A comparison of complete global
optimization solvers

Arnold Neumaier

Oleg Shcherbina
Waltraud Huyer

Institut fiir Mathematik, Universitat Wien
Nordbergstr. 15, A-1090 Wien, Austria

Tamas Vinko

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences and University of Szeged,
H-6720 Szeged, Aradi vértanuk tere 1., Hungary

Please send correspondence to: Arnold.Neumaier@univie.ac.at

Abstract. Results are reported of testing a number of existing state of the
art solvers for global constrained optimization and constraint satisfaction on
a set of over 1000 test problems in up to 1000 variables.

1 Overview

As the recent survey NEUMAIER [24] of complete solution techniques in global
optimization documents, there are now about a dozen solvers for constrained
global optimization that claim to solve global optimization and/or constraint
satisfaction problems to global optimality by performing a complete search.

Within the COCONUT project [30, 31], we evaluated many of the existing
software packages for global optimization and constraint satisfaction prob-
lems. This is the first time that different constrained global optimization and
constraint satisfaction algorithms are compared on a systematic basis and
with a test set that allows to derive statistically significant conclusions. We
tested the global solvers BARON, GlobSol, ICOS, LGO, LINGO, OQNLP,
Premium Solver, the local solver MINOS, and a basic combination strategy

COCOS implemented in the COCONUT platform.

1



The testing process turned out to be extremely time-consuming, due to var-
ious reasons not initially anticipated. A lot of effort went into creating ap-
propriate interfaces, making the comparison fair and reliable, and making
it possible to process a large number of test examples in a semiautomatic
fashion.

In a recent paper about testing local optimization software, DOLAN & MORE
6, 7] write: We realize that testing optimization software is a notoriously dif-
ficult problem and that there may be objections to the testing presented in this
report. For example, performance of a particular solver may improve signifi-
cantly if non-default options are given. Another objection is that we only use
one starting point per problem and that the performance of a solver may be
sensitive to the choice of starting point. We also have used the default stop-
ping criteria of the solvers. This choice may bias results but should not affect
comparisons that rely on large time differences. In spite of these objections,
we feel that it is essential that we provide some indication of the performance
of optimization solvers on interesting problems.

These difficulties are also present with our benchmarking studies. Section
2 describes our testing methodology. We use a large test set of over 1000
problems from various collections. Our main performance criterium is cur-
rently how often the attainment of the global optimum, or the infeasibility of
a problem, is correctly or incorrectly claimed (within some time limit). All
solvers are tested with the default options suggested by the providers of the
codes, with the request to stop at a time limit or after the solver believed
that first global solution was obtained.

These are very high standards, much more demanding than what had been
done by anyone before. Thorough comparisons are indeed very rare, due to
the difficulty of performing extensive and meaningful testing. Indeed, we
know of only two comparative studies [17, 22] in global optimization ranging
over more than perhaps a dozen examples, and both are limited to bound
constrained black box optimization. (See also HUYER [14] for some further
tests.)

Only recently rudimentary beginnings were made elsewhere in testing con-
strained global optimization [11]. On the other hand, there are a number of
reports about comparing codes in local optimization [1, 4, 6, 7, 13, 16, 27],
and there is an extensive web site [21] with wide-ranging comparative results
on local constrained optimization codes.

Section 3 describes the tests done on the most important state of the art
global solvers. Shortly expressed, the result is the following:



Among the currently available global solver, BARON is the fastest
and most robust one, with LINGO and OQNLP being close. None
of the current global solvers is fully reliable, with one exception:
For pure constraint satisfaction problems, ICOS, while slower than
BARON, has excellent reliability properties when it is able to finish
the complete search.

Models in dimension < 100 can currently be solved with a success
rate (global optimum found) of about 80% (BARON and OQNLP)
while (within half an hour of CPU time) much fewer larger models
can be solved. Overall, the stochastic solver OQNLP was most
successful, but it is much slower and cannot offer information about
when the search is completed.
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Figure 1: COCOS vs. BARON: Times for 1ib2s2, hard models with 10-99
variables. Marks at the upper border of the figure indicate inability to find
a global minimizer within the alloted time

The best complete solvers (BARON and LINGO) were able to complete the
search in about one third of the models with less than 100 variables, but
BARON, the most reliable optimizer, lost in about 7 percent of the cases the
global minimum.
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Figure 2: COCOS vs. BARON: Times for 1ib2s3, hard models with 100-999
variables. Marks at the upper border of the figure indicate inability to find
a global minimizer within the alloted time

Section 4 contains comparisons with a basic combination strategy COCOS
implemented in the COCONUT platform (ScHicHL [30, 31]). Our COCOS
prototype strategy is already of comparable strength with the solvers GlobSol
and Premium Solver. While not yet as good as BARON, it already solves a
number of models with 100 and more variables that BARON could not solve
within the allotted time (cf. Figure 2).

Since the COCONUT environment is not yet fully bug-free, COCOS was run
in debug mode (printing lots of auxiliary information which slows everything
down) and without any compiler optimization. Moreover, unresolved bugs in
the implementation of some of the theoretically efficient techniques (exclusion
boxes) caused further slowdown. We expect that the resolution of these bugs,
full optimization, and better combinations of the strategies available will lead
in the near future (by the end of 2004) to a package that is fully competitive
with BARON, or even outperforms it. Indications for this can already be
seen in Figure 1 (models are sorted by time taken by COCOS; the marks at
the top of the figure indicates failure to find the global optimum): Among
the models between 10 and 100 variables of library 2 that were hard in the
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sense that the local solver MINOS did not find the global minimum, COCOS
and BARON solved about the same number of models (but mostly different
ones) within the time limit. A combination COCOS+BARON (which is in
principle possible within the COCONUT environment) would almost double
the efficiency.

Much more detailed results than can be given here are available online at [3].
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2 Testing

Introduction. We present test results for the global optimization systems
BARON, GlobSol, ICOS, LGO/GAMS, LINGO, OQNLP Premium Solver,
for comparison the local solver MINOS, and (in the next section) a basic
combination strategy COCOS implemented in the COCONUT environment.
All tests were made on the COCONUT benchmarking suite described in
SHCHERBINA et al. [32]. For generalities on benchmarking and the associated
difficulties, in particular for global optimization, see Deliverable D10. Here
we concentrate on the documentation of the testing conditions used and on
the interpretation of the results obtained. For the interpretation of the main
results, see the overview in Section 1.

The test set. A good benchmark must be one that can be interfaced with all
existing solvers, in a way that a sufficient number of comparative results can
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be obtained. There are various smaller-scale benchmark projects for partial
domains, in particular the benchmarks for local optimization by MITTEL-
MANN [21]. A very recent web site, the GAMS Global Library [12] started
collecting real life global optimization problems with industrial relevance, but
currently most problems on this site are without computational results. Our
benchmark (described in more detail in [32]) includes most of the problems
from these collections.

The test set consists of 1322 models varying in dimension (number of vari-
ables) between 1 and over 1000, coded in the modeling language AMPL [8].
They are sorted by size and source (library). Size k denotes models whose
number of variables (after creating the corresponding DAG and simplifying
it) has k decimal digits. Library 1 (from Global Library [12]) and Library
2 (from CUTE [5], in the version of VANDERBEI [33]) consist of global (and
some local) optimization problems with nonempty feasible domain, while Li-
brary 3 (from EPFL [32]) consists of pure constraint satisfaction problems
(constant objective function), almost all being feasible. The resulting 12
model classes are labeled as 1ib2s1 (= size 1 models from Library 2), etc..

Table 1: Number of test models

Number of variables | 1 —9 | 10 — 99 | 100 — 999 | > 1000
size 1 size 2 size 3 size 4 | total
Library 1 84 90 44 48 | 266
Library 2 347 100 93 187 | 727
Library 3 225 76 22 6| 329
total 656 266 159 241 | 1322

We restricted testing to models with less than 1000 variables since the models
of size 3 already pose so many difficulties that working on the (much more
CPU time consuming) larger models is likely to give no additional insight for
the current generation of solvers.

We also excluded a small number of models from these test sets because of dif-
ficulties unrelated to the solvers. In particular, the functions if, logl0, tan,
atan, asin, acos and acosh are currently not supported by the ampl2dag
converter. Since they are used in the models ColumnDesign-original,
FatigueDesign-original, djtl, hubfit (if), bearing (logl0), yfit,
yfitu (tan), artif, helix, s332, TrussDesign-full, TrussDesignO1
(atan), dallasl, dallasm, dallass (asin), chebyqad, cresc4, cresch0,
crescl100, cresc132 (acos), coshfun (acosh), these models were excluded.



A few of the problems in Library 3 (pure constraint satisfaction prob-
lems) in fact contained objective functions, and hence were excluded, too.
This was the case for the models h78, h80, h81, logcheb, median_ exp,
median nonconvex, robotarm, steenbre. A few other models, namely
ex8.3_12, ex8_3_14, concon, mconcon, osborneb, showed strange behavior,
making us suspect that it is due unspotted bugs in our converters.

Finally, several problems (elec100, elec200, polygon100, arglina,
chandheq, dtoclnd, eigenc2, flosp2hh, flosp2hl, flosp2hm,
integreq, s368, logcheb, arglina, nnls, all of size 3) caused memory
overflow for our solution checker, and were therefore excluded.

The models where none of the solvers found a feasible point and some other
attempts to get one failed, are regarded in the following as being infeasible
(though some of these might possess undiscovered feasible points).

The computers. Because of the large number of models to be solved, we
performed our tests on a number of different computers, called Lisa, Hektor,
Zenon, Theseus and Bagend. Their brand and their general performance
characteristic are displayed below. The standard unit time STU is defined
according to SHCHERBINA et al. [32]; for Bogomips and Linpack, see
http://www.tldp.org/HOWTO/mini/BogoMips-2.html
http://www.netlib.org/benchmark/linpackjava

Computer CPU type 0S CPU/MHz | Bogomips | STU/sec | Linpack
Lisa AMD Athlon Linux 1678.86 3348.88 50 7.42
XP2000+
Hektor AMD Athlon Linux 1544.51 3080.19 53 6.66
XP1800+
Zenon AMD Family 6 | Windows 1001 — 74 46.78
Model 4 NT 4.0
Theseus Pentium ITI Linux 1000.07 1992.29 130 4.12
Bagend AMD Athlon Linux 1666.72 3329.22 36 5.68
MP2000+

To decide on the best way to compare across computers, we ran the models
from liblsl with BARON on both Lisa and Theseus, and compared the
resulting ratios of CPU times with the ratios of performance indices, given
by the following table.

Lisa Theseus | Ratios | Inverse ratios
Frequency | 1678.86 | 1000.07 | 1.68 0.60
Bogomips | 3348.88 | 1992.29 1.68 0.59
STU 50.00 130.00 0.38 2.60
Linpack 7.42 4.12 1.80 0.56




As Figure 3 with the results shows, the appropriate index to use is the fre-
quency. We therefore measure times in multiples of 1000 Mcycles, obtained
by multiplying the CPU time by the nominal frequency of the CPU in MHz,
and dividing the result by 1000. Figure 3 also shows that small times are not
well comparable; we therefore decided to round the resulting numbers ¢ to 1
digit after the decimal point if ¢ < 10, and to the nearest integer if ¢ > 10.

Figure 3: Times and timing ratios for liblsl with BARON
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The solvers. The following tables summarize some of the main properties
of these solvers, as far as known to us. Missing information is indicated by



a question mark, and partial applicability by a + or — in parentheses; the
dominant technique (if any) exploited by the solver is denoted by ++.

The first two rows give the name of the solvers and the access language used
to pass the problem description. The next two rows indicate whether it is
possible to specify integer constraints (although we don’t test this feature),
and whether it is necessary to specify a finite search box within which all
functions can be evaluated without floating point exceptions.

Solver Minos LGO BARON ICOS  GlobSol
access language GAMS C GAMS AMPL  Fortran90
optimization? + + + - +
integer constraints — + + — —
search bounds — required recommended — required
black box eval. + + — — —
complete — (—) + + +
rigorous — — — + +
local ++ + + + (+)
CP — — + ++ +
other interval — — -+ ++
convex/LP - - ++ + —
dual + — + — -
available + + + + +
free — — — + +
Solver Premium  LINGO aBB GloptiPoly  OptQuest
Solver Global
access language Visual Basic LINGO MINOPT Matlab Visual Basic
optimization? + + + (+) +
integer constraints + + + — +
search bounds + - ? — +
black box eval. — — — — +
complete + + + + —
rigorous (+) — — — —
local + + + — +
CP + + — — —
interval ++ + + — —
convex + ++ ++ + -
dual — + — ++ -
available + + — + +
free — — — + -




The next three rows indicate whether black box function evaluation is sup-
ported, whether the search is complete (i.e., is claimed to cover the whole
search region if the arithmetic is exact and sufficiently fast) or even rigorous
(i.e., the results are claimed to be valid with mathematical certainty even in
the presence of rounding errors). Note that general theorems forbid a com-
plete finite search if black box functions are part of the problem formulation,
and that a rigorous search is necessarily complete. In view of the goals of
the COCONUT project we were mainly interested in complete solvers. How-
ever, we were curious how (some) incomplete solvers perform. Five further
rows indicate the mathematical techniques used to do the global search. We
report whether local optimization techniques, constraint propagation, other
interval techniques, convex analysis and linear programming (LP), or dual
(multiplier) techniques are part of the toolkit of the solver.

The final two rows indicate whether the code is available (we include in this
list of properties the solver aBB because of its good reported properties,
although we failed to obtain a copy of the code), and whether it is free (in
the public domain).

In this report, we study the behavior of the solvers BARON/GAMS version 6
28, 29], GlobSol (version released 11 September 2003) [18], ICOS (beta-test
version from February 16, 2004) [19] LGO/GAMS [26], LINGO version 8.0
20], OQNLP/GAMS [10], Premium Solver (Interval Global Solver from the
Premium Solver Platform of Frontline Systems, Version 5) [9]. (Gloptipoly
is limited to polynomial systems of dimension < 20, and was not yet tested.)

To enable us to assess how difficult it is (i) to find a global minimum, and
(ii) to verify it as global — in many instances, part (ii) is significantly harder
than part (i) —, results (without timings) from the local solver MINOS [23]
are also included in the tables.

ICOS only handles pure constraint satisfaction problems, and hence was
tested only on Library 3. Two of the solvers (BARON and ICOS) also allow
the generation of multiple solutions, but due to the lack of a reliable basis for
comparison, this feature has not yet been tested. Two of the solvers (BARON
and LINGO) allow one to pose integer constraints, and one (Premium Solver)
allows nonsmooth expressions. Neither of these features has been tested in
this study.

Passing the models. The access to all test models is through an AMPL
interface, which translates the AMPL model definition into the internal form
of a directed acyclic graph (DAG) which is labelled in such a way as to provide
a unique description of the model to be solved. This internal description could
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be simplified by a program dagsimplify which performs simple presolve
and DAG simplification tasks. Moreover, all maximization problems are
converted to minimization problems, with objective multiplied by —1. This
preprocessing ensures that all solvers start with a uniform level of description
of the model. The DAG is then translated into the input format required by
each solver (without simplification).

A testing environment was created to make as much as possible of the testing
work automatic. We had to rerun many calculations for many models when-
ever bugs were fixed, new versions of a solver became available,, new solvers
were added, improvements in the testing statistics were made, etc.; this would
have been impossible without the support of such a testing environment.

Performance criteria. All solvers are tested with the default options sug-
gested by the providers of the codes. (Most solvers may be made to work
significantly better by tuning the options to particular model classes; hence
the view given by our comparisons may look more pessimistic than the view
users get who spend time and effort on tuning a solver to their models.
However, in a large-scale, automated comparison, it is impossible to do such
tuning.)

The timeout limit used was (scaled to a 1000 MHz machine) around 170 sec-
onds CPU time for models of size 1, around 850 seconds for models of size 2,
and around 1700 seconds for models of size 3. The precise value changed be-
tween different runs since we experimented with different units for measuring
time on different machines. But changing (not too much) the value for the
timeout limit hardly affects the cumulative results, since the overwhelming
majority of the models was either completed very quickly, or extremely slow.
(Once we shall have settled all aspects of the benchmarking procedure, we
shall rerun all tests with uniform timeout limits, to have publishable data.)

The solver WinLGO and GlobSol required a bounded search region, and we
bounded each variable between —1000 and 1000, except in a few cases where
this lead to a loss of the global optimum.

The reliability of claimed results is the most poorly documented aspect of
current global optimization software. Indeed, as was shown by NEUMAIER
& SHCHERBINA [25] as part of the current project, even famous state-of-the-
art solvers like CPLEXS8.0 (and many other commercial MILP codes) may
lose an integral global solution of an innocent-looking mixed integer linear
program. We use the following five categories to describe the quality claimed:
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‘ Sign ’ Description

model not accepted by the solver

model claimed infeasible by the solver

result claimed to be a global optimizer

result claimed to be a local (possibly global) optimizer
unresolved (no solution found or error message)
timeout reached (qualifies L and U)

H| G| B @ T

Note that the unresolved case may contain cases where a feasible but nonop-
timal point was found, but the system stopped before claiming a local or
global optimum.

Checking for best function value. The program solcheck from the
COCONUT Environment checks the feasibility of putative solutions of solver
results. This was necessary since we found lots of inconsistencies where
different solvers produced different results, and we needed a way of checking
whether the problem was in the solver or in our interface to it. A point was
considered to be (nearly) feasible if each constraint c(z) € [c, ¢] was satisfied
within an absolute error of tol for bounds with absolute value < 1, and a
relative error of tol for all other bounds. Equality constraints were handled
by the same recipe with ¢ =¢.

To evaluate the test results, the best function value is needed for each model.
We checked in all cases the near feasibility of the best points used to verify
the claim of global optimality or feasibility. In a later stage of testing we
intend to prove rigorously the existence of a nearby feasible point. More
specifically:

The results of all solvers tested were taken into account, and the best function
value was chosen from the minimum of the (nearly) feasible solutions by any
solver. For models where this did not give a (nearly) feasible point, we tried
to find feasible points by ad hoc means, which were sometimes successful.
If there was still no feasible solution for a given model, the (local) solution
with the minimal residual was chosen (but the result marked as infeasible).

To test which accuracy requirements on the constraint residuals were ade-
quate, we counted the number of solutions of BARON and LINGO on 1ibis1
which were accepted as feasible with various solcheck tolerances. Based on
the results given in the following table, it was decided that a tolerance of
1075 was adequate. (The default tolerances used for running BARON and
LINGO were 107.)
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‘ solver ‘ tolerance ‘ all ‘ accepted ‘ +G ‘ G! ‘ G? ‘ 1?7

BARON le-4 91 88 75 | 36 110
le-5 91 88 75 | 36 110
le-6 91 38 56 24| 13| 0
le-7 91 88 49119 18| 0
LINGO le-4 91 91 82166 3| 0
le-5 91 91 81|65 4] 0
le-6 91 91 7163 6] 0
le-7 91 91 52| 41| 28| 0O

Test results. In online files [3], we give a complete list of results we cur-
rently have on the nine model classes (i.e., excluding the models with 1000
or more variables, and the few models described before.) For the purposes of
comparison in view of roundoff, we rounded function values to 3 significant
decimal digits, and regarded function values of < 10™* as zero (but print
them in the tables as nonzeros) when the best known function value was
zero. Otherwise, we regard the global minimum as achieved if the printed
(rounded) values agree.

Notation in the tables. In the summary statistic tables the following
notation is used:

| Column | Description |

library describes the library

all library /size

accepted | the number of models accepted by the solver

+G number of models for which the global solution was found

Gl! number of models for which the global solution was
correctly claimed to be found

G? number of models for which a global solution was claimed

but the true global solution was in fact significantly better
or the global solution is reported but in fact that is an
infeasible point

I? number of models for which the model was claimed
infeasible although a feasible point exists

For models where a local optimizer finds the global optimum (without know-
ing it), the purpose of a global code is to check whether there is indeed
no better point; this may well be the most time-consuming part of a com-
plete search. For the remaining models the search for the global optimum is
already hard. We therefore split the evaluation into
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e ’easy location models’ where the local optimizer MINOS found the
global solution,

e and ’hard location models’ where a local optimizer did not find the
global solution.

For the easy and hard models (according to this classification), the claimed
status is given in the columns; the rows contain a comparison with the true
status:

| Column | Description |

wrong | number of wrong claims, i.e. the sum of G? and I? from
the summary statistic table

+G how often the solution found was in fact global
-G how often it was in fact not global
I how many models are in fact infeasible

For each library detailed tables for all models and all solvers tested, and many
more figures (of the same type as the few presented here) are also available,
for reasons of space they are presented online on the web [3].

GlobSol. To test GlobSol, we used an evaluation version of LAHEY Fortran
95 compiler. Note that we had difficulties with the Intel Fortran compiler.

In the first round we tested GlobSol on Library 1 size 1 problems (contains
91 problems) with the same time limit as used for the other solvers. GlobSol
failed to solve most of the problems (only 29 problems were solved) within
the strict time limit. For this reason we decided to use a very permissive
time limit.

Figure 4 compares the two global solvers BARON and GlobSol on the size 1
problems from Library 1. The figure contains timing results for the models
described in the figure caption, sorted by the time used by GlobSol. Conver-
sion times for putting the models into the format required by the solvers are
not included. Times (given in units of 1000 Mcycles) below 0.05 are places
on the bottom border of each figure, models for which the global minimum
was not found by the solver get a dummy time above the timeout value, and
are placed at the top border of each figure. In this way one can assess the
successful completion of the global optimization task.

Clearly, GlobSol is much less efficient in both time and solving capacity than
BARON. To a large extent this may be due to the fact that GlobSol strives to
achieve mathematical rigor, resulting in significant slowdown due to the need
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Figure 4: Times for 1ibls1, all models, GlobSol vs. BARON
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of rigorously validated techniques. (There may be also systematic reasons
in the comparison, since GlobSol does not output a best approximation to
a global solution but boxes, from which we had to extract a test point.) In
view of these results, we refrained from further testing GlobSol.

The summary statistics on library 11s1 can be found in the following table.

GlobSol summary statistics

library

all accepted | +G G!

G? I?

liblsl

91 29 29|29

0

A more detailed table gives more information. Included is an evaluation of
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the status claimed about model feasibility and the global optimum, and the
true status (based on the best point known to us).

10

10

10

10

10

GlobSol on liblsl

status | all | wrong | easy location | hard location
+G -G TI|+G -G 1

all 91 29| 15 23 0] 14 39 0
G 58 29 15 12 0| 14 17 0
U 17 0 0 5 0 0 12 0
uT 2 0 0 1 0 0 1 0
X 14 0 0 5 0 0 9 0

+=BARON6/GAMS x=Premium
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Figure 5: Times for 1ib1s1, all models, Premium Solver vs. BARON
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Premium Solver. The same tests as for GlobSol were performed for Pre-
mium Solver, with slightly worse performance. In view of these results, we
refrained from further testing Premium Solver.

Premium summary statistics
library | all accepted | +G  G! | G? 17

liblsl | 91 7H| 35 27| 14 1
Premium Solver on libls1

status | all | wrong | easy location | hard location
+G -G T1|+4G -G 1
all 91 151 29 25 2 6 29 0
G 41 141 22 11 0 5 3 0
L 12 0 4 2 0 1 5 0
LT 9 0 2 3 1 0 3 0
U 12 0 1 1 0 0 10 0
X 16 0 0 71 0 8 0
I 1 1 0 1 0 0 0 0

BARON, LINGO, OQNLP, LGO and MINOS. The following tables
contain the summary statistics for the performance of the other solvers tested,
apart from COCOS. ICOS is a pure constraint solver, which cannot handle
models with an objective function, and hence was tested only on library 3.

BARON/GAMS summary statistics
library | all accepted | +G G! | G? 17
libls1 91 88| 66 35 1 0
lib1s2 80 791 64 34| 2 O
libls3 | 38 341 15 0] 0 O
lib2s1 | 324 300 | 232 91 7 0
lib2s2 99 89| 62 19 2 2
lib2s3 86 81| 31 10| 7 3
lib3s1 | 217 196 | 165 1 0 3
lib3s2 | 69 65| 48 0| 0 2
lib3s3 20 18 9 0] 0 1
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LINGO summary statistics

library | all accepted | +G G! | G? 17
liblsl 91 91| 70 59 8 0
lib1s2 80 80| 42 33| 12 O
lib1s3 38 38 9 3 10
lib2s1 | 324 3241195 170 | 37 O
lib2s2 99 91 55 33| 11 O
lib2s3 86 86 | 30 21 3 0
lib3s1 | 217 217 | 167 17 2 0
lib3s2 69 69 | 42 3 0 0
1ib3s3 20 20 6 21 0 0
OQNLP/GAMS summary statistics
library | all accepted | +G G! | G? 17
liblsl 91 91| 70 O 0 1
libls2 | 80 80| 62 0] 0 2
lib1s3 38 271 11 0 0 4
lib2s1 | 324 316 | 246 O 0 3
lib2s2 99 9% | 7 0 0 2
lib2s3 86 74 61 0 0 3
lib3s1 | 217 213 1 189 0 0 6
lib3s2 | 69 67| 53 0| 0 4
lib3s3 20 17 7 0 0 6
LGO/GAMS summary statistics
library | all accepted | +G G! | G? 1?7
liblsl 91 8| 51 0] 0 O
lib1s2 80 78 37 0 0 B8
lib1s3 38 22 3 0 0 10
lib2s1 | 324 3111 208 0 0 6
lib2s2 99 91| 48 0 0 17
lib2s3 86 481 14 0 0 10
lib3s1 | 217 212 | 142 0 0 48
lib3s2 69 671 28 0 0 22
lib3s3 20 10 2 0 0 6
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MINOS/GAMS summary statistics
library | all accepted | +G G! | G? 17
lib1sl 91 91| 53 0| O O
lib1s2 80 80| 43 4| 0 4
lib1s3 38 381 16 0| 1 4
lib2s1 | 324 324 1213 10| 6 13
lib2s2 99 971 65 4 2 4
lib2s3 86 8| 34 1 0 11
lib3s1 | 217 213 | 151 2 0 27
lib3s2 69 69| 36 1| 0 12
1ib3s3 20 20 8 1| 0 6

ICOS summary statistics
library | all accepted | +G  G! | G? 17
lib3s1 | 217 198 | 128 122 2 0
1ib3s2 69 0 0 0 0 0
1ib3s3 20 18 3 31 0 0

The corresponding reliability analysis tables are as follows.

|

Reliability analysis for BARON

global minimum found/accepted

size 1 463/584 ~ 79%
size 2 174/233 ~ 75%
size 3 55/133 ~ 41%
all 692/950 ~ 73%
correctly claimed global/accepted
size 1 127/584 ~ 22%
size 2 53/233 ~ 23%
size 3 10/133 ~ 8%
all 190/950 ~ 20%
wrongly claimed global/claimed global
size 1 8/135 ~ 6%
size 2 4/57 =~ 7%
size 3 7/17 =~ 41%
all 19/209 ~ 9%
claimed infeasible/accepted and feasible
size 1 3/537 =~ 1%
size 2 4/202 =~ 2%
size 3 4/102 ~ 4%

all

11/841 ~ 1%
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Reliability analysis for LINGO

global minimum found/accepted

size 1 432/632 ~ 68%
size 2 139/248 ~ 56%
size 3 45/144 =~ 31%
all 616/1024 ~ 60%
correctly claimed global/accepted
size 1 246/632 ~ 39%
size 2 69/248 ~ 28%
size 3 26/144 ~ 18%
all 341/1024 ~ 33%
wrongly claimed global/claimed global
size 1 47/293 ~ 16%
size 2 23/92 ~ 25%
size 3 4/30 =~ 13%
all 74/415 ~ 18%
claimed infeasible/accepted and feasible
size 1 0/513 ~ 0%
size 2 0/164 ~ 0%
size 3 0/63 ~ 0%
all 0/740 ~ 0%
Reliability analysis for OQNLP ‘
global minimum found/accepted
size 1 505/620 ~ 81%
size 2 190/242 =~ 79%
size 3 79/118 =~ 67%
all 774/980 =~ 79%
claimed infeasible/accepted and feasible
size 1 10/582 ~ 2%
size 2 8/220 ~ 4%
size 3 13/95 ~ 14%

all

31/897 ~ 3%
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Reliability analysis for LGO

global minimum found/accepted

size 1
size 2
size 3

401/608 ~ 66%
113/236 ~ 48%
19/80 ~ 24%

all

533,924 ~ 58%

claimed infeasible/accepted and feasible

size 1
size 2
size 3

54/519 ~ 10%
A7/170 ~ 28%
26,45 ~ 58%

all

127/734 ~ 17%

Reliability analysis for MINOS ‘

global minimum found /accepted

size 1
size 2
size 3

417/628 ~ 66%
144/246 ~ 59%
58/143 ~ 41%

all

619/1017 ~ 61%

correctly claimed global/accepted

size 1
size 2
size 3

12/628 ~ 2%
9/246 ~ 4%
2/143 ~ 1%

all

23/1017 ~ 2%

|

‘ wrongly claimed global/claimed global ‘

size 1
size 2
size 3

6/18 ~ 33%
2/11 ~ 18%
1/3 =~ 33%

all

9/32 ~ 28%

claimed infeasible/accepted and feasible

size 1
size 2
size 3

10/526 ~ 8%
20/189 ~ 11%
21/96 ~ 22%

all

81/811 ~ 10%

The results speak for themselves, here only a few observations.

The GAMS solvers LGO and OQNLP are very cautious, never claiming a
global minimum. This reflects the observed unreliability of the internal claims
(as seen by studying the logfile) of the LGO version used by GAMS, and their

decision rather to err on the conservative side.
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For pure CSPs when the objective function is constant, any feasible point is
a global solution. But as the results show, this is not recognized by any of
the solvers except ICOS.

It is remarkable that under GAMS, the local solver MINOS sometimes claims
to have found a global result. This is the case, e.g., because some models are
recognized as linear programs for which every local solution is global.

Another remarkable observation is that the models from Library 1, which
were collected specifically as test problems for global optimization, do not
behave much differently from those of Library 2, which were collected as test
problems for local optimization routines.

3 Comparing the COCOS combination
strategy

In this section we compare COCOS, a basic combination strategy imple-
mented in the COCONUT environment (version 0.99), with BARON, and
on libisl (problems from GlobalLib with less than 10 variables) also with
GlobSol, LINGO, and Premium Solver, the other complete solvers used in
our tests.

liblsl summary statistics
solver all accepted | +G  G! | G? 17
LINGO 91 91| 70 59| 8 O
BARON | 91 88| 66 35 1 0
OQNLP | 91 91| 53 0| 0 O
MINOS | 91 911 83 0] O O
LGO 91 8| 51 0| 0 O
COCOS |91 91| 41 26| 12 O
Premium | 91 7| 35 27| 14 1
GlobSol | 91 77129 29129 0

Clearly, COCOS cannot yet compete with the best solvers, but it performs
already at the same level as GlobSol and Premium Solver. On the other
sublibraries, the performance is as follows.
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COCOS summary statistics
library | all accepted | +G G! | G? 17
lib1s1 91 91 41 26| 12 0
lib1s2 80 80| 35 9| 7 O
lib1s3 38 38 6 0] 6 0
lib2s1 | 324 323|132 76| 32 0
1ib2s2 99 91| 37 9| 5 0
1ib2s3 86 8 | 16 4| 3 0
lib3sl | 217 2171129 40| 3 0
1ib3s2 69 69| 38 16| 2 0
lib3s3 20 20 6 3] 0 0
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Reliability analysis for COCOS ‘

global minimum found/accepted

size 1 302/631 ~ 48%
size 2 110/248 ~ 44%
size 3 28/144 ~ 19%

all 440/1023 =~ 43%

correctly claimed global/accepted

size 1 142/631 ~ 23%
size 2 34/248 ~ 14%
size 3 7/144 =~ 5%

all 183/1023 ~ 18%

wrongly claimed global/claimed global

all /=%
size 1 47/189 ~ 25%
size 2 14/48 ~ 29%
size 3 9/16 ~ 56%

all 70/253 =~ 28%

claimed infeasible/accepted and feasible

size 1 0/398 ~ 0%
size 2 0/136 ~ 0%
size 3 0/38 ~ 0%

all 0/572 ~ 0%

For the hard models (where the local solver MINOS did not find the global
optimum), the performance is already close to that of the currently best
solvers BARON and LINGO; see the figures in Section 1.

Performance on problems with few variables, or easy problems (where the
local solver MINOS already found the global optimum) was less good. The
current version of COCOS is dominated for small or easier problems by over-
head due to printing debugging information and the presence of choices that
are really useful only for larger, hard problems. We did not yet have time
to tune the parameters in the COCOS strategy to get a uniformly good
performance; this will be done in the near future.
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