
Getting to Know You:
Learning New User Preferences in Recommender Systems

Al Mamunur Rashid, Istvan Albert, Dan Cosley,
Shyong K. Lam, Sean M. McNee, Joseph A. Konstan, John Riedl

GroupLens Research Project
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455 USA

{arashid, ialbert, cosley, lam, mcnee, konstan, riedl}@cs.umn.edu

ABSTRACT
Recommender systems have become valuable resources for
users seeking intelligent ways to search through the
enormous volume of information available to them. One
crucial unsolved problem for recommender systems is how
best to learn about a new user. In this paper we study six
techniques that collaborative filtering recommender
systems can use to learn about new users. These techniques
select a sequence of items for the collaborative filtering
system to present to each new user for rating. The
techniques include the use of information theory to select
the items that will give the most value to the recommender
system, aggregate statistics to select the items the user is
most likely to have an opinion about, balanced techniques
that seek to maximize the expected number of bits learned
per presented item, and personalized techniques that predict
which items a user will have an opinion about. We study
the techniques thru offline experiments with a large pre-
existing user data set, and thru a live experiment with over
300 users. We show that the choice of learning technique
significantly affects the user experience, in both the user
effort and the accuracy of the resulting predictions.

Keywords
Recommender systems, collaborative filtering, information
filtering, startup problem, entropy, user modeling.

INTRODUCTION
People make decisions every day. “Which movie should I
see?” “What city should I visit?” “What book should I
read?” “What web page has the information I need?” We
have far too many choices and far too little time to explore
them all. The exploding availability of information that the
web provides makes this problem even tougher.

Recommender systems help people make decisions in these
complex information spaces. Recommenders suggest to the
user items that she may value based on knowledge about
her and the space of possible items. A news service, for
example, might remember the articles a user has read. The
next time she visits the site, the system can recommend
new articles to her based on the ones she has read before.
Collaborative filtering is one technique for producing
recommendations. Given a domain of choices (items), users
can express their opinions (ratings) of items they have tried
before. The recommender can then compare the user’s
ratings to those of other users, find the “most similar” users
based on some criterion of similarity, and recommend
items that similar users have liked in the past.
When new users come along, however, the system knows
nothing about them. This is called the new user problem for
recommender systems [1, 2, 6]. The system must acquire
some information about the new user in order to make
personalized predictions. The most direct way to do this is
to ask for ratings directly by presenting items to the user.
However, the system must be careful to present useful
items that garner information. A food recommender, for
instance, probably should not ask whether a new user likes
vanilla ice cream. Most people like vanilla ice cream, so
knowing that a new user likes it tells you little about the
user. At the same time, the recommender should ask about
items the user is likely to have an opinion about. A travel
recommender would probably not benefit by asking a new
user if she liked Burkina Faso, for instance. The
recommender system is likely to learn only that, like most
people, she has not visited Burkina Faso, which is of little
value in forming future travel recommendations.
The choice of exactly what questions to ask a new user,
then, is critical. An intelligent recommender interface will
minimize a new user’s effort and get him to the fun part—
using the system and seeing recommendations—while still
learning enough to make good recommendations.
In this paper we explore approaches for choosing which
items to present to new users for rating. We consider this
problem in the general case of recommender systems,
illustrating strategies and performing experiments using the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00.

127

MovieLens movie recommender. We first survey related
work in the areas of decision theory and recommender
systems, then consider approaches for selecting movies to
present to users. We test these approaches on historical data
drawn from the 7.5 million-rating MovieLens dataset. We
also test three of the most promising strategies on over 300
new MovieLens users. We then discuss the results and
suggest directions for future work.

RELATED WORK
We briefly mention related work in the field of decision
theory and survey work that has been done on the new user
problem in the area of recommender systems.

Decision theory and entropy
Decision theory has proved useful in determining models
for re-ordering search results [4]. This application of utility
functions has also been used in recommender systems [13,
14].
Analysis of data for entropy—its theoretical information
content—has been a standard technique used in information
retrieval [10], medical diagnostic systems [9], and
sequential classification problems [3] for many years.
Lately, researchers have extended the use of entropy into
areas such as probabilistic models for information retrieval
[7] and value-of-information analysis [16].
We apply decision theory techniques to a new problem:
choosing the items to first present to a new user of a
recommender system. Our problem is in some ways the
converse of the cited research; we are selecting items as
questions to present to the user, rather than choosing which
answers to present for a user’s question.

Recommender systems and the new user problem
There has been little work in solving the new user problem
by analyzing ratings data to make smart decisions. Pennock
and Horvitz proposed the use of a “value-of-information”
calculation to discover the most valuable ratings
information to next gather from a user [14]. To our
knowledge, they have not published any implementations
or evaluations of their calculations.
Kohrs and Merialdo make use of entropy and variance in
their ratings data in order to generate more accurate
predictions for new users [12]. Our work expands their
results by using a number of strategies that we consider as
being more suitable than variance or entropy. We also have
a much larger dataset for our offline experiments and verify
our findings in a live experiment.
Another approach to solving the new user problem creates
pre-made user categories and quickly assigns new users to
one of them. The partitioning can be accomplished by
asking the user pre-determined questions that build a user
preference structure. This helps jump-start the user into the
system without requiring a substantial number of ratings [8,
13]. This class of approaches addresses the question of
what to present first by starting with a small set of
preference models (e.g. demographic models, models based

on attributes of items) and asking questions that help
choose an appropriate model for a user. When these models
are accurate they can be quite useful, but the premise of
personalized recommender systems and collaborative
filtering is that a person’s preferences are a better predictor
of other preferences than other attributes. Category and
demographic models are thus less general than the methods
we present; they apply only to certain domains, and require
domain-specific expertise.
Filterbots are a technique to overcome the startup problem
for new items in a collaborative filtering system by
injecting ratings agents that rate every item in the system
according to their algorithmic analysis of the content of the
item [6]. Filterbots can make sure that every item in the
system has many ratings to help users find the items they
are most interested in. However, filterbots do not directly
attack the new user problem.
Others have integrated agents into a collaborative filtering
environment to extract user preference information
transparently [17]. This method has the advantage of
collecting implicit information in addition to explicitly
provided ratings, and should gather data for new users more
rapidly. Using implicit data in addition to explicit data is a
promising approach, and is complementary to our approach
of carefully selecting which explicit data to collect.

STRATEGIES FOR SELECTING ITEMS TO PRESENT
There are trade-offs to be made when choosing a strategy
for presenting items. As discussed in the introduction,
requiring too much effort of the user will cause some users
to give up, while not asking enough questions will result in
poor recommendations. We identify four dimensions that a
strategy might choose to support: (a) User effort: how hard
was it to sign up? (b) User satisfaction: how well did the
user like the signup process? (c) Recommendation
accuracy: how well can the system make recommendations
to the user? (d) System utility: how well will the system be
able to serve all users, given what it learns from this one?
We choose to focus on user effort and accuracy. We chose
these two is because they are easy to measure and can be
measured in both off-line and on-line experiments. User
satisfaction studies are difficult to do off-line from
historical data, and we believe that user satisfaction will
rise as user effort falls. While we touch on a few issues
related to system utility, such as the danger of introducing
biases into a system’s ratings database when using certain
strategies, we do not focus on it since our primary focus is
on factors that directly influence the user’s experience.
We consider several types of strategies for presenting
items, ranging from random selection, through strategies
that exploit aggregate properties of the system’s database
such as choosing popular items, to strategies that tune
themselves to individual users.

128

Random strategies
Random strategies avoid bias in the presentation of items.
We consider two variants.
Random. Select items to present randomly with uniform
probability over the universe of items.
MovieLens Classique. For each page of movies presented,
select one movie randomly from an ad hoc manual list of
popular movies and the rest randomly from all movies.
Discussion. Random strategies have the advantage of
collecting user preference data over the entire universe of
items. If the distribution of ratings is not uniform, however,
users will likely not have seen many of the randomly
selected movies. MovieLens Classique tries to boost the
chance that users will have at least one success per page.

Popularity
In MovieLens, the number of movies with a given number
of ratings decreases in an approximately exponential
manner, deviating from this exponential form for the least-
and most-rated movies.
Popularity. Rank all items in descending order of number
ratings. Present movies in descending popularity order.
Discussion. This strategy is easy to calculate and should
make it easy for users to rate movies. However, popular
movies may be widely liked; if this is true, then their
ratings carry little information. If everyone likes Titanic,
and I say I like it too, what can the system learn from that?
Another concern when using the popularity strategy is the
possibility of exacerbating the prefix bias. Popular movies
are easier for the system to recommend, because similar
users are more likely to have seen them. Since users can
rate any movie the system recommends, popular movies
garner still more ratings. Unpopular movies suffer from the
same problem in reverse: they are hard to recommend, so
users see them and rate them less often than they otherwise
might. This bias may explain the deviation from
exponential form for the popularity distribution of movies.

Pure entropy
An alternative approach is to ask users about movies that
will give us the most information for each rating.
Informally, a movie that has some people who hate it and
others who like it should tell us more than a movie where
almost everyone liked it. Kohrs and Merialdo used both
variance and entropy to get at this notion [12].
Pure Entropy. For each movie, calculate its entropy using
the relative frequency of each of the five possible ratings.
Sort the movies in descending order of entropy. Present the
movies with the highest entropy that the user has not seen.
Discussion. There are several choices to make when using
an entropy-based strategy. The first is how to handle
missing ratings. We choose to ignore them in the
calculation because the information content of a missing
rating is hard to measure: a user may have chosen not to see
it, never heard of it, or seen it but not thought to rate it.

Another choice is whether to compute the entropy over
each rating individually, or whether to convert ratings into
a binary “like vs. dislike” model where ratings of 4 or 5
indicate like while ratings of 1 to 3 indicate dislike.
Finally, “most information” in the technical sense meant by
entropy does not necessarily translate into information
usable by the system. A movie with only two ratings, a 1
and a 5, has high entropy but little value in finding similar
users or making recommendations. Similarly, a
recommender may present high entropy movies, but if the
user has not seen any of them, the system will gain no
information at all. We performed a pilot study for the on-
line experiment using a pure entropy strategy, and it turned
out to be unusable. Two users had to view several hundred
movies each before finding ten to rate.

Balanced strategies
Popularity-based strategies tend to get many ratings from
users, but each rating may have low information-theoretic
value to the recommender system. Conversely, entropy-
based techniques get a lot of value from each rating, but
users may find relatively few items to rate. In this section
we consider balanced techniques that attempt to obtain
many ratings, each of which has a relatively high value. In
a sense, these techniques are working to obtain as many
expected bits of information as possible from each item
presented for the user to possibly rate.

Popularity*Entropy (Pop*Ent). Rank items by the product
of popularity and entropy. Entropy is the number of bits of
information if the user rates the item, and popularity is the
probability that this user will rate this item. Using Bayes’
theorem in this way assumes that popularity and entropy
are independent, which is unlikely to be strictly true, but
the approach is likely to be a good approximation to
expected number of bits. Further, our experience with
MovieLens ratings suggests that popularity and entropy are
not strongly correlated. Figure 1 plots the average entropy
of movies with a given popularity ranking using a moving
average over the 50 prior most popular movies. This figure

Figure 1. Entropy vs. the popularity of a movie,
smoothed by using a moving average entropy of the
previous 50 most popular movies.

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000 12000 14000
Ratings

En
tr

op
y

129

shows that there is little correlation between a movie’s
popularity and entropy except for movies with few ratings.
Log Popularity*Entropy (log Pop*Ent). As above, but take
the log of the number of ratings before computing
popularity. In studying Entropy and Popularity we observed
that their distributions in our dataset were such that
Popularity almost completely dominated Pop*Ent, with
both strategies producing nearly the same sets of rankings.
Taking the log of the ratings nearly linearized popularity,
making it a better match for entropy.
Discussion. Figure 1 suggests that entropy alone may not
be an effective strategy, since entropy is nearly independent
of popularity. Thus, entropy alone will sometimes choose
items that users have low probability of having an opinion
about. Balanced techniques directly combine entropy and
popularity to increase both the odds that a user will be able
to rate movies that the recommender presents and the
expected value of that rating.

Personalized
The strategies above all use aggregate statistics. However,
the overall popularity of an item is only a rough
approximation for the chance that a particular user has seen
it. Ideally, the movies presented to a user could be tailored
to that user as soon as we have some information about that
user. Once we know that a user has rated Ghostbusters, we
might want to show other movies rated by people who have
rated Ghostbusters. The goal is to hone in on movies that
the user is likely to have seen in order to make the signup
process easier and require less user effort. A simple
personalized strategy uses item-item similarity.
Item-Item personalized: Present movies using any strategy
until the user has given at least one rating. Then use a
recommender that computes similarity between items to
select other items that the user is likely to have seen.
Update the list of similar movies whenever the user submits
more ratings, remembering movies that the user has already
seen so that they are not presented again. For our
experiments, we present the initial screen of movies as a
random selection from the top 200 movies ranked by the
log Pop*Ent strategy.
Discussion. Personalizing the movies we present is similar
to, but not the same as, recommending movies. When we
recommend movies, we try to identify movies the user will
like; when presenting movies, we only care whether he has
seen a movie. The SUGGEST recommender, used as the
item-item recommender in our experiments, was developed
with e-commerce in mind and uses binary ratings (e.g. the
user bought the item) [11]. It accepts a list of items the user
has bought and returns a list of other items the user would
be most likely to buy. This is exactly the task we face:
given a list of movies the user has seen, what other movies
is he most likely to have seen.
One possible disadvantage for the item-based personalized
strategy is that seeing a movie is probably correlated with
liking a movie. The average rating in the MovieLens

dataset, for example, is close to 4 on a 1 to 5 scale. This
means that we may get mostly positive ratings for the new
user, which is not as useful as knowing both some movies
that the user likes and some that she dislikes.

Other plausible strategies
There are a number of other plausible strategies that we do
not consider in this paper. The system might ask attribute-
based questions of the user, although as mentioned earlier
such strategies are domain-dependent. The system might
also ask for the names of items a user likes. CDnow.com
does this, explicitly asking for album titles the user liked. A
recommender system could also preferentially display new
items, or items that have recently been added to its
database. Finally, it could perform a more sophisticated
analysis of entropy and personalization than we attempt in
this paper and try to select items with high independent
entropy. We focus on domain-independent strategies, and
within these on the simplest ones; exploring more complex
strategies would be fertile ground for future work.

OFFLINE EXPERIMENTS
We decided to first explore the strategies mentioned above
by performing off-line experiments that use historical data
to simulate the signup process for new MovieLens users.
The benefit of these offline experiments is that we can
quickly test a variety of strategies without bothering actual
users with strategies that turn out in practice to work
poorly. A disadvantage of these offline experiments,
described in detail below, is that biases in our existing data
may bias the results for or against particular approaches.
We identify the biases as carefully as we can, and interpret
our results in that context. Still, these experiments were
invaluable to us in ruling out several algorithms that would
have been painful for actual users.

Experimental Design
To build the dataset for the off-line experiments, we took a
snapshot of the MovieLens ratings database and eliminated
users who had fewer than 200 ratings. This left 7,335 users,
4,117 movies and more than 2.7 million ratings. The cutoff
of 200 is both high and somewhat arbitrary. However, we
needed a large number of ratings for each user as in the
historical data it is hard to know which movies the user
might have seen other than through their ratings. We
needed many ratings for each user so we had a good sample
of movies they were able to rate.
We tested the Pure Entropy, Random, Popularity, Pop*Ent,
and Item-Item personalized strategies. We did not test the
MovieLens Classique strategy because the historical data
were gathered with the Classique strategy and we feared
possible bias.
To mimic the on-line sign-up process, we used each
strategy to “present” a total of 30, 45, 60, or 90 movies to
each user. We varied the number of movies presented so
that we could see how the strategies performed as the
system attempted to gather more information. When we

130

started a run, we withheld all of that user’s ratings from the
system. As we presented the movies, users “rated” the
movies they had “seen” (i.e. those for which we had ratings
for in the database).

Once we had presented the correct number of movies, we
counted the number of movies the user was able to actually
rate. More ratings implied that we did a better job of
showing items the user could rate. This is good: it means
that we wasted less of the user’s time looking at unratable
items and that we can present fewer items to get the
information the system needs, saving the user effort. After
counting the rated movies, we used these as training data
for that user and made predictions for all of the other
movies the user had rated in the original dataset. We then
calculated the Mean Absolute Error (MAE) for these
predictions. MAE is the sum of the absolute differences
between each prediction and corresponding rating divided
by the number of ratings. We performed the entire
procedure for each strategy for every user in the test set,
and computed an average MAE across all users. Computing
average MAE in this way counts all users equally, rather
than biasing the results towards users with more ratings.

Figure 3. Mean Absolute Error (MAE) vs. the number
of movies presented by each strategy.

Biases in the reduced dataset
The reduced dataset inherits several biases from the full
MovieLens dataset. In particular, it has the prefix bias,
where popular movies are easier to recommend and are
shown (and rated) more often. This might give strategies
that incorporate popularity an advantage in the number of
movies they allow a user to rate. Our decision to remove
users with less than 200 ratings also introduces possible
bias. One bias is that our results may be most meaningful
for active users. It is also possible that removing users with
fewer ratings might artificially impact prediction accuracy.
Excluding these users also resulted in a denser data set.

Results
Figure 2 shows that the Item-Item personalized strategy did
the best in picking movies users can rate, while Pure
Entropy was the worst.
Figure 3 shows the effect different strategies have on MAE.
Pop*Ent performs best for a given number of presented
movies, with Popularity close behind. Again, Pure Entropy
is shockingly poor.
The poor performance of Pure Entropy in both metrics is
directly related. Figure 1 shows a slight increase in entropy
for less popular movies. Since popularity directly relates to
the chance that a new user has seen a movie, this strategy
presents movies that users are less likely to have seen,
resulting in poor performance in the movies-seen metric.
Moreover, with fewer rated movies to base predictions on,
the MAE for Pure Entropy also suffered.
The Item-Item personalized strategy has the most
interesting behavior. We expected it to win in the movies-
seen metric, and it in fact trounced the competition. This
did not translate into better recommendations, however. It
was hard to believe that the Random strategy could get an
error rate with eight ratings as training data comparable to
the item-item personalized strategy with 57 ratings.
One possible reason is that the item-item strategy presented
movies that it could otherwise have made accurate
predictions for. Imagine that the system presents Star Trek
23: the Bowels of Kirk to a Star Trek fan, who rates it. The
system looks and finds that most people who have seen
Bowels have also seen Star Trek N, 0<N<23, and presents
those movies next. Someone who has seen all of the Star
Trek movies has probably rated most of them highly. If the
system had only presented one of them, it would have had a
good shot of finding other Trekkies in that user’s
neighborhood, and been able to make a number of accurate
predictions, thus lowering MAE.
The problem seems to be that the item-item personalized
strategy does not do a good job of sampling the entire space
of movies. Item-item methods tend to find loose clusters of
similar items and hone in on those clusters. This may cause
poor exploration of the universe of items: the recommender
may become an expert on Star Trek movies at the expense
of others. This also helps explain why the random strategy

Figure 2. Number of movies seen versus number of
movies presented to a user.

0
10
20
30
40
50
60

30 45 60 90
Movies presented

M
ov

ie
s

Se
en

Entropy Random Popular Pop*Ent Item-item

0.6

0.9

1.2

30 45 60 90
No. of movies presented

M
A

E

Entropy Random Popular Pop*Ent Item-item

131

does well despite finding many fewer movies, as it samples
from all genres and all levels of popularity.
We will further discuss the merits of the strategies after we
present the results of our online experiment.

ONLINE EXPERIMENT
We followed up our off-line experiment by deploying
several strategies on the live MovieLens site. By using live
users, we could verify the results of the off-line experiment
while removing the bias induced by only considering users
who had at least 200 ratings. We also wanted to compare
these strategies to the MovieLens Classique strategy.
We had planned to investigate all of the strategies in our
online experiments. However, after our pilot study, we
decided against the Random and Entropy strategies as the
average number of movies a user would have to see before
rating enough to get recommendations would be
prohibitively high. Reading through hundreds of movie
titles can be a frustrating process that would surely turn
many users away. The pilot study also lead us to use the log
Pop*Ent strategy instead of Pop*Ent, since Pop*Ent and
Popularity alone chose almost the same set of movies.

Experimental Design
When a new user joins MovieLens, the system presents
pages of ten movies until the user rates ten or more movies.
We altered the signup process to ask users if they were
willing to let the system use an experimental method for
selecting movies for them to rate. Users who consented
were assigned to one of three groups, which used the
Popularity, log Pop*Ent, or Item-Item personalized strategy
to present movies. Those who did not consent received the
MovieLens Classique strategy. This self-selection
introduces a bias, so we use the Classique strategy only as a
baseline.
MovieLens had a total of 351 new users during the ten-day
experimental period. Table 1 shows the number of users in
each experimental group. Some users gave up before
completing the sign-up process. Our results below are
based on the users who completed the signup process.

Table 1. Population of the experimental groups.

Strategy Total Users Dropouts Completed
Popularity 91 10 81
Item-item 92 10 82
logPop*Ent 92 13 79
Classique 76 16 60
Total 351 49 302

Our primary goal for the online experiment is to measure
the effectiveness of the signup process: how many pages of
movies must a user see before they have rated enough to
get started? We believe this is a suitable proxy for the effort
we require of the user, with fewer pages equaling less

effort. We would like to measure prediction accuracy as
well, but we do not have a good basis for computing MAE
immediately after a user signs up. We could compute it on
the movies they rated during the signup process
(MovieLens logs predictions for these movies to support
retrospective analysis). However, since the purpose of the
signup process is to gather information, judging error
during the signup process does not make much sense.
User interaction is quite difficult to foresee let alone
quantify. Some users have rated all the movies on the first
page of a random sample, a highly unexpected event, while
others have waded through dozens of pages with popular
movies, seemingly not being able to rate a single one from
them. We included all of these users without prejudice.

Expectations
Both the Popularity and the log Pop*Ent approaches are
expected to show a slow decrease in the number of movies
matched per page, up to the point where most of the users
finish with the signup. This is a natural consequence of the
fact that we pre-sorted the movies and presented them in
descending order of the corresponding parameter. We also
expected the Item-Item personalized strategy to perform no
better than log Pop*Ent on the first page since it uses that
strategy to select the initial set of movies. We did expect
Item-Item to outstrip the other strategies on subsequent
pages, showing that it was successfully finding movies that
users had seen.

Results
Figure 4 shows the number of movies per page an average
user was able to rate with each of the strategies. Popularity
and log Pop*Ent exhibit the decay we expected, although
they both rose slightly after three pages. When the Item-
Item recommender kicks in on the second page the users
are able to rate more movies than with any other strategy,
and more movies than they did on the first page. Classique
was approximately constant across all pages.

Figure 4. Number of movies users could rate per page
using different movie presentation strategies.

0

2

4

6

8

10

1 2 3 4 5 6 7 8
Page

R
at

in
gs

Popularity Item-item logPop*Ent Classique

132

From a user’s point of view, the ease of the signup process
is probably best expressed as the number of pages of ten
movies he must see before starting to get recommendations.
The mean number of pages varied from around two for the
Popularity (1.9) and Item-Item (2.3) strategies, then rising
for the log Pop*Ent (4.0) and Classique (7.0) strategies.
Figure 5, which plots the cumulative percentages of users
ending their signup on the nth page, shows that these means
hide long tails, especially in the case of the log Pop*Ent
strategy. This figure shows that the Popularity and Item-
Item strategies are by far the most effective strategies with
over 90% of users being able to sign up in five pages or
less. The other two strategies fare much worse, with a
number of users requiring more than five pages. Since we
only consider users who completed the signup process, all
four strategies eventually reach 100 percent; we truncated
the graph at five pages because all of the strategies except
for Popularity had outliers that viewed over 200 movies
before they found ten movies to rate.

Table 2. Evaluation of strategies over both experiments
on user effort and accuracy metrics.

Strategy User Effort Accuracy
Random/Classique
Popularity
(log) Pop*Ent
Item-Item

DISCUSSION
We consider both the on-line and the off-line results in this
section. In evaluating the techniques we focus on two
dimensions of the user experience: user effort and
recommendation accuracy. The best strategy for eliciting
information from users depends on the dimension along
which you wish to optimize. Some algorithms do well at
minimizing user effort, at the cost of accuracy, while other
algorithms provide very good accuracy, at the cost of
additional effort from the user. The best algorithms perform
well by both measures. Popularity, Pop*Ent, and Item-Item
personalized strategies all give reasonable performance on

both metrics and provide the system designer an easy way
to choose trade-offs. Popularity provides a good balance
between effort and accuracy. Pop*Ent trades effort for
more accuracy; Item-Item personalized trades accuracy for
less effort. Item-Item does sacrifice more in accuracy than
the other methods.
The results of the off-line and on-line experiments support
each other. Random, Entropy, and Classique performed
poorly at helping users rate movies; Popularity performed
well in both cases, and Item-Item successfully found
movies for users to rate in both experiments. Table 2
compares the overall performance of our algorithms on our
two primary dimensions of minimizing user effort and
making good predictions. Choosing an intelligent strategy
for presenting items to rate can dramatically improve
usability. The Classique strategy required over three times
the effort of the best strategies, Popularity and Item-Item
personalized, and based on the off-line results for the
Random strategy, probably delivers worse
recommendations.
These results should generalize to any set of ratings where
the popularity of an item decays exponentially and the
relative entropy of most items is in a fairly narrow range.
We expect that most real-world ratings data sets have these
properties.
An application’s requirements also matter. An e-commerce
recommender might have to start making recommendations
with no data at all about the current user [15]. In this case,
we suggest recommending the most popular items rather
than the highest-rated ones, and then using Item-Item
strategies to personalize the recommendations as quickly as
possible.
We also have anecdotal evidence about another dimension
of user experience: users in our research group much
preferred using techniques that allowed them to rate several
movies per page, especially compared to the techniques
that required them to go many pages between ratings. The
reaction was so strong that we modified our experimental
design to include only one technique with very low ratings
density (Classique). Exploiting intelligence about the user
may lead to improved satisfaction.
However, using methods that exploit intelligence about the
user may induce biases in ratings distributions. The
Popularity strategy might exacerbate the bias we described
earlier, where more popular movies get more chances to be
recommended and rated. Over time, the system might
become a “winner takes all” recommender that only
recommends generically popular items.
The Item-Item strategy might create the opposite problem.
Each user would see a set of items to rate that predicted to
be of interest to him. Over time, users may become
clustered in small groups with very little overlap, leading to
the balkanization of the user population.
Both of these potential long-term dangers can be combated
in practice by including some randomness in the set of

Figure 5. Cumulative percentage of users who
finished signing up after a given number of pages.

0

20

40

60

80

100

1 2 3 4 5
P age

P
e
rc
e
n
t
o
f
u
s
e
rs
 (
%

P opularity Item -item logP op*E nt C lassique

133

items suggested for rating. Too much randomness leads to
excessive user effort, but a small amount of randomness
may help to extend the space over which the recommender
understands the user’s interests and ensure that all items are
occasionally presented to users.

CONCLUSION AND FUTURE WORK
We conclude that the proper strategy for eliciting
information from users depends on the dimension of user
experience along which you are trying to optimize. In
general, strategies that make good guesses about what
items a user is likely to be able to rate do well with both
reducing user effort and producing acceptable
recommendations. We believe these results will hold for
many similar recommender systems.
We studied the techniques we considered in three ways:
through analysis, through simulation studies on previously
collected user data, and through live user trials. We found
the three methods complementary. The analysis helped
suggest techniques that might be useful. The simulation
studies enabled us to consider a very large number of users
quickly, and to explore techniques that would have been
frustrating for live users. The live study helped avoid the
problems of data bias in our simulations, and increased our
confidence in the applicability of the results to real systems.
We believe that all three techniques are important in
successfully developing intelligent user interfaces.
In this paper we focused on minimizing user effort while
still being able to make accurate predictions. It would be
useful to perform a more thorough investigation of the
system’s needs for diverse ratings across all items, and how
to balance these needs with the user experience. More
direct measurements of user satisfaction, such as longer-
term statistics on usage and surveying users, would
complement our attempts to minimize user effort.

ACKNOWLEDGEMENTS
We thank members of the GroupLens Research Group, past
and present, for their contributions to this research. We
would also like to thank the members of the MovieLens
system for their support in our research efforts, and our
anonymous reviewers for their comments on this paper.
This work was supported by grants from the National
Science Foundation (IIS 96-13960, IIS 97-34442, and IIS
99-78717) and by Net Perceptions, Inc.

REFERENCES
1. Avery, C., Resnick, P., and Zeckhauser, R. The Market

for Evaluations. American Economic Review, 89(3):
564-584.

2. Balabanovic, M., and Shoham, Y. 1997. Fab: Content-
based, collaborative recommendation. Communications
of the ACM, 40(3), 66-72.

3. Ben-Bassat, M. Myopic Policies in Sequential
Classification. IEEE Transactions on Computers, 27(2),
170-174.

4. Glover, E. J., and Birmingham, W. P. Using Decision
Theory to Order Documents. Proceedings of ACM
Digital Libraries 1998, 285-286.

5. Goldberg, K., Roeder, T., Gupta, D., and Perkins, C.
Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval Journal, 4(2), 133-
151.

6. Good, N., Schafer, J.B., Konstan, J., Borchers, A.,
Sarwar, B., Herlocker, J., and Riedl, J. Combining
Collaborative Filtering with Personal Agents for Better
Recommendations. Proceedings of AAAI-99, 439-446.

7. Greiff, W. R., and Ponte, J. The Maximum Entropy
Approach and Probabilistic IR Methods. ACM
Transactions on Information Systems 18(3) 246-287.

8. Ha, V., and Haddawy P. Towards Case-Based
Preference Elicitation: Similarity Measures on
Preference Structures. Proceedings UAI 1998, 193-201.

9. Horvitz, E., Heckerman D., Ng, K, Nathwani, B.
Towards Normative Expert Systems: Part I, Pathfinder
Project. Methods of Information in Medicine, 31, 90-
105.

10. Kantor, P. B., and Lee, J. J. The Maximum Entropy
Principle In Informational Retrieval. Proceedings of
ACM SIGIR 1986, 269-274.

11. Karypis, G. Evaluation of Item-Based Top-N
Recommendation Algorithms. Proceedings of CIKM
2001.

12. Kohrs, A., and Merialdo, B. Improving Collaborative
Filtering for New Users by Smart Object Selection,
Proceedings of International Conference on Media
Features (ICMF) 2001 (oral presentation).

13. Nguyen, H., and Haddawy, P. The Decision-Theoretic
Video Advisor. Proceedings of AAAI Workshop on
Recommender Systems, 76-80, 1998.

14. Pennock, D., and Horvitz, E. Collaborative Filtering by
Personality Diagnosis: A Hybrid Memory- and Model-
based Approach. Proceedings of UAI 2000, 473-480.

15. Schafer, J.B., Konstan, J., and Riedl, J., Electronic
Commerce Recommender Applications. Journal of
Data Mining and Knowledge Discovery, January 2001.

16. Vetschera, R. Entropy and the Value of Information,
Central European Journal of Operations Research 8,
2000 S. 195-208.

17. Wasfi. A. M. A. Collecting User Access Patterns for
Building User Profiles and Collaborative Filtering.
Proceedings of IUI 1999, 57-64.

134

