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Abstract - This paper discusses a realistic turbo coding system
with the signal phase which has not been perfectly estimated. We
propose improved decoding algorithms for the situations when
the residual phase error can be modelled by the Gaussian proba-
bility distribution and a Markov chain, a model which can be used
in many actual phase estimators. It is shown that increasing the
state space of the decoders can decrease the bit error probability.

I. INTRODUCTION

One of the most important factors determining the efficien-
cy of a wireless system is the power required for successful
transmission of data. The required power needed to reliably
transmit a signal can be reduced by using special coding tech-
niques. One of the latest and the most prominent of such tech-
niques is turbo coding with a performance which is almost able
to reach the Shannon channel capacity limit [1].

The problem lies, however, in the practical applications of
the turbo codes. Unfortunately, reducing the transmitted power
makes it more difficult to estimate the channel and properly
synchronize the phase of the incoming signal.

In our paper we propose algorithms aiming at improving
performance of turbo-coded systems with non-perfect phase
offset estimation.

II. PHASE SYNCHRONIZATION

In the majority of digital wireless communication systems,
the incoming HF signal needs to be downconverted to lower
frequency ([3]). The good frequency and phase synchroniza-
tion is therefore essential for the reliability of wireless systems.

There exist a number of different techniques estimating
carrier parameters (such as Phase Locked Loops, Costas loops
etc.) but none of these algorithms succeed to provide perfect
estimation of the carrier signal. One of the reasons for such
performance loss is that synchronization of phase is done be-
fore the decoding process and cannot use the code properties to
improve its accuracy. This is due to the fact that most decoders
will not work without a proper phase estimation and must rely
on some initial estimates of the signal phase. If, on the other
hand, the phase estimator/decoder knows the structure of the
data signal, it can use this knowledge in joint phase and data
estimation and improve the system’s performance. We will use
this approach for the algorithms presented in this paper.

III. SYSTEM MODEL

The system analysed in this paper is presented in Fig. 1. A
typical turbo encoder ([1],[2]) of rate 1/3 generates codewords
consisting of systematic bits and the parity bits ,

. The stream of code bits is BPSK-modulated and trans-
mitted over an AWGN channel as real-valued signal samples

. The encoded signal suffers from a phase noise process
(which can be a result of a fading process or oscillator instabil-
ity) and is corrupted by the white, Gaussian noise. The incom-
ing distorted signal is fed to the phase synchronizer, which
produces estimates of the phase noise process . After adjust-
ing the phase error, the signal is decoded (the decoded data se-
quence can then be used to refine the phase estimation process
but this problem is not addressed in this paper).

Formally, the signal after the AWGN channel, phase esti-
mation and receiver matched filtering (the timing recovery is
assumed to be perfect) can be expressed as

, (1)

where is the complex received signal (which can be the sys-
tematic bit , the first parity bit or the second parity bit

) and is the white, additive, Gaussian complex noise
with . is the residual phase offset estima-
tion error ; its statistics are discussed in the next
section. Note that the amplitude of the signal is assumed to be
constant, i.e. the fading is compensated by a perfect power
control. The extension of the channel model to the non-com-
pensated fading channels is relatively straightforward and will
not be discussed in this paper.

IV. RESIDUAL PHASE ERROR MODELLING

The residual phase error can be modelled as Gaussian
distributed, with known variance and zero mean for non-
biased phase estimators (which are the most common solutions
[3]). Such an assumption is rather popular in the existing liter-
ature and seems to be quite realistic since typical synchronizers
produce an error distribution with a similar shape and known
variance (for example, the Tikhonov distribution after the PLL
loop, see [5]).
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Fig. 1. System model

Moreover, since the phase estimation is usually an effect of
some kind of non-perfect averaging of the initial signal, the re-
sidual phase error values may remain correlated to some extent
(with a perfect phase estimation there would be no correlation
between residual phase error). A new approach to solving this
problem is to model the actual sign of the phase error (which
tends to remain constant for a number of samples) as a simple
Markov chain. This way we introduce a simple memory model
to the channel which is relatively easy to incorporate into the
turbo decoder.

By using the above unified framework (graphically shown
in Fig. 2.) to model the phase error, our approach can be tai-
lored to many existing phase synchronizers, just by applying
the actual phase error variance and the crossover probability
for the phase error sign change in the Markov model. The pres-
ence of a channel interleaver can be also included by setting the
cross-over probability of the Markov model to 0.5, i.e., remov-
ing any statistical correlation between the consecutive phase
errors. Even though more complicated models can be used, our
approach achieves quite good results without increasing the
decoding complexity too much.

V. TURBO DECODING ALGORITHM

Due to the presence of the interleaver in the decoder, the
optimal decoding of turbo codes would be very complex. The
practical sub-optimal implementations split the process into
two separate processes, in which both component codes are de-
coded independently ([2]). The connection between the codes
is implemented by exchanging soft extrinsic information and
using a form of the MAP decoding (minimizing the probability
of the bit error) for each component code.

Fig. 2. Phase error modelling

The most commonly used decoding algorithm is the BCJR-
MAP algorithm ([6]) which computes the soft bits using the
log likelihood ratio (LLR) (see [2])

, (2)

where is the whole received code sequence. The LLR is cal-
culated as

, (3)

where and are the recursively calculated proba-
bilities of arriving at state (computed from the start of the
trellis) and state (computed form the end of the trellis), re-
spectively (for details see [2]). The term is the proba-
bility of the transition between states and and is given by

, (4)

where and are the extrinsic information
about bitk (calculated by the first decoder, , or by the
second decoder, ) and the channel reliability factor of
the decoder ( is the code bit energy), respectively. The nu-
merator of (3) includes all the transitions which correspond to
data bit ( ) and the denominator all the transitions
which correspond to  ( ).

VI. LARGE PHASE ERROR CORRECTION

In general, the main performance loss is caused by large
phase errors which result from long tails of the error distribu-
tion. Luckily, the large phase errors are easier to detect than
small ones, which suggests that the synchronization algorithm
can concentrate primarily on reducing them instead of trying to
correct all phase errors ([7]).

Correcting phase errors is equal to rotating the received sig-
nal samples in the opposite direction of the actual phase error.
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The two parameters which must be known prior to such correc-
tion are the size and the sign of the actual phase offset. Assum-
ing that the size of the rotation is fixed to be the expected value
of the absolute value of the residual phase error, the remaining
uncertainty is the sign of the offset. One of the ways to detect
it is to create two sets of samples  and  as

, (5)

where is the rotation size, and use the decoder to
compare their metrics.

VII. TURBO DECODER MODIFICATION

To detect the sign of the phase offset, (2) can be reformu-
lated in the following form

, (6)

which is the LLR of the probability that thekth code bit had the
positive phase error and the probability of the negative phase
error. One of the ways to solve (6) is to use the turbo technique,
i.e., use two decoders to iteratively improve estimation of the
rotation signs.

The proposed decoder architecture is shown in Fig. 3. Two
specially modified APP decoders are connected in a feedback
loop, exchanging soft data information and soft phase error
sign information (discussed later in the paper) for all symbols.
The two streams of soft messages are properly interconnected
using interleavers and deinterleavers.

In order to incorporate the phase rotation algorithm, the
transition probability from (4) is redefined as

, (7)

where the received samples and are conditioned on the
offset sign events and , respectively, having the joint
probability distribution . Such a modification sug-
gests that additional states and transitions are needed in the de-
coder to detect the sign of the offsets.

VIII. M ODIFIED APP DECODER

In general the phase error sign can vary from one signal
sample to the other. Even if it can be modelled as the Markov
chain, the use of channel interleaver (a widely used solution
aiming at combating the burst errors, common in wireless
channels) may effectively remove the correlation between con-
secutive phase error signs.

Fig. 3. Modified decoder architecture with additional soft
phase information exchange

To fully represent such a situation, we have to split each
original state of the code into four different states, one repre-
senting two positive shifts denoted henceforth as (+,+), one
representing two negative transitions (-,-) and two with mixed
error signs (+,-) and (-,+).

Fig. 4. shows the construction of the trellis for one bit tran-
sition. The probability of the transitions are defined as

. (8)

These probabilities can be initially set to values reflecting
the a-priori information (when the Markov model is used) or be
set equal (if no initial phase correlation is expected when, for
example, a channel interleaver was used).

The enhanced APP decoder works in a usual way using the
BCJR algorithm except that four times as many states have to
be included in (3). Moreover, the transition probabilities are
calculated using (7) and (8). In this way, the extrinsic informa-
tion about phase offsets can be calculated after a decoding
pass, hopefully with the majority of the rotations correctly de-
tected.

Fig. 4. General modification of the trellis transition
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After the decoding pass, each component decoder produces
soft information about the information bits and, in addition to
that, phase information about systematic bits as

, (9)

where are transitions between all the and
states and are transitions between the and
states. The soft phase information about the parity bits is pro-
duced as

, (10)

where are transitions between all the and
states and are transitions between the and
states.

The transformations between the actual probabilities and
soft information can be derived from (6) (see [8]) and, assum-
ing that the phase offsets are independent (i.e., only the sys-
tematic phase offsets are common for both component codes),
are given as

, (11)

, (12)

these probabilities are then passed to the second decoder (after
proper interleaving) along with the soft information bits and
the same procedure is repeated.

IX. SIMPLIFIED APP DECODER

If no channel interleaver is used, there is a large probability
that both systematic and parity bits (fed directly to the first
APP decoder, see Fig. 3.) will experience phase errors with the
same signs. This fact can be used to simplify the construction
of the first APP decoder and improve the performance of the
system (the second decoder cannot be simplified, due to the in-
terleaving of the systematic bits). With the above assumption
the number of additional states in the first APP decoder can be
reduced to only twice as many as the original one.

The assumption of the correlated phase error signs can be
extended to the second parity bit as well, which will slightly
change the exchange of the phase information between the
APP decoders. Since, after the first APP decoding, the soft
phase error sign information has to be interleaved for the sys-
tematic bits, the transformation between the actual probabili-
ties and soft information passed to the second decoder will be
given as

(13)

, (14)

, (15)

, (16)

(17)

where is the soft phase value of the systematic bitl,
corresponding to the systematic bitk after interleaving as

, where is the interleaver function.
Also the feedback phase information message from the sec-

ond APP decoder to the first APP decoder has to be modified.
This is done by combining the information about the systemat-
ic and parity offsets ([8]) to obtain the final soft phase value

 as

, (18)

where is the soft phase value of the systematic bitl,
corresponding to the systematic bitk after deinterleaving as

, where is the inverse inter-
leaver function.

Finally, the transition probabilities are calculated as

. (19)

Using the modified first APP decoder, the complexity of
the enhanced turbo decoder can be reduced by 25% (the second
decoder must have quadrupled number of states).

X. ALGORITHM PERFORMANCE

To test the performance gains and discuss the properties of
the algorithm we chose to employ a system experiencing a very
severe phase noise. The synchronizer uses a residual carrier
which is Wiener-filtered to track the rapid changes of the
phase. Such systems have been proposed for deep-space com-
munications ([9]) and their properties are similar to the very
fast fading wireless channels.

The phase noise process is generated by a program reflect-
ing actual phase noise characteristics of a deep-space commu-
nication link (oscillator instability). The parameter  of the
Markov channel is empirically calculated to be around 0.6. The
simulations were conducted with the CCSDS (Consultative
Committee for Space Data Systems) (023,033) turbo code
([10]) and an interleaver size ofN=1000. The number of de-
coding iterations was set to 10. All BER calculations were
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Fig. 5. BER performance of the improved decoder (circled
line), classical decoder (crossed line) and the system with ideal
synchronization (solid line) for different phase error variances.

based on using data from 10000 transmitted blocks with inde-
pendent, randomly generated parameters. Fig. 5. presents the
behaviour of the simplified phase offset correction algorithm
for different phase error variances. It improves the BER per-
formance of the traditional scheme, introducing a gain of ap-
proximately 0.1-0.2dB. The gain is particularly visible for low
quality phase estimation and in the region of large SNRs.

Initially, the simulations of the system showed that repeat-
ed exchange of the soft phase information leads to conver-
gence to the incorrect solution. The reason for it is that the
correlation between the samples (high crossover probability) is
rather small and the successive iterations do not contribute a lot
of new information to the soft phase information. After notic-
ing this, the algorithm was slightly modified by turning of the
feedback from the second APP decoder to the first APP de-
code, which eliminated the convergence problem.

Moreover, increasing number of iterations proved to fur-
ther improve the performance of the enhanced system. Unfor-
tunately, due to the time and computer capacity constraints,
these results could not be presented here and will be discussed
in future papers.

XI. CONCLUSIONS

Phase synchronization is currently one of the biggest problems
when implementing turbo codes in real wireless systems. In
this paper, we introduced a general method of modelling the
phase estimation errors, which can be used with different phase
synchronizers. This method was then used to modify the clas-
sical turbo decoder structure and proved to improve the per-
formance, even in a very severely distorted system.

The analysis of the proposed solution is still incomplete
and further research is still necessary. It is not quite clear how
the iterative process will proceed with different types of phase

errors, preliminary results suggest that the soft phase informa-
tion exchange must be terminated when the correlation be-
tween phase samples is low.

Moreover, the discussion of the specific system parameters
such as the rotation value must follow since there exists an op-
timal rotation value, unique for every set of phase error param-
eters. It is, however, relatively safe to say that a lot is to be
gained by incorporating phase synchronization into the turbo
decoder. Such solutions may be the only way to combat heav-
ily distorted channels.

ACKNOWLEDGEMENTS

I would like to thank Dr. Dariush Divsalar and Dr. Jon Ham-
kins at the Jet Propulsion Laboratory for providing me with an
idea for this work and the phase noise generator. The work was
supported by the Swedish Foundation for Strategic Research
under the Personal Computing and Communication grant, a
scholarship of Telefonaktiebolaget LM Ericsson’s Stiftelsen
för främjande av elektroteknisk forskning and a scholarship of
Stiftelsen för internationalisering av högre utbildning och for-
skning (STINT).

REFERENCES

[1] Berrou, C., Glavieux, A., Thitimajshima, P., “Near
Shannon limit error-correcting coding and decoding:
turbo codes,”ICC 1993, pp. 1064-1070.

[2] Barbulescu, S.A.,Iterative Decoding of Turbo Codes
and Other Concatenated Codes, PhD Dissertation, Uni-
versity of South Australia, 1996.

[3] Meyr, H., Moeneclaey, M., Fechtel, S.A.,Digital Com-
munication Receivers, Wiley 1998

[4] Mengali, U., D’Andrea, A.N.,Synchronization Tech-
niques for Digital Receivers, Plenum Press 1997

[5] Proakis, J.G., Digital Communications, McGraw-Hill
1995

[6] L. Bahl, J. Cocke, F. Jelinek, and J.Raviv, “Optimal de-
coding of linear codes for minimizing symbol error
rate,” IEEE Trans. Inf. Theory, pp. 284-287, Mar. 1974

[7] B. Mielczarek,Synchronization in Turbo Coded Sys-
tems, Licentiate thesis, Department of Signals and Sys-
tems, Chalmers University of Technology, Göteborg,
Sweden, 2000

[8] J. Hagenauer, “The Turbo Principle: Tutorial and State
of the Art,” Proceedings International Symposium on
Turbo Codes and Related Topics, Brest, France, pp. 1-
11, Sept. 1997

[9] J. Hamkins, “A Joint Receiver-Decoder for Convolu-
tionally Coded Binary Phase-Shift Keying (BPSK),”
TMO Progress Report 42-139, November 1999.

[10] Consultative Committee for Space Data Systems,
101.0-B-4: Telemetry Channel Coding, Blue Book.
May 1999

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

σ2

φ=0.1

σ2

φ=0.2

σ2

φ=0.3

σ2

φ=0.4

E
b
/N

0
 [dB]

B
E

R

Perfect synchronization
Unmodified decoder     
Modified decoder       


