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Chapter 1

abstract

This paper presents a new programming language for implementing dis-
tributed algorithms encoded by means of local computations [32|. The lan-
guage, called LIDiA ,is based on a two-level transition system model: the first
level is used to specify the behavior of each single component, whereas the
second level captures their interactions. Transitions are basically expressed
in a precondition-effect style. Furthermore, LIDiA depends on a logic L%
that is used to express the preconditions of each transition. The logic £}
is an extension of first-order logic by means of new counting quantifiers and
additional computation symbols. We illustrate the different aspects of im-
plementations in LIDiA using various classical distributed algorithms.



Chapter 2

Introduction

2.1 The Model

Local computations on graphs, and particularly graph relabelling systems,
have been introduced in [4] as a suitable tool for encoding distributed al-
gorithms, for proving their correctness and for understanding their power.
In this model, a network is represented by a graph which vertices denote
processors, and edges denote communication links. The local state of a pro-
cessor (resp. link) is encoded by the label attached to the corresponding
vertex (resp. edge). A relabelling rule is a rewriting rule which has the same
underlying fixed graph for its left-hand side and its right-hand side, but with
an update of the labels. According to its own state and to the states of
its neighbours, each vertex may decide to realize an elementary computa-
tion step. After this step, the states of this vertex, of its neighbours and of
the corresponding edges may change according to some specific computation
rules. Using this solid theoretical basis, we have developed the LIDiA pro-
gramming language for expressing and programming distributed algorithms

32].

2.2 Related Models

The language LIDiA can be viewed as a coordination language that allows
users to design and implement concurrent systems. The model provides a
precise way of describing and reasoning about system components that in-
teract with each other and that operate at different speeds. Our approach
consists of defining an operational model for LIDiA , based on a two-level
transition system. The first level consists of a number of transition systems,
each of which defines the behaviour of a single process. The behaviour of a
process depends on the states of its neighbourhood. The second level con-
sists of a single transition system that defines the interactions among the
first-level transition systems. Multi-level transition systems were first used



to define the formal semantic of coordination languages in [40] and [41]. This
formalism is not specific to any language nor to control-oriented coordina-
tion. Indeed, multi-level transition systems are much more general and seem
to be suitable for formalizing data-oriented coordination models and lan-
guages as well, as illustrated in [8]. Moreover, LIDiA is not based on any
automaton model. Our goal was simply to develop a programming language
which should be as simple as possible and could express all transition defini-
tions needed to describe any given distributed algorithm encoded by means
of local computations.

Although, the multi-level transition system is powerful enough to model
distributed algorithms, the power of LIDiA is addicted to the descriptive
complexity of the logic £% . Similar logics have been studied by other au-
thors, and shown to be particularly robust by [38, 17, 22|. The most impor-
tant aspect of the language L is, among other things, its ability to express
counting. In fact, counting is a fundamental operation of numerous algo-
rithms. Counters constitute also an essential primitive of query languages. In
relational databases, practical query languages, such as SQL, provide coun-
ters as built-in functions of the languages. Counters map relations to inte-
gers. They are of great importance from a practical point of view. Moreover,
counters raise challenging theoretical problems. Logical languages generally
lack the ability to express counting, though it is very easy to count on any
computational device [1].

2.3 Other Models

The LIDiA model is similar to the labelled transition system models used to
define semantics for process algebraic languages like CSP [23| and CCS |31].
In contrast to such languages, LIDiA does not define parallel composition and
each component has only two external actions: Send and Receive. LIDiA is
exactly devoted to the design and implementation of distributed algorithms
encoded by means of local computations. Other languages for describing
concurrent systems are based on several types of automata, with different
notions of composition and external behaviour; for instance, TLA [24]| and
UNITY [6] are based on state automata that combine via shared variables.
The communication in LIDiA is due to a messages passing system that is
encoded in the second level transition system.

Although IOA [15] and LIDiA use transition definition (guarded com-
mands) consisting of preconditions and effects, the preconditions in LIDiA
are exclusively described in the logic L . We have shown that this logic has
enough descriptive power to fully described all PTIMFE queries in the struc-
tures used in LID:iA . Finally, this particularity of £, has help us to state
the completeness of LIDiA .



Chapter 3

Local Computations for
Encoding Distributed
Algorithms

In this Section, we give a few definitions of local computations, and partic-
ularly of graph relabelling systems. As usual, such a network is represent
ed by a graph whose vertices stand for processors and edges for (bidirec-
tional) links between processors. At every time, each vertex and each edge
is in some particular state and this state will be encoded by a vertex or edge
label. According to its own state and to the states of its neighbours, each
vertex may decide to realize an elementary computation step. After this step,
the states of this vertex, of its neighbours and of the corresponding edges
may have changed according to some specific computation rules. Let us recall
that graph relabelling systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the labelling of its
components (edges and/or vertices), the final labelling being the result,

(C2) they are local, that is, each relabelling changes only a connected sub-
graph of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the
relabelling only depends on the local context of the relabelled subgraph.

For such systems, the distributed aspect comes from the fact that several re-
labelling steps can be performed simultaneously on “far enough” subgraphs,
giving the same result as a sequential realization of them, in any order. A
large family of classical distributed algorithms encoded by graph relabelling
systems is given in [2, 3|. In order to make the definitions easy to read,
we give in the following an example of a graph relabelling system for com-
puting a spanning tree, and an example of local computations for detecting



stable properties. Then, the formal definitions of local computations will be
presented.

3.1 Distributed computation of a spanning tree

Let us first illustrate graph relabelling systems by considering a simple dis-
tributed algorithm which computes a spanning tree of a network. Assume
that a unique given processor is in an “active” state (encoded by the label
A), all other processors being in some “neutral” state (label N) and that
all links are in some “passive” state (label 0). The tree initially contains the
unique active vertex. At any step of the computation, an active vertex may
activate one of its neutral neighbours and mark the corresponding link which
gets the new label 1. This computation stops as soon as all the processors
have been activated. The spanning tree is then obtained by considering all
the links with label 1.

An elementary step in this computation may be depicted as a relabelling
step by means of the following relabelling rule R which describes the corre-
sponding label modifications (remember that labels describe processor sta-
tus):

A N A A
R: o " o > o—e

Whenever an A-labelled node is linked by a 0-labelled edge to an N-
labelled node, then the corresponding subgraph may rewrite itself according
to the rule.

A sample computation using this rule is given in Figure 3.1. Relabelling
steps may occur concurrently on disjoint parts on the graph. When the graph
is irreducible, i.e no rule can be applied, a spanning tree, consisting of edges
labelled 1, is computed.

N —eonN Ne——enN Ne——@N
0| 0 0| 0 0 0
1 1
A" ON —> AG—eA —> AG—OA
0| 0 0| 0 0 1
Ne—2—eonN Ne—>—eN Ne—>—@A
A2 eN A" eoN A2 oA
1 0 1 0 1 1
1 1 1
— AG—OA —> ASM—OA —> AS\—OA
0| 1 0| 1 0 1
Ne—2 & A A o—e A AO—o A

Figure 3.1: Distributed computation of a spanning tree



3.2 Detection of stable properties

The algorithm of Szymanski, Shi and Prywes (SSP’s algorithm for short)
[44] is a good example to illustrate the notion of local computations.

Consider a distributed algorithm which terminates when all processes
reach their local termination conditions, each process is able to determine
only its own termination condition. SSP’s algorithm detects an instant in
which the entire computation is achieved.

Let G be a graph, to each node v is associated a predicate P(v) and an
integer a(v). Initially P(v) is false and a(v) is equal to —1. Transformations
of the value of a(v) are defined by the following rules.

Each local computation acts on the integer a(vg) associated to the vertex
vo; the new value of a(vg) depends on values associated to its neighbours.
More precisely, let vy be a vertex and let {vy,...,u4} the set of vertices adja-
cent to vg.

We consider in this Section the following assumption. For each node v, the
value P(v) eventually becomes true and remains true for ever.

e If P(vg) = false then a(vg) = —1;

o if P(vg) = true then a(vg) = 1+ Min{a(vy) | 0 < k < d}.

This algorithm is useful to detect locally the global termination of a dis-
tributed algorithm [30].

A large family of distributed algorithms can be described as local computa-
tions, including election, termination detection, computation of a spanning
tree [3]. Let us give now a formal definition of local computations.

3.3 Formal definition of local computations

Local computations are characterized by applications of rules such that: an
application of a rule to a ball depends exclusively on the labels appearing
in the ball and changes only these labels. The previous examples can be de-
scribed by the following general model. Let us introduce a few notations. We
consider graphs which are finite, undirected and connected without multiple
edges and self-loops. If G is a graph, V(G) denotes the set of vertices and
E(G) denotes the set of edges. For a vertex v and a positive integer k; the ball
of radius k& with center v, denoted by Bg(v, k), is the subgraph of G induced
by the set of vertices V' = {v' € V' | d(v,v") < k}. Let L be an alphabet. A
graph labelled over L will be denoted by (G, \), where A\: V(G)UE(G) — L
is the function labelling vertices and edges. The graph G is called the un-
derlying graph, and the mapping A is a labelling of G. Let G, be the class
of graphs labelled over some fixed alphabet L.



Gr, closed under isomorphism. The transitive closure of R is denoted R*.
An R—rewriting chain is a sequence Gy, Go, ..., Gy such that for every 1,
1<i<n, G; R Gip1. A sequence of length 1 is called an R—rewriting step
(a step for short).

By “closed under isomorphism” we mean that if G; ~ G and G R G’, then
there exists a labelled graph G} such that Gy R G} and G| ~ G'.
Definition 3.3.2 Let R C Gy, X G, be a graph rewriting relation.

1. R is a relabelling relation if whenever two labelled graphs are in relation
then their underlying graphs are equal (not only isomorphic):

GRH — G=H.

When R is a relabelling relation we shall speak about R—relabelling
chains (resp. step) instead of R—rewriting chains (resp. step).

2. A relabelling relation R is local if whenever (G,\) R (G, X'), the la-
belling X and X' only differ on some ball of radius 1 :

dv € V(G) such that ¥V © ¢ V(Bg(v,1)) U E(Bg(v, 1)),

Az) = N(z).
We say that the step changes labels in Bg(v, 1).

3. An R—normal form of G € Gy, is a labelled graph G' such that
G R* G, and G' R G" holds for no G" in Gr,. We say that R is
Noetherian if for every graph G in Gy, there exists no infinite R—relabelling
chain starting from G. Thus, if a relabelling relation R is Noetherian,
then every labelled graph has an R—mnormal form.

The next definition states that a local relabelling relation is locally gener-

ated if its restriction on centered balls of radius 1 determines its computation
on any graph.
Definition 3.3.3 Let R be a relabelling relation. Then R is locally generated
if the following is satisfied: For any labelled graphs (G,)\), (G,X\), (H,n),
(H,n'") and any verticesv € V(G), w € V(H) such that the balls Bg(v, 1) and
By (w,1) are isomorphic via p: V(Bg(v,1)) — V(Bg(w,1)) and ¢(v) =
w, the following three conditions

1. V& € V(Bg(v, ))UE(Ba(v,1)), M) = n(e(a)) and X'(z) = 7/ (¢o(s)).
2. Y 1 ¢ V(Ba(v,1)) U B(Ba(v, 1)), M) = X(x),
9.V & ¢ V(By(w,1)) U BBy (w,1)), n(x) =1(2),

imply that (G, \) R (G, ') if and only if (H,n) R (H,n').

10



Finally, local computations are the computations defined by a relation
locally generated. The reader can find in [3| detailed definitions, formal prop-
erties and many examples of local computations.

Let us also note that labels can be sets or sets of sets. In particular, it is
possible to handle graphs described as labels. For example, the Mazurkiewicz
universal graph reconstruction is a distributed enumeration algorithm which
allows the reconstruction of an anonymous graph. The manipulated labels
for such an algorithm are sets standing for graphs (see [3]).

11



Chapter 4

The language LIDiA

4.1 The model

Our approach consists of defining an operational model for LIDiA that is
based on a two-level transition system. The first level consists of a number of
transition systems, each of which defines the behavior of a single process. The
second level consists of a single transition system that defines the interactions
among the first-level transition systems.

We use a set of first-level transition systems to specify processes as au-
tonomous entities that can compute and / or interact with their environment.
Thus every step of the computation in such a process may depend not only
on the internal state of the process, but also on some input it may obtain
from its environment. Such processes are open systems in a sense analogous
to Wagner’s notion of Interaction Machines [42]. Typically, each such transi-
tion system is unbounded and nondeterministic, reflecting the fact that the
process it represents is an interactive system; i.e., its unpredictable behavior
depends on the input it obtains from an external environment that it does
not control. The environment of each process is represented by the set of
processes that belong to its neighborhood and by system external actions
that could force the execution of a given action in the network. Transi-
tion systems, which are structures commonly used in operational semantics,
have been used in an uniform and universal way. Every process that exists
in LIDiA | is modeled as a transition system (in the first-level). Each such
transition system describes the potential steps that its corresponding process
can take, assuming that it is embedded in an environment that is optimally
cooperative.

The details of the internal activity of each process (e.g., its computations)
are described by its respective first-level transition system. Most such detail is
irrelevant for, and hence unobservable by, the second-level transition system.

The second-level transition system, thus abstract away the semantics
of the first-level processes, and is concerned only with their (mutually en-

12



gaging) externally observable behavior. The external activities of an entire
LIDiA application are modeled by the second-level transition system. Here,
a configuration corresponds to a set of processes each of which is associated
with a list of pending messages that have already been broadcast but not
yet received. Each second-level transition is defined in terms of transitions
reflecting the actions of interacting processes. The second-level transitions
are based only on partial view of the whole system, reflecting the true time
and space decoupling of processes in a LIDiA application.

Further on, in a computational point of view, the second-level transitions
are the same for all processors involved in the computation. They represent
a formal way how communication links between two processors are imple-
mented.

The model we use in our language is similar to the labeled transition sys-
tem models used to define semantics for process algebraic languages like CSP
[23] and CCS [31]. In particular, those models also define parallel composi-
tion in terms of identifying external actions. Other languages for describing
concurrent systems are based on several types of automata, with different
notions of composition and external behavior; for instance, TLA [24] and
UNITY [6] are based on automata that communicate via shared variables.
Among all similar models we considered, the notations and model introduced
in IOA [15] were very helpful for our work. But instead of representing each
process as an I/0O automata, we simply consider a process as an entity that
belongs to a compact system and can perform several rules (first-level sys-
tem). This departure from the automata model is motivated by the fact that
our model has to be as simple as possible. At our actual development step,
we do not want users to deal with automata operations nor to perform some
invariants proofs with a given theorem prover. We are only interested in
computing and visualizing distributed algorithms encoded by means of local
computations.

4.2 An informal overview

The LIDiA language is designed to allow precise and direct description of
distributed algorithms encoded by means of local computations. Since the
model we used is a reactive system model rather than a sequential program
model, the language reflects this fundamental distinction. That is, it is not a
standard sequential programming language with some construct for concur-
rency and interaction added on; rather, concurrency and interaction are at
its core. Two major concepts in LIDiA are separation of concerns and anony-
mous communication. Separation of concerns means that computation con-
cerns are isolated from the communication and cooperative concerns. Anony-
mous communication means that the processes engaged in communication
with each other need not know each other. Furthermore all communication

13



is asynchronous. In LIDiA communications is either through broadcast of
events or through point-to-point channel connections which are established
between two communicating processes.

The starting point for LIDiA was the pseudocode used in earlier works
on Graph Relabelling Rules and on I/0 automata. This pseudocode contains,
in the case of I/0 automata, explicit representations of state transition def-
inition in form of (actions, states, transitions,...). Transitions are described
using transition definitions (TDs) containing preconditions and effects. This
pseudocode has evolved in two different forms: a declarative style (see, e.g.,
[37]), in which effects are described by predicates relating pre- and post-
states, and an imperative style(e.g., [26]), in which effects are described by
simple imperative programs.

Because of our intention to build a formally defined programming lan-
guage, we have to make some design decisions in order to perform a suitable
relationship between our model and the corresponding programming lan-

guage.

e We use graph data type to symbolize a distributed systems. Each node
represents a process and each edge can be seen as a communication
link between two processes.

e Each node (respectively edge) has a label that describes its state at a
given time.

e Every computing entity in LIDiA is a process: vertices and commu-
nication links. We will use the word process to define a process that
represents a network vertex. For processes that represent communica-
tion link, we will use the word edge process to designate them.

e For our purpose, we allow only the imperative style in each TD(rule).
Thus, a rule effect may be described entirely by a program. Such imper-
ative descriptions of effects are kept simple, consisting of(possibly non-
deterministic) assignments, conditionals, and simple bounded loops.
This simplicity makes sense, because transitions are supposed to be
executed atomically.

e Variables can be initialized using ordinary assignments and nondeter-
ministic choice statements. The entire initial state may be constrained
by predicate.

e The LIDiA language can take advantage of some local computations
protocols previously introduced and used by Bauderon, Métivier et. al.
[3]. These are randomized algorithms which are used to implement local
computations in an asynchronous system with asynchronous message
passing.

14



e Each TD corresponds to a rule that is represented in a precondition-
effect style. A rule can have additional choose parameters, which are
not formally part of the action name, but which allow values to be
chosen to satisfy the precondition and then used in describing the effect.

e We uses two different sorts of rules: active rule and passive rule. A
process uses an active rule, when it can decide to execute an action. It
uses a passive rule, when one of its neighbors processes tells it to execute
a given action. Passive and active rules are of prime importance, when
dealing with synchronization protocols.

e Animportant aspect of nondeterministic programming is allowing max-
imum freedom in the order of action execution. Control over action
order is sometimes needed, particularly at lower levels of abstraction
where performance requirements may force particular scheduling de-
cisions. For this reason, we have integrated an explicit support for
specifying action order in LIDiA . Thus, each rule is enhanced with
a list of all rules that have a higher order of priorities. If there exists
no priority decision between two actions, a random choice is made to
designate which rule should be executed.

Languages such as IOA [15], UNITY, MANIFOLD [14], SPECTRUM and
TLA are similar to LIDiA in that their basic program units are transition def-
initions with preconditions and effects. However, effects in TLA are described
declaratively, effects in UNITY and SPECTRUM are described imperatively
and effects in IOA are declared declaratively and imperatively.

4.3 Data types in LIDiA

This Section presents an overview of data types that can be used in our
language. The list given below is not exhaustive. We take advantage of the
data type semantic defined in IOA. A general description of all data types
with their respective operations will be described in future papers on LIDiA .
LIDiA enables users to define new data types to define the actions and states
of each process. The data types graph, node, edge, Bool, Int, Nat, Real, Char,
and String can appear in LIDiA descriptions without explicit declarations.
The graph data type we used represents parameterized graphs. Thus, any
instance of graph contains labels attached to its nodes and edges. Compound
data types can be constructed using the following type constructors and used
without explicit declarations:

e Array[l, E]is an element of elements of type E indexed by elements of
type 1.

e Seg[E] is a finite sequence of elements of type F.

15



e Set[E] is a finite set of elements of type E.
e Mset[E] is a finite multiset of element of type E.

Users can define additional data types, as well as redefine built-in types.
First, they can explicitly declare enumeration, tuple, and union types analo-
gous to those found in many common programming languages. For example,

e type Color = enumeration of red white, blue
e type Msg = tuple of source, dest: Process, contents: String

For further research, we intend to give the user the possibility to give a speci-
fication for the syntax and the semantic of new data types. This specification
should be given in a language like the Larch Shared Language [19] that is
used in [15].

16



Chapter 5

Description of a Process

Reactive processes are described by specifying their neighborhood, state vari-
ables and rules. All of these elements must be present in every process de-
scription. Note that the state variables of a process define the label of the
corresponding vertex.

5.1 Neighborhood

The neighborhood of a process can be define using the keyword universe.
It is usually a set of nodes that are stored in a variable B by the expression
B := G.neighborhood(). With G representing the whole graph network.

5.2 State variables

The declaration of state variables is done using the keyword Declaration.
We have two different sorts of state variables. The first sort is introduced by
the type name eLabel and the second one by nLabel. These type names
have the following meanings:

e The eLabel type represents the type of the state variables that charac-
terized the state of each edge (communication link) in the underlying
network.

e The type nlabel represents the type of the state variables that charac-
terized the state of each node (processor) in the underlying network.

State variables can be initialized using the assignment operator := followed
by an expression. State variables are initialized simultaneously and the ini-
tialization given for one state variable can not refer to the value of any other
state variable. We can also use the keyword choose to do a nondetermin-
istic choice to initialize state variables. Once one has initialized the state
variables, the underlying network is then enhanced with these type of labels.

17



This is done by using statement like G.init(nodeLab, edgeLab) where node-
Lab and edgeLab respectively represent instances of the nLabel and eLabel
data types.

5.3 Rules

The liste of rules is introduced by the keywords active rules or passive
rules. Each rule has three parts: Precondition, Relabeling and Priori-
ties.

5.3.1 Precondition

All variables in the precondition must be state variables, be choose param-
eters, or be quantified explicitly in the precondition. If no precondition is
given, it is assumed to be true. An action is said to be enabled in a state
if the precondition for its execution is true in that state. The precondition
is expressed in the logical language L% [32]. This language represents an
extension of first-order logic by means of counting quantifiers. It has nice
properties that helped us to understand the completeness of LIDiA .

5.3.2 Relabeling

The relabeling of a rule corresponds to the effect of using the correspond-
ing transition. The Relabeling is generally defined in terms of a (possibly
nondeterministic) program that assigns new values to state variables. If the
relabeling part is missing, then the corresponding transition has no effect;
i.e., it leaves the state unchanged. Passive rules do not have a Relabeling part.
Rather, they dispose of an Action part that should express the fact that any
vertex that executes a passive rule is not able to take any relabeling decision.

5.3.3 Priorities

The Priorities part contains a list of rules that have a higher priorities. Let R;
be a given rule that belongs to the priorities-list of rule R. If the preconditions
rules R and R, are satisfied at the same time, then the actions of rule R; are
executed. Thus, the actions of rule R are temporarily “frozen”.

5.4 Conditional actions

Sometimes it is necessary for a process to change the labels of some of its
neighbours. To deal with such actions, LIDiA provides conditional actions
introduced by the operators IMPLIES and CHOOSE. The syntax of these
operators is described in the following way:

¢, IMPLIES Action

18



The Action-part of the IMPLIES statement is only executed if the logical
condition ¢ is true.

Example:
(1). Yw € B(w # vy, IMPLIES L,[w] := ReceiveFrom(w));

In this example, the action ReceiveFrom(w) will be executed for all w that
satisfy the statement w € B A w # vg. A second example could be expressed
by the expression

(2). Yw € B(w # vg), IMPLIES L,[w] := ReceiveFrom(w));

In this case, the Receive From(w) action will only be executed for the last pro-
cess w that satisfy the condition w € B A w # vg. If we replace the quantifier
Y by the existence quantifier 4, the action will only be executed for the first
w that satisfies the given formula ¢. Note that ¢ is given in the language £ .

z := CHOOSE p IN ¢,

This statement is a random construction that chooses randomly an element
p among all elements that satisfy a given formula ¢,. This choice is made in
an equiprobable way. In this construction, the choosen element is stored in
the variable z.
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Chapter 6

Communication between
processes

Each communication link is represented as an edge process that is in charge
of transferring informations between two processes. We use the following
three primitives to express the communication between two processes:

e SendTo(p, m): The main goal of this primitive is to send the message m
to the neighbor p of a given process i. After a process i has execute this
operation, the edge process transmits the message m to the neighbor

p.

e SendTo0All(m): This primitive executes the actions SendTo(p,m) for
all neighbors p of a given process 1.

e ReceiveFrom(p): This primitive allows a given process i to receive
a message from one of its neighbors p. In LIDiA we only deal with
reliable communication channels that neither loss nor reorder messages
in transit. Furthermore, we give the ReceiveFrom primitive a higher
priority than all others. This means that as long as a process is waiting
from a message, he can not perform any other actions.

6.1 Communication channel

Each edge process represents a communication channel that can be viewed
as a process having exactly two neighbors and which state variable is a four
tuple representing the status of four message buffers by, by, s, s1. An edge
process has also two main rules called Sendy and Send;. We now consider
a given edge process F, that should enable the communication between the
processes ¢ and j (see Figure 6.1). Each buffer of F, is a sequence of mes-
sages initialized to the empty sequence. When process 4 execute the primitive
SendTo(j, m), the message m is append to the buffer by. Once the buffer b
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i L] il

Process i@ Process E, Process j

Figure 6.1: An edge process F,

is not empty, the action (rule) Sendy is executed. This action has the effect
of appending the message m, on the head of by, to the buffer sg. Simultane-
ously, m is deleted from by. Note that each edge process E, always attempts
to read and transmit messages that arrive in by and sg. The buffers b; and s
are used in the same way for the primitive SendTo(i, m) initiated by process
j-

As soon as the buffer sy is not empty, the execution of the primitive
ReceiveFrom(i) by process j will read the head element of sy and consider
it as a message sent by process ¢ and actualize the buffer sg. The same access
strategy with buffer s; is used for the primitive ReceiveFrom(j) executed
by process 1.

6.2 Implementation of an edge Process

The implementation of an edge process is similar to the description given in
the previous section. For a formal description we give the LIDiA program
described in figure 6.2. For a better understanding, the set of edge processes

Declaration
type Label = tuple of by, by, sg, s1: seq < M >;

nodeLab : Label;
Initialization

channel(vg : node)
univers

B : node _set;

B := G.voisinage(vg);
active rules: Sendg, Sendq;
Sendg:={
precondition
bg.empty() # false;
Relabelling
sg.append(bg.head());
bo.Pop();

Priorities

{}

b

Sendy:={
precondition
by.empty() # false;
Relabelling
s1.append(by .head());
by.Pop();

Priorities

{}

;
channel.run(G);

Figure 6.2: Implementation of a communication channel process.
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has to be seen as an internal representation of communication links. The
type M of messages that should be transmitted from a process to an other
is set while defining the first-level transition system. But in a general way,
the transmitted messages are represented as instances of the type string.
Further on, the language LIDiA supports the use of labels on edges. Each
edge process is therefore enhanced with two new buffers and a state variable
of type elabel. These new variables have the aim to manage and actualize
the state changes of the corresponding edge. Figure 6.3 gives a complete
description of a communication process in LIDiA .

Declaration

type Label — tuple of Lab: eLabel by, by,sq,s1,Lg,L1: seq < M >;
nodeLab : Label;

Initialization

channel(vg : node)
univers

B : node _set;

B := G.voisinage(vg);
active rules: Sendp, Sendy, Changeg, Changer;
Sendg:={
precondition
bg.empty() # false;
Relabelling
sg.append(bg.head());
bo.Pop();

Priorities

{Changen, Changeq; };
}s

Sendy:={
precondition
bi.empty() # false;
Relabelling
s1.append(by .head());
b1.Pop();

Priorities

{Changeg, Changeq; };

}s

Changeg:={
precondition
Lo.empty() # false;
Relabelling

Lab := Lg.head();
Lo.Pop();
Priorities

{}
}.

5
Changeq:={
precondition
Li.empty() # false;
Relabelling

Lab := Ly .head();
L1.Pop();
Priorities

{}
}.

channel.run(G);

Figure 6.3: A communication channel process.
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Chapter 7

Randomized Local Elections

In some LIDiA implementations, we have to ensure that, at any step, no two
adjacent vertices apply one of the relabeling rule at the same time. We solve
this problem by using the three randomized procedures studied in [29].

7.1 Implementation of LCj.

The implementation of LCj is the rendezvous. We consider the following
distributed randomized procedure. The implementation is partitioned into
rounds; in each round each vertex v selects one of its neighbors c(v) at
random. There is a rendezvous between v and ¢(v) if v is the vertex selected
by ¢(v). In this case, we say that v and ¢(v) are synchronized. When v and
c¢(v) are synchronized there is an exchange of messages by v and ¢(v). This
exchange allows the two nodes to change their labels. Each message for the
synchronization mechanism will be a single bit. An implementation in LID:A
is given by Program 7.1.1

FEach vertex v repeats forever the following actions :

the vertex v selects one of its neighbors c¢(v) chosen at random;

the vertex v sends 1 to c(v);

the vertex v sends 0 to its neighbors different from c(v);

the vertex v receives messages from all its neighbors.

(* There is a rendezvous between v and c(v) if v receives 1 from ¢(v);
in this case a computation step may be done. *)

Randomized Rendezvous
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Program 7.1.1

Declaration

type nLabel — tuple of choice: node, stage: int;
type eLabel = tuple of state: int;

G : graph < nLabel,eLabel >;

nodeLab : nLabel;

edgeLab : eLabel;

Initialisation
edgeLab.state := 0;
nodeLab.stage := 0;
G.init(nodeLab, edge Lab);

Synchronization

LCpy(vg : node)

univers

B : node_ set;

B := (l.neighborhood(vq);

active rules: Ry, Ry, Ro, R3;

L, :node_array < nLabel >;

Ly .init(B, nodeLab);

Ro:={

precondition

vg.label.stage = 0;

Relabelling

v, v : node;

v := choose vy in(vy € B A vy # vg);
vg.label.stage :=1;

vg.label.choice := v;

Vv, € B(vy # vg, IMPLIES SendTo(v1,vg.label));
Priorities

{}

;
Ry:={

precondition

vg.label.stage = 1;

Relabelling

Vvy € B(vy # vo, IMPLIES Ly[v1] := ReceiveFrom(vy));
Priorities

{}

;
Ro:={

precondition

vg.label.stage = 2 A Ly[vg.label.choice].choice = vg;
Relabelling
vg.sync 1= vg;
vg.label.stage :
Priorities

{}
F

Rg:={

precondition

vg.label.stage = 2 A Ly[vg.label.choice].choice # vp;
Relabelling

vg.8ync = nil;

vg.label.stage := 0;

Priorities

{h

i

0;

}
LCy.run(G);

LIDiA implementation

of Rendezvous.
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7.2 Implementation of LC,

Let LE; be the local election for implementing LC; it is portioned into
rounds, and in each round, every processor v selects an integer rand(v) ran-
domly from the set {1, ..., N}. The processor v sends to its neighbors the value
rand(v). The vertex v is elected in B(wv, 1) if for each vertex w of B(v,1)
different from v : rand(v) > rand(w). In this case a computation step on
B(v,1) is allowed : the center is able to collect labels of the leaves and to
change its label. Program 7.3.1 presents a possible LIDiA implemetation of
this algorithm.
Each vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbors;

the vertex v receives integers from all its neighbors.

(* The vertex v is elected if rand(v) is strictly greater than integers
received by v; in this case a computation step may be done on B(v,1). *)

Randomized LFE;—Elections.

7.3 Implementation of LC5

Let LFE5 be the local election for implementing LC5; as in the LC case, it
is portioned into rounds. In each round, every processor v selects an integer
rand(v) randomly from the set {1,..., N}.

The processor v sends to its neighbors the value rand(v). When it has
received from each neighbor an integer, it sends to each neighbor w the max
of the set of integers it has received from neighbors different from w. The
vertex v is elected in B(v,2) if rand(v) is strictly greater than rand(w) for
any vertex w of the ball centered on v of radius 2; In this case a computation
step may be done on B(v,1). During this computation step there is a total
exchange of labels by nodes of S,,, this exchange allows nodes of S, to change
their labels. One LIDiA implementation of this algorithm is given in Program
7.3.2.

FEach vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbors;

the vertex v receives messages from all its neighbors;

let Int,, the maz of the set of integers that v has received from vertices
different from w;

the vertex v sends to each neighbor w Int,;

the vertex v receives integers from all its neighbors;

(* There a LEy— Election in B(v,2) if rand(v) is strictly greater than all
integers received by v; in this case a computation step may be done
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on B(v,1). *)
Randomized LFEs—Election.

Analysis of these algorithms has been done in |28, 29]. It is based on the
consideration of rounds: in order to measure the performance of the algorithm
in terms of the number of rendezvous or local elections taking place, it is
assumed that at some instant each node sends and receives messages. Thus
this parameter of interest, which is the (random) number of rendezvous or
local elections, is the maximal number (i.e. under the assumption that all
nodes are active) authorized by the algorithm. It has been proved that these
three algorithms are Las Vegas algorithms.
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Program 7.3.1

Declaration

type nLabel — tuple of choice: node, stage: int;
type eLabel = tuple of state: int;

G : graph < nLabel,eLabel >;

nodeLab : nLabel;

edgeLab : eLabel;

Initialization
edgeLab.state := 0;
nodeLab.stage := 0;
G.init(nodeLab, edge Lab);

Synchronization

LCq(vg : node)

univers

B : node_ set;

B := (.neighborhood(vq);
active rules: Ry, Ry, Ro, R3;
L, :node_array < nLabel >;
Ly .init(B, nodeLab);

Ro:={

precondition

vg.label.stage = 0;
Relabelling

n,ny :int;

v : node;

n := choose n1 in(ni € N);
vg.label.choice := n;
vg.label.stage :=1;
SendToAll(vg.label);
Priorities

{}

;
Ry:={
precondition
vg.label.stage = 1;
Relabelling
v1 : node;
Vv, € B(vy # vg, IMPLIES Ly[v1] := receiveFrom(vy);
vg.label.stage := 2;
Priorities
{h
;
Ro:={
precondition
vg.label.stage = 2 A vg.label.choice > maz 1 in(3vy € B(i = Ly[v1].choice));
Relabelling
vg.sync 1= vg;
vg.label.stage := 0;
Priorities

{}
}4

;
R3:={

precondition

vg.label.stage = 2 A (v € B(vg.label.choice < Ly[v].choice));
Relabelling

vg.sync = nil;

vg.label.stage := 0;

Priorities

{}

}i

}
LCq.run(G);

LIDiA implementation of LCj.
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Program 7.3.2
Declaration

type nLabel — tuple of choice: node, stage: int;
type eLabel = tuple of state: int;
G : graph < nLabel,eLabel >;
nodeLab : nLabel;

edgeLab : eLabel;

Initialization

edgeLab.state := 0;

nodeLab.stage := 0;
G.init(nodeLab, edge Lab);

LC%(vg : node)
univers
B : node_ set;
B := (l.neighborhood(vq);
active rules: Ry, Ry, Ro, R3, Ry;
Ly, M, :node_array < nLabel >;
Ly .init(B, nodeLab);
My .init(B, nodeLab);
Ro:={
precondition
vg.label.stage = 0O;
Relabelling
n,ny :int;
n := choose 1 in(i € N);
vg.label.choice := n;
vg.label.stage :=1;
SendToAll(vg.label);
Priorities
{h
;
Ry:={
precondition
vg.label.stage = 1;
Relabelling
Vvy € B(vy # vg, IMPLIES Ly[v1] := receiveFrom(vy);
vg.label.stage := 2;
Priorities

{}

;
Ro:={

precondition

vg.label.stage = 2;

Relabelling

Vv € B(v # vg, IMPLIES Ly[v].choice := maz i in(i € NA vy € B(vy # vg Avy # v Ai = Ly[vy].choice)));
Vv, € B(vy # vg, IMPLIES SendTo(vi, Ly[v1]);

vg.label.stage := 3;

Priorities

{}
}4

;
Rg:={

precondition

vg.label.stage = 3;

Relabelling

Vvy € B(vy # vg, IMPLIES Ly[vq1] := receiveFrom(vy);
vg.label.stage := 4;

Priorities
{h
;
Ry:={
precondition
vg.label.stage = 4 A Yv € B(v1 # vg, Awvg.label.choice > Ly[vq].choice);
Relabelling
vg.sync 1= vg;
vg.label.stage := 0;
Priorities
{}
;
Rs:={
precondition
vg.label.stage = 4 A v € B(vy # vg, Avg.label.choice < Ly[vy].choice);
Relabelling
vg.8ync = nil;
vg.label.stage := 0;

Priorities
{}

i

}
LCs.run(G);
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Chapter 8

Implementation examples

8.1 Example: Spanning tree computation

We illustrate our model, as well as the use of the language LIDiA to describe
distributed algorithms, by two simples computation examples. First of all we
will tackle the computation of a spanning tree in a graph. Program 8.1.1 is
a simple LIDiA implementation to compute a spanning tree in a graph. The
algorithm can be depicted in the following way.

We assume that a unique vertex has initially label A, all other vertices
having label N and all edges having label 0. At each step of the computa-
tion, an A-labeled vertex u may activate any of its neutral neighbors, say
v. In that case, u keeps its label, v becomes A-labeled and the edge {u,v}
becomes 1-labeled. Thus, several vertices may be active at the same time.
Concurrent steps will be allowed provided that two such steps involve dis-
tinct vertices. The computation stops as soon as all the vertices have been
activated. The spanning tree is then given by the 1-labeled edges. The al-
gorithm may be encoded by the graph relabeling system Ry = (Lq, I1, Py)
defined by L; = {N,A,0,1}, I = {N, A,0}, and P, = {R} where R is the
following relabeling rule:

A N A A
R: o " o — ——o

Every LIDiA program consists of four parts. General and global variables
are declared and initialized in the first and second parts. The types nLabel
and eLabel are introduced to define the kind of labels that will be used on
vertices and edges. The third part defines the sort of local synchronization
protocol that is used in the algorithm. Program 8.1.1 uses the LC; local
computation protocol to permit trouble-free state transitions. This protocol
synchronizes the vertices that belong to the same star. Only the center of
the synchronized star can change its label and the labels of the edges that
are adjacent to it.
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On the other hand, transitions are given in precondition/effect style and
are represented by the active relabeling rule Ry and by the passive rule F.
All vertices that are not center of a synchronized star execute the passive
rule by sending their own label to all their neighbors that are center of any
synchronized star. The active rule Ry is only executed by vertices that are
center of a synchronized star. A node vg apply Ry if it is N-labeled and if it
has a neighbor that is A-labeled. The consequences of the application of rule
Ry are represented by the relabeling of edge [vg, w] that becomes 1-labeled
and by the fact that vy becomes A-labeled. LIDiA provides a structure that
allows to set an execution priority between two rules. For each rule, this
structure is given as a list of rules that has higher execution priorities.

Note that all the rules described in Program 8.1.1 are performed by all
the vertices vy that belong to the graph G. In LIDiA we do not have to spec-
ify one list of rules for each process. Rather, we take advantage of the ability
of LIDiA to define a list of transitions that will be valid for all network’s
processes. Thus, these rules can be performed simultaneously by different
vertices at the same time. It is also possible to define actions that are only
executable for some identified processes. In this case we have to define rules
that will only be executed by non identified processes. In general our lan-
guage deals with anonymous networks.

Program 8.1.1 (Spanning Tree computation)

Declaration
type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel, eLabel >;
edgeLab : eLabel;
nodeLab : nLabel;

Initialization
edgeLab.var = 0;
nodeLab.var = N7
G.init(nodeLab, edgeLab);

v : node;
v := (I.choose _node();
v.label.var = A’

Synchronization

Synchro_ LC1();

SpanningTree(vg : node) :
universe

B : node_ set;

B := G.neighborhood(vq);

active rules: Ry;

Ly : node_array < nLabel >;

Ly .init(B, nodeLab);

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
}

Ro:={

precondition

w: node

vg.label.var = "N’ A

Jw € B(w # vg A Ly[w].var = A’ A [vg, w].var = 0);
Relabeling

vg.label.var := A7,

[vg, w].var :=1;

Priorities

{}
}
passive rules:Py;

Ro:={
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precondition

vg.8yne # vp;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{}
}.

H
SpanningTree.run(G);

8.2 Example: Drinking philosophers problem

In this section we attend to give an implementation of the drinking philoso-
phers problem. This problem was introduced by Chandy and Misra in [5] as
a generalization of the dinning philosophers problem [9]. This problem can
be formulated as followed.

We consider a network of processes sharing a set of resources. It is repre-
sented as a connected undirected graph where vertices denote processes and
edges represent conflicts between processes. For the drinking philosophers
problem one has to deal with case where a process needs to have access to
all its resources to do any computation. Any algorithm which solves this
problem has to ensure the following properties:

e No shared resource can be accessed by two processes at the same time.
Thus, the algorithm ensures the mutual exclusion on shared resources,

e If two processes p; and ps do not share a resource, and hence are not
adjacent in the underlying graph, then they can access their resources
independently, and possibly at the same time. The algorithm ensures
therefore the concurrency property.

e If a resource is asked by two processes p; and po and if p; formulates
its request before po, then p; must enter the resource before po, this is
the so called ordering property,

e If a process p asks to have access to all needed resources, at last p must
obtain this access. This is the liveness property.

The implementation we will give later is based on an algorithm described
by M. Mosbah, A. Sellami and A. Zemmari in [34]. Their formulation is
based on graph relabeling system and allows an effortless representation in
the model of LIDiA .

Each process can be in one of the three states: tranquil, thirsty or drinking.
These states will be respectively encoded by the labels T', Th and D. One
also needs to manage the order of process requests. This is done by using
another label which is an integer corresponding to the rank of the request.
Therefore, each vertex will be labeled by (X, i) where X € {T,Th,D} and
an integer 1.
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Initially all the vertices of the graph are tranquil (this is encoded by the
label (T, —1)). At each step of the computation, a (T, —1)-labeled vertex u
may ask to obtain exclusive access to all its critical sections. Thus, it becomes
thirsty. In this case, u changes its label to (Th,i 4+ 1) where i satisfies the
relation ¢ = maz{k,|v € B(u,1) and L(v) = (X, k), X € {T,Th,D}}. So,
u has a higher access priority (order) than all its neighbors. In a complete
graph, this order can be seen as an universal time since only one node can
change its label to T'h at a given time. In this case, the system computes the
mutual exclusion.

If a (Th,i)—labeled vertex u, has no neighbor in the critical sections (la-
bel (D, —1)) and no (Th, j)—labeled neighbor where j < i (u has a lower pri-
ority), then u can enter the critical sections. Thus, u will be (D, —1)—labeled.

Once, the vertex in the critical sections has terminated its work, it returns
to the tranquil state and becomes (7', —1)—labeled.

The algorithm may be encoded by the graph relabeling system R =
(L,I,P) defined by L = {{T,Th,D} x [-1..00|}, I = {(T, 1)}, and P =
{R1, Ry, R3} where Ry, Ry and R3 are the relabeling rules given in Figure
8.1:

(T, —1) (Th, maz(v) +1)
R] . [ ] [ ] ) {}
(T’LZ‘) (D,*]) . (Th,l) (Th,l)
RQ . o [ ] ) { I ) I 1j < }
(D, =1) (Th, j)
(Dy*l) (T,*]) .
Ry;: e ° ; {}

Figure 8.1: Relabeling rules for the Drinking philosophers problem

Program 8.2.1 (Drinking philosophers problem)

Declaration
type nLabel = tuple of state: string, rank: int;
type eLabel = tuple of var: int;

G : graph < nLabel, eLabel >;
edgeLab : eLabel;
nodeLab : nLabel;

Initialization
nodeLab.state = T
nodeLab.rank = —1;
G.init(nodeLab, edgeLab);
v : node;

v := ({.choose node();
v.label.var = A%
Synchronization

Synchro_ LC1();
DrinkingPhilo(vg : node) :

universe
B : node_ set;
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B := (l.neighborhood(vq);

active rules: Ry, Ro, R3;

Ly : node_array < nLabel >;

Ly .init(B, nodeLab);

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));

Ry:={

precondition

w: node

vg.label.state = T’ A wvg.label.rank = —1;

Relabeling

vg.label.state := 'Th’;

vg.label.rank := 1+ Maz i IN(Vi € NIu € B(Ly[u]l.rank = i));
Priorities

{}
}.

;
Ro:={

precondition

w: node

vg.label.state = 'Th’ A Yu € B—(Ly[u].state = D’ AN Ly[u].rank = -1 V
Ly[u].state = "Th’ A Ly[u].rank < vg.label.rank);

Relabeling

vg.label.state := D7}

vg.label.rank := —1;

Priorities

{}

;
R3:={

precondition

w: node

vg.label.state = "D’ A wvqg.label.rank = —1;
Relabeling

vg.label.state := T

vg.label.rank := —1;

Priorities

{}
i
passive rules:Py;

Ro:={

precondition

vg.sync # vg;

Action

v : node;

Vv € B(v#wvg Av.sync =v, IMPLIES SendTo(v, vg.label));
Priorities

{}

DrinkingPhilo(G);
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Chapter 9

Conclusions and Perspectives

Several aspects of the LIDiA model make it appropriated to describe and
verify distributed algorithms. This language is based on the one hand on
set-theoretic mathematics. On the other hand its power and expressiveness
relied on the logical language £ that has more expressive power than first-
order logic. Furthermore, LIDiA is a nondeterministic language in the sens
that actions that satisfy a given precondition are executed randomly. This
particularity allows distributed systems to be described in their most general
forms. In our earlier work [32], we stated the computational completeness of
the LIDiA language. In fact, every computable distributed problems that
could be represented in a precondition-effect style can be computed by a
LIDiA program.

Future work involves the development of a code generator that could au-
tomatically generate real distributed code in a standard programming lan-
guage like C++, Java, ML or MPI from a LIDiA program. Actually, the
code generation schemes produces runnable version of node automata that
can communicate via pre-existing communication services such as TCP or
MPI. [35], which are modeled by channel automata. This code generator will
be embedded later in the ViSiDiA platform [33]. Thus, it will help us to
verify the generated code. By insisting that LIDiA programs from which
we generate code match the available computing hardware and communica-
tion services, and by requiring the node programs to tolerate input delays,
we hope to achieve a faithful implementation without using any non-local
synchronization.
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Appendix A

The Logic L},

In this Section we introduce some extensions of first-order logic that are
necessary to understand how the language £ is built. These are fixed-point
logics, infinitary logic and infinitary logic with counting. Throughout the rest
of this chapter, we will assume that the reader is already familiar with the
basic concepts of first-order logic and fixed-point logics as the definition of
formulae and how the notion of truth is defined. Our principal reference is
“Model Theory” by Chang and Keisler [7].

First of all, recall that infinitary logic L. is the extension of first-order logic
where infinite disjunctions and conjunctions of formulas are also allowed. It
is well known that any(isomorphism closed) class C C STRUCT[o] can be
defined in Lo, (where STRUCT o] denotes the class of finite o-structures).
Interest of this logic comes from its fragments which have weaker expressive
power. One such fragment is £F_  where only & distinct variables, free or
bound, are allowed. The finite variable logic £, is then the union of £
over all natural numbers k. Fixed-point logics (least inflationary logic, partial
fixed-point logics and transitive closure logic) can all be embedded into £%,,.
It is also easy to see that £¥
such as parity of cardinality. For an extensive study of this logic, see e.g.
[13].

For our purpose, we use a logic denoted by L . This logic is obtained by first
adding counting terms, counting quantifiers to the logic £ over two-sorted
structures (the second sort being interpreted as N), and then restricting it
to formulae of finite rank. The idea of using the set of natural numbers in
the two-sorted structure is influenced by meta-finite model theory of [11].
Similar extensions exist in the literature [10, 17, 39|, but they restrict the
logic by means of the numbers of variables, which still permits fixed-point
computation. In contrast, following |20, 22|, we restrict the logic by requiring
the rank of a formula be finite (where the rank is defined as quantifier rank,
except that it does not take into account quantifiers over N), thus putting
no limits at all on the available arithmetic.

can not express certain counting properties,
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A.1 The alphabet of L

The conditions and rules of building terms and formulas are the same as in
first-order logic. The set of free variables is also defined in the same way as in
the first-order logic. Furthermore, the alphabet of £}  is obtained by adding
the following counting terms and quantifiers to the symbols of first-order
logic.

e Counting Quantifiers: 3;, Elf'

e Counting Terms: 3y, Jo, J3,... 3%, EI;_L, 33*,...

e Equality symbol: =, #

e Arithmetic functions: +, —, X, +, mod, div, exp, Fak...

All the arithmetic help functions have the intuitive meaning. The counting
quantifier 3; is satisfied if the set of elements, that satisfy a given formula
¢, has a cardinality greater or equal to 7. On the other hand, the formula
Jtad(z,4) is true, if there are exactly i elements x that satisfy ¢(z). We have
to notice that the variable ¢ is an element of the set of natural numbers.
Example A.1.1 With the logic L}, we can express the fact that a given set
1 has an even cardinality. This is done by the following expression:
Jlz(z ey A imod?2=0);

i

A.2 Semantic of L}

Although most of the basic theory was developed for arbitrary structures,
the interesting results only speak about finite ones. So we restrict our atten-
tion to finite structures with finite vocabularies, unless it is explicitly stated
otherwise. Furthermore, we always assume classes of structures to be closed
under isomorphism. In the same sense that sentences of a logic define classes
of structures, formulas with free variables define queries.

We abbreviate first-order logic by FOL. L% is a two-sorted logic, with the
second sort being the sort of natural numbers. That is, a structure A is of
the form

A= ({vr,--- ,om}, {1, ,n}, <,=,%#,0,1,true, false, MIN, M AX,
Rf\a 7R;&\7f]A\a afl?)

Here the relations R* are defined on the vertices domain {v;,--- ,v,,}, while
on the numerical domain {1,---,n} one has constants 0 and 1. The set
{v1,--- , v} even represents the neighborhood of a node vg. In essence, any
vertex u can only see the part of the general domain of A that is represented
by its neighbourhood. furtheron, the added universe of numbers gives us the

36



ability to do some arithmetic on the side as we express a property of the
input structures. In this paper, we will assume that all the structures are
equipped with numbers unless we explicitly state otherwise.

A.3 The Satisfaction Relation

The satisfaction relation makes precise the notion of a formula being true
under an interpretation. Let D be the domaine of our logic, I be an interpre-
tation relation, A = (D, I} be an interpretation structure, g be an assignment
in A and ¢ be a formula. If ¢ can be represented in the FOL then the sat-
isfaction relation of FOL can be used on ¢. If ¢ contains new introduced
quantifiers, then the satisfaction relation of ¢ by ¢g in A, is given by the fol-
lowing rules:

Counting Quantifier

A EFixglg] & A= dlglz/d]] for at least i elements d € D with 1 < |D|.
A= TFaglg] = A ¢lg[z/d] for exactly i elements d € D with i < |D.

The satisfaction of counting terms is a special case of the above satisfaction
relations.
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Appendix B

Computational Completeness

B.1 Descriptive Complexity of L}

The main task of this section is to determine the descriptive complexity of
the logic L% . More precisely, we want to find out the main complexity class
that is captured by our logic. We look for results saying that, on a certain
domain D of structures, the logic L}, captures the complexity class PTIME.
This means that the following Definition is satisfied.

Definition B.1.1

(1) For every fized sentence ¢ € L, the data complezity of evaluating ¢ on
structures from D is a problem in the complexity class PTIME.

(2) Ewery property of structures in D that can be decided with complexity
PTIME is definable in the logic L.

As a matter of course, the domain D and the corresponding structures will
be defined as introduced previously.

We assume that the reader is familiar with the basics of complexity
theory and has heard of some of the common complexity classes, such as
LOGSPACE, PTIME, NPTIME and PSPACE. We assume further that the
reader has knowledge about the principles of logics such as fized-point logic,
least fized-point logic(LFP) and inflationary fized-point logic(IFP). Fixed-
point logic is an extension of first-order logic designed to reflect the power of
induction. There are several formalizations which are not in general equiva-
lent, but the differences are of no concern to us. This is also justified by the
results of Gurevich and Shelah [43] stating that many different definitions of
fixed-point logic coincide for finite structures. We refer the reader to [13] for
a detailed presentation of the basic material of this section.
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B.1.1 Logic with counting

From the point of view of expressiveness, FOL has two main deficiencies:
It lacks the power to express anything that requires recursion(The simplest
example is transitive closure) and it can not count, as witnessed by the
impossibility to express that a structure has even cardinality. A number of
logics add recursion in one way or another to FOL, notably the various forms
of fixed-point logics. On ordered finite structures, some of these logics can
express precisely the queries that are computable in PTIME or PSPACE.
However, on arbitrary finite structures they do not, and almost all known
examples showing this involve counting. While in presence of an ordering, the
ability to count is inherent in fixed-point logic, hardly any of it is retained
in its absence.

Therefore Immerman proposed to add counting quantifiers to logics and
asked whether a suitable variant of fixed-point logic with counting would
suffice to capture PTIME. Meanwhile, fixed-point logic with counting has
turned out to be an important and robust logic, that defines natural level of
expressiveness and allows to capture PTIME on interesting classes of struc-
tures.

There are different ways of adding counting mechanisms to a logic, which
are not necessarily equivalent. The most straightforward possibility is the ad-
dition of quantifiers of the form 322, 323 with the obvious meaning. While
this is perfectly reasonable for bounded-variable fragments of FOL or infini-
tary logic (see e.g. [16, 39|) it is not general enough for fixed-point logic,
because it does not allow for recursion over the counting parameters i in
quantifiers 32z, These counting parameters should therefore be considered
as variables that range over natural numbers. This implies indirectly the use
of two-sorted structures in most counting logics with the second sort being
the set of natural numbers N. We denote by (FOL + C) the FOL with count-
ing.

We now define |21] inflationary fixed-point logic with counting (IFP +
C) and partial fixed-point logic with counting (PFP + C) by adding to
(FOL + C) the usual rules for building inflationary or partial fixed-points,
ranging over both sorts.

Definition B.1.2 Inflationary fixed-point logic with counting (IFP + C), is
the closure of two-sorted FOL under

(i) The rule for building counting terms;
(ii) The usual rules of FOL for building terms and formulae;

(iii) The fized-point transformation rule: Suppose that (R, z, 1) is a for-
mula of vocabulary TU{R} where Z, i and R has mized arity (k,l), and
that (u,v) is a k + l-tuple of first- and second-sort terms, respectively.
Then [ifp Rzu.9|(u,v) is a formula of vocabulary T.
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It is clear that counting terms can be computed in polynomial-time. Hence
the data complexity remains in PTIME for (IFP + C).

Infinitary logic with counting. Let C%  be the infinitary logic with &
variables, £ . extended by the quantifiers 32 (“There exists at least m”)
for all m € N. Further, let C% = J, Ck ..

Proposition B.1.1 (/[FP+C)C C%,.

Due to the two-sorted framework, the proof of this result is a bit more in-
volved than for the corresponding result without counting, but not really
difficult. One has first to replace a fixed-point formula by an infinitary for-
mula with counting terms that still lives in the two-sorted framework and
then eliminates quantification over number-variables by infinite disjunctions
and conjunctions. We refer to [10, 39| for details.

From the definitions of C¥, and L%, we can deduce that £% 6 C C% .
Furthermore, the next proposition states a relation between the logics C%
and L} .

C<., C L.

The proof of this proposition is done by a structural induction. One can
also notice that the logic £  can be constructed by augmenting £ with
counting quantifiers, counting Terms, Equality symbol and useful arithmetic

functions. This means that in finite structures the above proposition is sat-
isfied.

B.1.2 [} captures PTIME

We present, in this section, the proof of the fact that the logic L  captures
PTIME on the class of structure used in LIDiA (see section A.2.).

First of all, we can derive corollary B.1.1 from the previous propositions
B.1.1 and B.1.2. Thus we have a direct relationship between the language
L% and the well-known logic (IFP + C).

Corollary B.1.1 (IFP +C) C L%..

Classical definitions of a logic, such as the notion of regular logic (see [12])
do not suffice for our purpose; in addition our logics are supposed to satisfy
certain effectivity conditions. Gurevich [18] suggested the following defini-
tions.

Definition B.1.3 A logic is a pair (L,|=1) where L is a function that as-
signs a recursive set L[] of sentences to each vocabulary T, and =1, is a
binary relation between sentences and structures such that for all ¢ € L[t]
the class Mod(¢) = {A € F|A =1, ¢} is an isomorphism closed class of
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T-structures. We further say that a class C of T-structures is definable in
(L, =r,) if there is an L[T]-sentence ¢ such that C = Mod(¢).

Definition B.1.4 A clocked PTIME Turing machine is a pair (M, p) where
M is a deterministic Turing machine and p a polynomial such that M runs
at most p(n) steps on an input of length n.

Now we can give a better definition that should make clear what we really
mean when we say that a logic (effectively) captures a complexity class.
Definition B.1.5 A logic L = (L,|=1) effectively captures a complezity
class K on a domain D if the following two conditions hold:

(i) Each K-computable class in D is L-definable.

(ii) For all vocabularies T there is a recursive mapping M that associates a
clocked K-Turing machine M (¢p) with each sentence ¢ € L[t| so that
if Mod(¢) € D then M(¢) accepts the language T.(Mod(¢)).

Clearly, a logic that effectively captures a complexity class captures the class
as defined in the previous sections.
Now we are going to state some capturing results concerning the logic

(IFP + Q).

(i) (Immerman, lander [36], Lindell [25])(IFP + C) effectively captures PTIME
on the class of trees.

(ii) (Grohe, Marino |27]|) For each k > 1, (IFP + C) effectively captures
PTIME on the class of graphs of tree-width at most k.

Proposition B.1.3 The language L% effectively captures PTIME on the
class of structures defined in section A.2.

The proof of this proposition is due to the above characteristics of the logic
(IFP + C) associated with the consequences of corollary B.1.1. Proposition
B.1.3 leads to the main result of this section. In fact, we can use the properties
of the logic L% to give a class of distributed problems that can be encoded
and solved by LIDiA .

Definition B.1.6 The set ® defines the class of distributed problems that
can be expressed in a precondition/effect style where all the preconditions can
be evaluated in PTIME.

Theorem B.1.1 For every computable problem P that belongs to the class
® there exists a LIDiA program Py that computes P.

We are now ready to state our main result, namely that every computable
distributed problem is computed by a LIDiA program. We introduce, there-
fore, some definitions and notations that will help us to bring out the core
of the proofs we will state later.
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Definition B.1.7 The class Q defines the class of all LIDiA programs.
Definition B.1.8 The class [ defines the class of distributed problems that
can be encoded by means of local computations.

It is clear that each instance of 0 can be expressed in a precondition/effect
style and that all nodes and edges of the network have labels that describe
their state variables at each computation step.

Theorem B.1.2 (Completeness of LIDiA ) For every computable distributed
problem f € U there exists a LIDiA program that computes f.

The proof of theorem B.1.2 depends on the correctness of the following lem-
mas.

Let f € C be a distributed problem and Py be the set of preconditions
that appear in the rules of f. We assume that the network has n vertices.
Lemma B.1.1

Vp € Pr,p € PTIME = 3f, € Q that computes f.

Proof B.1.1 This lemma is a direct consequence of theorem B.1.1. Note
that we use the notation “p € PTIME” to express the fact that the data
complexity needed for the execution of the query p is polynomial.

Lemma B.1.2

dp € Py,p € NPTIME = 3f, € Q that computes f.

Proof B.1.2 Without loss of generality, let p € NPTIME, A, be the class
of elements(sets of star graphs of diameter 2) that satisfy p and Oy (u, Ap) an
oracle that is true if the ball of radius 1 centered on u belongs to the class Ay.
Thus, for any node v we can express the precondition p of any rule using the
oracle Oy (v, Ayp). The oracle will return true if the precondition p is satisfied
and false otherwise. O, can be implemented in LIDiA as an user defined
function. Hence, the above Lemma is satisfied. The function O,(u,Ap) is
represented outside the precondition of p.

Theorem B.1.3 (General Completeness of LIDiA ) The class of problems
that are computed by LIDiA programs is ezactly the class C.

Because of Theorem B.1.2 and the design of LIDiA | Theorem B.1.3 is obvi-
ous. In fact, Theorem B.1.2 states the completeness of the language LIDiA
. This means that any distributed algorithm encoded by local computations
can be implemented in LIDiA . Furthermore, all computational actions in
LIDiA are local in the sense that only network computations in a ball of
radius 1 are allowed. Thus, any distributed algorithms designed in LIDiA
can be encoded as a list of local computations rules.
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Appendix C

Lexical syntax

We use the following conventions to describe the syntax of LIDiA . Uppercase
words and symbols enclosed in single quotation marks are terminal symbols
in BNF grammar. All other words are nonterminal symbols. If  and y are
grammatical units, then the following notations have the indicated meanings.

Notation Meaning
Ty an z followed by a y
x|y an z or a y
Tk Z€ro or more x’s
T+ one or more z’s

x,* and x;*% | zero or more x’s separated by commas or semi-
colons

z,+ and z;+ | one or more z’s separated by commas or semi-

colons

The lexical grammar of LIDiA uses the following symbols:
Punctuation marks: , :; := []{} ()

Reserved words: Declaration, Initialization, Synchronization, uni-
verse, active, rules, precondition, Relabeling, passive, Action,
Priorities, choose, const, if, while, do, then, tuple, of, enumer-
ation.

IDENTIFIERS for variables, types, and functions: Sequences of letters,
digits, apostrophes, and underscores(exept that two underscores occur
consecutively).

OPERATORS: Sequences of the characters — ! # x +. < => | fol-
lowed by one of these characters or by an identifier.

The lexical grammar is defined as the four tuple element G;, where G; is
defined as followed:
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G = (N, T, P,(Program)).

N is the set of nonterminal symbols.

T is the set of terminal symbols, TN N = @.

P is a finite set of production rules of the form o — 8 with a € Vi, B €

V., V=NUT.

(Program) € N represents the start symbol.

C.1 Declaration Part

(Dec)

(Dec suite)

(De)

(const De)

(var De)

(Typ)

(defined Typ)
(typ name)

(type De)

(label type)
(enumeration De)
(tuple De)
(tuple)
(Def Name)
(Name)
(Name)
(list names)
)

(Stand Value

(intStandV alue)
(real StandV alue)
(char StandV alue)
(stringStandV alue)
(bool StandV alue)
(Digit)

(char)

)

(word

N A A e A

A

e|(Dec suite);
(De)|(Dec suite); (De)

(const De)|(var De)|(type De)

const (Def Name) := (Stand Value)
(Def Name) : (T'yp)
int|real|char|string|boolean|(de fined Typ)
(type name)
(Name)

type (Def Name) =

(enumeration De)|(tuple De)

(label type)

enumeration of (list names)

tuple of (tuple)

(Def Name) : (Typ), (tuple)|(Def Name) : {(Typ)
(Name)
(Name)A|(Name)B]|...|(Name)z|(Name)0|...|[(Name)9
A|B|...|Z|alble]|.. .|z

(Name), (list names)|(Name)

(intStandV alue)|(real StandV alue)|(charStandV alue)
\(stringStandV alue)|(bool StandV alue)
(Digit)|(intStandV alue)(Digit)

(intStandV alue).(intStandV alue)

"(char)’

"(word)"

true|false

0112|...]9
A|B|...|Zlab|...|20]...19/+ | =] x|/ :|
(word){(char)|(char){word)|e
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C.2 Initialization Part

(Init) —
(Seq Instructions) —

(Seq Instructions)
(Seq Instruction);{Instruction)|(Instruction)

(Instruction) — (Assignation)|(Cond Instruction)|(Iter Instruction)

Assignation Instruction

(Assignation) — (var name) := (expression)
(var name) — (Dec Name)
(Dec Name) — (Name)
Syntax of expressions
(Eq Op) — =I[#
(Comp Op) — <|[>[<[2
(Add Op) — +|—
(Mult Op) — x|/
(Quant Op) — V|33;|3;|choose x IN|Max i IN|Min i IN
(Log Op) — /\\V\=>|(:)
(Neg Op) —
(expression) — (simple expr)(Eq Op)(simple expr)

(simple expr)

(T'erm)

(factor)

_)

simple expr)(Comp Op)(simple expr)
simple expr)(Log Op)(simple expr)
Quant Op)(simple expr)

Neg Op)(simple expr)

simple expr)(Add Op)(Term)
(Term,)

)
simple expr)or
simple expr).(Term)

(
(
(
(
(simple expr)
(
(
(
(

<
|
|
|
|
|
|
|
|
|(Term)

(Term)(Mult Op){factor)
|(Term)and(factor)
|{factor)

(Stand Value)|(var name)|({(expression))| — (factor)

Conditional instructions

(Cond Instruction)

— if (expression)then(Seq Instructions)else(Seq Instructions)fi

lif (expression)then(Seq Instructions)fi
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Iterative expressions

(Iterat Instruction) — while(expression)do(Seq Instructions)od
\forall(expression){(Seq Instructions)}

C.3 Synchronization and universe

(Synchro) — Synchro_LCO0();|Synchro_LC1();|Synchro_LC2();
(Universe) — (AlgoName)({Name) : node) : (expression)

C.4 Syntax of a relabelling rule

(Rules) — active rules : (Rules Co)| passive rules : (Rules Co)
(Rules Co) — (Rules Seq)(expression)(Construct Rules)
(Construct Rulesy — (Rules Name) := { (RuleBody)};(Construct Rules)|e
(RuleBody) — Precondition(precond)Relabeling(relab)Priorities(priority)
|Precondition (precond)Action (relab) Priorities(priority)
(Rules Name) — (Name)
(precond) — (expression)
(relab) — (expression)
(priority) — {(Rules Seq)};
(Rules Seq) — (Name),(Rules Seq)|(Name);
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Appendix D

Catalogue of Implementation
Examples

D.1 Spanning Tree: Sequential computation

A N M A

Ry [ ® [ °
0 1

M A A F

: ° ' ° °
R : ] ]

Declaration

type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel, eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialiazation
edgeLab.var := 0;
nodeLab.var := 'N’;
G.init(nodeLab, edgeLab);
v : node;

v := (l.choose mnode();
v.label.var :="A’;

Synchronization
Synchro LC2();

SpanningTree(vg : node)
univers

B : node _ set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Ro:={

precondition

w: node

e: edge
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vg.label.var = A°A

Jw € B(w # vg A Ly [w]l.var ='N’ A [vg, w].label.var = 0);

Relabelling
vg.label.var
Ly[w].var :
[vg, w].var :=1;

BVER
M
’

5

Vv € B(v # vg, IMPLIES SendTo(v, Ly [v]));

Priorities

{}

;
Ry:={
precondition

w: node
vg.label.var = "M’A

Jw € B(w # vg A Ly [w]l.var ='A° A [vg, w].label.var = 1);

Relabelling
vqg.label.var A
Ly[w].var :="F

5
Vv € B(v # vg, IMPLIES SendTo(v, Ly[v]));

Priorities
{Ro; };

;
passive rules: Rg;

Ro:={

precondition

vg.sync # vg;

Action

v : node;

Vv € B(v# vg Av.sync = v,
Vv € B(v# vg Av.sync = v,
Priorities

{}

3
SpanningTree.run(G);

IMPLIES SendTo(v, vg.label));
IMPLIES vg.label := Receive From(v));

48



D.2 Spanning Tree: Distributed Computation with-
out explicit termination

Ry : ———————¢ —————= o—e

Declaration

type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel, eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialization
edgeLab.var = 0;
nodeLab.var = 'N’;
G.init(nodeLab, edge Lab);
v : node;

v := (l.choose mnode();
v.label.var = "A’;
Synchronization

Synchro LC1();
SpanningTree(vq : node)
univers

B : node _ set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Ry;

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={

precondition

w: node

vg.label.var =N’ A

Jw € B(w # vg A Ly[w]l.var ="A’ A [vg, w].var = 0);
Relabelling

vg.label.var :="A’;

[vo, w].var :=1;

Priorities

{}
b
passive rules:Rg;

Ro:={

precondition

vg.sync # vg;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{}

}s

SpanningTree.run(G);
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D.3 Spanning Tree: Distributed Computation with
explicit termination

A o N A 1 A1
R] : Qo —— —> &——0
A1 o N A1 1 A1
RQI L4 e —= o L4
A1
A1 Al
Al P
Rg e — = o0 ' o ' 1 1 U 1
N A1 A1 A Al
A A A
A END
R4 e —= o L R R 1
N Al A

Declaration

type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialization
edgeLab.var := 0;
nodeLab.var :=N’;
G.init(nodeLab, edgeLab);
v : node;

v := ({.choose mnode();
v.label.var :="A’;
Synchronization

Synchro LC1();
SpanningTree(vq : node)
univers

B: node _set;

B = G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Ry, Ry, Ra, R3;

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={

precondition

w: node

vg.label.var =N’ A

3w € B(w # vg A Ly[wl.var ='A° A [vg, w].label.var = 0);
Relabelling

w.label.var := Al

[vo, w] :=1;

Priorities

{}

;
Ry:={
precondition

w : node;
vg.label.var = N’ A
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3w € B(w # vg A Ly[w]l.var ="Al’ A [vg, w].label.var = 0);
Relabelling

vg.label.var := "Al’;

[vo, w].label.var = 1;

Priorities

{}

;
Ro:={

precondition

v1, vy : node;

vg.label.var = A1’ A

Vw € B(—=(w #vg A Ly[w].var =’N’ A [vg,w].label.var = 0))) A

Vvi € BVYvg € B(—=(viy # vg Awve # wvg A v1 # va A Lyl[vi]l.var =
[vo,v1].label.var = 1 A [vg,vel.label.var = 1 V vy # vg A vy # vg A vy
Ly[v2].var ='Al’ A [vg,vi].label.var =1 A [vg,va].label.var = 1);
Relabelling

vg.label.var :="F’;

Priorities

{}

b

Rg:={
precondition
v: node;
vg.label.var =’A’ A Vv € B(Ly[v].var =F’);
Relabelling
vg.label.var := "END’;
Priorities
{}h
H
passive rules:Rg;
Ro:={
precondition
vg.8yne # vg;
Action
v : node;
Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{}
}.

;
SpanningTree.run(G);

ol

AT A Ly[va].var = "A1T A
# vg A Ly[v2].var = A’ A



D.4 Spanning Tree: Sequential Computation with
nodes Id.

(4,9) o (X,4) (M, ) ; (4,9)

Ry : [ J [ ° 14 <i;X € {A,M,N,F}
(A4,9) (Y, k) (Ni) (Y, k)

RQ : L @ e ———————eo ;i< k;Y € {A,M,N}
(M,i) (A,9) (A,9) ; (F,i)

R : oo oo

Declaration

type nLabel = tuple of var: string, id: int;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization
edgeLab.var := 0;
G.init(nodeLab, edgeLab);

v : node;
it int;
i := 0;

Vv € G, IMPLIES {v.label.id := i;v.label.var := A’ i: =i+ 1;}

Synchronization

Synchro_LC2();

SpanningTree(vg : node)
univers

B: node _set;

B = G.voisinage(vg);

Ly: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry, Ro;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Ro:={

precondition

w: node

vg.label.var =’A’ A Jw € B(w # vg A Ly[w].id < vg.label.id);
Relabelling

Ly[w].var := A’

vg.label.var :="M’;

[vg, w].label.var := vg.label.id;

Vv € B(v # vg, IMPLIES SendTo(v, Ly [v]));
Priorities

{}

5
Ry:—={
precondition
w : node;
vg.label.var = A’ A
Jw € B(w # vg A Ly[w].var # 'F’ A vg.label.id < Ly [w].id);
Relabelling
vg.label.var := 'N’;
Vv € B(v # vg, IMPLIES SendTo(v, Ly [v]));
Priorities
{}h
H
Ro:={
precondition
w : node;
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vg.label.var = "M’ A
Jw € B(w # vg A Ly[w].var ="A’ AN wvg.label.id = Ly [w].id A
[vo, w] = vg.label.id);
Relabelling
vg.label.var :="A’;
Ly[w].var :=F
Vv € B(v # vg, IMPLIES SendTo(v, Ly [v]));
Priorities
{Ro, R1; };
H
passive rules: Rg;
Ro:={
precondition
vg.sync # vg;
Action
v : node;
Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Vv € B(v # vg Av.sync = v, IMPLIES vq.label := ReceiveFrom(v));
Priorities
{}

H

SpanningTree.run(G);
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D.5 Spanning Tree: Distributed Computation with
nodes Id.

a9, (A,) (A (A,49)
Ry : ° ° ° ° > 000> 055 <i

Declaration

type nLabel = tuple of var: string, id: int;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization
edgeLab.var = 0
G.init(nodeLab, edgeLab);

v : node;
i: int;
i := 0;

Vv € G, IMPLIES {w.label.id := i;v.label.var := "A’i: =i+ 1;}

Synchronization
Synchro_LC1();

SpanningTree(vg : node)
univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Ry;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Ry:—={

precondition

w: node

vg.label.var = A’ A

Jw € B(w # vg A Ly[w].var ='A’ A Ly[w].id > vg.label.id);

Relabelling

vg.label.id := L, [w].id;

[vg, w].label.var := Ly [w].id;
Priorities

{h
s
passive rules: Rg;

Ro:={

precondition

vg.sync # vp;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{5

b

SpanningTree.run(G);
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D.6 Spanning Tree: Distributed Computation with

local detection of termination

(Ai) (X,4) (Ai) (A1,4)
Ry : ° ° ° °
(A1,4) 4 (X,4) (A1,49) (A1,4)
Ry : e——eo — > e—eo
(A1,1)
(A1, 1) (F,4)
R3 : o _— e ) a LI
x.g Y

Declaration

type nLabel = tuple of var: string, id: int;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization

edgeLab.var = 0;

G.init(nodeLab, edge Lab);

v : node;

nt;

i:=0;

Vv € G, IMPLIES {v.label.id := i;v.label.var := A’ i: =i+ 1;}

Synchronization

Synchro LC1();

SpanningTree(vq : node)
univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry, Ro;

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={

precondition

w: node

Jw € B(w # vg A Ly[w].id > vg.label.id A Ly [w].var =A%),
Relabelling

Ly[vgl.id := Ly [w].id;

vg.label.var := "Al’;

[vo, w].label.var := vqg.label.id;

Priorities

{}

b

Ry:—={

precondition

w: node

3w € B(w # vg A Ly[w].id > vg.label.id N Ly [w].var = "Al’);
Relabelling

Ly[vgl.id := Ly [w].id;

vg.label.var := A1’

[vg, w].label.var := vg.label.id;

Priorities

35
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{}

}s

Ro:={

precondition

w: node

vg.label.var = A1’ A

Vw € B=(w # vg A Ly[wl.id # vg.label.id) A

Vvi € BVvg € B=(vy # vy A wvg #vg A vy # vg A wvg.label.id = Ly[vi].id A vg.label.id = Ly [va].id A
Ly[va]l.var = 'A1° A Ly[vi].var # 'F’);

Relabelling
vg.label.var :="F7;
Priorities

{R1:}

;
passive rules: Rg;

Ro:={

precondition

vg.8yne # vg;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{h

H

SpanningTree.run(G);
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D.7 Election In a Tree

N 0 N F
Ry : ———— o —— > o—o
N
Rs : ° D ——

0
@

Declaration

type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialization
edgeLab.var := 0;
nodeLab.var := 'N’;
G.init(nodeLab, edge Lab);
Initialization

Synchro_LC1();

ElectionInTree(vg : node)
univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Rg :={

precondition

v : node;

vg.label.var = 'N° A 3ty e B(v # vg A Ly[v].var = 'N’);

Relabelling
vg.label.var = 'F’;
Priorities

{}

;
Ry:={

precondition

v : node

vg.label.var = N’ A Vv € B=(v # vg A Ly |
Relabelling

vg.label.var = E’;

Priorities

{}
}.

;
passive rules: Rg;
Ro:—={
precondition
vg.8yne # vg;
Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));

Priorities
{}h

H
ElectionInTree.run(G);

o7



D.8 Election in a Complete Graph

Ry ———— o ——— > o—o

Declaration

type nLabel = tuple of var: string;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialization
nodeLab.var := 'N’;
G.init(nodeLab, edgeLab);
Synchronization
Synchro_LC1();

ElectionInGraph(vg : node)
univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
L, .init(B, nodeLab);

active rules: Rg, Ry;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Ro:—={

precondition

v : node

vg.label.var ='N’ A Jv € B(v # vg A Ly [v].var ="N’);
Relabelling

vg.label.var :="F’;

Priorities

{}

;
Ry:={

precondition

v : node

vg.label.var =N’ A Vv € B(v # vg A Ly[v].var # 'N’);
Relabelling

vg.label.var :="E’;

Priorities

{}
}s
passive rules: Rq;

Ro:={

precondition

vg.sync # vp;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{}h

IE

ElectionInGraph.run(G);

o8



D.9 Election in a Ring(Chang-Robert Algorithm)

(Idq,x) (Idy,x)
°
(I{ig,m)
(Td2,y)
(Idy,z) (Id,x)
B ———
R2 : ;T =idy
°
E
(Id2,y)

Declaration

type nLabel = tuple of id;: int, ido: int,state: string;
type eLabel = tuple of var: int;

G : GRAPH < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization
G.init(nodeLab, edge Lab);
v

i := 0;
Vv € G, IMPLIES {Ly[v].idy := i; Ly[v].ido :=d;i := 1 + 15}

Synchronization

Synchro_LC1();

Election(vg : node)

univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Ry, R1;

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={

precondition

w: node

Jw € B(w # vg A Ly[w].ide > vg.label.ids);
Relabelling

vg.label.idg := Ly[w].idg;

Priorities

{}

}s

Ry:={

precondition

w: node

Jw € B(w # vg A Ly[w].ide = vg.label.idq);
Relabelling

vg.label.stat := 'Elected’;

Priorities

{}

s

passive rules: Rg;

Ro:={

precondition
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vg.8yne # vp;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{h

IE

Election.run(G);
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D.10 3-Coloration of a Ring

" . . . y "
R —_— o —o ;T FY
pxty

@ y @ @ z y

o r—0—0 —_—— r—o—0
R, : i 2 £ T

2 Ay

Declaration

type Color = enumeration of x,y,z;
type nLabel = tuple of color: Color;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;
edgeLab : eLabel;

nodeLab : nLabel;

Initialization

G.init(nodeLab, edge Lab);

v : node;

Vv € G, IMPLIES {C : Color; C := Color.choose(); Ly[v].color := C; }

Synchronization

Synchro_LC1();

Coloration(vg : node)
univers

B: node _set;

B := G.voisinage(vg);

Ly: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry;

VYw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={

precondition

w: node

w1 : node

coly: Color

Jw € B3wq € B(w Zvg A w1 #vg A w# wyp A
Ly [w].color = vg.label.color A

Ly[wi].color = vg.label.color A

Jeoly (coly # vg.label.color)));

Relabelling

vg.label.color := coly;

VYw € B(w # vy, IMPLIES SendTo(w, Ly[w]));
Priorities

{1
R’,l:*{

precondition

w: node

w1 : node

coly: Color

Jw € B3wq € B(w #Zvg A w1 #vg A w# wyp A
Ly [w].color = vg.label.color A
Ly[wi].color # vg.label.color A
Jeolq (coly # vg.label.color A
coly # Ly[wq].color));
Relabelling

vg.label.color := coly;
Priorities

{}

}s

passive rules:Ry;

Ro:={

precondition

vg.sync # vp;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{}
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Coloration.run(G);
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D.11 3-Coloration + SSP Termination

X, Vo, ns
e X, V2, n2) (X,Vi,m) (XVems) x4 e oyl
1 o 4 . L . °
(X,F,—1) (Y, T,min(ni,n2) + 1) Vi, Vo € {T,F}
X #7Z
(X Vi, n) (¥, Va,m3) (X, Vi,m) (¥, Va,m3) ’
R2 : hd hd hd hd hd b X 75 Y
(X:Faf]) (ZaT:Mi”(nlan2)+]) Y £ 7
R : (Ya‘/-lznl) o (le‘-/Zanz) (Y,Vl-,nl) o (Y]1V37n2) Yl#X
(X, F,—1) (X, T,min(ni,n2) + 1)
" (Y, T,n1) (Y1,T,nz) (Y, T,n1) (Y1,T,nz)
4 : . L ° . . °
(X,T,n) (X, T,min(ni,n2) + 1)
Declaration
type Color = enumeration of x,y,z;

type nLabel = tuple of color: Color, labs: string, N: int;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization
nodeLab.color = x;
nodeLab.labg 'F;
nodeLab. N ;
nodeLab.N = 0;
G.init(nodeLab, edge Lab);

Synchronization
Synchro_LC1();
Coloration(vg : node)
univers

B: node _set;

B := (H.voisinage(vq);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry, Ro, R3;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));
Ro:—={

precondition

w: node

w1 : node

Jw € B3w; € B(w Zvg A wy #vg A w# wp A

Ly [w].color = vg.label.color A

Ly[wi].color = vg.label.color A

vg.label.laby = F° A wvg.label. N = —1);

Relabelling

vg.label.color := Choose col IN(3col € Color(col # nodelabel(vg).color));
vg.label.laby :="T7;

vg.label.color ;= min(Ly[w].N, Ly [w1].N) + 1;
Priorities

{}

b

Ry:={

precondition

w: node

wi: node

Jw € B3wy € B(w #vg A wy #vg A w# wy A

Ly [w].color = vg.label.color A

Ly[wi].color # vg.label.color A

vg.label.laby = F° A wvg.label. N = —1);

Relabelling

vg.label.color := Choose col IN(3col € Color(col # vg.label.color A
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col # Ly[wi].color));

vg.label.laby :="T;

vg.label.color ;= min(Ly[w].N, Ly [w1].N) + 1;
Priorities

{}

b

Ro:=
precondition
w: node

w1 : node

Jw € B3w; € B(w #Zvg A wy #vg A w# wp A
Ly[wi].color # vg.label.color A

vg.label.laby = F° A vg.label. N = —1);
Relabelling

vg.label.laby :="T;

vg.label.color ;= min(Ly[w].N, Ly [w1].N) + 1;

Priorities

{}

}s

R3:={
precondition
w: node

w1 : node

Jw € B3w; € B(w Zvg A wy #vg A w# wp A
Ly[w].laby = vg.label.laby A

Ly[wi].labs = vg.label.labs A wvg.label.labs = "T7);
Relabelling

vg.label.color := min(L,[w].N, Ly[wq].N) + 1;

Priorities

{}

}s

passive rules:Ry;

Ro:={

precondition

vg.8yne # vg;

Action

v : node;

Vv € B(v # vg Av.sync = v, IMPLIES SendTo(v, vg.label));
Priorities

{h

IE

Coloration.run(G);
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D.12 Algorithm of Mazurkiewicz

Declaration

type Ttuple = tuple of p;: int, N;: set < int >;

type nLabel = tuple of p: int, N: set < int >, M: set < Ttuple >;
type eLabel = tuple of var: int;

G : graph < nLabel,eLabel >;

edgeLab : eLabel;

nodeLab : nLabel;

Initialization

nodeLab.p = 0;
nodeLab. N = N;p,it:
nodeLab.M = M;p ;43
G.init(nodeLab, edge Lab);
Synchronization

Synchro_LC2();

Mazur(vg : node)

univers

B: node _set;

B := G.voisinage(vg);

L,: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Rg, Ry;

VYw € B(w # vg, IMPLIES Ly[w] := ReceiveFrom(w));

Ry:—={

precondition

w: node

w1 : node

Jw € B3wq € B(w #w1 A YVt € Ly[w].M(=Ly[wi].M.member(t)) V
Vt1 € Ly[wi]. M (=Ly[w].M.member(t1)));

Relabelling

M: set < Ttuple >;

Vv € B, IMPLIES M := M_.join(L,[v].M);

Vv € B, IMPLIES L,[v].M := M;

Vv € B(v # vg, IMPLIES SendTo(v, Ly[v]));

Priorities

{}

}s

Ro:={

precondition

w: node

wi: node

coly: Color

Vw € BYwy € B(w # w1 A Vt € Ly[w].M(Ly[wq].M.member(t)) A
Vt1 € Ly[w1].M(Ly[w].M.member(t1))) A

(vg.label.p = 0V 3t € vg.label.M (t.p; = vg.label.p A
vo.label. N.dif f(t.M;).maz() < t.M; .dif f(vg.label.N).maz()));
Relabelling

K : int;

K := Maz i IN(3v € B(i = Ly[v].pV Ly [v].N.member(i)V

3t € Ly[v]l.M(i = t.p;)));

Tt: Ttuple;

Tt.p; : = K + 1;

Tt.M; := vg.label .N;

Vv € B, IMPLIES Ly [v].M.insert(Tt);

Vv € B(v # vg, IMPLIES Ly [v].N.delete(vg.label.p));

Vv € B(v # vg, IMPLIES Ly [v].N.insert(K + 1));

vg.label.p = K + 1;

Vv € B(v # vg, IMPLIES SendTo(v, Ly[v]));

Priorities

{}

It

passive rules: Rg;
Ro:={
precondition
vg.sync # vg;
Action

v : node;

Vv € B(v# vg Av.sync
Vv € B(v # vg A v.sync
Priorities

{}

H

v, IMPLIES SendTo(v, vg.label));
v, IMPLIES vq.label := ReceiveFrom(v));

Mazur.run(G);
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D.13 Algorithm of Dijkstra-Scholten

(X, Ac, sc) (X, Ac,s¢+ 1)

_— Ac X € {A, A1}

Rl : Pa

°
(N, Pa,0) (A1, Ac,0)
(X, Ac, sc) (X, Pa, sc)
° _ = ° X € {A, A1}
RQ .
(X, Ac, sc) (X, Ac, sc)
X,Y € {A, Al}
Ra - Pa z Pa
3 - scl #0
[ ]
(Y, Pa, scl) (Y Ae, scl)
(X,Y,s¢) (X,Y,sc—1)
X € {A, A1}
Ry : Ac I Pa Y € {Ac, Pa}
4"
°
(A1, Pa,0) (N, Pa,0)
(4, Pa,0) BND
[ ] —— [ ]

R5Z

Declaration

type nLabel = tuple of laby: string, laby: string, sc: int, End: Bool;
type eLabel = tuple of lab: string;
G : graph < nLabel,eLabel >;
edgeLab : nLabel;

nodeLab : nLabel;

Initialization

nodeLab.laby = 'N’;

nodeLab.laby = 'Pa’;

nodeLab.sc = 0;

edgeLab.lab = "Pa’;
G.init(nodeLab, edgeLab);

v: node;

v := ({.choose mnode();

v.label.lab; = A’

v.label.laby = "Ac’;
Synchronization

Synchro_LC2();

Dijkstra_Scholten(vg : node)

univers
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B: node _set;

B := G.voisinage(vg);

Ly: node_array < nLabel >;
Ly .init(B, nodeLab);

active rules: Ry, Ry, Ro, R3, Ra;
Vw € B(w # vg, IMPLIES L, [w] := ReceiveFrom(w));
Ro:={
precondition
w1 : node
—vg.label.End A wvg.label.laby # 'N’ A
vg.label.labs = "Ac’ A
Jwq € B(Ly[wi].laby ='N’ A
Ly[wi].labe = 'Pa’ A Lywq].sc =0 A
[vg,wi].label.lab = '"Pa’ A —Ly[wi].End);
Relabelling
vg.label.sc := vq.label.sc + 1;
[vo, wi].label.lab := "Ac’;
Ly[wi].laby := Al
Ly[wi].laby := "Pa’;
VYw; € B(wy # vg, IMPLIES SendTo(wy, Ly[w1]));
Priorities
{}
3
Ry:={
precondition
vg.label.laby # N’ A wg.label.laby = "Ac’ A
—vg.label.End;
Relabelling
vg.label.labs := "Pa’;
VY wi € B(wy # vg, IMPLIES SendTo(w1, Ly[w1]));
Priorities
{}
}s
Ro:={
precondition
w1 : node
—wvqg.label.End A wvqg.label.lab; # N’ A
vg.label.laby = "Ac’ A
Jwy € B(Ly[wi].laby # N’ A
Ly[wi].labey = 'Pa’ A Lywq].sc #0 A
[vg, wi].label.lab = '"Pa’ A —Ly[w1].End);
Relabelling
Ly[wi].labs :="Ac’;
Vwi € B(wy # vg, IMPLIES SendTo(w, Ly[w1]));

Priorities

precondition

wi: node

—wvqg.label.End A wvqg.label.lab; # N’ A

Jwy € B(Ly[wy].laby ='A1’ A Ly[wq].labg = 'Pa’ ALy[wi].sc =0 A Le[vg,wi].lab="Ac’ AN = Ly[wy].End);
Relabelling

vg.label.sc := vq.label.sc — 1;

Ly[wi].laby := N7

VYw; € B(wy # vg, IMPLIES SendTo(wy, Ly[w1]));

Priorities

precondition

vg.label.laby = A’ A wg.label.laby = 'Pa’ A
vg.label.sc =0 A —wvg.label. End;

Relabelling

vg.label. End := True;

VYw; € B(wy # vg, IMPLIES SendTo(wy, Ly[w1]));
Priorities

{}

}s

passive rules: R;

Ro:={

precondition

vg.sync # vp;

Action

v : node;

Vv € B(v#wvgAv.sync =
Vv € B(v# vg Av.sync
Priorities

{}h

H

, IMPLIES SendTo(v, vg.label));
, IMPLIES vg.label := Receive From(v));

Il
s o

Dijkstra_Scholten.run(G);
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