that is, eah relabelling hanges only a onneted sub-graph of a �xed size in the underlying graph,(C3) they are loally generated, that is, the appliability ondition of therelabelling only depends on the loal ontext of the relabelled subgraph.For suh systems, the distributed aspet omes from the fat that several re-labelling steps an be performed simultaneously on �far enough� subgraphs,giving the same result as a sequential realization of them, in any order. Alarge family of lassial distributed algorithms enoded by graph relabellingsystems is given in [2, 3℄. In order to make the de�nitions easy to read,we give in the following an example of a graph relabelling system for om-puting a spanning tree, and an example of loal omputations for deteting7



stable properties. Then, the formal de�nitions of loal omputations will bepresented.3.1 Distributed omputation of a spanning treeLet us �rst illustrate graph relabelling systems by onsidering a simple dis-tributed algorithm whih omputes a spanning tree of a network. Assumethat a unique given proessor is in an �ative� state (enoded by the labelA), all other proessors being in some �neutral� state (label N) and thatall links are in some �passive� state (label 0). The tree initially ontains theunique ative vertex. At any step of the omputation, an ative vertex mayativate one of its neutral neighbours and mark the orresponding link whihgets the new label 1. This omputation stops as soon as all the proessorshave been ativated. The spanning tree is then obtained by onsidering allthe links with label 1.An elementary step in this omputation may be depited as a relabellingstep by means of the following relabelling rule R whih desribes the orre-sponding label modi�ations (remember that labels desribe proessor sta-tus):
0 1

R :
A N A AWhenever an A-labelled node is linked by a 0-labelled edge to an N-labelled node, then the orresponding subgraph may rewrite itself aordingto the rule.A sample omputation using this rule is given in Figure 3.1. Relabellingsteps may our onurrently on disjoint parts on the graph. When the graphis irreduible, i.e no rule an be applied, a spanning tree, onsisting of edgeslabelled 1, is omputed.
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Figure 3.1: Distributed omputation of a spanning tree8



3.2 Detetion of stable propertiesThe algorithm of Szymanski, Shi and Prywes (SSP's algorithm for short)[44℄ is a good example to illustrate the notion of loal omputations.Consider a distributed algorithm whih terminates when all proessesreah their loal termination onditions, eah proess is able to determineonly its own termination ondition. SSP's algorithm detets an instant inwhih the entire omputation is ahieved.Let G be a graph, to eah node v is assoiated a prediate P (v) and aninteger a(v): Initially P (v) is false and a(v) is equal to �1: Transformationsof the value of a(v) are de�ned by the following rules.Eah loal omputation ats on the integer a(v0) assoiated to the vertexv0; the new value of a(v0) depends on values assoiated to its neighbours.More preisely, let v0 be a vertex and let fv1; :::; vdg the set of verties adja-ent to v0:We onsider in this Setion the following assumption. For eah node v, thevalue P (v) eventually beomes true and remains true for ever.� If P (v0) = false then a(v0) = �1;� if P (v0) = true then a(v0) = 1 +Minfa(vk) j 0 � k � dg:This algorithm is useful to detet loally the global termination of a dis-tributed algorithm [30℄.A large family of distributed algorithms an be desribed as loal omputa-tions, inluding eletion, termination detetion, omputation of a spanningtree [3℄. Let us give now a formal de�nition of loal omputations.3.3 Formal de�nition of loal omputationsLoal omputations are haraterized by appliations of rules suh that: anappliation of a rule to a ball depends exlusively on the labels appearingin the ball and hanges only these labels. The previous examples an be de-sribed by the following general model. Let us introdue a few notations. Weonsider graphs whih are �nite, undireted and onneted without multipleedges and self-loops. If G is a graph, V (G) denotes the set of verties andE(G) denotes the set of edges. For a vertex v and a positive integer k; the ballof radius k with enter v, denoted by BG(v; k), is the subgraph of G induedby the set of verties V 0 = fv0 2 V j d(v; v0) � kg. Let L be an alphabet. Agraph labelled over L will be denoted by (G;�), where � : V (G)[E(G) ! Lis the funtion labelling verties and edges. The graph G is alled the un-derlying graph, and the mapping � is a labelling of G. Let GL be the lassof graphs labelled over some �xed alphabet L.9



De�nition 3.3.1 A graph rewriting relation is a binary relation R � GL �GL losed under isomorphism. The transitive losure of R is denoted R�.An R�rewriting hain is a sequene G1;G2; : : : ;Gn suh that for every i,1 � i < n, Gi R Gi+1. A sequene of length 1 is alled an R�rewriting step(a step for short).By �losed under isomorphism� we mean that if G1 ' G and G R G0, thenthere exists a labelled graph G01 suh that G1 R G01 and G01 ' G0.De�nition 3.3.2 Let R � GL � GL be a graph rewriting relation.1. R is a relabelling relation if whenever two labelled graphs are in relationthen their underlying graphs are equal (not only isomorphi):G R H =) G = H:When R is a relabelling relation we shall speak about R�relabellinghains (resp. step) instead of R�rewriting hains (resp. step).2. A relabelling relation R is loal if whenever (G;�) R (G;�0), the la-belling � and �0 only di�er on some ball of radius 1 :9 v 2 V (G) suh that 8 x =2 V (BG(v; 1)) [E(BG(v; 1));�(x) = �0(x):We say that the step hanges labels in BG(v; 1):3. An R�normal form of G 2 GL is a labelled graph G0 suh thatG R� G0, and G0 R G00 holds for no G00 in GL. We say that R isNoetherian if for every graphG in GL there exists no in�niteR�relabellinghain starting from G. Thus, if a relabelling relation R is Noetherian,then every labelled graph has an R�normal form.The next de�nition states that a loal relabelling relation is loally gener-ated if its restrition on entered balls of radius 1 determines its omputationon any graph.De�nition 3.3.3 Let R be a relabelling relation. Then R is loally generatedif the following is satis�ed: For any labelled graphs (G;�), (G;�0), (H; �),(H; �0) and any verties v 2 V (G), w 2 V (H) suh that the balls BG(v; 1) andBH(w; 1) are isomorphi via ' : V (BG(v; 1)) �! V (BH(w; 1)) and '(v) =w, the following three onditions1. 8 x 2 V (BG(v; 1))[E(BG(v; 1)); �(x) = �('(x)) and �0(x) = �0('(x));2. 8 x =2 V (BG(v; 1)) [E(BG(v; 1)); �(x) = �0(x),3. 8 x =2 V (BH(w; 1)) [E(BH(w; 1)); �(x) = �0(x),imply that (G;�) R (G;�0) if and only if (H; �) R (H; �0).10



Finally, loal omputations are the omputations de�ned by a relationloally generated. The reader an �nd in [3℄ detailed de�nitions, formal prop-erties and many examples of loal omputations.Let us also note that labels an be sets or sets of sets. In partiular, it ispossible to handle graphs desribed as labels. For example, the Mazurkiewizuniversal graph reonstrution is a distributed enumeration algorithm whihallows the reonstrution of an anonymous graph. The manipulated labelsfor suh an algorithm are sets standing for graphs (see [3℄).
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Chapter 4The language LIDiA4.1 The modelOur approah onsists of de�ning an operational model for LIDiA that isbased on a two-level transition system. The �rst level onsists of a number oftransition systems, eah of whih de�nes the behavior of a single proess. Theseond level onsists of a single transition system that de�nes the interationsamong the �rst-level transition systems.We use a set of �rst-level transition systems to speify proesses as au-tonomous entities that an ompute and / or interat with their environment.Thus every step of the omputation in suh a proess may depend not onlyon the internal state of the proess, but also on some input it may obtainfrom its environment. Suh proesses are open systems in a sense analogousto Wagner's notion of Interation Mahines [42℄. Typially, eah suh transi-tion system is unbounded and nondeterministi, re�eting the fat that theproess it represents is an interative system; i.e., its unpreditable behaviordepends on the input it obtains from an external environment that it doesnot ontrol. The environment of eah proess is represented by the set ofproesses that belong to its neighborhood and by system external ationsthat ould fore the exeution of a given ation in the network. Transi-tion systems, whih are strutures ommonly used in operational semantis,have been used in an uniform and universal way. Every proess that existsin LIDiA , is modeled as a transition system (in the �rst-level). Eah suhtransition system desribes the potential steps that its orresponding proessan take, assuming that it is embedded in an environment that is optimallyooperative.The details of the internal ativity of eah proess (e.g., its omputations)are desribed by its respetive �rst-level transition system. Most suh detail isirrelevant for, and hene unobservable by, the seond-level transition system.The seond-level transition system, thus abstrat away the semantisof the �rst-level proesses, and is onerned only with their (mutually en-12



gaging) externally observable behavior. The external ativities of an entireLIDiA appliation are modeled by the seond-level transition system. Here,a on�guration orresponds to a set of proesses eah of whih is assoiatedwith a list of pending messages that have already been broadast but notyet reeived. Eah seond-level transition is de�ned in terms of transitionsre�eting the ations of interating proesses. The seond-level transitionsare based only on partial view of the whole system, re�eting the true timeand spae deoupling of proesses in a LIDiA appliation.Further on, in a omputational point of view, the seond-level transitionsare the same for all proessors involved in the omputation. They representa formal way how ommuniation links between two proessors are imple-mented.The model we use in our language is similar to the labeled transition sys-tem models used to de�ne semantis for proess algebrai languages like CSP[23℄ and CCS [31℄. In partiular, those models also de�ne parallel omposi-tion in terms of identifying external ations. Other languages for desribingonurrent systems are based on several types of automata, with di�erentnotions of omposition and external behavior; for instane, TLA [24℄ andUNITY [6℄ are based on automata that ommuniate via shared variables.Among all similar models we onsidered, the notations and model introduedin IOA [15℄ were very helpful for our work. But instead of representing eahproess as an I/O automata, we simply onsider a proess as an entity thatbelongs to a ompat system and an perform several rules (�rst-level sys-tem). This departure from the automata model is motivated by the fat thatour model has to be as simple as possible. At our atual development step,we do not want users to deal with automata operations nor to perform someinvariants proofs with a given theorem prover. We are only interested inomputing and visualizing distributed algorithms enoded by means of loalomputations.4.2 An informal overviewThe LIDiA language is designed to allow preise and diret desription ofdistributed algorithms enoded by means of loal omputations. Sine themodel we used is a reative system model rather than a sequential programmodel, the language re�ets this fundamental distintion. That is, it is not astandard sequential programming language with some onstrut for onur-reny and interation added on; rather, onurreny and interation are atits ore. Two major onepts in LIDiA are separation of onerns and anony-mous ommuniation. Separation of onerns means that omputation on-erns are isolated from the ommuniation and ooperative onerns. Anony-mous ommuniation means that the proesses engaged in ommuniationwith eah other need not know eah other. Furthermore all ommuniation13



is asynhronous. In LIDiA ommuniations is either through broadast ofevents or through point-to-point hannel onnetions whih are establishedbetween two ommuniating proesses.The starting point for LIDiA was the pseudoode used in earlier workson Graph Relabelling Rules and on I/O automata. This pseudoode ontains,in the ase of I/O automata, expliit representations of state transition def-inition in form of (ations, states, transitions,...). Transitions are desribedusing transition de�nitions (TDs) ontaining preonditions and e�ets. Thispseudoode has evolved in two di�erent forms: a delarative style (see, e.g.,[37℄), in whih e�ets are desribed by prediates relating pre- and post-states, and an imperative style(e.g., [26℄), in whih e�ets are desribed bysimple imperative programs.Beause of our intention to build a formally de�ned programming lan-guage, we have to make some design deisions in order to perform a suitablerelationship between our model and the orresponding programming lan-guage.� We use graph data type to symbolize a distributed systems. Eah noderepresents a proess and eah edge an be seen as a ommuniationlink between two proesses.� Eah node (respetively edge) has a label that desribes its state at agiven time.� Every omputing entity in LIDiA is a proess: verties and ommu-niation links. We will use the word proess to de�ne a proess thatrepresents a network vertex. For proesses that represent ommunia-tion link, we will use the word edge proess to designate them.� For our purpose, we allow only the imperative style in eah TD(rule).Thus, a rule e�et may be desribed entirely by a program. Suh imper-ative desriptions of e�ets are kept simple, onsisting of(possibly non-deterministi) assignments, onditionals, and simple bounded loops.This simpliity makes sense, beause transitions are supposed to beexeuted atomially.� Variables an be initialized using ordinary assignments and nondeter-ministi hoie statements. The entire initial state may be onstrainedby prediate.� The LIDiA language an take advantage of some loal omputationsprotools previously introdued and used by Bauderon, Métivier et. al.[3℄. These are randomized algorithms whih are used to implement loalomputations in an asynhronous system with asynhronous messagepassing. 14



� Eah TD orresponds to a rule that is represented in a preondition-e�et style. A rule an have additional hoose parameters, whih arenot formally part of the ation name, but whih allow values to behosen to satisfy the preondition and then used in desribing the e�et.� We uses two di�erent sorts of rules: ative rule and passive rule. Aproess uses an ative rule, when it an deide to exeute an ation. Ituses a passive rule, when one of its neighbors proesses tells it to exeutea given ation. Passive and ative rules are of prime importane, whendealing with synhronization protools.� An important aspet of nondeterministi programming is allowing max-imum freedom in the order of ation exeution. Control over ationorder is sometimes needed, partiularly at lower levels of abstrationwhere performane requirements may fore partiular sheduling de-isions. For this reason, we have integrated an expliit support forspeifying ation order in LIDiA . Thus, eah rule is enhaned witha list of all rules that have a higher order of priorities. If there existsno priority deision between two ations, a random hoie is made todesignate whih rule should be exeuted.Languages suh as IOA [15℄, UNITY, MANIFOLD [14℄, SPECTRUM andTLA are similar to LIDiA in that their basi program units are transition def-initions with preonditions and e�ets. However, e�ets in TLA are desribeddelaratively, e�ets in UNITY and SPECTRUM are desribed imperativelyand e�ets in IOA are delared delaratively and imperatively.4.3 Data types in LIDiAThis Setion presents an overview of data types that an be used in ourlanguage. The list given below is not exhaustive. We take advantage of thedata type semanti de�ned in IOA. A general desription of all data typeswith their respetive operations will be desribed in future papers on LIDiA .LIDiA enables users to de�ne new data types to de�ne the ations and statesof eah proess. The data types graph, node, edge, Bool, Int, Nat, Real, Char,and String an appear in LIDiA desriptions without expliit delarations.The graph data type we used represents parameterized graphs. Thus, anyinstane of graph ontains labels attahed to its nodes and edges. Compounddata types an be onstruted using the following type onstrutors and usedwithout expliit delarations:� Array[I, E℄ is an element of elements of type E indexed by elements oftype I.� Seq[E℄ is a �nite sequene of elements of type E.15



� Set[E℄ is a �nite set of elements of type E.� Mset[E℄ is a �nite multiset of element of type E.Users an de�ne additional data types, as well as rede�ne built-in types.First, they an expliitly delare enumeration, tuple, and union types analo-gous to those found in many ommon programming languages. For example,� type Color = enumeration of red white; blue� type Msg = tuple of soure; dest : Proess; ontents : StringFor further researh, we intend to give the user the possibility to give a spei-�ation for the syntax and the semanti of new data types. This spei�ationshould be given in a language like the Larh Shared Language [19℄ that isused in [15℄.
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Chapter 5Desription of a ProessReative proesses are desribed by speifying their neighborhood, state vari-ables and rules. All of these elements must be present in every proess de-sription. Note that the state variables of a proess de�ne the label of theorresponding vertex.5.1 NeighborhoodThe neighborhood of a proess an be de�ne using the keyword universe.It is usually a set of nodes that are stored in a variable B by the expressionB := G:neighborhood(). With G representing the whole graph network.5.2 State variablesThe delaration of state variables is done using the keyword Delaration.We have two di�erent sorts of state variables. The �rst sort is introdued bythe type name eLabel and the seond one by nLabel. These type nameshave the following meanings:� The eLabel type represents the type of the state variables that hara-terized the state of eah edge (ommuniation link) in the underlyingnetwork.� The type nlabel represents the type of the state variables that hara-terized the state of eah node (proessor) in the underlying network.State variables an be initialized using the assignment operator := followedby an expression. State variables are initialized simultaneously and the ini-tialization given for one state variable an not refer to the value of any otherstate variable. We an also use the keyword hoose to do a nondetermin-isti hoie to initialize state variables. One one has initialized the statevariables, the underlying network is then enhaned with these type of labels.17



This is done by using statement like G:init(nodeLab; edgeLab) where node-Lab and edgeLab respetively represent instanes of the nLabel and eLabeldata types.5.3 RulesThe liste of rules is introdued by the keywords ative rules or passiverules. Eah rule has three parts: Preondition, Relabeling and Priori-ties.5.3.1 PreonditionAll variables in the preondition must be state variables, be hoose param-eters, or be quanti�ed expliitly in the preondition. If no preondition isgiven, it is assumed to be true. An ation is said to be enabled in a stateif the preondition for its exeution is true in that state. The preonditionis expressed in the logial language L�1 [32℄. This language represents anextension of �rst-order logi by means of ounting quanti�ers. It has nieproperties that helped us to understand the ompleteness of LIDiA .5.3.2 RelabelingThe relabeling of a rule orresponds to the e�et of using the orrespond-ing transition. The Relabeling is generally de�ned in terms of a (possiblynondeterministi) program that assigns new values to state variables. If therelabeling part is missing, then the orresponding transition has no e�et;i.e., it leaves the state unhanged. Passive rules do not have a Relabeling part.Rather, they dispose of an Ation part that should express the fat that anyvertex that exeutes a passive rule is not able to take any relabeling deision.5.3.3 PrioritiesThe Priorities part ontains a list of rules that have a higher priorities. Let Ribe a given rule that belongs to the priorities-list of rule R. If the preonditionsrules R and Ri are satis�ed at the same time, then the ations of rule Ri areexeuted. Thus, the ations of rule R are temporarily �frozen�.5.4 Conditional ationsSometimes it is neessary for a proess to hange the labels of some of itsneighbours. To deal with suh ations, LIDiA provides onditional ationsintrodued by the operators IMPLIES and CHOOSE. The syntax of theseoperators is desribed in the following way:�; IMPLIES Ation 18



The Ation-part of the IMPLIES statement is only exeuted if the logialondition � is true.Example:(1): 8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));In this example, the ation ReeiveFrom(w) will be exeuted for all w thatsatisfy the statement w 2 B ^ w 6= v0. A seond example ould be expressedby the expression(2): 8w 2 B(w 6= v0); IMPLIES Lv[w℄ := ReeiveFrom(w));In this ase, the ReeiveFrom(w) ation will only be exeuted for the last pro-ess w that satisfy the ondition w 2 B ^ w 6= v0. If we replae the quanti�er8 by the existene quanti�er 9, the ation will only be exeuted for the �rstw that satis�es the given formula �. Note that � is given in the language L�1.x := CHOOSE p IN �pThis statement is a random onstrution that hooses randomly an elementp among all elements that satisfy a given formula �p. This hoie is made inan equiprobable way. In this onstrution, the hoosen element is stored inthe variable x.
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Chapter 6Communiation betweenproessesEah ommuniation link is represented as an edge proess that is in hargeof transferring informations between two proesses. We use the followingthree primitives to express the ommuniation between two proesses:� SendTo(p;m): The main goal of this primitive is to send the messagemto the neighbor p of a given proess i. After a proess i has exeute thisoperation, the edge proess transmits the message m to the neighborp.� SendToAll(m): This primitive exeutes the ations SendTo(p;m) forall neighbors p of a given proess i.� ReeiveFrom(p): This primitive allows a given proess i to reeivea message from one of its neighbors p. In LIDiA we only deal withreliable ommuniation hannels that neither loss nor reorder messagesin transit. Furthermore, we give the ReeiveFrom primitive a higherpriority than all others. This means that as long as a proess is waitingfrom a message, he an not perform any other ations.6.1 Communiation hannelEah edge proess represents a ommuniation hannel that an be viewedas a proess having exatly two neighbors and whih state variable is a fourtuple representing the status of four message bu�ers b0, b1, s0, s1. An edgeproess has also two main rules alled Send0 and Send1. We now onsidera given edge proess Ep that should enable the ommuniation between theproesses i and j (see Figure 6.1). Eah bu�er of Ep is a sequene of mes-sages initialized to the empty sequene. When proess i exeute the primitiveSendTo(j;m), the message m is append to the bu�er b0. One the bu�er b020



Proess i Proess jProess EpFigure 6.1: An edge proess Epis not empty, the ation (rule) Send0 is exeuted. This ation has the e�etof appending the message m, on the head of b0, to the bu�er s0. Simultane-ously, m is deleted from b0. Note that eah edge proess Ep always attemptsto read and transmit messages that arrive in b0 and s0. The bu�ers b1 and s1are used in the same way for the primitive SendTo(i;m) initiated by proessj. As soon as the bu�er s0 is not empty, the exeution of the primitiveReeiveFrom(i) by proess j will read the head element of s0 and onsiderit as a message sent by proess i and atualize the bu�er s0. The same aessstrategy with bu�er s1 is used for the primitive ReeiveFrom(j) exeutedby proess i.6.2 Implementation of an edge ProessThe implementation of an edge proess is similar to the desription given inthe previous setion. For a formal desription we give the LIDiA programdesribed in �gure 6.2. For a better understanding, the set of edge proessesDelarationtype Label = tuple of b0, b1, s0, s1: seq < M >seq < M >seq < M >;nodeLab : Label;Initializationhannel(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:voisinage(v0);ative rules: Send0; Send1;Send0:={preonditionb0:empty() 6= false;Relabellings0:append(b0:head());b0:Pop();Prioritiesfg;};Send1:={preonditionb1:empty() 6= false;Relabellings1:append(b1:head());b1:Pop();Prioritiesfg;};hannel:run(G);Figure 6.2: Implementation of a ommuniation hannel proess.21



has to be seen as an internal representation of ommuniation links. Thetype M of messages that should be transmitted from a proess to an otheris set while de�ning the �rst-level transition system. But in a general way,the transmitted messages are represented as instanes of the type string.Further on, the language LIDiA supports the use of labels on edges. Eahedge proess is therefore enhaned with two new bu�ers and a state variableof type elabel. These new variables have the aim to manage and atualizethe state hanges of the orresponding edge. Figure 6.3 gives a ompletedesription of a ommuniation proess in LIDiA .Delarationtype Label = tuple of Lab: eLabeleLabeleLabel,b0, b1,s0,s1,L0,L1: seq < M >seq < M >seq < M >;nodeLab : Label;Initializationhannel(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:voisinage(v0);ative rules: Send0; Send1; Change0; Change1;Send0:={preonditionb0:empty() 6= false;Relabellings0:append(b0:head());b0:Pop();PrioritiesfChange0; Change1; g;};Send1:={preonditionb1:empty() 6= false;Relabellings1:append(b1:head());b1:Pop();PrioritiesfChange0; Change1; g;};Change0:={preonditionL0:empty() 6= false;RelabellingLab := L0:head();L0:Pop();Prioritiesfg;};Change1:={preonditionL1:empty() 6= false;RelabellingLab := L1:head();L1:Pop();Prioritiesfg;};hannel:run(G); Figure 6.3: A ommuniation hannel proess.
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Chapter 7Randomized Loal EletionsIn some LIDiA implementations, we have to ensure that, at any step, no twoadjaent verties apply one of the relabeling rule at the same time. We solvethis problem by using the three randomized proedures studied in [29℄.7.1 Implementation of LC0:The implementation of LC0 is the rendezvous. We onsider the followingdistributed randomized proedure. The implementation is partitioned intorounds; in eah round eah vertex v selets one of its neighbors (v) atrandom. There is a rendezvous between v and (v) if v is the vertex seletedby (v). In this ase, we say that v and (v) are synhronized. When v and(v) are synhronized there is an exhange of messages by v and (v): Thisexhange allows the two nodes to hange their labels. Eah message for thesynhronization mehanism will be a single bit. An implementation in LIDiAis given by Program 7.1.1Eah vertex v repeats forever the following ations :the vertex v selets one of its neighbors (v) hosen at random;the vertex v sends 1 to (v);the vertex v sends 0 to its neighbors di�erent from (v);the vertex v reeives messages from all its neighbors.(* There is a rendezvous between v and (v) if v reeives 1 from (v);in this ase a omputation step may be done. *)Randomized Rendezvous
23



Program 7.1.1Delarationtype nLabel = tuple of hoie: nodenodenode, stage: intintint;type eLabel = tuple of state: intintint;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;nodeLab : nLabel;edgeLab : eLabel;InitialisationedgeLab:state := 0;nodeLab:stage := 0;G:init(nodeLab; edgeLab);SynhronizationLC0(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:neighborhood(v0);ative rules: R0; R1; R2; R3;Lv :node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);R0:={preonditionv0:label:stage = 0;Relabellingv; v1 : nodenodenode;v := hoose v1 in(v1 2 B ^ v1 6= v0);v0:label:stage := 1;v0:label:hoie := v;8v1 2 B(v1 6= v0; IMPLIES SendTo(v1; v0:label));Prioritiesfg;};R1:={preonditionv0:label:stage = 1;Relabelling8v1 2 B(v1 6= v0; IMPLIES Lv[v1℄ := ReeiveFrom(v1));Prioritiesfg;};R2:={preonditionv0:label:stage = 2 ^ Lv [v0:label:hoie℄:hoie = v0;Relabellingv0:syn := v0;v0:label:stage := 0;Prioritiesfg;};R3:={preonditionv0:label:stage = 2 ^ Lv [v0:label:hoie℄:hoie 6= v0;Relabellingv0:syn := nil;v0:label:stage := 0;Prioritiesfg;};};LC0:run(G); LIDiA implementation of Rendezvous.
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7.2 Implementation of LC1Let LE1 be the loal eletion for implementing LC1; it is portioned intorounds, and in eah round, every proessor v selets an integer rand(v) ran-domly from the set f1; :::; Ng: The proessor v sends to its neighbors the valuerand(v): The vertex v is eleted in B(v; 1) if for eah vertex w of B(v; 1)di�erent from v : rand(v) > rand(w): In this ase a omputation step onB(v; 1) is allowed : the enter is able to ollet labels of the leaves and tohange its label. Program 7.3.1 presents a possible LIDiA implemetation ofthis algorithm.Eah vertex v repeats forever the following ations :the vertex v selets an integer rand(v) hosen at random;the vertex v sends rand(v) to its neighbors;the vertex v reeives integers from all its neighbors.(* The vertex v is eleted if rand(v) is stritly greater than integersreeived by v; in this ase a omputation step may be done on B(v; 1): *)Randomized LE1�Eletions.7.3 Implementation of LC2Let LE2 be the loal eletion for implementing LC2; as in the LC1 ase, itis portioned into rounds. In eah round, every proessor v selets an integerrand(v) randomly from the set f1; :::; Ng:The proessor v sends to its neighbors the value rand(v): When it hasreeived from eah neighbor an integer, it sends to eah neighbor w the maxof the set of integers it has reeived from neighbors di�erent from w: Thevertex v is eleted in B(v; 2) if rand(v) is stritly greater than rand(w) forany vertex w of the ball entered on v of radius 2; In this ase a omputationstep may be done on B(v; 1): During this omputation step there is a totalexhange of labels by nodes of Sv; this exhange allows nodes of Sv to hangetheir labels. One LIDiA implementation of this algorithm is given in Program7.3.2.Eah vertex v repeats forever the following ations :the vertex v selets an integer rand(v) hosen at random;the vertex v sends rand(v) to its neighbors;the vertex v reeives messages from all its neighbors;let Intw the max of the set of integers that v has reeived from vertiesdi�erent from w;the vertex v sends to eah neighbor w Intw;the vertex v reeives integers from all its neighbors;(* There a LE2�Eletion in B(v; 2) if rand(v) is stritly greater than allintegers reeived by v; in this ase a omputation step may be done25



on B(v; 1): *) Randomized LE2�Eletion.Analysis of these algorithms has been done in [28, 29℄. It is based on theonsideration of rounds: in order to measure the performane of the algorithmin terms of the number of rendezvous or loal eletions taking plae, it isassumed that at some instant eah node sends and reeives messages. Thusthis parameter of interest, whih is the (random) number of rendezvous orloal eletions, is the maximal number (i.e. under the assumption that allnodes are ative) authorized by the algorithm. It has been proved that thesethree algorithms are Las Vegas algorithms.
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Program 7.3.1Delarationtype nLabel = tuple of hoie: nodenodenode, stage: intintint;type eLabel = tuple of state: intintint;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;nodeLab : nLabel;edgeLab : eLabel;InitializationedgeLab:state := 0;nodeLab:stage := 0;G:init(nodeLab; edgeLab);SynhronizationLC1(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:neighborhood(v0);ative rules: R0; R1; R2; R3;Lv :node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);R0:={preonditionv0:label:stage = 0;Relabellingn; n1 : intintint;v : nodenodenode;n := hoose n1 in(n1 2 N);v0:label:hoie := n;v0:label:stage := 1;SendToAll(v0:label);Prioritiesfg;};R1:={preonditionv0:label:stage = 1;Relabellingv1 : nodenodenode;8v1 2 B(v1 6= v0; IMPLIES Lv [v1℄ := reeiveFrom(v1);v0:label:stage := 2;Prioritiesfg;};R2:={preonditionv0:label:stage = 2 ^ v0:label:hoie > max i in(9v1 2 B(i = Lv[v1℄:hoie));Relabellingv0:syn := v0;v0:label:stage := 0;Prioritiesfg;};R3:={preonditionv0:label:stage = 2 ^ (9v1 2 B(v0:label:hoie < Lv [v1℄:hoie));Relabellingv0:syn := nil;v0:label:stage := 0;Prioritiesfg;};};LC1:run(G); LIDiA implementation of LC1.
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Program 7.3.2Delarationtype nLabel = tuple of hoie: nodenodenode, stage: intintint;type eLabel = tuple of state: intintint;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;nodeLab : nLabel;edgeLab : eLabel;InitializationedgeLab:state := 0;nodeLab:stage := 0;G:init(nodeLab; edgeLab);LC2(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:neighborhood(v0);ative rules: R0; R1; R2; R3; R4;Lv ;Mv :node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);Mv:init(B; nodeLab);R0:={preonditionv0:label:stage = 0;Relabellingn; n1 : intintint;n := hoose i in(i 2 N);v0:label:hoie := n;v0:label:stage := 1;SendToAll(v0:label);Prioritiesfg;};R1:={preonditionv0:label:stage = 1;Relabelling8v1 2 B(v1 6= v0; IMPLIES Lv [v1℄ := reeiveFrom(v1);v0:label:stage := 2;Prioritiesfg;};R2:={preonditionv0:label:stage = 2;Relabelling8v 2 B(v 6= v0; IMPLIES Lv[v℄:hoie := max i in(i 2 N^ 9v1 2 B(v1 6= v0 ^ v1 6= v ^ i = Lv [v1℄:hoie)));8v1 2 B(v1 6= v0; IMPLIES SendTo(v1; Lv [v1℄);v0:label:stage := 3;Prioritiesfg;};R3:={preonditionv0:label:stage = 3;Relabelling8v1 2 B(v1 6= v0; IMPLIES Lv [v1℄ := reeiveFrom(v1);v0:label:stage := 4;Prioritiesfg;};R4:={preonditionv0:label:stage = 4 ^ 8v 2 B(v1 6= v0; ^ v0:label:hoie > Lv[v1℄:hoie);Relabellingv0:syn := v0;v0:label:stage := 0;Prioritiesfg;};R5:={preonditionv0:label:stage = 4 ^ 9v 2 B(v1 6= v0; ^ v0:label:hoie < Lv[v1℄:hoie);Relabellingv0:syn := nil;v0:label:stage := 0;Prioritiesfg;};};LC2:run(G); 28



Chapter 8Implementation examples8.1 Example: Spanning tree omputationWe illustrate our model, as well as the use of the language LIDiA to desribedistributed algorithms, by two simples omputation examples. First of all wewill takle the omputation of a spanning tree in a graph. Program 8.1.1 isa simple LIDiA implementation to ompute a spanning tree in a graph. Thealgorithm an be depited in the following way.We assume that a unique vertex has initially label A, all other vertieshaving label N and all edges having label 0. At eah step of the omputa-tion, an A-labeled vertex u may ativate any of its neutral neighbors, sayv. In that ase, u keeps its label, v beomes A-labeled and the edge fu; vgbeomes 1-labeled. Thus, several verties may be ative at the same time.Conurrent steps will be allowed provided that two suh steps involve dis-tint verties. The omputation stops as soon as all the verties have beenativated. The spanning tree is then given by the 1-labeled edges. The al-gorithm may be enoded by the graph relabeling system R1 = (L1; I1; P1)de�ned by L1 = fN;A; 0; 1g, I1 = fN;A; 0g, and P1 = fRg where R is thefollowing relabeling rule:
0 1

R :
A N A AEvery LIDiA program onsists of four parts. General and global variablesare delared and initialized in the �rst and seond parts. The types nLabeland eLabel are introdued to de�ne the kind of labels that will be used onverties and edges. The third part de�nes the sort of loal synhronizationprotool that is used in the algorithm. Program 8.1.1 uses the LC1 loalomputation protool to permit trouble-free state transitions. This protoolsynhronizes the verties that belong to the same star. Only the enter ofthe synhronized star an hange its label and the labels of the edges thatare adjaent to it. 29



On the other hand, transitions are given in preondition/e�et style andare represented by the ative relabeling rule R0 and by the passive rule P0.All verties that are not enter of a synhronized star exeute the passiverule by sending their own label to all their neighbors that are enter of anysynhronized star. The ative rule R0 is only exeuted by verties that areenter of a synhronized star. A node v0 apply R0 if it is N -labeled and if ithas a neighbor that is A-labeled. The onsequenes of the appliation of ruleR0 are represented by the relabeling of edge [v0; w℄ that beomes 1-labeledand by the fat that v0 beomes A-labeled. LIDiA provides a struture thatallows to set an exeution priority between two rules. For eah rule, thisstruture is given as a list of rules that has higher exeution priorities.Note that all the rules desribed in Program 8.1.1 are performed by allthe verties v0 that belong to the graph G. In LIDiA we do not have to spe-ify one list of rules for eah proess. Rather, we take advantage of the abilityof LIDiA to de�ne a list of transitions that will be valid for all network'sproesses. Thus, these rules an be performed simultaneously by di�erentverties at the same time. It is also possible to de�ne ations that are onlyexeutable for some identi�ed proesses. In this ase we have to de�ne rulesthat will only be exeuted by non identi�ed proesses. In general our lan-guage deals with anonymous networks.Program 8.1.1 (Spanning Tree omputation)Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var = 0;nodeLab:var = 'N';G:init(nodeLab; edgeLab);v : nodenodenode;v := G:hoose_node();v:label:var = 'A';SynhronizationSynhro_LC1();SpanningTree(v0 : nodenodenode) :universeB : node_setnode_setnode_set;B := G:neighborhood(v0);ative rules: R0;Lv: node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);8w 2 B(w 6= v0; IMPLIES Lv [w℄ := ReeiveFrom(w));}R0:={preonditionw: nodenodenodev0:label:var = 'N' ^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ [v0; w℄:var = 0);Relabelingv0:label:var := 'A';[v0; w℄:var := 1;Prioritiesfg;};passive rules:P0;R0:={ 30



preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};SpanningTree:run(G);8.2 Example: Drinking philosophers problemIn this setion we attend to give an implementation of the drinking philoso-phers problem. This problem was introdued by Chandy and Misra in [5℄ asa generalization of the dinning philosophers problem [9℄. This problem anbe formulated as followed.We onsider a network of proesses sharing a set of resoures. It is repre-sented as a onneted undireted graph where verties denote proesses andedges represent on�its between proesses. For the drinking philosophersproblem one has to deal with ase where a proess needs to have aess toall its resoures to do any omputation. Any algorithm whih solves thisproblem has to ensure the following properties:� No shared resoure an be aessed by two proesses at the same time.Thus, the algorithm ensures the mutual exlusion on shared resoures,� If two proesses p1 and p2 do not share a resoure, and hene are notadjaent in the underlying graph, then they an aess their resouresindependently, and possibly at the same time. The algorithm ensurestherefore the onurreny property.� If a resoure is asked by two proesses p1 and p2 and if p1 formulatesits request before p2, then p1 must enter the resoure before p2, this isthe so alled ordering property,� If a proess p asks to have aess to all needed resoures, at last p mustobtain this aess. This is the liveness property.The implementation we will give later is based on an algorithm desribedby M. Mosbah, A. Sellami and A. Zemmari in [34℄. Their formulation isbased on graph relabeling system and allows an e�ortless representation inthe model of LIDiA .Eah proess an be in one of the three states: tranquil, thirsty or drinking.These states will be respetively enoded by the labels T , Th and D. Onealso needs to manage the order of proess requests. This is done by usinganother label whih is an integer orresponding to the rank of the request.Therefore, eah vertex will be labeled by (X; i) where X 2 fT; Th;Dg andan integer i. 31



Initially all the verties of the graph are tranquil (this is enoded by thelabel (T;�1)). At eah step of the omputation, a (T;�1)-labeled vertex umay ask to obtain exlusive aess to all its ritial setions. Thus, it beomesthirsty. In this ase, u hanges its label to (Th; i + 1) where i satis�es therelation i = maxfkv jv 2 B(u; 1) and L(v) = (X; kv);X 2 fT; Th;Dgg. So,u has a higher aess priority (order) than all its neighbors. In a ompletegraph, this order an be seen as an universal time sine only one node anhange its label to Th at a given time. In this ase, the system omputes themutual exlusion.If a (Th; i)�labeled vertex u, has no neighbor in the ritial setions (la-bel (D;�1)) and no (Th; j)�labeled neighbor where j < i (u has a lower pri-ority), then u an enter the ritial setions. Thus, u will be (D;�1)�labeled.One, the vertex in the ritial setions has terminated its work, it returnsto the tranquil state and beomes (T;�1)�labeled.The algorithm may be enoded by the graph relabeling system R =(L; I; P ) de�ned by L = ffT; Th;Dg � [�1::1℄g, I = f(T;�1)g, and P =fR1; R2; R3g where R1, R2 and R3 are the relabeling rules given in Figure8.1:
R2 : (D;�1)(Th; i) ; fR3 : (T;�1)(D;�1) ; fg
R1 : (Th;max(v) + 1)(T;�1) ; fg (Th; i)(D;�1); ; j < i(Th; i)(Th; j) g

Figure 8.1: Relabeling rules for the Drinking philosophers problemProgram 8.2.1 (Drinking philosophers problem)Delarationtype nLabel = tuple of state: string, rank: int;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationnodeLab:state = 'T';nodeLab:rank = �1;G:init(nodeLab; edgeLab);v : nodenodenode;v := G:hoose_node();v:label:var = 'A';SynhronizationSynhro_LC1();DrinkingPhilo(v0 : nodenodenode) :universeB : node_setnode_setnode_set; 32



B := G:neighborhood(v0);ative rules: R1; R2; R3;Lv: node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);8w 2 B(w 6= v0; IMPLIES Lv [w℄ := ReeiveFrom(w));R1:={preonditionw: nodenodenodev0:label:state = 'T' ^ v0:label:rank = �1;Relabelingv0:label:state := 'Th';v0:label:rank := 1 +Max i IN(8i 2 N9u 2 B(Lv [u℄:rank = i));Prioritiesfg;};R2:={preonditionw: nodenodenodev0:label:state = 'Th' ^ 8u 2 B:(Lv[u℄:state = 'D' ^ Lv [u℄:rank = �1 _Lv [u℄:state = 'Th' ^ Lv[u℄:rank < v0:label:rank);Relabelingv0:label:state := 'D';v0:label:rank := �1;Prioritiesfg;};R3:={preonditionw: nodenodenodev0:label:state = 'D' ^ v0:label:rank = �1;Relabelingv0:label:state := 'T';v0:label:rank := �1;Prioritiesfg;};passive rules:P0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};DrinkingPhilo(G);
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Chapter 9Conlusions and PerspetivesSeveral aspets of the LIDiA model make it appropriated to desribe andverify distributed algorithms. This language is based on the one hand onset-theoreti mathematis. On the other hand its power and expressivenessrelied on the logial language L�1 that has more expressive power than �rst-order logi. Furthermore, LIDiA is a nondeterministi language in the sensthat ations that satisfy a given preondition are exeuted randomly. Thispartiularity allows distributed systems to be desribed in their most generalforms. In our earlier work [32℄, we stated the omputational ompleteness ofthe LIDiA language. In fat, every omputable distributed problems thatould be represented in a preondition-e�et style an be omputed by aLIDiA program.Future work involves the development of a ode generator that ould au-tomatially generate real distributed ode in a standard programming lan-guage like C++, Java, ML or MPI from a LIDiA program. Atually, theode generation shemes produes runnable version of node automata thatan ommuniate via pre-existing ommuniation servies suh as TCP orMPI. [35℄, whih are modeled by hannel automata. This ode generator willbe embedded later in the ViSiDiA platform [33℄. Thus, it will help us toverify the generated ode. By insisting that LIDiA programs from whihwe generate ode math the available omputing hardware and ommunia-tion servies, and by requiring the node programs to tolerate input delays,we hope to ahieve a faithful implementation without using any non-loalsynhronization.
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Appendix AThe Logi L�1In this Setion we introdue some extensions of �rst-order logi that areneessary to understand how the language L�1 is built. These are �xed-pointlogis, in�nitary logi and in�nitary logi with ounting. Throughout the restof this hapter, we will assume that the reader is already familiar with thebasi onepts of �rst-order logi and �xed-point logis as the de�nition offormulae and how the notion of truth is de�ned. Our prinipal referene is�Model Theory� by Chang and Keisler [7℄.First of all, reall that in�nitary logi L1! is the extension of �rst-order logiwhere in�nite disjuntions and onjuntions of formulas are also allowed. Itis well known that any(isomorphism losed) lass C � STRUCT [�℄ an bede�ned in L1! (where STRUCT [�℄ denotes the lass of �nite �-strutures).Interest of this logi omes from its fragments whih have weaker expressivepower. One suh fragment is Lk1! where only k distint variables, free orbound, are allowed. The �nite variable logi L!1! is then the union of Lk1!over all natural numbers k. Fixed-point logis (least in�ationary logi, partial�xed-point logis and transitive losure logi) an all be embedded into L!1!.It is also easy to see that L!1! an not express ertain ounting properties,suh as parity of ardinality. For an extensive study of this logi, see e.g.[13℄.For our purpose, we use a logi denoted by L�1. This logi is obtained by �rstadding ounting terms, ounting quanti�ers to the logi L!1! over two-sortedstrutures (the seond sort being interpreted as N), and then restriting itto formulae of �nite rank. The idea of using the set of natural numbers inthe two-sorted struture is in�uened by meta-�nite model theory of [11℄.Similar extensions exist in the literature [10, 17, 39℄, but they restrit thelogi by means of the numbers of variables, whih still permits �xed-pointomputation. In ontrast, following [20, 22℄, we restrit the logi by requiringthe rank of a formula be �nite (where the rank is de�ned as quanti�er rank,exept that it does not take into aount quanti�ers over N), thus puttingno limits at all on the available arithmeti.35



A.1 The alphabet of L�1The onditions and rules of building terms and formulas are the same as in�rst-order logi. The set of free variables is also de�ned in the same way as inthe �rst-order logi. Furthermore, the alphabet of L�1 is obtained by addingthe following ounting terms and quanti�ers to the symbols of �rst-orderlogi.� Counting Quanti�ers: 9i9i9i, 9?i9?i9?i� Counting Terms: 919191, 929292, 939393,... 9?19?19?1 , 9?29?29?2 , 9?39?39?3 ,...� Equality symbol: ===, 6=6=6=� Arithmeti funtions: +++, ���, ���, ���, m	 odm	 odm	 od, divdivdiv, expexpexp, FakFakFak...All the arithmeti help funtions have the intuitive meaning. The ountingquanti�er 9i9i9i is satis�ed if the set of elements, that satisfy a given formula�, has a ardinality greater or equal to i. On the other hand, the formula9?i x�(x; i) is true, if there are exatly i elements x that satisfy �(x). We haveto notie that the variable i is an element of the set of natural numbers.Example A.1.1 With the logi L�1 we an express the fat that a given set has an even ardinality. This is done by the following expression:9?i x(x 2  ^ i mod 2 = 0);A.2 Semanti of L�1Although most of the basi theory was developed for arbitrary strutures,the interesting results only speak about �nite ones. So we restrit our atten-tion to �nite strutures with �nite voabularies, unless it is expliitly statedotherwise. Furthermore, we always assume lasses of strutures to be losedunder isomorphism. In the same sense that sentenes of a logi de�ne lassesof strutures, formulas with free variables de�ne queries.We abbreviate �rst-order logi by FOL. L�1 is a two-sorted logi, with theseond sort being the sort of natural numbers. That is, a struture A is ofthe formA = hfv1; � � � ; vmg; f1; � � � ; ng; <;=; 6=; 0; 1; true; false;MIN;MAX;RA1 ; � � � ; RAl ; f A1 ; � � � ; f Ak i:Here the relations RA are de�ned on the verties domain fv1; � � � ; vmg, whileon the numerial domain f1; � � � ; ng one has onstants 0 and 1. The setfv1; � � � ; vmg even represents the neighborhood of a node v0. In essene, anyvertex u an only see the part of the general domain of A that is representedby its neighbourhood. furtheron, the added universe of numbers gives us the36



ability to do some arithmeti on the side as we express a property of theinput strutures. In this paper, we will assume that all the strutures areequipped with numbers unless we expliitly state otherwise.A.3 The Satisfation RelationThe satisfation relation makes preise the notion of a formula being trueunder an interpretation. Let D be the domaine of our logi, I be an interpre-tation relation, A = hD; IiA = hD; IiA = hD; Ii be an interpretation struture, ggg be an assignmentin AAA and ��� be a formula. If ��� an be represented in the FOL then the sat-isfation relation of FOL an be used on ���. If ��� ontains new introduedquanti�ers, then the satisfation relation of ��� by g in AAA , is given by the fol-lowing rules:Counting Quanti�erA j= 9ix�[g℄ , A j= �[g[x=d℄℄ for at least i elements d 2 D with i � jDj:A j= 9?i x�[g℄ , A j= �[g[x=d℄℄ for exatly i elements d 2 D with i � jDj:The satisfation of ounting terms is a speial ase of the above satisfationrelations.
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Appendix BComputational CompletenessB.1 Desriptive Complexity of L�1The main task of this setion is to determine the desriptive omplexity ofthe logi L�1. More preisely, we want to �nd out the main omplexity lassthat is aptured by our logi. We look for results saying that, on a ertaindomain D of strutures, the logi L�1 aptures the omplexity lass PTIME.This means that the following De�nition is satis�ed.De�nition B.1.1(1) For every �xed sentene � 2 L�1, the data omplexity of evaluating � onstrutures from D is a problem in the omplexity lass PTIME.(2) Every property of strutures in D that an be deided with omplexityPTIME is de�nable in the logi L�1.As a matter of ourse, the domain D and the orresponding strutures willbe de�ned as introdued previously.We assume that the reader is familiar with the basis of omplexitytheory and has heard of some of the ommon omplexity lasses, suh asLOGSPACE, PTIME, NPTIME and PSPACE. We assume further that thereader has knowledge about the priniples of logis suh as �xed-point logi,least �xed-point logi(LFP) and in�ationary �xed-point logi(IFP). Fixed-point logi is an extension of �rst-order logi designed to re�et the power ofindution. There are several formalizations whih are not in general equiva-lent, but the di�erenes are of no onern to us. This is also justi�ed by theresults of Gurevih and Shelah [43℄ stating that many di�erent de�nitions of�xed-point logi oinide for �nite strutures. We refer the reader to [13℄ fora detailed presentation of the basi material of this setion.
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B.1.1 Logi with ountingFrom the point of view of expressiveness, FOL has two main de�ienies:It laks the power to express anything that requires reursion(The simplestexample is transitive losure) and it an not ount, as witnessed by theimpossibility to express that a struture has even ardinality. A number oflogis add reursion in one way or another to FOL, notably the various formsof �xed-point logis. On ordered �nite strutures, some of these logis anexpress preisely the queries that are omputable in PTIME or PSPACE.However, on arbitrary �nite strutures they do not, and almost all knownexamples showing this involve ounting. While in presene of an ordering, theability to ount is inherent in �xed-point logi, hardly any of it is retainedin its absene.Therefore Immerman proposed to add ounting quanti�ers to logis andasked whether a suitable variant of �xed-point logi with ounting wouldsu�e to apture PTIME. Meanwhile, �xed-point logi with ounting hasturned out to be an important and robust logi, that de�nes natural level ofexpressiveness and allows to apture PTIME on interesting lasses of stru-tures.There are di�erent ways of adding ounting mehanisms to a logi, whihare not neessarily equivalent. The most straightforward possibility is the ad-dition of quanti�ers of the form 9�2; 9�3, with the obvious meaning. Whilethis is perfetly reasonable for bounded-variable fragments of FOL or in�ni-tary logi (see e.g. [16, 39℄) it is not general enough for �xed-point logi,beause it does not allow for reursion over the ounting parameters i inquanti�ers 9�ix. These ounting parameters should therefore be onsideredas variables that range over natural numbers. This implies indiretly the useof two-sorted strutures in most ounting logis with the seond sort beingthe set of natural numbers N. We denote by (FOL + C) the FOL with ount-ing.We now de�ne [21℄ in�ationary �xed-point logi with ounting (IFP +C) and partial �xed-point logi with ounting (PFP + C) by adding to(FOL + C) the usual rules for building in�ationary or partial �xed-points,ranging over both sorts.De�nition B.1.2 In�ationary �xed-point logi with ounting (IFP + C), isthe losure of two-sorted FOL under(i) The rule for building ounting terms;(ii) The usual rules of FOL for building terms and formulae;(iii) The �xed-point transformation rule: Suppose that  (R; �x; ��) is a for-mula of voabulary �[fRg where �x, �� and R has mixed arity (k; l), andthat (�u; ��) is a k + l-tuple of �rst- and seond-sort terms, respetively.Then [ifp R�x��: ℄(�u; ��) is a formula of voabulary � .39



It is lear that ounting terms an be omputed in polynomial-time. Henethe data omplexity remains in PTIME for (IFP + C).In�nitary logi with ounting. Let Ck1! be the in�nitary logi with kvariables, Lk1!, extended by the quanti�ers 9�m(�There exists at least m�)for all m 2 N. Further, let C!1! := Sk Ck1!.Proposition B.1.1 (IFP + C) � C!1!.Due to the two-sorted framework, the proof of this result is a bit more in-volved than for the orresponding result without ounting, but not reallydi�ult. One has �rst to replae a �xed-point formula by an in�nitary for-mula with ounting terms that still lives in the two-sorted framework andthen eliminates quanti�ation over number-variables by in�nite disjuntionsand onjuntions. We refer to [10, 39℄ for details.From the de�nitions of C!1! and L!1! we an dedue that L!1! � C!1!.Furthermore, the next proposition states a relation between the logis C!1!and L�1.Proposition B.1.2 In �nite variable logis, the following relation is valid:C!1! � L�1:The proof of this proposition is done by a strutural indution. One analso notie that the logi L�1 an be onstruted by augmenting L!1! withounting quanti�ers, ounting Terms, Equality symbol and useful arithmetifuntions. This means that in �nite strutures the above proposition is sat-is�ed.B.1.2 L�1 aptures PTIMEWe present, in this setion, the proof of the fat that the logi L�1 apturesPTIME on the lass of struture used in LIDiA (see setion A.2.).First of all, we an derive orollary B.1.1 from the previous propositionsB.1.1 and B.1.2. Thus we have a diret relationship between the languageL�1 and the well-known logi (IFP + C).Corollary B.1.1 (IFP + C) � L�1.Classial de�nitions of a logi, suh as the notion of regular logi (see [12℄)do not su�e for our purpose; in addition our logis are supposed to satisfyertain e�etivity onditions. Gurevih [18℄ suggested the following de�ni-tions.De�nition B.1.3 A logi is a pair (L; j=L) where L is a funtion that as-signs a reursive set L[� ℄ of sentenes to eah voabulary � , and j=L is abinary relation between sentenes and strutures suh that for all � 2 L[� ℄the lass Mod(�) = fA 2 FjA j=L �g is an isomorphism losed lass of40



� -strutures. We further say that a lass C of � -strutures is de�nable in(L; j=L) if there is an L[� ℄-sentene � suh that C =Mod(�).De�nition B.1.4 A loked PTIME Turing mahine is a pair (M;p) whereM is a deterministi Turing mahine and p a polynomial suh that M runsat most p(n) steps on an input of length n.Now we an give a better de�nition that should make lear what we reallymean when we say that a logi (e�etively) aptures a omplexity lass.De�nition B.1.5 A logi L = (L; j=L) e�etively aptures a omplexitylass K on a domain D if the following two onditions hold:(i) Eah K-omputable lass in D is L-de�nable.(ii) For all voabularies � there is a reursive mapping M that assoiates aloked K-Turing mahine M(�) with eah sentene � 2 L[� ℄ so thatif Mod(�) 2 D then M(�) aepts the language L(Mod(�)).Clearly, a logi that e�etively aptures a omplexity lass aptures the lassas de�ned in the previous setions.Now we are going to state some apturing results onerning the logi(IFP + C).(i) (Immerman, lander [36℄, Lindell [25℄)(IFP + C) e�etively aptures PTIMEon the lass of trees.(ii) (Grohe, Marino [27℄) For eah k � 1, (IFP + C) e�etively apturesPTIME on the lass of graphs of tree-width at most k.Proposition B.1.3 The language L�1 e�etively aptures PTIME on thelass of strutures de�ned in setion A.2.The proof of this proposition is due to the above harateristis of the logi(IFP + C) assoiated with the onsequenes of orollary B.1.1. PropositionB.1.3 leads to the main result of this setion. In fat, we an use the propertiesof the logi L�1 to give a lass of distributed problems that an be enodedand solved by LIDiA .De�nition B.1.6 The set � de�nes the lass of distributed problems thatan be expressed in a preondition/e�et style where all the preonditions anbe evaluated in PTIME.Theorem B.1.1 For every omputable problem P that belongs to the lass� there exists a LIDiA program P0 that omputes P.We are now ready to state our main result, namely that every omputabledistributed problem is omputed by a LIDiA program. We introdue, there-fore, some de�nitions and notations that will help us to bring out the oreof the proofs we will state later. 41



De�nition B.1.7 The lass 
 de�nes the lass of all LIDiA programs.De�nition B.1.8 The lass { de�nes the lass of distributed problems thatan be enoded by means of loal omputations.It is lear that eah instane of { an be expressed in a preondition/e�etstyle and that all nodes and edges of the network have labels that desribetheir state variables at eah omputation step.Theorem B.1.2 (Completeness of LIDiA ) For every omputable distributedproblem f 2 { there exists a LIDiA program that omputes f .The proof of theorem B.1.2 depends on the orretness of the following lem-mas.Let f 2 { be a distributed problem and Pf be the set of preonditionsthat appear in the rules of f . We assume that the network has n verties.Lemma B.1.18p 2 Pf ; p 2 PTIME ) 9fp 2 
 that omputes f:Proof B.1.1 This lemma is a diret onsequene of theorem B.1.1. Notethat we use the notation �p 2 PTIME� to express the fat that the dataomplexity needed for the exeution of the query p is polynomial.Lemma B.1.29p 2 Pf ; p 2 NPTIME ) 9fp 2 
 that omputes f:Proof B.1.2 Without loss of generality, let p 2 NPTIME, Ap be the lassof elements(sets of star graphs of diameter 2) that satisfy p and Or(u;Ap) anorale that is true if the ball of radius 1 entered on u belongs to the lass Ap.Thus, for any node v we an express the preondition p of any rule using theorale Or(v;Ap). The orale will return true if the preondition p is satis�edand false otherwise. Or an be implemented in LIDiA as an user de�nedfuntion. Hene, the above Lemma is satis�ed. The funtion Or(u;Ap) isrepresented outside the preondition of p.Theorem B.1.3 (General Completeness of LIDiA ) The lass of problemsthat are omputed by LIDiA programs is exatly the lass {.Beause of Theorem B.1.2 and the design of LIDiA , Theorem B.1.3 is obvi-ous. In fat, Theorem B.1.2 states the ompleteness of the language LIDiA. This means that any distributed algorithm enoded by loal omputationsan be implemented in LIDiA . Furthermore, all omputational ations inLIDiA are loal in the sense that only network omputations in a ball ofradius 1 are allowed. Thus, any distributed algorithms designed in LIDiAan be enoded as a list of loal omputations rules.42



Appendix CLexial syntaxWe use the following onventions to desribe the syntax of LIDiA . Upperasewords and symbols enlosed in single quotation marks are terminal symbolsin BNF grammar. All other words are nonterminal symbols. If x and y aregrammatial units, then the following notations have the indiated meanings.Notation Meaningx y an x followed by a yxjy an x or a yx� zero or more x'sx+ one or more x'sx; � and x; � zero or more x's separated by ommas or semi-olonsx;+ and x; + one or more x's separated by ommas or semi-olonsThe lexial grammar of LIDiA uses the following symbols:Puntuation marks: ; : ; := [ ℄ f g ( )Reserved words: Delaration, Initialization, Synhronization, uni-verse, ative, rules, preondition, Relabeling, passive, Ation,Priorities, hoose, onst, if, while, do, then, tuple, of, enumer-ation.IDENTIFIERS for variables, types, and funtions: Sequenes of letters,digits, apostrophes, and undersores(exept that two undersores ouronseutively).OPERATORS: Sequenes of the haraters � ! # � + : < = > j fol-lowed by one of these haraters or by an identi�er.The lexial grammar is de�ned as the four tuple element Gt, where Gt isde�ned as followed: 43



Gt = (N;T; P; hProgrami).N is the set of nonterminal symbols.T is the set of terminal symbols, T \N = Ø.P is a �nite set of prodution rules of the form � ! � with � 2 V+; � 2V�; V = N [ T .hProgrami 2 N represents the start symbol.C.1 Delaration ParthDei ! �jhDe suitei;hDe suitei ! hDeijhDe suitei; hDeihDei ! honst Deijhvar Deijhtype Deihonst Dei ! onstonstonst hDef Namei := hStand V alueihvar Dei ! hDef Namei : hTypihTypi ! intintintjrealrealrealjharharharjstringstringstringjbooleanbooleanbooleanjhdefined Typihdefined Typi ! htype nameihtyp namei ! hNameihtype Dei ! typetypetype hDef Namei = hlabel typeihlabel typei ! henumeration Deijhtuple Deihenumeration Dei ! enumeration ofenumeration ofenumeration ofhlist namesihtuple Dei ! tuple oftuple oftuple ofhtupleihtuplei ! hDef Namei : hTypi; htupleijhDef Namei : hTypihDef Namei ! hNameihNamei ! hNameiAAAjhNameiBBBj : : : jhNameizzzjhNamei000j : : : jhNamei999hNamei ! AAAjBBBj : : : jZZZjaaajbbbjj : : : jzzzhlist namesi ! hNamei; hlist namesijhNameihStand V aluei ! hintStandV alueijhrealStandV alueijhharStandV alueijhstringStandV alueijhboolStandV alueihintStandV aluei ! hDigitijhintStandV alueihDigitihrealStandV aluei ! hintStandV aluei:hintStandV alueihharStandV aluei ! 0hhari0hstringStandV aluei ! 00hwordi00hboolStandV aluei ! truetruetruejfalsefalsefalsehDigiti ! 000j111j222j : : : j999hhari ! AAAjBBBj : : : jZZZjaaajbbbj : : : jzzzj000j : : : j999j+++ j ��� j��� j===j;;;j ::: j : : :hwordi ! hwordihharijhharihwordij�44



C.2 Initialization ParthIniti ! hSeq InstrutionsihSeq Instrutionsi ! hSeq Instrutioni;;;hInstrutionijhInstrutionihInstrutioni ! hAssignationijhCond InstrutionijhIter InstrutioniAssignation InstrutionhAssignationi ! hvar namei :=:=:= hexpressionihvar namei ! hDe NameihDe Namei ! hNameiSyntax of expressionshEq Opi ! === j 6=6=6=hComp Opi ! <<< j >>> j ��� j ���hAdd Opi ! +++j ���hMult Opi ! ���j===hQuant Opi ! 888j999j9i9i9ij9?i9?i9?i jhoose x INhoose x INhoose x IN jMax i INMax i INMax i IN jMin i INMin i INMin i INhLog Opi ! ^̂̂j ___ j ))) j,,,hNeg Opi ! :::hexpressioni ! hsimple exprihEq Opihsimple exprijhsimple exprihComp Opihsimple exprijhsimple exprihLog Opihsimple exprijhQuant Opihsimple exprijhNeg Opihsimple exprijhsimple exprihsimple expri ! jhsimple exprihAdd OpihTermijhsimple expriorororhTermijhsimple expri:::hTermijhTermihTermi ! hTermihMult OpihfatorijhTermiandandandhfatorijhfatorihfatori ! hStand V alueijhvar nameij(((hexpressioni)))j ��� hfatoriConditional instrutionshCond Instrutioni ! ifififhexpressionithenthenthenhSeq InstrutionsielseelseelsehSeq InstrutionsifififijifififhexpressionithenthenthenhSeq Instrutionsifififi45



Iterative expressionshIterat Instrutioni ! whilewhilewhilehexpressionidododohSeq InstrutionsiodododjforallforallforallhexpressionifffhSeq InstrutionsigggC.3 Synhronization and universehSynhroi ! Synhro_LC0();Synhro_LC0();Synhro_LC0();jSynhro_LC1();Synhro_LC1();Synhro_LC1();jSynhro_LC2();Synhro_LC2();Synhro_LC2();hUniversei ! hAlgoNamei(((hNamei : node: node: node) :) :) : hexpressioniC.4 Syntax of a relabelling rulehRulesi ! ative rules :ative rules :ative rules : hRules Coij passive rules :passive rules :passive rules : hRules CoihRules Coi ! hRules SeqihexpressionihConstrut RulesihConstrut Rulesi ! hRules Namei := f:= f:= f hRuleBodyig;g;g;hConstrut Rulesij�hRuleBodyi ! PreonditionPreonditionPreonditionhpreondiRelabelingRelabelingRelabelinghrelabiPrioritiesPrioritiesPrioritieshpriorityijPreonditionPreonditionPreonditionhpreondiAtionAtionAtionhrelabiPrioritiesPrioritiesPrioritieshpriorityihRules Namei ! hNameihpreondi ! hexpressionihrelabi ! hexpressionihpriorityi ! fffhRules Seqig;g;g;hRules Seqi ! hNamei;;;hRules SeqijhNamei;;;
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Appendix DCatalogue of ImplementationExamplesD.1 Spanning Tree: Sequential omputationR1 : AFR2 :
AM NA A1 110 M

Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitialiazationedgeLab:var := 0;nodeLab:var := 'N';G:init(nodeLab; edgeLab);v : nodenodenode;v := G:hoose_node();v:label:var := 'A';SynhronizationSynhro_LC2();SpanningTree(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodee: edgeedgeedge 47



v0:label:var = 'A'^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'N' ^ [v0; w℄:label:var = 0);Relabellingv0:label:var := 'M';Lv [w℄:var := 'A';[v0; w℄:var := 1;8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));Prioritiesfg;};R1:={preonditionw: nodenodenodev0:label:var = 'M'^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ [v0; w℄:label:var = 1);Relabellingv0:label:var := 'A';Lv [w℄:var := 'F';8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));PrioritiesfR0; g;};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES v0:label := ReeiveFrom(v));Prioritiesfg;};SpanningTree:run(G);
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D.2 Spanning Tree: Distributed Computation with-out expliit terminationR1 : A N A A0 1Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var = 0;nodeLab:var = 'N';G:init(nodeLab; edgeLab);v : nodenodenode;v := G:hoose_node();v:label:var = 'A';SynhronizationSynhro_LC1();SpanningTree(v0 : nodenodenode)universB : node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodev0:label:var = 'N' ^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ [v0; w℄:var = 0);Relabellingv0:label:var := 'A';[v0; w℄:var := 1;Prioritiesfg;};passive rules:R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};SpanningTree:run(G);
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D.3 Spanning Tree: Distributed Computation withexpliit termination
, { , , }

, { , , }

R1 :R2 : A N A A1A1 N A1 A10 110
A1 FR3 : A1 11 A1 11 A1A1A10A1

N AR4 : A N
A A A

A1 AEND � ��Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var := 0;nodeLab:var := 'N';G:init(nodeLab; edgeLab);v : nodenodenode;v := G:hoose_node();v:label:var := 'A';SynhronizationSynhro_LC1();SpanningTree(v0 : nodenodenode)universB: node_setnode_setnode_set;B = G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1; R2; R3;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodev0:label:var = 'N'^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ [v0; w℄:label:var = 0);Relabellingw:label:var := 'A1';[v0; w℄ := 1;Prioritiesfg;};R1:={preonditionw : nodenodenode;v0:label:var = 'N'^ 50



9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A1' ^ [v0; w℄:label:var = 0);Relabellingv0:label:var := 'A1';[v0; w℄:label:var := 1;Prioritiesfg;};R2:={preonditionv1; v2 : nodenodenode;v0:label:var = 'A1'^8w 2 B(:(w 6= v0 ^ Lv [w℄:var = 'N' ^ [v0; w℄:label:var = 0)))^8v1 2 B 8v2 2 B(:(v1 6= v0 ^ v2 6= v0 ^ v1 6= v2 ^ Lv[v1℄:var = 'A1' ^ Lv [v2℄:var = 'A1' ^[v0; v1℄:label:var = 1 ^ [v0; v2℄:label:var = 1 _ v1 6= v0 ^ v2 6= v0 ^ v1 6= v2 ^ Lv[v2℄:var = 'A' ^Lv [v2℄:var = 'A1' ^ [v0; v1℄:label:var = 1 ^ [v0; v2℄:label:var = 1);Relabellingv0:label:var := 'F';Prioritiesfg;};R3:={preonditionv: nodenodenode;v0:label:var = 'A' ^ 8v 2 B(Lv [v℄:var = 'F');Relabellingv0:label:var := 'END';Prioritiesfg;};passive rules:R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};SpanningTree:run(G);
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D.4 Spanning Tree: Sequential Computation withnodes Id.R1 :R2 :R3 : i��i
� i(A; i)(A; i)(M; i)

(M; i)(N; i)(A; i) (Y; k)(A; i)
(F; i)(A; i)(Y; k)(X; j) ; j < i;X 2 fA;M;N; Fg; i < k;Y 2 fA;M;Ng

Delarationtype nLabel = tuple of var: string, id: int;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var := 0;G:init(nodeLab; edgeLab);v : nodenodenode;i: intintint;i := 0;8v 2 G; IMPLIES fv:label:id := i; v:label:var := 'A'; i := i+ 1; gSynhronizationSynhro_LC2();SpanningTree(v0 : nodenodenode)universB: node_setnode_setnode_set;B = G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1; R2;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodev0:label:var = 'A' ^ 9w 2 B(w 6= v0 ^ Lv [w℄:id < v0:label:id);RelabellingLv [w℄:var := 'A';v0:label:var := 'M';[v0; w℄:label:var := v0:label:id;8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));Prioritiesfg;};R1:={preonditionw : nodenodenode;v0:label:var = 'A'^9w 2 B(w 6= v0 ^ Lv [w℄:var 6= 'F' ^ v0:label:id < Lv [w℄:id);Relabellingv0:label:var := 'N';8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));Prioritiesfg;};R2:={preonditionw : nodenodenode; 52



v0:label:var = 'M'^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ v0:label:id = Lv [w℄:id ^[v0; w℄ = v0:label:id);Relabellingv0:label:var := 'A';Lv [w℄:var := 'F';8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));PrioritiesfR0; R1; g;};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES v0:label := ReeiveFrom(v));Prioritiesfg;};SpanningTree:run(G);
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D.5 Spanning Tree: Distributed Computation withnodes Id.R1 : �(A; i) (A; j) (A; i) i (A; i) ; j > 0; i > 0; j < iDelarationtype nLabel = tuple of var: string, id: int;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var = 0;G:init(nodeLab; edgeLab);v : nodenodenode;i: intintint;i := 0;8v 2 G; IMPLIES fv:label:id := i; v:label:var := 'A'; i := i+ 1; gSynhronizationSynhro_LC1();SpanningTree(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R1:={preonditionw: nodenodenodev0:label:var = 'A' ^9w 2 B(w 6= v0 ^ Lv [w℄:var = 'A' ^ Lv [w℄:id > v0:label:id);Relabellingv0:label:id := Lv [w℄:id;[v0; w℄:label:var := Lv [w℄:id;Prioritiesfg;};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};SpanningTree:run(G);
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D.6 Spanning Tree: Distributed Computation withloal detetion of termination

, { , }

R1 :R2 :
R3 :

(A; i) (X; j)�(A1; i) � (X; j) (A; i) i (A1; i)(A1; i) i (A1; i)
(A1; i) (F; i) (A1; i)ii (A1; i)(Y; i)(X; j)

(A1; i)�
; j < i;X 2 fA;A1; Fg; j < i;X 2 fA;A1; Fg

; j 6= i;Y 2 fA;A1g
Delarationtype nLabel = tuple of var: string, id: int;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var = 0;G:init(nodeLab; edgeLab);v : nodenodenode;i: intintint;i := 0;8v 2 G; IMPLIES fv:label:id := i; v:label:var := 'A'; i := i+ 1; gSynhronizationSynhro_LC1();SpanningTree(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1; R2;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenode9w 2 B(w 6= v0 ^ Lv [w℄:id > v0:label:id ^ Lv [w℄:var = 'A');RelabellingLv [v0℄:id := Lv [w℄:id;v0:label:var := 'A1';[v0; w℄:label:var := v0:label:id;Prioritiesfg};R1:={preonditionw: nodenodenode9w 2 B(w 6= v0 ^ Lv [w℄:id > v0:label:id ^ Lv [w℄:var = 'A1');RelabellingLv [v0℄:id := Lv [w℄:id;v0:label:var := 'A1';[v0; w℄:label:var := v0:label:id;Priorities 55



fg};R2:={preonditionw: nodenodenodev0:label:var = 'A1' ^8w 2 B:(w 6= v0 ^ Lv [w℄:id 6= v0:label:id) ^8v1 2 B 8v2 2 B:(v1 6= v2 ^ v2 6= v0 ^ v1 6= v0 ^ v0:label:id = Lv [v1℄:id ^ v0:label:id = Lv [v2℄:id ^Lv [v2℄:var = 'A1' ^ Lv[v1℄:var 6= 'F');Relabellingv0:label:var := 'F';PrioritiesfR1; g};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};SpanningTree:run(G);
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D.7 Eletion In a Tree
, {

, {

}

}R1 : N N F N
R2 : N

N 0N E N
N N0 000

Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationedgeLab:var := 0;nodeLab:var := 'N';G:init(nodeLab; edgeLab);InitializationSynhro_LC1();EletionInTree(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0 :={preonditionv : nodenodenode;v0:label:var = 'N' ^ 9?v 2 B(v 6= v0 ^ Lv [v℄:var = 'N');Relabellingv0:label:var = 'F';Prioritiesfg;};R1:={preonditionv : nodenodenodev0:label:var = 'N' ^ 8v 2 B:(v 6= v0 ^ Lv [v℄:var 6= 'N');Relabellingv0:label:var = 'E';Prioritiesfg;};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};EletionInTree:run(G); 57



D.8 Eletion in a Complete Graph
, { }

R1 : N N F N00
R2 : N

N 0N E
Delarationtype nLabel = tuple of var: string;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationnodeLab:var := 'N';G:init(nodeLab; edgeLab);SynhronizationSynhro_LC1();EletionInGraph(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionv : nodenodenodev0:label:var = 'N' ^ 9v 2 B(v 6= v0 ^ Lv [v℄:var = 'N');Relabellingv0:label:var := 'F';Prioritiesfg;};R1:={preonditionv : nodenodenodev0:label:var = 'N' ^ 8v 2 B(v 6= v0 ^ Lv [v℄:var 6= 'N');Relabellingv0:label:var := 'E';Prioritiesfg;};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};EletionInGraph:run(G);
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D.9 Eletion in a Ring(Chang-Robert Algorithm)
(Id2; x)

; x = id2
; x > y(Id1; x)(Id1; x)

(Id2; y)
(Id2; y)
(Id1; x) (Id1; x)

ER2 :
R1 :

Delarationtype nLabel = tuple of id1: int, id2: int,state: string;type eLabel = tuple of var: int;G : GRAPH < nLabel; eLabel >;GRAPH < nLabel; eLabel >;GRAPH < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationG:init(nodeLab; edgeLab);v : nodenodenode;i: intintint;i := 0;8v 2 G; IMPLIES fLv [v℄:id1 := i;Lv [v℄:id2 := i; i := i+ 1; gSynhronizationSynhro_LC1();Eletion(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenode9w 2 B(w 6= v0 ^ Lv [w℄:id2 > v0:label:id2);Relabellingv0:label:id2 := Lv[w℄:id2;Prioritiesfg};R1:={preonditionw: nodenodenode9w 2 B(w 6= v0 ^ Lv [w℄:id2 = v0:label:id1);Relabellingv0:label:stat := 'Eleted';Prioritiesfg};passive rules: R0;R0:={preondition 59



v0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};Eletion:run(G);
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D.10 3-Coloration of a Ring
x x xR1 : x x x x xy

R2 : y z y ; z 6= y
; x 6= y; x 6= y; z 6= xDelarationtype Color = enumeration of x,y,z;type nLabel = tuple of olor: Color;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationG:init(nodeLab; edgeLab);v : nodenodenode;8v 2 G; IMPLIES fC : Color;C := Color:hoose();Lv[v℄:olor := C; gSynhronizationSynhro_LC1();Coloration(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodew1: nodenodenodeol1: ColorColorColor9w 2 B9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w℄:olor = v0:label:olor ^Lv [w1℄:olor = v0:label:olor ^9ol1(ol1 6= v0:label:olor)));Relabellingv0:label:olor := ol1;8w 2 B(w 6= v0; IMPLIES SendTo(w; Lv[w℄));Prioritiesfg};R1:={preonditionw: nodenodenodew1: nodenodenodeol1: ColorColorColor9w 2 B9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w℄:olor = v0:label:olor ^Lv [w1℄:olor 6= v0:label:olor ^9ol1(ol1 6= v0:label:olor ^ol1 6= Lv[w1℄:olor));Relabellingv0:label:olor := ol1;Prioritiesfg};passive rules:R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg; 61



};Coloration:run(G);
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D.11 3-Coloration + SSP TerminationR1 :R2 :R3 :R4 :

(X;V1; n1) (X;V1; n1)(X;V2; n2) (X;V2; n2) X;Y; Z 2 fx; y; zgV1; V2 2 fT;Fg(X;V1; n1) (X;V1; n1)(Y; V2; n2) (Z;T;min(n1; n2) + 1)(Y; V2; n2) X 6= ZX 6= YY 6= Z(X;F;�1)(Y; V1; n1) (Y 1; V2; n2) (Y; V1; n1) (Y 1; V2; n2)(X;T;min(n1; n2) + 1) Y 1 6= X(Y; T; n1) (Y 1; T; n2)(X;T; n) (Y; T; n1) (Y 1; T; n2)
(Y; T;min(n1; n2) + 1)(X;F;�1)(X;F;�1)
(X;T;min(n1; n2) + 1)Delarationtype Color = enumeration of x,y,z;type nLabel = tuple of olor: Color, lab2: string, N: int;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationnodeLab:olor = x;nodeLab:lab2 = 'F';nodeLab:N = �1;nodeLab:N = 0;G:init(nodeLab; edgeLab);SynhronizationSynhro_LC1();Coloration(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1; R2; R3;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw: nodenodenodew1: nodenodenode9w 2 B 9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w℄:olor = v0:label:olor ^Lv [w1℄:olor = v0:label:olor ^v0:label:lab2 = 'F' ^ v0:label:N = �1);Relabellingv0:label:olor := Choose ol IN(9ol 2 Color(ol 6= nodelabel(v0):olor));v0:label:lab2 := 'T';v0:label:olor :=min(Lv [w℄:N; Lv [w1℄:N) + 1;Prioritiesfg};R1:={preonditionw: nodenodenodew1: nodenodenode9w 2 B 9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w℄:olor = v0:label:olor ^Lv [w1℄:olor 6= v0:label:olor ^v0:label:lab2 = 'F' ^ v0:label:N = �1);Relabellingv0:label:olor := Choose ol IN(9ol 2 Color(ol 6= v0:label:olor ^63



ol 6= Lv [w1℄:olor));v0:label:lab2 := 'T';v0:label:olor :=min(Lv [w℄:N; Lv [w1℄:N) + 1;Prioritiesfg};R2:={preonditionw: nodenodenodew1: nodenodenode9w 2 B 9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w1℄:olor 6= v0:label:olor ^v0:label:lab2 = 'F' ^ v0:label:N = �1);Relabellingv0:label:lab2 := 'T';v0:label:olor :=min(Lv [w℄:N; Lv [w1℄:N) + 1;Prioritiesfg};R3:={preonditionw: nodenodenodew1: nodenodenode9w 2 B 9w1 2 B(w 6= v0 ^ w1 6= v0 ^ w 6= w1 ^Lv [w℄:lab2 = v0:label:lab2 ^Lv [w1℄:lab2 = v0:label:lab2 ^ v0:label:lab2 = 'T');Relabellingv0:label:olor :=min(Lv [w℄:N; Lv [w1℄:N) + 1;Prioritiesfg};passive rules:R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));Prioritiesfg;};Coloration:run(G);
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D.12 Algorithm of MazurkiewizDelarationtype Ttuple = tuple of pi: int, Ni: set < int >set < int >set < int >;type nLabel = tuple of p: int, N: set < int >set < int >set < int >, M: set < Ttuple >set < Ttuple >set < Ttuple >;type eLabel = tuple of var: int;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : eLabel;nodeLab : nLabel;InitializationnodeLab:p = 0;nodeLab:N = Ninit;nodeLab:M = Minit;G:init(nodeLab; edgeLab);SynhronizationSynhro_LC2();Mazur(v0 : nodenodenode)universB: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R1:={preonditionw: nodenodenodew1: nodenodenode9w 2 B9w1 2 B(w 6= w1 ^ 8t 2 Lv [w℄:M(:Lv[w1℄:M:member(t)) _8t1 2 Lv [w1℄:M(:Lv[w℄:M:member(t1)));RelabellingM: set < Ttuple >set < Ttuple >set < Ttuple >;8v 2 B; IMPLIES M := M:join(Lv [v℄:M);8v 2 B; IMPLIES Lv [v℄:M := M;8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));Prioritiesfg};R2:={preonditionw: nodenodenodew1: nodenodenodeol1: Color8w 2 B8w1 2 B(w 6= w1 ^ 8t 2 Lv [w℄:M(Lv [w1℄:M:member(t)) ^8t1 2 Lv [w1℄:M(Lv [w℄:M:member(t1))) ^(v0:label:p = 0 _ 9t 2 v0:label:M(t:pi = v0:label:p ^v0:label:N:diff(t:Mi):max() < t:Mi:diff(v0:label:N):max()));RelabellingK : int;K := Max i IN(9v 2 B(i = Lv [v℄:p _ Lv [v℄:N:member(i)_9t 2 Lv[v℄:M(i = t:pi)));Tt: Ttuple;Tt:pi := K + 1;Tt:Mi := v0:label:N;8v 2 B; IMPLIES Lv [v℄:M:insert(Tt);8v 2 B(v 6= v0; IMPLIES Lv [v℄:N:delete(v0:label:p));8v 2 B(v 6= v0; IMPLIES Lv [v℄:N:insert(K + 1));v0:label:p = K + 1;8 v 2 B(v 6= v0; IMPLIES SendTo(v; Lv [v℄));Prioritiesfg};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES v0:label := ReeiveFrom(v));Prioritiesfg;};Mazur:run(G);
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D.13 Algorithm of Dijkstra-Sholten
R1 : (X;A; s)

(N;Pa; 0)
(X;A; s+ 1) X 2 fA;A1g(A1; A; 0)R2 : (X;A; s) (X;Pa; s) X 2 fA;A1g(X;A; s)R3 :

R4 :
(Y;Pa; s1) (Y;A; s1)

(X;A; s) X;Y 2 fA;A1gs1 6= 0
(X;Y; s)
(A1; Pa; 0)

(X;Y; s� 1)
(N;Pa; 0) X 2 fA;A1gY 2 fA;Pag

R5 : (A;Pa; 0) END

Pa

Pa Pa
PaA

A

Delarationtype nLabel = tuple of lab1: string, lab2: string, s: int, End: Bool;type eLabel = tuple of lab: string;G : graph < nLabel; eLabel >;graph < nLabel; eLabel >;graph < nLabel; eLabel >;edgeLab : nLabel;nodeLab : nLabel;InitializationnodeLab:lab1 = 'N';nodeLab:lab2 = 'Pa';nodeLab:s = 0;edgeLab:lab = 'Pa';G:init(nodeLab; edgeLab);v: nodenodenode;v := G:hoose_node();v:label:lab1 = 'A';v:label:lab2 = 'A';SynhronizationSynhro_LC2();Dijkstra_Sholten(v0 : nodenodenode)univers 66



B: node_setnode_setnode_set;B := G:voisinage(v0);Lv : node_array < nLabel >node_array < nLabel >node_array < nLabel >;Lv :init(B; nodeLab);ative rules: R0; R1; R2; R3; R4;8w 2 B(w 6= v0; IMPLIES Lv[w℄ := ReeiveFrom(w));R0:={preonditionw1: nodenodenode:v0:label:End ^ v0:label:lab1 6= 'N' ^v0:label:lab2 = 'A' ^9w1 2 B(Lv [w1℄:lab1 = 'N' ^Lv [w1℄:lab2 = 'Pa' ^ Lv [w1℄:s = 0 ^[v0; w1℄:label:lab = 'Pa' ^ :Lv[w1℄:End);Relabellingv0:label:s := v0:label:s + 1;[v0; w1℄:label:lab := 'A';Lv [w1℄:lab1 := 'A1';Lv [w1℄:lab2 := 'Pa';8w1 2 B(w1 6= v0; IMPLIES SendTo(w1; Lv [w1℄));Prioritiesfg};R1:={preonditionv0:label:lab1 6= 'N' ^ v0:label:lab2 = 'A' ^:v0:label:End;Relabellingv0:label:lab2 := 'Pa';8w1 2 B(w1 6= v0; IMPLIES SendTo(w1; Lv [w1℄));Prioritiesfg};R2:={preonditionw1: nodenodenode:v0:label:End ^ v0:label:lab1 6= 'N' ^v0:label:lab2 = 'A' ^9w1 2 B(Lv [w1℄:lab1 6= 'N' ^Lv [w1℄:lab2 = 'Pa' ^ Lv [w1℄:s 6= 0 ^[v0; w1℄:label:lab = 'Pa' ^ :Lv[w1℄:End);RelabellingLv [w1℄:lab2 := 'A';8w1 2 B(w1 6= v0; IMPLIES SendTo(w1; Lv [w1℄));Prioritiesfg};R3:={preonditionw1: nodenodenode:v0:label:End ^ v0:label:lab1 6= 'N' ^9w1 2 B(Lv [w1℄:lab1 = 'A1' ^ Lv [w1℄:lab2 = 'Pa' ^Lv[w1℄:s = 0 ^ Le[v0; w1℄:lab = 'A' ^ :Lv[w1℄:End);Relabellingv0:label:s := v0:label:s � 1;Lv [w1℄:lab1 := 'N';8w1 2 B(w1 6= v0; IMPLIES SendTo(w1; Lv [w1℄));Prioritiesfg};R4:={preonditionv0:label:lab1 = 'A' ^ v0:label:lab2 = 'Pa' ^v0:label:s = 0 ^ :v0:label:End;Relabellingv0:label:End := True;8w1 2 B(w1 6= v0; IMPLIES SendTo(w1; Lv [w1℄));Prioritiesfg};passive rules: R0;R0:={preonditionv0:syn 6= v0;Ationv : node;8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES SendTo(v; v0:label));8 v 2 B(v 6= v0 ^ v:syn = v; IMPLIES v0:label := ReeiveFrom(v));Prioritiesfg;};Dijkstra_Sholten:run(G); 67
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