
Diplomarbeit

The Implementation of the
File Service Module for the
Distributed File System
”Dragon Slayer III”

Veye Wirngo Tatah

Diplomarbeit
am Fachbereich Informatik
der Universität Dortmund

18. October 2001

Supervisor
Dipl.-Inform. Mario Lischka
First Reader
Prof. Dr. Horst F. Wedde
Second Reader
Prof. Dr. Krumm

Abstract

This thesis discusses the design and implementation of a distributed file service
for the Dragon Slayer system. Dragon Slayer is a distributed and decen-
tralized file system. Distributed and decentralized systems offer the potential for
a degree of concurrency, modularity and reliability higher than that which can
be achieved in a centralized system.

In the Dragon Slayer system, all the services are autonomous but they
communicate with other services resident at the same machine or on different
machines through the exchange of messages. The file service for example needs
information from other services present in the system in order to carry out it’s
various functions. The challenging aspect of this work lies in the design of a
distributed file service, whereby communication between the services is very im-
portant for the system to function correctly. At the same time, communication
overhead should be minimized because this can degrade the performance of the
system. A distributed file service is used to support the sharing of persistent
storage and of information. The file service will provide file operations to clients
and application programs to used when accessing and manipulating data stored
in the system. To improve data availability in the system, file replicating across
multiple, wide-area sites will also be implemented. File replication does not only
bring advantages to the system, one has to deal with the problem of maintaining
data consistency among the replicas.

In this work, other issues dealt with include working with partitioned files
and with extremely large files. These features are important because Dragon

Slayer was designed to support team work and application programs, based on
computer-supported cooperative work (CSCW). Trends toward team work are
visible in almost all companies today.

To realize the functionalities listed above, a file service module for the Dra-

gon Slayer system have been designed and implemented.

II

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 3
1.3 Problems to be solved . 4
1.4 Organization of this work . 6

2 An overview of the Dragon Slayer III system 9
2.1 The Dragon Slayer III architecture 9
2.2 Partitioning of files . 11

2.2.1 Motivation . 11
2.2.2 Overview . 11
2.2.3 Previous concepts on parts and fragments 12

2.3 Command Manager . 14
2.4 Node Manager . 15
2.5 Services . 15
2.6 Client Interface . 16

3 An overview of other File Systems 17
3.1 The Sun Network File System (NFS) 17
3.2 The Amoeba File system . 19
3.3 The Andrew File System (AFS) 22
3.4 The Virtual File Switch Interface 24

4 Related works on storage management 27
4.1 The Network Storage Pool in the Global File System 27

4.1.1 Resource Groups . 29
4.1.2 Device Locks . 29
4.1.3 Memory Hierarchy . 30

4.2 The Volume Manager in the Extended File System (XFS) 30
4.2.1 Storage Scalability . 32
4.2.2 Allocation Groups . 32
4.2.3 Performance Scalability 33

4.3 Logical Volume Manager (LVM) 34

III

CONTENTS

5 Related works on the Replication of files 37
5.1 Replication Design Alternatives 37

5.1.1 Conservative vs. optimistic update 38
5.1.2 Client-server vs. peer-to-peer 38
5.1.3 Immediate propagation vs. periodic reconciliation 38
5.1.4 A continuous consistency model 38

5.2 Update Protocols . 39
5.2.1 Primary copy . 39
5.2.2 Voting or simple majority 39
5.2.3 Quorum based voting or weighted voting 40

5.3 Replication strategies in other file systems 41
5.3.1 Replication in the Ficus Distributed File Systems 42
5.3.2 Replication in the Harp File System 44

6 Related works on file version management 47
6.1 Related works on file version management 47

6.1.1 File version control in the Global File System 47
6.1.2 File version control in the Amoeba File Service 48
6.1.3 The shadow pages . 48

6.2 Mutual Exclusion and Concurrent accesses 48

7 Concept and Design 51
7.1 Designing the File Service . 51

7.1.1 User requirements . 52
7.2 Stateless service . 53
7.3 Data modification in Dragon Slayer 54
7.4 Version consistency mechanism 56
7.5 File replication . 57

7.5.1 Replication On Demand algorithm 57
7.5.2 Algorithm for reconciling the replicas of a file 58
7.5.3 Replication control . 59

7.6 Crash recovery . 60
7.7 Components of the Dragon Slayer system 60

7.7.1 Client Interface . 60
7.7.2 Command Manager . 61
7.7.3 Node Manager . 62

7.8 Partitioning of files . 63
7.8.1 Composition and decomposition of a file 63
7.8.2 Motivation . 63
7.8.3 Boundary definition . 63
7.8.4 Composition of parts . 64

7.9 Manipulating with parts of a file 64
7.9.1 Reading data from the various parts of a file 65

IV

CONTENTS

7.9.2 Writing data to the various parts of a file 65
7.9.3 Deleting data from a partitioned file 66

7.10 Manipulating with a fragmented file 66
7.10.1 Reading from a fragmented file 66
7.10.2 Writing data to a fragmented file 67
7.10.3 Deleting the fragments of a file 68

8 The File Service Module Implementation 71
8.1 Tools used for the implementation 71
8.2 The File Service Modules . 72
8.3 Client Program . 75
8.4 The File System Commands . 78
8.5 Command line parsing . 82
8.6 The Open File Table components 83
8.7 The File System Requests . 85
8.8 The File System Service Interface 88
8.9 Creating files and fragments . 88
8.10 File replication and relocation . 91
8.11 Testing the modules . 99

8.11.1 Testing the communication classes 99
8.11.2 Working with log files . 101
8.11.3 Interactive test . 101

9 Conclusions and future work 103
9.1 Quality of Service . 103
9.2 Parts and fragments . 105
9.3 Integrating VFS, the File System and LVM 105
9.4 File version management . 107
9.5 Replication . 107

V

CONTENTS

VI

List of Figures

1.1 Two file servers at site A and B 3

2.1 The Dragon Slayer III with the client API 10
2.2 An example of a partitioned file 12
2.3 Dividing a file into three parts . 13
2.4 An example of the Dragon Slayer III components 14

3.1 The architecture of NFS . 18
3.2 The Amoeba architecture . 20
3.3 The architecture of AFS . 23
3.4 The VFS, the file system and the LVM 25

4.1 The GFS cluster . 28
4.2 The XFS Architecture . 31
4.3 The Logical Volume, Volume Groups and Physical volumes 36

5.1 The primary copy method . 40
5.2 The simple majority voting . 40
5.3 The Quorum based voting when reading from a file 41
5.4 The Quorum based voting when writing to a file 42
5.5 Ficus Stack of replication layers 42
5.6 Harp system structure . 44

7.1 Sequence diagram for the open command 69
7.2 The example shows how the system stores parts of a file at different

nodes . 70
7.3 This is an example of a fragmented file 70

8.1 Class diagram illustrating the communication between the differ-
ent modules . 74

8.2 The client module . 76
8.3 The class diagram shows the file system commands 78
8.4 Class Diagram for the Open file table components 84
8.5 Class diagram for the Request . 86
8.6 Class diagram showing the replies 87

VII

LIST OF FIGURES

8.7 The class diagram illustrates the file system service Interface . . . 89
8.8 Class diagram illustrates the create method 90
8.9 Sequence diagram for the create method 92
8.10 Class diagram for replication and relocation 93
8.11 Collaboration diagram for relocating a file 95

9.1 The integration of the LVM, the VFS and the File System 106

VIII

Acknowledgments

It is my privilege in this brief but sincere statement to thank my family and
friends who have helped me directly and indirectly, in the pursuit of the work
described in this thesis. Special thanks to my mom Kinyuy Tatah and my dad
Tumi Tatah for the upbringing and the opportunities they’ve given me in life. My
special thanks also goes to my husband Vincent and my sons Verki and Doh for
the moral support and understanding they gave me during these period. I would
also like to thank Irmgard, Dietmar, Matthias and Christoph for supporting me
throughout my stay in Germany, you’ll always be in my memory.

My special thanks goes to Prof. Horst Wedde for making it possible for me to
do my thesis in his department. I would also like to thank my supervisor Mario
for giving me this opportunity and the necessary support in completing my work.
Not forgetting the friends I made at the department especially Wolfgang who
always took time and patience to answer my questions.

Lastly I would like to mention that this work did broaden my experience and
I am very happy to have completed it.

Chapter 1

Introduction

This thesis presents the design and implementation of a distributed file service
for the Dragon Slayer III system. A set of file operation primitives will
be provided which will enable application programs to access and manipulate
data stored in the system. Other topics to be discussed in this work are file
partitioning, replication of files and working with extremely large files.

1.1 Motivation

A distributed system is a collection of heterogeneous computers and processors
connected via network. A distributed computer system offers the potential for a
degree of concurrency, modularity and reliability higher than that which can be
achieved in a centralized system. Centralized systems do not scale well, changes
in the system usually require global synchronization. In centralized systems, a
decision is made in a central mechanism and transmitted to executive components
while in decentralized systems, each executive component makes its own decision.

The main reason for the present trend towards distributed and decentralized
systems is that these systems potentially have a much better price/performance
ratio than a single large centralized system would. The attractions of such a
system are widely recognized: each user has autonomy, control over the fate of
his own resources, but each user benefits from sharing. These systems are also
gaining popularity because of higher reliability, shorter response time and higher
throughput, extensibility and incremental growth, better flexibility in meeting the
users needs. In such systems, the responsibility of coordination and scheduling is
distributed to all system components.

Designing a file service for a distributed system is more difficult than designing
one for a centralized system. In the case of centralized systems, access to complete
and accurate information about the system environment is stored at a central site.
The difficulties to be faced when designing a service for a decentralized system
are: Ineffective decision making must be avoided, internal conflicts should also

1

CHAPTER 1. INTRODUCTION

be minimized and the lack of authority over all the sites lead to data consistency
problems.

To add more features to a distributed system, other issues to be discussed
in this thesis are file partitioning and working with extremely large files. File
partitioning is a process, where a file is split-ted into many independent parts,
each containing a portion of the file’s data. Each part can then be processed in
parallel by a separate task to let one perform large computational tasks faster and
more efficiently. Each part can be accessed independently, governed by individual
authorization profiles regarding user, group or role access. This phenomena can
be useful in administering large projects, where different users, having different
access rights can work simultaneously on a project file which has been splitted into
many parts. These parts can later on be combined to a single project file if desired.
The key aspects of supporting file partitioning were the increased availability
of computer networks and the trend towards team work and concurrent work.
Activities in this domain are known by the notions of group-ware or computer-
supported cooperative work (CSCW).

The system can further split large files into fragments which is transparent
to the users and stores them locally on different disk partitions. A file is said to
be fragmented, when it is stored on disk not as a whole file but rather broken
into scattered parts. These can be done for two reason: The first reason is to
overcome storage limitations and the second reason is to improve the rate of data
access, since smaller files are faster to access than larger files.

The basic architecture of Dragon Slayer III for a distributed and de-
centralized system has led to the existence of many autonomous services, with
dedicated functions. This services have to communicate with other services res-
ident at different nodes, when processing users commands. The challenge to be
faced by the file service in such a distributed environment when designing and
implementing the file operations, is that of maintaining data consistency among
the files due to the multiple data access approach used in the system.

In order to increase reliability and availability of data, file replication will also
be discussed. The replication problem has received particular attention because
of the central role it plays when designing a highly distributed file system. The file
service will be in charge of creating the replicas and maintaining data consistency
among these replicas before and after each transaction.

Most of the existing file system were designed as client/server models. In
such systems, reliability and availability can not always be guaranteed, because
of its centralized nature. Some of the aspects discussed above have already been
implemented in some systems, but it is rare to find a file system that supports
all these features. Some of the file systems for example, have not implemented
replication nor do they directly support CSCW applications. Dragon Slayer

tries to put together most of the important features necessary for a file system
to function correctly and to guarantee that the users commands are processed to
their satisfaction.

2

1.2. OVERVIEW

1.2 Overview

A file system is the most visible aspect of an operating system which is designed
to store and manage large numbers of files, thereby facilitating their accessibility
and modification.

It is often difficult to differentiate between a File Service and a file server.
The file service is the specification of what the file system offers to its clients.
A true file service is concerned with the operations on individual files, such as
reading, writing, and appending. A distributed File Service is used to support
the sharing of persistent storage and of information. Figure 1.1 illustrate the file
service and the file server.

Site A

File Server at
Site B

A
User

B
User

File Server at

Storage

Local

Storage
Local

File Service File Service

File System Service
File System Service

Server Process Server Process

Figure 1.1: Two file servers at site A and B

A file server on the other hand is a software product, which acts as a repository
for shared files and programs. It is a process that runs on some machine and helps
implement the file service. File server machines store the files in the distributed
file system, and a server process running on the file server machine delivers and
receives files from its clients.

A distributed File Service fulfills a function similar to the file system com-
ponent in conventional operating systems. The File Service is usually the most
heavily-used service in a general-purpose distributed system, so its functionality
and performance are critical.

In Dragon Slayer the File Service works intensively with the Directory
Service and the Resource Manager. The File Service implement operations on
the content of files, such as opening a file, reading from a file etc. When the
File Service intends to carry out any file operation, it has to know where the
data is located on disk. It sends a request to the directory service to locate the
data. After the data has been located, the File Service needs to request locks
from the Resource Manager before processing can start. The File Service needs
the Resource Manager to control concurrent data access; For example, if a file
has been requested for reading, no other process should request this same file for

3

CHAPTER 1. INTRODUCTION

writing. In Dragon Slayer, the services are autonomous but they need other
services in order to carry out their functions properly.

A distributed File Service should support file replication, the sharing of per-
sistent storage and the sharing of files. The file service should also support
transparency requirements for distributed systems such as access transparency,
location transparency, concurrency transparency and performance transparency
as stated in [Zas99].

Presently there are so many distributed file systems, and each tries to improve
upon it’s performance, reliability, availability and portability. Each file system
has it’s own pros and cons. They have been designed differently depending on
the applications they support. During my research, I’ll also take a look at the
file service designs in other file systems. The Network File System for example
does not support file replication [Sun95], we’ll examine how NFS implements
data availability. Amoeba on the other hand, offers only operations for creating,
reading and deleting files [VRsTK90].

1.3 Problems to be solved

In this section, I’ll outline the requirements for the file service for Dragon

Slayer III, to be dealt with in this thesis. A brief discussion on the approach
to be used when solving the problems will be presented. Due to the design and
architecture of Dragon Slayer, certain issues have to be taken care of when
designing the file service. Dragon Slayer employs strong consistency in data
maintenance.

The majority rule is also used to support these approach. With the majority
rule, more than 50 % of the replicas must be present before data modification can
take place. This rule holds, if more than 50 % of the replicas present have the
same version number and the same replication grade. The File Service commands
must be in the position of detecting that a node has failed and can no longer
response to the various requests issued by the commands. This can be caused
by network problems or hardware failures. The services to be offered by the file
service, should always be available to the clients even if one or two nodes in the
system have failed.

As mentioned earlier, the File Service will provide file operations for applica-
tions to access and manipulate data stored in the system. The file operations to
be offered by the File Service must guarantee that after a request has been com-
pleted, data consistency amongst the replicas must be maintained. The following
file operations will be supported: opening, reading, writing, creating, closing,
deleting, copying, replicating and relocating of data.

Each of the file operations has certain criteria which have to be taken into
consideration separately, especially as we are dealing with a distributed and de-
centralized system. The main problem to be tackled here is that of applying file

4

1.3. PROBLEMS TO BE SOLVED

operations from clients to multiple replicas in a consistent way.

Opening a file When using session semantics, it is impossible to read from or
write to a file without having opened it first. That implies that an open file
table will be needed in the system to register the opened files. Managing
the information stored in the open file table will be a complex issue, because
of the decentralized structure of Dragon Slayer. When opening a file
for a read or a write, the File Service has to acquire read and write locks
from the Resource Manager. Writing to a file can cause data inconsistency,
therefor when opening a file for writing, exclusive locks will be acquired.

Reading from a file When a read request is issued by the client, any replica can
be used to serve the clients request because all replicas are equal. Multiple
processes can access a single file for reading.

Writing to a file To avoid data inconsistency, the write operation has to take
place simultaneously on more than 50 % of the replicas of a file present in
the system. The write transactions must complete successfully on all these
replicas before a commit request is issued or else a rollback request will be
issued to overturn the changes made on the replicas.

Creating a file When creating a file, a lookup request has to be sent to the
directory service to verify the existence of the file. If the file does not exist,
a lock request will be sent to the resource manager to lock the path of the
file before the create request is processed.

Deleting a file When deleting a file, the File Service needs the cooperation of
the Directory Service and the Resource Manager to locate and lock the files
before deleting them.

Copying a file This involves copying a file within a node from one path to
another. All replicas on other nodes will also be copied.

Replicating a file The management of the read/write replication scheme is of
utmost importance because it leads to the problem of maintaining data
consistency among replicas in such a decentralized system. The problems
to be dealt with here are detecting data inconsistency among replicas and
propagating updates to outdated replicas. The File Service will concentrate
on version consistency while the Resource Manager will take care of mutual
consistency in the system. Replication of data is an elaborate topic which
needs to be taken care of by a dedicated Replication Service.

Relocation of data In order to regulate the network traffic and improve on
load balancing, files will be moved from one node to another if desired.

5

CHAPTER 1. INTRODUCTION

Closing a file After the transactions on a file have been completed, the file
entries in the open file table will be removed and the locks acquired will
also be released before the file is closed.

A file version management scheme will be needed by the File Service in order
to detect inconsistency among data.

Another issue to be dealt with here is the management and manipulation of
partitioned files. I’ll be revisiting this problem which had already been discussed
in the thesis of [FR95]. The main issues to be dealt with here are:

• Which approach should be considered when decomposing and composing
parts and fragments.

• What procedures would be used when accessing a partitioned file, whose
parts are stored at different nodes.

• How would a fragmented file be accessed, which will be stored on different
disk partitions all on the same node.

This master thesis will also design and implement a client program, which
will be the interface for the users to access the file system. It will be used to
demonstrate the various issues covered in this thesis and in other related works.

1.4 Organization of this work

Chapter 2 In this chapter, the introduction of the Dragon Slayer system
with some of its important components will be discussed. Before we pro-
ceed, it is necessary to present the Dragon Slayer system in detail,
because this will lead to a better understanding of other topics to be dealt
with in this thesis.

Chapter 3 After the presentation of the Dragon Slayer system, this chapter
will take a look at the architecture and design of three file systems: The
Network File System, the Andrew File System and Amoeba File System.
The Virtual File System Switch is also dealt with here because it acts like
an interface to many file systems in Linux.

Chapter 4 As mentioned before, a distributed File Service is also used to sup-
port the sharing of persistent storage and information. This chapter will
concentrate on the different storage technologies that have already been im-
plemented. We will examined the different approaches used in the design of
the Network Storage Pool of the Global File System, the Volume manager
of the Extended File System and the Logical Volume Manager for Linux.

6

1.4. ORGANIZATION OF THIS WORK

Chapter 5 After data has been stored, the next thing to do is to look for ways
of multiplying these data, so that it is available to many users. This chap-
ter deals with the replication of files. Some replication design alternatives
already implemented in other file systems and data consistency protocols
will be revisited.

Chapter 6 The presence of replicas in a system means that data consistency
among the replicas must be maintained. Some systems use mutual con-
sistency while others use version consistency. In this chapter, discussion
is based on the different approaches taken by other file systems in dealing
with File version management.

Chapter 7 After presenting background information and related works concern-
ing file systems and the File Service, this chapter will finally present the
design of the File Service and the solutions of the problems mentioned in
section 1.3.

Chapter 8 When a system has been designed, the next step is the implementa-
tion. This chapter concentrates on the implementation of the file operations
as described in section 1.3 and in chapter 7. Class diagrams and sequence
diagrams will be used for illustration purposes. The client program will
also be discussed.

Chapter 9 This chapter summarizes main findings and ideas for future works.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

An overview of the Dragon
Slayer III system

This chapter will present a detailed background information to the Dragon

Slayer III system and it’s components. Section 2.1 will presents the basic
architecture of the Dragon Slayer system. In section 2.2 discussions will be on
file partitioning. Section 2.3 will explain the functions of the Command Manager
and section 2.4 will concentrate on the Node Manager and the agents. In section
2.5, the different services present in Dragon Slayer will be presented. The
client interface will be introduced in section 2.6.

2.1 The Dragon Slayer III architecture

The Dragon Slayer I project started in 1988 at the Wayne State University in
Detroit. The first phase of this project focused on novel distributed file services,
particularly efficient to simultaneous access of distributed data, on top of hetero-
geneous operating system platforms with decentralized control [WL98]. Later on
came the Dragon Slayer II project which is now being developed to Dragon

Slayer III. The Dragon Slayer III offers a high amount of fault tolerance
and the service reliability is guaranteed through the cooperation of autonomous
local services.

Dragon Slayer is a decentralized system, where control of resources is
not dedicated to a single central instance. The Dragon Slayer environment
consists of a set of computers 1, which are connected to each other via networks.
The Dragon Slayer system presents a uniform view of the file system to the
users independent of their location. The concept of Dragon Slayer is that all
the nodes should host the same services offered by the system so as to improve
on reliability and availability. The fact that all Dragon Slayer nodes offer
identical services, means failure of one node will not cause a great impact on the

1referred to here as nodes

9

CHAPTER 2. AN OVERVIEW OF THE DRAGON SLAYER III SYSTEM

Operating System Layer

A
ut

he
nt

ifi
ca

tio
n-

S
er

vi
ce

M
an

ag
er

R
es

ou
rc

e-

S
er

vi
ce

F
ile

-

S
er

vi
ce

A
ttr

ib
ut

e
-

D
ire

ct
or

y
-

S
er

vi
ce

TCP

CommandManager

Nodemanager

Communication-API
Heartbeat

S
er

vi
ce

A
ut

ho
riz

at
io

n-

RDM UDP

Client Interface

Figure 2.1: The Dragon Slayer III with the client API

users, because they will continue to access the same services from another node
in the system. Recovery is much more faster as compared to centralized system,
where the failure of the server puts a halt to all processing. Dragon Slayer

was designed to support large files and partitioning of files into a variable number
of parts. It was important to have a platform on which new application programs
that support team work will utilize, without the need of adapting their software.

Objects in Dragon Slayer III can be accessed by a system-wide unique
ID, called the vnodeID. The other design goals of Dragon Slayer are:

Data consistency: Dragon Slayer must make sure that the integrity of data
is guaranteed.

Transparent access: Processes are allowed to access remote files in the same
way as local files.

Concurrency transparency: It will be achieved by implementing a locking
mechanism.

The Dragon Slayer III file system also supports location transparency
which makes it easier for data objects to be migrated from one node to another

Figure 2.1 shows the system components of Dragon Slayer III. The Com-
mand Manager, the Node Manager and the various services listed on the diagram
make up the foundation of this file system and are present on each Dragon

Slayer III node or machine. As can be seen from the diagram, all the services
are independent but they interact with each other by using the different commu-
nication facilities offered by the system. The Dragon Slayer III client is a

10

2.2. PARTITIONING OF FILES

software that also runs on a node and helps to channel the users request to the
Command Manager on that node.

At each node, there is a heartbeat service which provides the node with an
up-to-date information on the system. These services send out messages to the
nodes which contain a list with service names and their communication ports.

There are three types of communication in Dragon Slayer III, broadcast,
multicast and unicast. It is accomplished by using the following transport proto-
cols: Transmission control protocol (TCP), User Datagram Protocol (UDP) and
Reliably Delivered Messages protocol already dealt with in the Thesis of [Sie98].

2.2 Partitioning of files

2.2.1 Motivation

In Dragon Slayer system, a file can exist as one part or it can be partitioned into
many parts. The users decide if their files should be stored in many independent
parts or in a single part. The aim of partitioning a file is to make it possible
for different users to work simultaneously on each part of the file, that means
modification can take place simultaneously on the different parts without causing
problems of data consistency. Each part can be assigned to a group of users and
each part can have different access rights defined on it [FR95][WL98].

Authorized users can rename, insert new parts or delete some parts without
preventing access to other users who may be working on the other parts of the
file. This phenomena can be useful in administering projects, where different
users can be working on different sections of the project’s report, which will later
be combined to a single report. These parts on the other hand can be decomposed
by the system into fragments if need be as described in [FR95]. This situation
can only occur when the system faces lack of storage on a particular machine.
When this situation occurs, the system has to fragment that part and store the
fragments at another disk with available storage space. It’s clear that the storage
capacity at the nodes are not identical. Some nodes may have mass storage
facilities while others may have just smaller disks.

Parts are made up of one or more fragments. To increase data availability,
parts can be replicated likewise fragments. Replication will be discussed again in
section 7.5.

2.2.2 Overview

This topic was already analyzed in a previous thesis [FR95]. The aim of this
analysis was to implement file management, especially parts of files and their
fragments. Fragmentation transparency has always been of great importance to
the Dragon Slayer design[WL98]. In this section, the discussions will focus on the

11

CHAPTER 2. AN OVERVIEW OF THE DRAGON SLAYER III SYSTEM

concept of parts in Dragon Slayer II design and the modifications that have been
made in regard to Dragon Slayer III. This thesis discusses in-depth the design of
implementing parts and fragments in Dragon Slayer III. In the next sections, we
will cover the following topics: An overview of the concept in Dragon Slayer II
and the changes in Dragon Slayer III.

C

B

A

Fragment

Part 1 Part 2 Part 3

Copies

N
od

es

In
te

rf
ac

e
In

te
rf

ac
e

Sy
st

em

Dragon Slayer File

U
se

rs

Figure 2.2: An example of a partitioned file

Figure 2.2, shows the structure of a file in Dragon Slayer III. As mentioned
above, the main goal is that, users should be responsible for the division of their
files. They decide into how many parts the file should be partitioned and they
give names to the various parts created. Once these files have been divided, the
system only stores and retrieves them, it doesn’t alter the number of parts created
by the user, but it can further decompose the parts into fragments. The user has
no idea whether the file or the parts have been fragmented.

The size of a part can change dynamically. If one part is deleted from a
partitioned file or a new part added to it, then the system has to reorganize the
numbering of the parts.

2.2.3 Previous concepts on parts and fragments

A part can still be split-ted into a variable number of fragments by the system.
All fragments have a unique attribute which makes it easy to fit them together
in the right order. The diagram in figure 2.3 shows an example of a partitioned
file. The file history.txt has been partitioned into introduction.txt, body.txt and
conclusion.txt. History.txt is the main file and it stores information in it’s vnode
relating to the three parts. Each of the parts could be stored at different nodes.

The user decides the number of parts to be created, and the operating system
carries out the users orders. The File Service decides on which node to store the
parts and the operating system searches for a suitable place on a specific disk
for storing these parts. The system can further split the parts into fragments
whereby this process is transparent to the users.

12

2.2. PARTITIONING OF FILES

History.txt

Introduction.txt Body.txt Conclusion.txt

Figure 2.3: Dividing a file into three parts

Fragmentation refers to the condition of a disk in which files are divided into
pieces scattered around the disk. Fragmentation occurs naturally when one uses
a disk frequently, to create, delete and modify files. At some point, the system
needs to store parts of a file in non-contiguous blocks. This is invisible to the
users but it can slow down the speed at which data is being accessed because the
disk drive must search through different sectors of the disk to put a single file or
a part together [SS94].

Our focus here will be on file fragmentation. File fragmentation causes perfor-
mance problems when reading files, while disk fragmentation causes performance
problems when creating and extending files. For more information on internal and
external fragmentation, read Siberschatz [SG94]. Neither condition has anything
to do with the contents of a file. Attention is focused only on files as containers
for data and the arrangement of these containers on the disk.

Concept in Dragon Slayer II

In Dragon Slayer II, the fragments could be stored on different machines. It
was also important that all the replicas of a part should have the same number
of fragments in order to avoid any shortcomings [FR95]. This means that all
the replicas of the parts must have the same number of fragments, whereby the
boundaries dividing the fragments of one replica must be the same with the
boundaries dividing the fragments of the other replicas. This was to ensure that
if one part was not available at a node, the other parts stored at the different
nodes could be used instead, to serve the same purpose. Writing to a part could
only take place if the majority of the replicated fragments were available in order
to ensure data consistency.

Concept in Dragon Slayer III

In Dragon Slayer III, it has been maintained that the parts will be stored at
different nodes but the fragments of a file will be stored only at a single node.

13

CHAPTER 2. AN OVERVIEW OF THE DRAGON SLAYER III SYSTEM

That means, the fragments could be stored on different disk partitions being
mounted locally at that node. A file can be splitted into varying numbers of
fragments differently on each node. When storing parts, the meta-data of each
part is also stored with the parts at that nodes. This will ease the process of
locating the other parts belonging to a file.

By implementing Partitioning of file in Dragon Slayer, the file system
can make good use of the different storage facilities discussed in chapter 4. The
advantages of these storage facilities are that files can be placed intelligently
according to the characteristics of the disks present in the system.

2.3 Command Manager

The Command Manager is stateful, that means it maintains detailed information
about the data objects for example, what operations are being applied and which
user is issuing the request.

DS3command

Macro Request

Macro Reply

DS3command

Macro Request

Macro Reply

Node Manager Node Manager

Node BNode A

ManagerCommand ManagerCommand

File
Service

Directory
Service

File
Service

Directory
Service

Macro Reply

Macro Request

Users Users

Macro Reply

Figure 2.4: An example of the Dragon Slayer III components

Figure 2.4 illustrates the Command Manager, the Node Manager, DS3command,
Macro-Request, Macro Reply and some of the services at node A and B. The Com-
mand Manager receives the users commands as strings from the clients, evaluates
and parse the command line, before it forwards them to a node or to many nodes
depending on what the user may have requested. When the users commands ar-
rive the Command Manager, it evaluates the request and creates a DS3command
from it. Then these DS3commands are queued for the agents (threads) to remove
from the queue and process.

14

2.4. NODE MANAGER

From the DS3commands, Macro-Request are generated. The Macro-Request
are broadcasted to all the nodes. The Macro-Request are mostly service calls
put together by the various services in Dragon Slayer III. These are the
functions that complete the users request. For example the File Service offers
a read method to read data from a file. The File Service Interface also offers
functions which are called by Macro-Request from other concurrent projects in
Dragon Slayer III.

After the nodes have executed the Macro-Request, Macro Replies are sent to
the Command Manager. The Command Manager evaluates the Macro Replies
to know what actions to undertake. If the request was completed successfully,
the Command Manager will forward the message to the user but if the request
failed, the Command Manager might decide to repeat it or send a message to the
user concerning the request that failed.

2.4 Node Manager

The execution of all the requests in the system takes place at the Node Manager.
The Node Manager presents an Interface to all the services in Dragon Slayer

III. The Macro-Request received from the Command Manager are executed at
the Node Manager. When the Node Manager receives the Macro-Request, they
are also queued for the agents to process. As mentioned above, a Macro-Request
is made up of service calls. When a Macro-Request has been executed by the
agent, it forwards the result of it’s execution 2 to the Node Manager. The Node
Manager forwards the Marco Reply to the Command Manager which issued the
Macro-Request as illustrated in figure 2.4.

2.5 Services

Figure 2.1 illustrates the different services present in Dragon Slayer III. Each
service has a particular task it carries out in the system. The services in Dragon

Slayer III are stateless. That means all the request should come along with
all the information needed for the task to be completed. It is therefore easier
for the system to recovery after a break down. In order to carry out the task
successfully, each service puts some methods together called service calls.

The services cannot interact with each other directly. They can only issue
service calls to the other services. At the moment, the following services are to
be implemented in Dragon Slayer III:

1. Directory Service - It provides the required mappings between objects and
their unique vnodeID.

2the Macro Reply

15

CHAPTER 2. AN OVERVIEW OF THE DRAGON SLAYER III SYSTEM

2. Attribute Service - it manipulates the attributes of the object and can also
insert meta-data to each object when given the vnode ID.

3. Authorization Service - it is responsible for managing the access permissions
of the users to the objects present in the system.

4. File Service - It enables users to access and manipulate data in the system,
by providing a set of file operations. It is also responsible for the replication
of data objects.

5. Resource Manager - is responsible for maintaining mutual consistency in the
system. A locking mechanism will be implemented to control concurrent
data access. It locks the objects when requested by other services before
the operations can proceed and releases the locks after the operations have
been completed.

6. Authentification Service - it is in charge of authenticating the users who
want to access to the system.

2.6 Client Interface

The client program gets the arguments passed with the users commands to the
system. It is the only interface for the Dragon Slayer file system to the outside
world. The diagram in figure 2.1 illustrates the location of the client interface.
Detailed information on the client interface will be presented in chapter 7 and
the client program will be described in chapter 8.

16

Chapter 3

An overview of other File
Systems

This chapter will present a brief summary of the design of three distributed file
systems. File systems are designed to store and manage large numbers of files,
with facilities for creating, naming and deleting files. They are also responsible
for the control of access to files. When carrying out research in this topic, I came
across many existing file systems. I finally decided to choose the Network File
System (NFS), Amoeba file system and the Andrew File System (AFS) for case
study. NFS has been chosen because it is the most commonly used file system.
The first section will discuss the design and architecture of NFS. Amoeba has been
chosen because it supports high availability, parallelism and high performance.
The Details of Amoeba will be presented in the second section. The third section
will present some of the features of the AFS. The AFS has been chosen because it
has a lot of similarities with NFS but it has certain features like volume replication
which is not implemented in NFS. In the last section, the Virtual File System
(VFS) will be discussed.

3.1 The Sun Network File System (NFS)

NFS is designed to give users high performance, transparent access to server file
systems on global networks. NFS provides transparent access to remote files
for client programs running on Unix and other systems as explained in [Zas99]
[Sun95]. The NFS service is stateless and most of the operations of the file access
protocol are repeatable. Some of the most important design principles of this file
system are listed below:

Transparent Access Users and applications can access remote files as if they
were local. They are not required to know whether the files reside on the
local disk or on remote servers.

17

CHAPTER 3. AN OVERVIEW OF OTHER FILE SYSTEMS

Statelessness NFS operates in a stateless manner using remote procedure calls
(RPC) built on top of an external data representation (XDR) protocol.
The RPC protocol enables version and authentication parameters to be
exchanged for security over the network.

Portability NFS is machine and operating system independent. This allows it
to be ported easily to multiple OS and hardware platforms from PCs to
mainframes.

Recovery from failure NFS is designed to recover quickly from system failures
and network problems, causing minimal disruption of service to users.

Network Protocol Independence NFS has the flexibility to run on multiple
transport protocols instead of being restricted just to one.

Performance NFS is designed for high performance so that users can access
remote files as quickly as they can access local files.

Security The NFS architecture enables the utilization of multiple security mech-
anisms.

The NFS clients and server modules communicate using remote procedure
calls [SG94]. NFS employs a client/server architecture and therefore consists of
a client program, a server program and a protocol that is used to communicate
between the two, over the network. See figure 3.1.

Server Computer
Client computer

User-level
client
process

UNIX kernel

Virtual File System

NFS
Server

UNIX
file
System

UNIX
file
system

NFS
client

Virtual file system

Network

UNIX kernel

System calls

remotelocal

Disk Disk

Figure 3.1: The architecture of NFS

The role of the NFS server is to allow its disk file systems to be accessed 1 by
other machines 2 on the network.

1in other words ”shared”
2clients

18

3.2. THE AMOEBA FILE SYSTEM

NFS clients gain access to server files by mounting the servers exported file
systems. The mount process results in integrating the remote file system into
the client’s file system tree. An enhanced client side service called the auto-
mounter, automatically and transparently mounts and unmounts file systems as
needed. The auto-mounter gives clients transparent access to server file systems,
whether those servers are connected to clients over LANs and/or WANs. The
auto-mounter does not, distinguish between different physical network technolo-
gies as stated in [CD01].

The NFS protocol consists of a set of remote procedures enabling clients to
manipulate remote files and directories on server systems as if they were local.
The routine in this protocol enables clients to send requests for file operations to
servers, and servers respond by attempting to perform the operation 3 and then
sends back successful results or error values.

NFS reduces data latency by implementing client disk caching. By caching
significant amounts of file data on the local disk, clients can drastically reduce
the amount of time they would spend waiting for data to be transferred from
the remote server. Caching significantly increases the performance of the NFS
client and also enhances server scalability. Clients get faster access to files by
storing large chunks of data in a local fast access cache. If the file is being read
sequentially, the NFS client can anticipate future data requirements through a
process called ”read- ahead” and can store this information in its local cache for
future reference as explained in [Sun96].

Cache Consistency and File Integrity is achieved in NFS by applying File
locking. NFS includes a file locking feature called the lock manager. The lock
manager and another process called the status monitor work together to guar-
antee that, multiple readers and writers do not collide with each other. This is
accomplished using file locking and access control mechanisms. To minimize data
inconsistencies, NFS uses a timestamp-based method to validate cached blocks.

Replication is not supported by NFS. The Sun Network Information Service
is a separate service available for use with NFS that supports the replication of
simple databases [CD01]. The primary copy approach is used for replication.
NFS currently supports replication of read-only file systems [Sun96]. A map
entry for a read-only file system may describe several locations for alternative
replica servers. At mount time, the auto-mounter mounts the file system on the
server that has the nearest proximity to the client. This reduces network routing
delays and helps keep NFS traffic off the corporate backbone.

3.2 The Amoeba File system

Amoeba was designed and developed under the direction of Andrew Tannenbaum.
Amoeba combines high availability, parallelism, scalability and high performance.

3provided the user has proper permission

19

CHAPTER 3. AN OVERVIEW OF OTHER FILE SYSTEMS

Amoeba connects the multiple Amoeba systems at different sites into a single
coherent system. This goal is obtained by using the object and capabilities in a
uniform way [VRsTK90].

Processor Pool

Workstations

Gateway

WAN

Specialized servers (e.g. file server, directory server etc.)

Figure 3.2: The Amoeba architecture

The architecture of Amoeba consists of : The workstations, one per user
which can be used for editing and other interactive tasks. Figure 3.2 illustrates
the architecture of Amoeba. There is a processor Pool and a group of CPU
present which can be dynamically allocated as desired. There are specialized
servers like the directory, file, block, database, boot servers etc. Gateways are
used to connect Amoeba with the other Amoeba systems located at different sites
as stated in [VRsTK90]. All Amoeba machines run the same kernel.

The communication process uses client-server model. The conceptual model
for Amoeba communication is the abstract data type of object model, in which
clients perform operations independent of their location. Amoeba uses a minimal
remote procedure call for communication between client and server. When a
message is sent to the server, the client is blocked until the result from server has
arrived. GET REQUEST and PUT REPLY are the basic primitives used in this
case. These are not embedded in the language of the environment, but they are
implemented as a small library routine. The detection and retransmission of lost
messages, acknowledgment processing, message to packet and packet to message
management, are done transparently by the kernel. The messages are unbuffered.

The kernel has three basic system calls for users processes: DO OPERATION,
GET REQUEST, and SEND REPLY. These primitives are too primitive for most
application programmers. More user oriented interface have been built on top of
these mechanism as stated in [VRVST88].

Amoeba uses a single, uniform mechanism for naming and protection. That
mechanism is SPARSE CAPABILITIES [VRsTK90]. This mechanism bases on
the object description than the process description. The system supports objects
such as: directories, files, disk blocks, process, bank accounts, and devices. Small

20

3.2. THE AMOEBA FILE SYSTEM

objects such as integer are not supported. Each object is managed and owned by
some services. This naming mechanism can be described as follows: A process
request to create an object. The object is created and the capability is given
to the process issuing the request. The process can carry out operations on
the object by using this capability such as reading or writing a block of a file
[VRVST88].

The number and type of the operations of an object are determined by the
service which created the object. A bit map in the capability represent the
permission of the process. The whole of Amoeba is based on the conceptual
model of abstract data types managed by services [VRsTK90]. From the users
point of view, the Amoeba environment is regarded as a collection of objects,
named by capability on which they can perform operations. Therefore Amoeba
is a contrast to the other systems which are process oriented.

An object is a piece of data on which well defined operations can be performed
by authorized user, independent of the user’s and object’s location. Objects are
managed by server processes as described in [DKOT91].

The process management allows remote process creation, debugging, check
pointing and migration. Each object has a globally unique name contained in
its capabilities. The capability is managed entirely by user process not by any
kernel. The capabilities are protected cryptographically. The capability has
enough redundancy and cryptographic protection to avoid the user guessing the
capability. [VRsTK90]

A capability consists of 4 fields:

• The service port: A sparse address of the service that owns the object

• The object number: An internal identifier used by the service to tell which
of its object it is.

• The right field: Contains the operations which are permitted on objects.

• The check field: A large random number used to authenticate the capability.

The protection scheme of each server depends on the server. Usually each one
builds a capability containing its port, the object number, the rights and a known
constant. Thus when a server is asked to create an object it picks an available
slot in its internal table, puts the information about the new object and picks a
new random number. The rights and check field are mixed by encrypting them
with the random number as key, which is then saved in the internal process.

This capability is sent to the server when a process carries out an operation
on the object. The server will check the right by using the object number to find
the relevant internal table entry and get the random number. This number is
used to decrypt the check and right field. If the decryption process produces the
correct constant,then the right field can be used to check the operation permitted
on the object [VRsTK90].

21

CHAPTER 3. AN OVERVIEW OF OTHER FILE SYSTEMS

These capabilities can be stored in directories managed by the directory ser-
vice. It is a set of (ASCII string, capability) pairs. The most common operation
is for the user to present the directory server with a capability for a directory and
an ASCII string. Then, ask for the capability that corresponds to that string in
the given directory. Other operations involve the entering and deleting of these
pairs.

In general, port numbers which are 48 bits must be kept secret, because they
are used as a key for accessing the servers. Amoeba has two level of protection:

• Ports for protecting access to servers

• Capabilities for protecting access to individual objects.

Amoeba provides a boot service with which servers can register. The boot
service contacts each registered service at intervals. If the server does not reply
properly, the boot service determines whether the server is broken, and requests
the process server to start up a new process of the server on one of the pool
processors [VRsTK90].

Each remote procedure in Amoeba is completely self contained and does not
depend on any previous setup. It does not depend on any volatile information in
the servers memory. In the case where a server crashes before sending the reply,
the kernel on client will time out and try again. When the new server comes up
the client’s kernel will find the new server and send the request, this process can
be carried out without the client knowing something has happened. [DKOT91]

Some services which had been implemented in Amoeba are the block, file and
directory service. The most simple one is a server that provides a file server
functionally equivalent to the UNIX system call interface. To run most UNIX
programs on Amoeba, the program is re-linked with a special library. Other
key services are; directory service, bank service and boot service as described in
[VRVST88].

Amoeba has a unique file system. The file system is split-ted into two parts.
First is the bullets service for storing immutable files contiguously on the disk.
The second is the directory service which gives capability symbolic names and
handles replication and atomicity and eliminates the need for separate transaction
management system as stated in [DKOT91].

The amoeba file system can be represented as a large tree. This service
is immutable file service and supports only three principal operations : read
file, create file, and delete file. The file cannot be changed after it is created
[VRVST88].

3.3 The Andrew File System (AFS)

The Andrew File System is designed to provide an information-sharing mecha-
nism to its users [SG94]. Like NFS, AFS provides transparent access to remote

22

3.3. THE ANDREW FILE SYSTEM (AFS)

shared files for UNIX programs running on workstations. Access to AFS files is
through the normal UNIX file primitives. AFS was designed to perform well with
larger numbers of active users. File transfer between clients and servers is also
supported by AFS as stated in [CD01].

User
Program Venus

UNIX kernel

Disk

User
Program

Venus

UNIX kernel

Disk

Workstations

Vice

Vice

UNIX Kernel

UNIX Kernel

Disk Disk Disk

Disk Disk Disk

Network

Servers

Figure 3.3: The architecture of AFS

AFS is implemented as two software components that exist as UNIX processes,
called Vice and Venus. Vice is the name of the server software and Venus is the
name of the client software. The diagram on figure 3.3 illustrates the distribution
of processes in the Andrew file system.

Scalability It is achieved in AFS by the caching of whole files in client nodes
[Zas99].

Global Name Space Each directory and file is identified by the same path
name specification, regardless of what machine you are currently logged
into.

Cell The administrative domain in which all administrators of the file servers
must cooperate on certain configuration decisions and use of privileges. A
cell does not necessarily have any geographical limitation [ARSW92].

Volumes The AFS container that keeps a set of related files and directories.
This is the smallest unit on which administration is performed (e.g. backup,
restoring, moving, quotas etc.) Files in AFS are grouped into volumes to
ease relocation and movement [Zay91].

23

CHAPTER 3. AN OVERVIEW OF OTHER FILE SYSTEMS

Cache Manager It runs on the local client and caches data requested from the
file servers, and if the same data is requested again, it resolves the request
from local cache rather than from the file server. The Cache Manager also
does pre-fetching from the file server, which could also increase single user
performance over NFS [Zay91].

Cache coherence It is maintained in AFS through the Callback Mechanism.
Callback Mechanism - When a client caches a file, it is given a ”promise”
from the file server to notify (call back) the client if any other client modifies
that file. When this callback is received, the client then invalidates the cache
for that file and subsequent requests for that file will be resolved from the
file server, thus getting the changes to the client [SG94].

Volume Replication Volumes which are not highly modified can be replicated
on multiple file servers for increased availability and performance. Note
that the replicated copies are read-only, thus changes must be made to the
master. Then, a manual one line command must be entered to re-copy the
entire volume for the changes to be seen in the replicated volumes.

Security AFS uses the Kerberos authentication system to provide reliable iden-
tification of the users attempting to operate on the files in its central store.
Authentication information is mediated through the use of tickets. A ticket
is an object which contains an encrypted version of the user’s name and
other information [ARSW92].

Protection In addition to standard UNIX rights, AFS has more granularity of
rights as well as Access Control Lists (ACLs) which can contain groups and
individuals for directories and files.

Inter-operability/Coexistence Due to its VFS style of implementation, the
AFS client code may be easily installed in the machine’s kernel, and may
service file requests without interfering in the operation of any other in-
stalled file system.

3.4 The Virtual File Switch Interface

Virtual File System is an interface providing a clearly defined link between the
operating system kernel and the different File systems [Bro99] [BB99].

When the Linux kernel has to access a File System, it uses a file-system-
type independent interface, which allows the system to carry out operations on
a File System without knowing its construction or type [Rub97] [CD01]. Since
the kernel is independent of the File System type or construction, it is flexible
enough to accommodate future File Systems too [Bro99].

24

3.4. THE VIRTUAL FILE SWITCH INTERFACE

The VFS supplies the application with the system calls for file management 4,
maintains internal data structures and passes tasks onto the appropriate actual
File System [Bro99]. Another important job of the VFS is, performing standard
actions. For example, as a rule, no File System implementation will actually
provide an lseek() function, as the functions of lseek() 5 are provided by a standard
action of the VFS.

Kernel’s representation of the File Systems

The representation or layout of data on floppy disk, hard disk or any other storage
media may differ considerably from one implementation of File System to another.
But the actual representation of this data in Linux kernel’s memory is the same
for all File System implementations [Aiv00]. The Linux management structures
for the File Systems are similar to the logical structure of a UNIX File System
as stated in [Rub97].

User
process

User
process

System calls

System calls Interface

VFS

NFS AFS

Buffer Cache

Device drivers (LVM)

Disk Controller Hardware

Linux Kernel

I/O request

Figure 3.4: The VFS, the file system and the LVM

The VFS calls the file-system-specific functions for various implementations to
fill up these structures. These functions are provided by every File System imple-
mentation and are made known to the VFS via the function register filesystem().
This function sets up the file system type structure it has passed, in a singly
linked list headed by the pointer ”file systems”[BB99]. The file system type
structure gives information about a specific File System implementation.

In Linux, all files are accessed through the Virtual File Switch [BB99]. The
VFS is in the Linux kernel and is used during system calls when accessing files.

4like open, read, write etc.
5This function sets the file pointer to the position given in the files offset

25

CHAPTER 3. AN OVERVIEW OF OTHER FILE SYSTEMS

The VFS is an indirection layer which handles the file oriented system calls and
calls necessary functions in the physical file system code to do the I/O.

The VFS defines a set of function that every file system has to implement
[Rub97]. This interface is made up of a set of operations associated to three
kinds of objects: file systems, inodes and opened files [Bro99]. A mount function
is responsible for reading the superblock from the disk, initializing its internal
variables, and returning a mounted file system descriptor to the VFS. After the
file system is mounted, the VFS functions can use this descriptor to access the
physical file system routines [BB99].

The function read super() forms the mount interface, i.e. it is only via this
function that further functions of the File System implementation will be made
known to the VFS. This function is also used to initialize the super-blocks in
the VFS. After the read super() functions returns successfully, VFS obtains
the reference to the file systems module via call to get filesystem(fs type) in
fs/super.c:get sb bdev() and a reference to the block device.

In order to access a file, the file system containing the file must be mounted
onto some mount point in the Linux directory hierarchy [Rub97]. This is done
using either the mount system call or the mount root() function.

A separate superblock structure is maintained for every mounted File System.
These structures are held in the static table super block. The superblock contains
information on the entire File System, such as block size, access rights and time
of the last modification [BB99].

The superblock provides pointers to functions for accessing the file system, in
the function vector s op. These functions are used to perform all the operations
on the File System. The functions in the super operations structure serve to read
and write an individual inode, to write the superblock and to read file system
information.

There is also the file operations structure which contains the methods that
can be invoked on files. This is a layer of code which implements a generic file
system, where actions and vectors request to the correct specific code to handle
the request. Two main types of code modules take advantage of the VFS services,
device drivers and file systems.

Two other types of descriptors are used by the VFS: the inode descriptor and
the opened file descriptor. Each descriptor contains information related to files
in use and a set of operations provided by the physical file system code [SG94].
While the inode descriptor contains pointers to functions that can be used to act
on any file(e.g. create, unlink), the file descriptors contains pointer to functions
which can only act on open files (e.g. read, write).

26

Chapter 4

Related works on storage
management

Files that are laid out contiguously on the disk can be read and written quickly,
in contrast to files whose blocks are scattered across the disk. To achieve optimal
file layout, the system requires contiguous free space on the file system. Fragmen-
tation had been a problem in the computer world for a very long time. There are
many different implementations of the general concept of logical volume man-
agement. One was created by the Open Software Foundation (OSF) and was
integrated into many UNIX operating systems like HP/UX etc. This also served
as a base for the Linux implementation of Logical Volume Manager (LVM). At
present, the emerging solutions are the LVM for Linux, the Network Storage Pool
in the Global File System (GFS) and the Volume Manager in the Extended File
System (XFS). These three technologies will be discussed and compared in this
chapter in detail. The first section presents the design of the GFS, the second
section deals with the architecture of XFS and the last section concentrates on
LVM.

4.1 The Network Storage Pool in the Global

File System

In this section, the important components of the Global File System (GFS) will
be discussed. The resource groups, device Locks and the memory Hierarchy will
be presented.

The Global File System is a distributed file system based on shared network
storage [Aga99][Sol96]. Client file managers exclusively service local file system
requests. Network attached storage devices directly serve clients. Each client
views storage as locally attached to their machines, though no single computer
owns or controls these network attached devices [RSK96]. No direct communi-
cation exists between computers; GFS clients remain independent from failures

27

CHAPTER 4. RELATED WORKS ON STORAGE MANAGEMENT

and bottlenecks of other clients.

GFS achieves client independence by atomically modifying shared data. A
storage-device-managed locking mechanism 1 facilitates atomic operations [Aga99].
Before data modification, clients have to acquire locks. After clients modify and
write data back to the storage devices, these locks are released.

Storage devices are connected to client computers through switched channel
networks called Storage Area Networks (SAN) [Sol96]. GFS logically groups
storage devices to provide clients with a unified storage space. This collection
of network attached storage devices is a network storage pool(NSP). Sub-pools
divide NSPs into groups of similar device types [RSK96].

Figure 4.1 illustrates GFS distributed environment. A shared storage pool
may include a variety of devices with differing performance characteristics. A
cluster of independent clients are connected to the network storage pool via a
SAN. Each client may have multiple network connection to the NSP [Sol96]. The
storage facilities are grouped in sub-pools depending on their characteristics.

Figure 4.1: The GFS cluster
[Sol96]

GFS provides transparent parallel access to storage devices while maintaining
standard UNIX file system semantics: user applications see only a single logical
device via the standard open, close, read, write and fcntl 2.

In the GFS, heterogeneous collection of shared storage into a single logical
volume called the network Storage Pool is present as described in [Sol96]. The

1Also called Dlocks
2This function can change the properties of a file that is already open

28

4.1. THE NETWORK STORAGE POOL IN THE GLOBAL FILE SYSTEM

pool driver 3 is built on top of the SCSI and Fiber Channel drivers [Kee98] and
is similar to Linux’s multiple disk (md) as stated in [Tei99]. It allows stripping
across multiple devices and provides a pool of Dlocks for GFS, thereby hiding the
implementation details. New storage pools can be written, assembled and added
to the kernel dynamically [Kee98].

Network Storage Pools are collections of physically shared devices. Sub-pools
partition NSPs according to the characteristics of the devices [Kee98]. Sub-pools
inherit characteristics from underlying devices and network connections. Device
characteristics range from low-latency to high-latency bandwidth performance.
A sub pool of high-bandwidth devices inherits high-bandwidth characteristics. A
high-bandwidth sub pool includes disk arrays or software striped disks connecting
to clients with one or more network links. A low-latency sub pool consists of solid
state devices.

GFS exploits different sub pool characteristics. GFS places frequently refer-
enced files, like directories, on low-latency sub-pools [RSK96]. Large files benefit
from high-bandwidth sub-pools. Single files may be split across sub-pools of dif-
ferent types. Although splitting real data in files is not useful, positioning real
data and meta-data on different sub-pools has performance advantages. Real
data is placed on high-bandwidth sub-pools and meta-data on low-latency sub-
pools, because meta-data requires as little as one percent of the total storage
space [Sol96].

4.1.1 Resource Groups

GFS organizes file systems into several resource groups (RG) [Aga99]. Resource
groups distribute file system resources across the entire Network Storage Pools;
multiple resource groups can exist per device. Resource groups are essentially
mini-file systems. Each group possesses an information block, data bitmaps,
dinodes, and data blocks. Resource group blocks contain information similar to
traditional super-blocks. In normal operation, resource groups are transparent to
users [RSK96]. File data and meta-data may span multiple resource groups and
sub-pools.

4.1.2 Device Locks

The GFS uses device locks to maintain data coherence. Device locks are mutual
exclusion mechanisms managed by storage devices [Aga99]. GFS associates locks
with file system data; devices have no knowledge of locked data. SCSI DLOCK
commands manipulate device locks as described in [Sol96].

Each device lock has a state bit, activity bit, and a multi-bit clock. At
completion of every DLOCK command, devices return the current values of each

3Pool driver is a collection of low level functions in the operating system, used to access
hardware devices.

29

CHAPTER 4. RELATED WORKS ON STORAGE MANAGEMENT

bit and clock. Clients save these values for lock activity measurements. Activity
measurements are useful for failure recovery, load balancing, shared resources and
maintaining data coherence [RSK96].

Device locks support four primary actions: lock, unlock, unlock increment
and reset lock. These actions use test- and set-clear operations to modify state
bits. Devices increment clocks after successful completion of “unlock incr” and
reset lock actions. Reset lock clears a lock, if the current clock value equals an
input clock value.

Device locks support three secondary actions: no action, activity on, and
activity off. These actions do not modify state bits. The “no action” command
returns state bits, activity bits, and clocks. The “activity on” and “activity off”
actions set and clear activity bits, respectively. Clocks increment after activity
off actions. A set activity bit causes clocks to also increment after successful
unlock actions.

4.1.3 Memory Hierarchy

The GFS memory hierarchy includes client memory, storage devices caches, and
storage device media. The GFS memory hierarchy is similar to that of a local file
system; however, maintaining consistency between GFS levels is more complex.
GFS uses a mutual exclusion locking scheme with a write-through approach for
coherence [RSK96].

Data consistency within and between all three memory levels of GFS hierarchy
is essential. Three different consistency mechanisms maintain coherence. Mem-
ory locks ensure mutual exclusion among processes in system memory [Sol96].
Storage devices manage consistency between local caches and media. GFS uses a
locking mechanism, called device locks, to maintain consistency between system
memories and devices. Storage device controllers manage device locks. Clients
must acquire device locks before modifying shared data. The locks are released
after writing data back to device storage. Device locks not only ensure mutual
exclusion but also provide a facility for client memory caching. This scheme has
the simplicity of a centralized mechanism yet it is distributed across several de-
vices. GFS mechanisms guarantee strong consistency; every device read returns
the most recently written data. Lets take a look at the design of XFS.

4.2 The Volume Manager in the Extended File

System (XFS)

This section will present the components of XFS and their functionalities. The
architecture of XFS is quite different from that of GFS but the management of
the storage facilities is similar to that of GFS. The Allocation Groups will also
be discussed, the storage scalability and performance scalability.

30

4.2. THE VOLUME MANAGER IN THE EXTENDED FILE SYSTEM
(XFS)

We will describe the architecture and design of the new file system XFS for
the Silicon Graphics’ IRIX operating system. It is a general purpose file system
for use on both workstations and servers [SDH99].

XFS adapts many techniques used in the field of high performance multipro-
cessor design [AW99]. It organizes hosts into a hierarchical structure so that
locality within clusters of workstations can be better exploited. By using an
invalidation-based write back cache coherence protocol, XFS minimizes network
usage. It exploits the file system naming structure to reduce cache coherence
state. XFS also integrates different storage technologies in a uniform manner
[Lor00].

Directory ManagerI/O Manager

System Call and Vnode Interface

Space Manager

Transaction Manager

Buffer Cache

Volume Manager

Disk Drivers

Figure 4.2: The XFS Architecture

The figure 4.2 shows a block diagram of the general structure of the XFS file
system.

XFS is modularized into several parts, each of which is responsible for a
separate piece of the file system’s functionality [AW99]. The central and most
important piece of the file system is the space manager, which manages the file
system free space, the allocation of inodes and the allocation of space within
individual files [SDH99].

31

CHAPTER 4. RELATED WORKS ON STORAGE MANAGEMENT

The high level structure of XFS is similar to a conventional file system with
the addition of a transaction manager and a volume manager. XFS support all of
the standard UNIX file interfaces and is entirely POSIX 4 and XPG4 5 compliant
[SDH99]. It sits below the vnode interface in the IRIX kernel and takes full
advantage of services provided by the kernel, including the buffer/page cache,
the directory name lookup cache, and the dynamic vnode cache, see figure 4.2.

The I/O manager is responsible for satisfying file I/O requests and depends
on the space manager for allocating and keeping track of the space for files.

The directory manager implements the XFS file system name space. The
buffer cache is used by all of these pieces to cache the contents of frequently
accessed blocks from the underlying volume in memory. It is an integrated page
and file cache shared by all file systems in the kernel. The transaction manager is
used by the other pieces of the file system to make all updates to the meta-data
of the file system atomic. This enables the quick recovery of the file system after
a crash.

The volume manager used in XFS, known as XLV, provides a layer of abstrac-
tion between XFS and its underlying disk devices. XLV provides all of the disk
striping, concatenation, and mirroring used by XFS. XFS itself knows nothing
of the layout of the devices upon which it is stored. This separation of the disk
management from the file system simplifies the file system implementation, its
application interfaces, and the management of the file system.

4.2.1 Storage Scalability

XFS concentrates more on efficiently supporting large files, large file systems,
large numbers of files, and large directories [SDH99]. The mechanisms used to
achieve such scalability will be described below.

4.2.2 Allocation Groups

XFS supports full 64 bit file systems. All of the global counters in the system are
64 bits in length. Block addresses and inode numbers are also 64 bits in length.
To avoid requiring all structures in XFS to scale to the 64 bit size of the file
system, the file system is partitioned into regions called allocation groups (AGs).
Allocation groups keep the size of the XFS data structures in a range where they
can operate efficiently without breaking the file system into an unmanageable
number of pieces. AGs are typically 0.5 to 4 gigabytes in size. Each AG has its
own separate data structures for managing the free space and inodes within its
boundaries. Partitioning the file system into AGs limits the size of the individual
structures used for tracking free space and inodes [SDH99].

4Portable Operating System Interface
5X /Open Portability Guide, issue 4

32

4.2. THE VOLUME MANAGER IN THE EXTENDED FILE SYSTEM
(XFS)

AGs are only used occasionally for disk locality 6. They are generally far too
large to be of much use in this respect. Instead, locality is established around
individual files and directories. By making the structures in each AG indepen-
dent of those in the other Ags, XFS enables free space and inode management
operations to proceed in parallel throughout the file system. Thus, processes
running concurrently can allocate space in the file system concurrently without
interfering with each other.

Space management is the key to good file system performance and scalability.
Efficiently allocating, freeing space and keeping the file system from becoming
fragmented are essential to good file system performance. XFS has replaced the
block oriented bitmaps of other file systems with an extent oriented structure
consisting of a pair of B+ trees for each AG. The entries in the B+ trees are
descriptors of the free extents in the AG [SDH99]. Each descriptor consists of an
AG relative starting block and a length. One of the B+ trees is indexed by the
starting block of the free extents, and the other is indexed by the length of the
free extents. This double indexing allows for very flexible and efficient searching
for free extents based on the type of allocation being performed.

XFS provides a 64 bit, sparse address space for each file. The support for
sparse files allows files to have holes in them for which no disk space is allocated.
In order to keep the number of entries in the file allocation map small, XFS uses
an extent map rather than a block map for each file.

XFS uses a write ahead logging scheme that enables atomic updates of the
file system [AW99]. Logging new copies of the modified items makes recovering
the XFS log independent of both the size and complexity of the file system.
Recovering the data structures from the log requires nothing but replaying the
block and inode images in the log out to their real locations in the file system.
In the next sub section, we will see how the factors described above influence the
performance of the XFS.

4.2.3 Performance Scalability

In addition to managing large amounts of disk space, XFS is designed for high
performance file and file system access. XFS is designed to run well over large,
stripped disk array where the aggregate bandwidth of the underlying drives ranges
in the tens to hundreds of megabytes per second. The key to performance in these
arrays are I/O request size and I/O request parallelism. Modern disk drives have
much higher bandwidth when requests are made in large chunks. Since there are

6Small file performance in most file systems is limited by slowly improving disk access times,
even though current file systems improve on-disk locality by allocating related data objects in
the same general region. The key insight for why current file systems perform poorly is that
locality is insufficient - exploiting disk bandwidth for small data objects requires that they be
placed adjacently

33

CHAPTER 4. RELATED WORKS ON STORAGE MANAGEMENT

practical limits to individual request sizes, it is important to issue many requests
in parallel in order to keep all of the drives in a stripes array busy.

The first step in allowing large I/O requests to a file is to allocate the file as
continuously as possible. This is because the size of a request to the underlying
drives is limited by the range of contiguous blocks in the file being read or written.

XFS uses a combination of clustering, read ahead, write behind, and request
parallelism in order to exploit its underlying disk array [AW99]. For high per-
formance I/O, XFS allows applications to use direct I/O to move data directly
between application memory and the disk array using DMA 7, which thereby pro-
vides them with access to the full bandwidth of the underlying disk array without
the complexity of managing raw disk devices [SDH99]. In the next section, we’ll
examine the LVM and see how it differs from the Volume Manager in XFS and
GFS.

4.3 Logical Volume Manager (LVM)

This section will describe the Logical Volume Manager, how it functions and
the components that influence it’s functionality. Current disks on the PCs can
be partitioned with primary partitions and additionally extended partitions. A
minimum of one primary partition is required and a maximum of four primary
partitions per disk is allowed as explained in [Mau99]. As a method to handle disk
partitions more flexible, there is also the option to create one extended partition
per disk at the cost of losing one primary partition. The extended partition itself
is unusable for file systems. Instead it is used as a container to overcome the
limitation of primary partitions: within an extended partition, logical partitions
can be created which in turn can be used. The BIOS normally requires that at
least one primary partition is present which is tagged active and contains the
operating system 8.

A volume manager is a subsystem for online disk storage management which
has become increasingly used across UNIX implementations and is a serious en-
abler for Linux in the Enterprise Computing area. It adds an additional layer
between the physical peripherals and the I/O interface in the kernel to present
a logical view of disks, unlike current partition schemes where disks are divided
into fixed-sizes.

Advanced Logical management tools and software RAID are the specialties
of the LVM and Multiple Devices (MD) [Zyn99] drivers respectively. These are
the two most widely used Linux Volume Managers today [Mau99].

7Direct Memory Access
8This is true at least for older operating systems - Linux a clever operating system has a

number of boot managers which are able to boot the kernel even from logical partitions

34

4.3. LOGICAL VOLUME MANAGER (LVM)

How LVM operates

LVM allows you to handle disk space dynamically instead of statically [Mau99].
The additional abstraction level allows logical groupings of storage to be manip-
ulated independent of the actual logical devices which are being used. The user
gains flexibility in allocating, moving, and replacing specific devices.

It allows to handle disk space very flexibly not only at installation time but
also any time later. But for this, some new ideas have to be adopted. Basically
the BIOS limitation of four primary partitions can’t be overcome but in effect
this is what happens. Let’s take a look at the terms of LVM.

A physical Volume(PV) is the basic building block. It is a primary partition
on a disk, usually only one out of the four possibilities. PV is the lowest level in
the Linux LVM storage hierarchy [Mau99]. A PV is a single device or partition
and is created with the command: pvcreate /dev/hda1. This step initializes a
partition for later use.

Multiple already initialized PVs are merged into a Volume Group(VG). This
is done with the command: vgcreate testVg /dev/hda1 /dev/hda2. Both hda1
and hda2 must be PVs. One or more (up to 255) physical Volumes form a
Volume Group(VG). The VG named testVg now has the capacity of two PVs
and more PVs can be added at any time. This steps also registers testVg in the
LVM kernel module. Volume Groups are ”containers” of disk space. VGs can be
imagined as a pool of disk space or as an extensible, huge stock of storage where
you don’t have to buy all of the goods at once. As long as there is some storage
you can get it and if your stock is running low, you can add some more storage
by adding disks without the need to repartition or creating new mount points.
Up to 99 VGs are possible per machine at the moment.

Figure 4.3 illustrates the storage architecture of LVM. Two physical Volumes
have been used to create a Volume Group. Three Logical Volumes have also been
created from this VG.

LVs are actual block devices on which file systems can be created. Creating
an LV is done by: lvcreate -L1500 -ntestLv testVg. This command creates a 1500
MB linear LV named testLv. The device node is /dev/testVg/testLv. Every LV
from testVg will be in the /dev/testVg/ directory [TM99].

Like partitions, Logical Volumes (LV) can handle ”raw partitions” like databases
[Mau99]. A maximum of 255 LV can be defined per VG. LVs can reside anywhere
in a Volume Group, but they can’t span the borders of a VG. A VG can be viewed
as a large pool of storage from which Logical Volumes(LV) can be allocated. PVs
can be splitted further into Physical Extents (PEs), similarly the smallest unit
of a Logical Volume is called a Logical Extent.

A file system on testLv may need to be extended. To do this the LV and
possibly the underlying VG need to be extended. More space may be added to a
VG by adding PV’s with the command: vgextend testVg /dev/hda3 where hda3
has been ”pvcreated”. The device testLv can then be extended by 100 MB with

35

CHAPTER 4. RELATED WORKS ON STORAGE MANAGEMENT

PV PV2PVs

VG with 2 PVs

VG

LV

LV

LV
PV PV A maximum of 255 LVs

can be defined from a VG,
we’ve defined 3 LVs here for example.

Figure 4.3: The Logical Volume, Volume Groups and Physical volumes

the command: lvextend -L+100 /dev/testVg/testLv if there is 100 MB of space
available in testVg. The commands vgreduce and lvreduce can be used to shrink
VG’s and LV’s [TM99].

When shrinking volumes or replacing physical devices, all LEs must sometimes
be moved off a specific device [Mau99]. The command pvmove can be used in
several ways to move any LEs off a device to available PEs elsewhere. There are
also many more commands to rename, remove, split, merge, activate, deactivate
and get extend information about current PVs, VGs and LVs [TM99].

There developments underway for a method for ”snapshotting” with Linux
LVM. This is a way of doing efficient on-line backups. A user command is used
to initiate a snapshot at which time the current stable state of the volume is
”frozen”. The file system and volume can continue to be used but any writes
will result in a copy of the original block to a separate volume. The old and new
location of each modified chunk is maintained in the LVM. Using pointers to the
original data, the snapshotted version can be recovered later [TM99].

36

Chapter 5

Related works on the Replication
of files

Overview

In order to improve the performance and high availability of the file system, it is
important to implement replication [Ben00]. Replication is the maintenance of
many copies of a file in a system [HHB96]. Performance improvement occurs when
access to data from a local storage medium is faster, cheaper, or less subjected
to congestion than from a remote store. A suitable replication service must
enhance availability in the face of communication outages, as well as system or
storage failures [SG94]. In this chapter, replication design alternatives will be
discussed, followed by the different update protocols. Section 5.3.1 will describe
the replication procedures in the Ficus file system while section 5.3.2 covers the
Harp file system.

5.1 Replication Design Alternatives

There exist three different methods of implementing replication. Replication can
be implemented manually or explicitly by the systems administrator. There is
also the lazy-replication, carried out by the system during low load periods in a
transparent way. The last one is based on the group communication, where every
write request is sent to all servers at the same time.

There exist different implementations of replication modes in some file systems
[Gos94]. Replication systems can be usefully classified along several dimensions:
conservative vs. optimistic update, client-server vs. peer-to-peer, and immedi-
ate propagation vs. periodic reconciliation [GRR99]. A fundamental question
in replicated data systems is how to handle updates to multiple copies of the
same data item [HHB96]. If copies cannot communicate instantaneously, then
concurrent updates to different replicas of the same data item are not possible.

37

CHAPTER 5. RELATED WORKS ON THE REPLICATION OF FILES

5.1.1 Conservative vs. optimistic update

Conservative update replication systems prevent all concurrent updates, causing
mobile users who store replicas of data items to have their updates rejected
frequently, particularly if connectivity is poor or non-existent [HHB96]. Even
when connected, mobile users will spend bandwidth to check consistency at every
update. This strategy is often used in the wired world. The Harp file system
implements this approach. Optimistic replication on the other hand allows any
machine storing a replica to perform an update locally, rather than requiring
the machine to acquire locks or votes from other replicas. Optimistic replication
minimizes the bandwidth and connectivity requirements for performing updates
[GRR99]. The Ficus file system uses optimistic updates.

5.1.2 Client-server vs. peer-to-peer

In client-server replication, all updates must be propagated first to the server
machine that further propagates them to all clients. For example when updat-
ing the cache of the clients in NFS. Peer-to-peer systems allow any replica to
propagate updates to any other replica [Ben00] [GRR99]. Client-server systems
simplify replication systems by limiting costs thereby imposing a bottleneck at
the server. Peer systems can propagate updates faster than Client-server systems
by making use of any available connectivity. For example Rumor file system
[GRR99]. Client-server replication is a good choice for some mobile systems that
disconnect from a central network meanwhile peer replication is a good choice
when connectivity patterns of the mobile computers are less predictable [HHB96].

5.1.3 Immediate propagation vs. periodic reconciliation

Updates to data replicas must be propagated to all other replicas. Immediate
propagation notifies other replicas of the new state of the data as quickly as
possible, when it works. Rumor also implements the Immediate propagation
update. Alternatively, updates can be propagated at a later and more convenient
time, typically batched. This option of periodic reconciliation does not spread
updates as quickly, but allows propagation to occur when it is cheap or convenient
[HHB96].

5.1.4 A continuous consistency model

This approaches depends on dynamically trading consistency for availability using
a continuous consistency model. In this model, applications specify a maximum
distance from strong consistency 1. Decreasing consistency results in a corre-
sponding increase in overall availability. Thus, a continuous consistency model

1where existing optimistic models leave this distance unbounded

38

5.2. UPDATE PROTOCOLS

exposes a tradeoff between consistency and availability that can be dynamically
varied based on changing network and service characteristics [YV01].

5.2 Update Protocols

Maintaining consistency among copies when a replicated file is updated is the
major design problem of a replicated file system [CD01]. Since it may be desirable
to update all copies of a file immediately, servers must be able to determine, based
on version numbers or timestamps, whether copies are up to date before a read
operation is performed. If version numbers are used, a server which receives
a request to perform a read or write operation on a replicated file can request
version numbers from other servers listed in the file suite. The latest version
number will be considered the current version of the file.

The problem is how many copies of the file should be updated immediately.
There are two types of solutions to this problem. Voting solutions and non voting
solutions [HHB96]. Voting solutions are results of negotiations between sites to
reach an agreement on control decisions. Non voting solutions are not the result
of any negotiations. One site makes the decision.

5.2.1 Primary copy

The primary copy approach is based on the concept of centralization. There is a
primary server which is in charge of making all sequencing and synchronization
decisions for all transactions [Ben00]. Writes are always done to the primary
server [SG94]. Before write is done, it has to be written to stable storage at the
primary site. If the primary server crashes, updates to other sites are stopped
and the primary server becomes a bottleneck to the system. Reads can be done
from any server storing a replica. The system is more fault tolerant for reads and
the load is well balanced [CD94].

The diagram in figure 5.1 shows the primary copy model. When a client
intends to modify a file called f, the request gets to the primary server which then
propagates the updates of file f to the secondary servers. If the client intended
to read the data, it could read it directly from one of the secondary servers. The
Harp file system uses this approach.

5.2.2 Voting or simple majority

According to the majority voting approach, to the multiple copy update problem,
a site on which a transaction updating a given replicated data is to be performed,
must obtain the consent of at least a majority of sites storing a copy of this data.
If the site does not obtain a majority of votes, the transaction is not allowed to
proceed until some later time [Gos94]. The advantages of this method are: It

39

CHAPTER 5. RELATED WORKS ON THE REPLICATION OF FILES

Client

Primary
Server

Secondary
Server

Secondary
Server

read f

update f

update f

f

f

f

write f

Figure 5.1: The primary copy method

forms the basis of concurrency control to preserve the initial consistency of the
data. It also maintains mutual consistency in the system because the majority
of data copies are guaranteed to be the same [CD94].

Client

f

f

ff

f

OK, V = 4

OK, V = 4

OK. V = 4

Figure 5.2: The simple majority voting

Figure 5.2 illustrates the simple majority voting protocol. The client intends
to modify the file f and from the five sites storing a copy of this data, three of them
responded positively and version number of the file was the same. In this case,
the client will proceed with it’s modification because the majority responded.

5.2.3 Quorum based voting or weighted voting

With this method, each replica of a file is assigned some number of votes. To
perform a read operation, a transaction must collect a read quorum of r votes
[HHB96]. To perform a write operation, a transaction must gather a write quorum

40

5.3. REPLICATION STRATEGIES IN OTHER FILE SYSTEMS

of w votes. The values r and w must be such that r + w is greater than the total
number of votes allocated to that file [Gos94].

Read and write quorums intersect in at least one site. This method, guar-
antees serial consistency of transactions. It continues to operate correctly with
inaccessible copies. It does not insist that a majority of the replicas are updated.
The flexibility offered by this method is very important to distributed operat-
ing system environment, where different applications have different requirements
[CD01].

The diagram in figure 5.3 illustrates the quorum based voting for a read
request. If the servers C-L have the last version number, any read quorum will
include at least any of these sites. By picking the one with the highest number,
the reader knows it is getting the most recent one.

The diagram in figure 5.4 illustrates the quorum based voting for a write
request. If the servers D,H,L,I,J,K have the last version number, any write quo-
rum will include at least any of these sites. By picking the one with the highest
number, the writer knows it is getting the most recent one.

5.3 Replication strategies in other file systems

There are different approaches to replication. NFS doesn’t support replication
but the Sun Network Information Service (NIS) is a separate available service for
use with NFS, and it supports the primary copy model for replication [CD01].
The caching of file and data in clients computers is another form of replication,
like in the Andrew File System (AFS). In this section, we will take a look at the
replication strategies in the Ficus Distributed File Systems and the Harp File
System.

Nr = 3
Nw = 10

N = 12

F G H

J

C DB

I

E

A

LK

Figure 5.3: The Quorum based voting when reading from a file

41

CHAPTER 5. RELATED WORKS ON THE REPLICATION OF FILES

Nw = 6

N = 12
Nr = 7

D

F G H

J K

C

I

E

A

L

B

Figure 5.4: The Quorum based voting when writing to a file

5.3.1 Replication in the Ficus Distributed File Systems

Ficus is a replicated general filing environment for UNIX, intended to scale to very
large networks. The system employs an optimistic ”one copy availability” model
[Hei98] in which conflicting updates to the file system’s directory information are
automatically reconciled, while conflicting file updates are reliably detected and
reported [Pag90]. The system architecture is based on stackable layers, which
permits a high degree of modularity and extensibility of the file system services.

OS Kernel

Logical
Layer

NFS

Physical
Layer

Physical
Layer

UFS
file System

UFS
file system

disk disk

Figure 5.5: Ficus Stack of replication layers

Figure 5.5 shows a file with two replicas, one of which is accessed via NFS. The
layered model provides a high degree of flexibility in the Ficus architecture. The
logical layer is responsible for replica selection, notifying physical replicas about

42

5.3. REPLICATION STRATEGIES IN OTHER FILE SYSTEMS

the existence of updates, and managing reconciliation. The physical layer on the
other hand implements the abstraction of an individual replica of a replicated
file. It uses whatever underlying storage service is available 2 to store persistent
copies of files.

The primary difficulty with replication services in a distributed environment
concerns what to do about updates. The issue is mutual consistency keeping the
multiple copies of an object consistent with one another. To solve this problem,
the optimistic model is used in Ficus [Hei98]. Let’s imagine an environment in
which updates are allowed whenever a copy of the needed data is available. When
multiple copies are reconnected and if any were out of date, the new version would
be automatically propagated to make them current.

Ficus has been designed in such a way that it can function with other file
systems. The concept is that of a stack of services, with the interface between
all layers having an identical structure, so that one could assemble the services
from an available set of building blocks [Hei98]. An important aspect of such
an approach is the definition of the interface. It must be one that supports full
function and allows high performance both when adjacent layers are in the same
address space on a single machine, and when separated by network communica-
tion. That’s why the stackable layers interface was proposed for Ficus.

Ficus software may be installed at the Virtual File System (VFS) [BB99] layer
of a file system, where Sun’s Network File System is typically connected [Pag90].
The layered model provides a high degree of flexibility in Ficus architecture. Since
the interface to each layer in the system is the standard vnode interface, NFS
may be inserted between any pair of layers. When NFS is used above the logical
layer, Ficus can be accessible to any type of machine for which an NFS client
implementation exists.

Two algorithms are used in Ficus: The first detects update conflicts among
data objects, while the second automatically reconciles directory conflicts to pro-
duce a correct integrated result. The conflict algorithm associates a version vector
with each replica of each object and compares vectors to detect conflicts [Hei98].
The version vector encodes the update history of the replica. Version vectors are
used to support concurrent, unsynchronized updates to file replicas managed by
non communicating physical layers.

The reconciliation algorithm examines the state of two replicas, determines
which operations have been performed on each, selects a set of operations to per-
form on the local replica which reflect previously unseen activity at the remote
replica, and then applies those operations to the local replica. The directory
reconciliation algorithm determines which entries have been added to or deleted
from the remote replica, and applies appropriate entry insertion or deletion oper-
ations to the local replica. The reconciliation algorithm and the basic file update
propagation services are both incorporated into the general Ficus file system

2such as a UNIX file system

43

CHAPTER 5. RELATED WORKS ON THE REPLICATION OF FILES

reconciliation protocol.
The next section describes the replication technique in the Harp file system.

5.3.2 Replication in the Harp File System

Now we will take a look at the replication strategy used in the Harp(Highly
Available, Reliable, Persistent) File System. Harp provides highly available and
reliable storage for files: With very high probability, information in files will not
be lost or corrupted and will be accessible when needed, in spite of failures such
as node and media crashes [Lis99]. Harp uses a novel variation of the primary
copy replication technique that provides good performance because it lays more
emphases on network communication rather than improving on disk access. Harp
is intended to be used within a file service in a distributed network; for example
with NFS or AFS [Lis99]. The idea is that users should continue to use the file
service just as they always did. However, the server code of the file service calls
Harp 3 and achieves higher reliability and availability as a result. Harp makes
calls to the low-level UNIX file system operations.

Server (NFS)

Unix file system
Interface

Harp file system
Interface

Low - level
Unix file system code

Client requests

(network)

VFS Interface

Figure 5.6: Harp system structure

As illustrated in figure 5.6, the Harp code is just a small layer in the overall
system. Clients use Harp through NFS.

All modifications to a file are reliably recorded at several server nodes. As
described above, with the primary copy replication technique [Gos94], the client’s
calls are directed to a single primary server, which communicates with other
backup servers and waits for them to respond before replying the client. The

3via the VFS interface

44

5.3. REPLICATION STRATEGIES IN OTHER FILE SYSTEMS

system masks failures, by performing a failover algorithm in which an inaccessible
server is removed from service. When a primary server performs an operation, it
must inform enough backups to guarantee that the effects of that operation will
survive all subsequent failovers.

Modification operations require a two-phase protocol. In phase 1, the primary
server informs the backups about the operation. When the backups acknowledge
receipt of this information, the operation can commit.

Harp is one of the first implementations of a primary copy scheme that runs on
conventional hardware. Harp achieves good performance by recording the effects
of modification operations in a log that resides in volatile memory; operations in
the log are applied to the file system in the background [Lis99]. Essentially, it
removes disk accesses from the critical path, replacing them with communication
(from the primary to the backups), which is substantially faster if the servers are
reasonably close together.

In using the log to record recent modifications, Harp is relying on a write-
behind strategy, but the strategy is safe because log entries are not lost in failures.
Each server is equipped with a small un-interruptible power supply(UPS) that
allows it to run for a short while after a power failure occurs. After power failure,
the servers uses a few minutes to copy the information in the log to disk. The
combination of the volatile log and the UPS is one of the novel features of Harp
[Lis99].

Harp also supports the Virtual File System(VFS) interface [BB99]. All opera-
tions in Harp are implemented atomically: an operation either completes entirely,
or has no effect in spite of concurrency and failures.

When a failure or a recovery from a failure occurs, the group runs a fail-over
protocol called view change [Lis99]. The result of a view change is a reorganization
within the group, in which a failed node is removed from service, or a recovered
node is put back into service.

The performance results of Harp indicate that, it provides equal or better
response time and system capacity than an un-replicated implementation of NFS
that uses UNIX files directly [Lis99].

In the chapter 7, we will evaluate the different replication techniques discussed
in this chapter.

45

CHAPTER 5. RELATED WORKS ON THE REPLICATION OF FILES

46

Chapter 6

Related works on file version
management

A file may have a sequence of versions which are the results of file modification
[CD01]. Each of these versions are written only once and are tentative. This
sequence of file versions forms a chronological history of the file [Gos94]. Why
is it important to keep a series of file versions in the system? There are two
important reasons for keeping file versions: The first is for recovery purposes and
the second is to retain an archive for use when a client needs to revert to an earlier
state. In this chapter, the first section will discuss file version control in GFS,
Amoeba and the shadow pages. The second section covers mutual exclusions and
concurrent accesses.

6.1 Related works on file version management

Version numbers are used to document the modifications undergone by a file.
With version number management, it is possible to retrieve old copies of a file if
need be.

6.1.1 File version control in the Global File System

In the Global File System (GFS) a version number is associated with each lock.
Whenever the data associated with a lock is changed, the version number is
incremented. Clients may use cached data instead of rereading from disk as long
as the version number on the dlock (see chapter 4) is unchanged since the data
was last read. The drawback with version numbers is that a client must still read
the version number which is located on the dlock storage device or dlock server;
this is often a high-latency operation even simple SCSI commands that do not
touch the disk often require at least one millisecond [Pre99].

47

CHAPTER 6. RELATED WORKS ON FILE VERSION MANAGEMENT

6.1.2 File version control in the Amoeba File Service

One distinctive feature of optimistic concurrency control is that old versions of
files corresponding to currently committed transactions are stored by the server
[Ben00]. The Amoeba File Service implements optimistic concurrency controlled
by a version mechanism. It uses a combination of an optimistic concurrency
control mechanism and a locking mechanism to prevent conflicts in simultaneous
updates [Gos94]. The basic model is that, a file is a time-ordered sequence of
versions, where each version is a snapshot of the file made at a moment determined
by a client. The current state of a file is contained in the current version. At
any instant, one version of the file is current. Committed versions represent past
states of the file, whereas uncommitted versions represent possible future states
of the file.

6.1.3 The shadow pages

The shadow pages technique may be used in making new versions of files. Initially
the new version of a file can be constructed just by copying the file index of the
current version. Each index entry contains a pointer to the block containing a
page in the file and a version number. The first time a write operation modifies
a page, the service gets a new disk block and writes the new tentative version
in it [Ben00]. That means the original page is left unchanged. The tentative
version of the page is called a shadow page [CD01]. When the transactions is
committed, the tentative version of a file created by the transaction becomes a
current version and the file index is updated.

6.2 Mutual Exclusion and Concurrent accesses

Many approaches have been used or proposed to solve the concurrency control
problem in transaction processing systems. The most commonly used are locking,
optimistic concurrency control and timestamp ordering [Gos94] [CD01].

• Locks are used to order transactions that access the same data items. Data
that is about to be accessed by any process must first be locked before
any operation can be applied on it. For example, it is preferable to adopt
a locking scheme that controls the access to each data item so that there
can be several concurrent transactions reading a data item, or a single
transaction writing a data item, but not both.

• Optimistic concurrency control allows transactions to proceed until they
are ready to commit, where upon a check is made to see whether they have
performed conflicting operations on data items.

48

6.2. MUTUAL EXCLUSION AND CONCURRENT ACCESSES

• Timestamps ordering uses timestamps to order transactions that access the
same data items according to their starting times. For example each trans-
action is assigned a unique timestamp value when it starts. This timestamp
is later on used to define its position in the time sequence of transactions.

The Dragon Slayer system was designed to implement the locking mech-
anism for synchronization purposes as stated in [WKC+94] and other schedul-
ing algorithm have been examined in [Fre99]. Locking facilitates access shared
resources. A transaction or atomic action may lock objects to ensure their in-
accessibility during a temporarily inconsistent state, that is, to achieve mutual
exclusion. This implies that other transactions that attempt to access a locked
object will wait for the transaction to end. In Dragon Slayer III all trans-
actions must be well-formed, that means a process must lock an object before
accessing it. It does not lock an object which is already locked and before it
completes, it must unlock the object it locked.

Read-only transactions in Dragon Slayer III will use locking in order to
guarantee that the data being read is not modified by other transactions at the
same time. If a process has locked an object for reading, another process can
still lock the same object for reading, but if a process intends to lock the object
for writing, the lock will not be granted. If a process intends to do modification
on an object, it has to lock the object exclusively. In this situation locks will
not be granted to processes which intend to read this object. To maintain data
consistency in Dragon Slayer III, the single writer and multiple readers policy
will be applied. This issue will be a thesis topic in future.

49

CHAPTER 6. RELATED WORKS ON FILE VERSION MANAGEMENT

50

Chapter 7

Concept and Design

This chapter will present the design goals of the File Service. The Problems to
be solved have already been outlined in section 1.3. The requirements of the File
Service can be divided into two basic groups: the user goals and the system goals.
From a users point of view, the system should be convenient to use, reliable, safe
and fast. On the other hand Dragon Slayer III expects the File Service
to provide operations for data manipulation, a high degree of data availability
through file replication and relocation of files between nodes.

This chapter will concentrate on the design and specification of the File Ser-
vice. Section 7.1 will deal with designing the key aspects of the file services. In
the section 7.2 discussions will be on stateless service. Section 7.3 will explain
the procedures of data modification in Dragon Slayer while section 7.4 covers
the mechanism used for the maintenance of data consistency. File replication will
be explained in section 7.5 and in section 7.6 crash recovery will be discussed.
Section 7.7 will describe the components of the Dragon Slayer system. File
partitioning will be covered in section 7.8 to 7.9 while fragmentation of files will
be discuss in section 7.10.

7.1 Designing the File Service

During the design process, considerations were made on the following areas:

Users requirements Fulfilling the users requirements and at the same time
respecting the basis architecture of the Dragon Slayer system.

Stateless Service From the discussions in chapter 2, we know that all the ser-
vices in Dragon Slayer are stateless. Which strategies will the file service
use to maintain information about the open files in the system?

Data Modification procedures Writing to the replicas of a file without im-
plementing a good concurrency control mechanism can lead to data incon-
sistencies among replicas.

51

CHAPTER 7. CONCEPT AND DESIGN

Maintaining data consistency Being aware of the fact that a distributed file
service is responsible for operations on files, considerations were being made
on the issue of file sharing, avoiding and detecting conflict among processes
trying to access the same file thereby making sure that the files accessed
by the users are up-to-date.

File replication Due to the distributed nature of Dragon Slayer, the sup-
port of file replication will be centered around distributed or dynamic repli-
cation services. Which of the replication strategies discussed in chapter 5
will best suit the architecture of Dragon Slayer.

Crash recovery After a system failure, how will the file service continue with
it’s activities and what happens to the transactions that were interrupted?

7.1.1 User requirements

Functionality The minimal requirement for a distributed file service is to guar-
antee that the users and client programs are able to access their files locally
or remotely without the knowledge of what site is storing the file.

Quality of service The question to be answered here is: What is the added
value arising from a distributed service? The first issue to be considered
here is performance. To offer a reasonable speed during file access, the file
service will always provide the users by default with local copies of their
files. In the case where a copy of the file is not stored at the local node, the
file service will automatically replicate the file to the users local node or it
can direct the request to the next nearest node.

• Another issue I’ve considered in relation to performance is the case
of accessing multimedia data. At present, there are new technologies
like the Hierarchical Storage Management (HSM) which provides au-
tomated management of data for a multilevel storage hierarchy using
predefined user policies which specify service levels for document size,
access rates, and performance. With HSM, the Dragon Slayer

system can satisfy the need to manage data more granularly using
automatic and selective migration, archiving and dynamic retrieval
[Ren99]. HSM is being discussed in this work because, Dragon

Slayer III aims at being a high performance file system, which should
also be in a position of supporting advance hierarchical storage man-
agement services. This issue will not be implemented in this work but
may be the feature will be added to the design of the file service in
future.

• The second issue to be considered is reliability and availability. Due
to the fact that the instance of the file service will be running on each

52

7.2. STATELESS SERVICE

Dragon Slayer node, means that even if a node fails, this will not
have critical impact on the users who were carrying out different file
transactions at the node. The transactions will be interrupted only for
a short period of time and the request will be directed to other nodes
storing replicas of the files being accessed.

7.2 Stateless service

When designing the file service, I took into consideration the modularity structure
of Dragon Slayer. We now know that it is only the Command Manager in
the Dragon Slayer system that is stateful. Having this in mind, I had to
consider at what level it will be better for the file service to store information
on the open files in the system. If the open file table is stored locally by the
service instance at the node, data access rates will become faster. On the other
hand, it will create inconsistencies among the other file tables resident on other
nodes. A synchronization mechanism will be needed to keep all the local tables
consistent. This will be more costly to the system because the communication
overhead will increase. I therefore decided to reside the open file table at the
Command Manager level. This decision has two advantages. The fact that the
Command Manager is stateful unlike the Node Manager, facilitates information
storage at the Command Manager. The Command Manager on the other hand
is responsible for coordinating the communication among the different nodes in
the system. Therefore it becomes much more faster for messages to be sent to
other nodes if the open file table needs to be queried. I’ll demonstrate how to
open a file as an example to describe the algorithm used by all the file operations
and also demonstrates the interaction between the file service, directory service
and resource manager.

Algorithm to open a file

The client program issues an open command. The sequence diagram in figure 7.1
illustrates the open method. The Command Manager receives the command line
from the client and forwards it to the open command. When the open command
receives the command line, it parses the command line in order to set the values of
the parameters. After the parameters have been set, a lookup request is prepared
and sent out via broadcast to the nodes. When this request arrives the nodes, the
Node Manager agent invokes an instance of the directory service. The directory
service returns the vnode of the file which contains all information about the file
if it exists.

After a locate request has been issued, replies are expected from all the active
nodes. When the locate replies have arrived, they are evaluated to know how
many nodes are alive in the system at that moment. These replies are also

53

CHAPTER 7. CONCEPT AND DESIGNClient : ClientAgent Command Manager : ... Node Manager Directory Service : Dir... Resource Manager File Service Interface : ...Locateı˝Request Open Request : OpenRequest

Client :
ClientAgent

Command
Manager : Op...

Node Manager Directory Service :
DirectoryService...

Resource
Manager

File Service
Interface : Files...

Locate
Request

Open Request :
OpenRequest

open(pathname, flags)

execute()

initScript(CentralRegistration *)

executeScrit()
lookupFile(string, VNode*&)

execute()

lock(pathname)

initScript(CentralRegistration*)

executeScript()

openObject(string, DWORD)

sendReply()
sendReply()

finishScript(CentralRegistration*)

finishScript(CentralRegistration *)

Figure 7.1: Sequence diagram for the open command

evaluated to know on which node a replica exist. The majority voting rule is
applied when waiting for the replies and it holds, if more than 50 % of the nodes
replied unanimously.

The Command Manager waits for the replies coming from the nodes. When
the majority of the replies have arrived, these replies are evaluated in order to
find out which of the nodes stores a copy of the file, or if the file exists at all. If
the file does not exist, the Command Manager sends a message to the client and
stops the transaction. But if the file exists, the flag is evaluated to find out if it
is set to read only or write only.

If the flag is set to read only, the addresses of the nodes which sent in replies
with the address of the client are compared. The local nodes’ address will be used
for subsequent requests. A read lock is requested from the Resource Manager at
the node. If the lock is granted, send the open request to that particular node.
Read request are sent to the local nodes by default if they store a replica of the
file.

If the flag is set to write only, get all the addresses of the nodes that replied
will be compiled. A multi-cast is sent to the resource managers at those node
requesting for a write lock on the files. If the write locks have been granted by all
the resource managers, the open request is generated and sent out to the nodes
which have locked the files.

When the open request arrives the node, the Node Manager agent invokes an

54

7.3. DATA MODIFICATION IN DRAGON SLAYER

instance of the file service. The file is opened and the file descriptor is sent to
the Command Manager with the open reply. When the open reply arrives the
Command Manager, the file record of the opened file are put together and with
the file descriptor returned from the system, these information will be inserted
into the open file table map.

If the process is successful, a message is sent to the client with the file de-
scriptor. If the reply arrives the client, it gets the file descriptor and uses it in
the read and the write commands.

7.3 Data modification in Dragon Slayer

As mentioned earlier, the concurrency control policy that is supported by Dra-

gon Slayer III is single writer and multiple readers policy. In future Dragon

Slayer intends to implement a locking mechanism to be used for controlling
concurrent data access.

The File Service will use the shadow copy approach to implement file oper-
ations that modify data objects in the system. This ensures that, a transaction
is either completed or it must be returned to it’s initial state. The shadow copy
approach guarantees mutual consistency of replicated data. Data modification
takes place on a shadow copy, after a transaction completes successfully and has
been committed, then the shadow copy will be stored as the current copy. When
a file has been modified, after committing the transaction, the most currently
committed version of the file becomes the current version.

If a file has been opened successfully for writing and a file descriptor has been
returned to the client, the client uses it to complete the write command before
sending it to the Command Manager. When the Command Manager receives the
command line from the client, it is forwarded to the write command. The write
request is prepared and sent out via multicast to those nodes having replicas.

When the write request has been processed at the nodes, a reply is sent to
the Command Manager. The Command Manager evaluates the replies. If all the
transaction were successful at all the nodes, the Command Manager will send a
commit request.

When the commit request reaches the nodes, the shadow copy on which the
data was written to, will be turned into the current copy and the version number
will be incremented.

If the write transaction is a failure because of one reason or the other, the
Command Manager will send a rollback request to all the nodes involved to
destroy the shadow copies. After the shadow copies have been destroyed, the
write request will be repeated.

55

CHAPTER 7. CONCEPT AND DESIGN

What happens if a node fails during a write transaction

Inconsistencies often occur when data modification on some replicas is successful
and on others not. As mentioned earlier, a write transaction can only proceed in
Dragon Slayer when more than 50 % of the nodes with replicas are present.
Consider this situation, where an open request has been sent to the majority of
nodes with replica. The Command Manager sends a write request to the nodes
which have already opened the replicas for writing. If during the write transac-
tion, one or two nodes crashes, which were already processing the write request,
then the following steps will be taken to ensure that after a write transaction the
replicas are mutually consistent.

• Let us assume that four nodes are involve in the write transaction. If
during the transaction, one node fails and the three nodes leftover write
successfully to the replicas. In this situation, the write transaction will be
committed on the three nodes that wrote successfully and an update will
be carried out later with the node that failed.

• Let’s take a look at another scenario. If during the transaction, two nodes
fail and two other nodes writes successfully to the replicas. In this situation,
we don’t have any majority that has completed the write transaction. Half
of the nodes did not complete the transaction and the other half completed.
In this case, the majority voting rule will not be respected if the transaction
is committed. The solution in this case, will be to stop the transaction, reg-
ister it as a failure and issue a rollback in order to delete the shadow copies
at the nodes. That means a write request will be sent by multicast to all
the nodes concern. The communication overhead when sending a multicast
to all the four nodes involves is relatively lower than the communication
overhead when carrying out an update with two or more nodes that failed.

I came to the conclusion that, if more than one node fails during a write transac-
tion, it is better to repeat the write request, because the communication overhead
will be relatively lower than if we had to send updates to many nodes at once.

7.4 Version consistency mechanism for the main-

tenance of data consistency

Ideas that are used in the design of concurrency control mechanisms have been
discussed in section 6.2. In this section, we will concentrate on the approach
to be used when maintaining data consistency among replicas. The Dragon

Slayer system has been designed to implement strong data consistency. The
Resource Manager will be responsible for implementing a protocol that will guar-
antee mutual consistency among data in the Dragon Slayer system. The File

56

7.5. FILE REPLICATION

Service on the other hand will implement version consistency to guarantee mutual
consistency among the replicas of a file.

As mentioned in section 7.3, the File Service uses the shadow copy approach
to implement file operations that modify data objects in the system, in order to
ensures that a transaction is either completed or it must be returned to it’s initial
state.

Data modification takes place on a shadow copy and after a commit has been
issued, the shadow copy will be stored as the current copy. The previous current
version is added to the sequence of old versions. In order to avoid file version
conflicts, the File Service has to look for the best method of managing the file
versions.

How should the old file versions be stored in order to make them accessible
to the users when needed? How many old versions should be kept consecutively
and for how long should they be stored in the system? To make sure that the
old versions are always accessible, they should be stored on stable storage. A
logical volume will be created and used for storing these files. Well, these old
versions cannot be stored infinitely, for that reason they could be deleted after
three months in order to create space for the most recent ones. It might be
reasonable to keep five sequences of a file’s version.

The tentative, current and old versions of a file can all be assigned unique
version numbers, because each node that stores a file is responsible for creating all
of its versions and numbering them as they are being created. Dragon Slayer

III still intends to implement a locking mechanism, the file version control will
be coupled with the locks. A file version counter will be implemented alongside
the locks. If a file is granted a read lock, the version counter will not change
it’s state, because modification does not take place during reading. On the other
hand if a file is locked for writing, the file version counter will be incremented as
soon as the write operation has terminated before the lock is released.

Two versions of a file having the same update history should have the same
content, whereas two versions of a file having the same content do not necessarily
share the same update history. The decision to use version control in detecting
inconsistent data rather than the content of the data is based on the fact that it
is cheaper to compare version numbers of a file than the content of the file. When
the version numbers have been compared, if there are any differences within the
version numbers of the replicas, the current version number will be detected and
the outdated replicas will be updated.

7.5 File replication

In chapter 5 we’ve seen the different methods used in creating and updating the
replicas of a file in a system. In Dragon Slayer III a file is created only
at the local node where the client issued the create command. That means

57

CHAPTER 7. CONCEPT AND DESIGN

there is only one copy of the file system wide. Data is replicated at multiple
network nodes to improve on the system’s performance, high availability and
fault tolerance. Storing many replicas in the system leads to faster data access
rates, thereby enhancing the performance of the system. With replicas stored on
failure-independent nodes, the client will always access a replica on another node
should the default node fail or become unreachable.

7.5.1 Replication On Demand algorithm

After considering the different replication strategies, I came to the conclusion that
Replication On Demand will be a good strategy for the Dragon Slayer system.
How does it function? Access to files stored in the system will be documented
in a log file. From the various requests issued on a particular file, one could
estimate the user’s demand and react to it by replicating the files that are highly
demanded. By so doing, we avoid the creation of replicas of a file, which is
rarely demanded. With demand replication, files that are highly demanded will
be replicated more often than files that are rarely demanded.

To satisfy the goals of high availability and fault tolerance, a minimum number
of replicas will be created from those files which are not highly demanded. This
is to make sure that if a node fails, the file can still be accessed on another node.

As was discussed in section 5.1 most file systems use either the optimistic
or the pessimistic approach in maintaining data consistency among replicas and
in propagating updates. From the different replication strategies discussed in
section 5.1 we’ve seen that optimistic consistency models can dramatically in-
crease availability, an unbounded rate of conflicting updates can quickly leave
the system in a delusional state.

Taking into consideration the Dragon Slayer architecture, I’ll prefer to
use a pessimistic approach, because the file system was designed to use a locking
mechanism as stated in [WKBC89]. Concurrent data access will be achieved in
Dragon Slayer III by implementing the lock mechanism. Write operations on
data can only be executed by one process at a time. Many processes can access
the same data for reading but only one process can access data for modification
purposes.

By employing a pessimistic approach in Dragon Slayer III, inconsistencies
are prevented by restricting data updates which could lead to conflicts. Opti-
mistic approaches on the other hand, take the view that it is expensive in terms
of performance to obtain locks and unacceptably costly in terms of availability
to restrict updates, particularly when conflicts are rare anyway.

What approach should be used in Dragon Slayer III to update replicas
at nodes which were not accessible when the other replicas were being modified?

The Dragon Slayer system has a heartbeat, whose function is to monitor
the status of the nodes and keep information about all the nodes in the system.
To acquire information about nodes that are alive or dead, the heartbeat is always

58

7.5. FILE REPLICATION

in the position of supplying up-to-date information as described in the thesis of
[Sie98]. After retrieving the information from the heartbeat service, the method
used for reconciliation will be called in order to update the file at the nodes
having an out-of-date replica. The reconciliation procedures will be discussed in
the next sub section.

To replicate a file and to transfer a file between nodes in the system, leads to
the fact that data has to be copied from one node to another. The implementation
of data transfer and replication will be based on the interprocess communication
in UNIX. The Command Manager will send a Macro-Request to the source node
and the target node to create a socket for use in communicating with the other
node.

7.5.2 Algorithm for reconciling the replicas of a file

• When the file service instance at the nodes receives an open request, a
lookup request is issued to the directory service at the nodes.

• The information concerning the replication grade and the version number
is extracted. These two values are sent to the Command Manager, which
will compare all of them in order to detect any inconsistency among the
replicas. For data modification to take place in Dragon Slayer III, the
voting approach is used among the active nodes storing replicas of the file.
The majority of the nodes must have the same file version number and the
replication grade must also be the same. After the actual version of the
file has been agreed on, the rest of the nodes having older versions must be
updated before a request can be processed.

• Depending on the replication grade and the version number of the replicas,
it is easy to detect the changes in the other replicas by comparing the
version numbers. If all the replicas have the same version number and the
replication grade is the same then the File Service will proceed with the
read or write transactions.

• If the version numbers and the replication grades differ, then there are
inconsistencies among the replicas. The replicas having the same version
number and replication grade will be sorted out.

• If the majority of replicas did have the same version and replication grade,
then the rest of the replicas will be identified as out-dated.

• When the File Service has detected that modifications did take place on
a replicated file, it will choose one of the nodes that responded to the
broadcast message for synchronization. In this case, an update request will
be issued for one of the replicas with the current information to be copied to

59

CHAPTER 7. CONCEPT AND DESIGN

the node having an out-dated replica. During this synchronization process,
data is copied between the two nodes via unicast.

• When all the replicas have been reconciled, the File Service will proceed
with the read or write request. This ensures that the process will get an up-
to-date file for reading or writing. When reconciliation has been completed,
all the replicas will be granted a write lock if a write request had been issued
and a multicast will be sent to the nodes which responded positively to the
locate request.

7.5.3 Replication control

The file name and replication grade are fixed at creation time. When a file is
created, it’s replication grade is one and the version number isone. A file will
always be created at the local node by default. The degree of replication will be
determined by the growth of the number of nodes in the system.

The distribution policy to be used in Dragon Slayer will be based on
randomly distributing replicas. Random distribution of replicas throughout the
system can sharply decrease the latency between a client and the nodes.

Replica selection primarily occurs when opening a file. A lookup operation is
issued by the File Service to the Directory Service. If a client issues a request,
any replica can be used to serve the client’s request because all replicas are equal.
During replica selection, the locally stored replica will be chosen first to serve the
client if it exists. If there is no local replica present and the maximum replication
grade has been reached, the replica nearest to the client’s node will be used.

Proper dynamic selection of replicas will require a characterization of the load
on at a node as well as a measurement of the available bandwidth to each node
in the system.

To summarize this section, replication control includes determination of the
degree of replication and of the placement of replicas.

7.6 Crash recovery

Because of the statelessness of the file service, if the system crashes and recov-
ers, the transactions that were interrupted will be restarted. For the read file
operations, there will be no effect but for the write file operation, the changes
carried out in the shadow copy will be discarded and the request will be repeated.
An update scenario will also take place to ensure that the replicas are mutually
consistent.

60

7.7. COMPONENTS OF THE DRAGON SLAYER SYSTEM

7.7 Components of the Dragon Slayer system

The architecture of the Dragon Slayer III has already been discussed in chap-
ter 2. In this section, I will concentrate on the components of the system which
the File Service has to implement. A client program will also be implemented,
which will act as the only interface for the clients to forward their commands to
the system.

As earlier said, clients will be able to access and manipulate data in the Dra-

gon Slayer file system through the file operations offered by the File Service.
Looking at the structure and components of Dragon Slayer, one can easily re-
alize that the Command Manager is the interface offered by the Dragon Slayer

system to the outside world. That means that a fraction of the file operations
will reside at the Command Manager and the implementation will reside at the
nodes. All the same, there is still a need for a client program which will act as
an interface between the clients and the Command Manager.

7.7.1 Client Interface

The client program gets the arguments passed with the users commands to the
system. Information maintained at the client contains the process ID, the Host
ID and the file handle. This information will be forwarded to the Command
Manager with the users commands. The Command Manager will map this entry
into the open file table.

The File Service will implement the File Command Application Interface. The
File Command Application Interface is the users interface with the system. It gets
user’s commands and forwards them to the Command Manager. The commands
received by the command line interpreter are parsed and later forwarded to the
Command Manager for further processing. The figure on page 10 illustrates the
client interface and the other components of the Dragon Slayer system.

A client interface for a file service is formed by a set of primitive file operations,
such as create, read and write a file. We would adhere to the same file-access
semantics with which standard Unix presents to clients, whereby a file must first
be opened before a read or write operation can be processed.

7.7.2 Command Manager

The Command Manager is stateful and keeps relevant information about the
system, so that after a system failure, it’s easier to recover using the information
stored at the Command Manager and from the log files. The Command Manager
on each node stores information on all the opened objects, their owners and the
type of operations to be carried out on the opened objects. This information will
be stored in form of the open file table. Each file that is opened in the system,

61

CHAPTER 7. CONCEPT AND DESIGN

will be registered in the open file table. Table 7.1 shows the information to be
stored in the open file table.

Attribute name Attribute Contents
Object name The user’s name of the object
object owner The creator of the object
VnodeID The systemwide unique ID of each object in

Dragon Slayer

file descriptor The non-negative number returned by the open
system call

replication grade The number of replicas present in the system
version number The version number of the files
number of replicas Copies present in the system
nodes storing replicas Nodes having a copy of a file
number of parts The number of a partitioned file
file operations The operations to be executed on the objects
subjectID The userID of the person who issued the com-

mand
processID The process ID
hostID The host address from where the command was

issued

Table 7.1: Entries of the open file table

The File Service fetches the file from disk, stores it in memory and gives the
client a connection identifier that is unique to the client and the open file at
the Command Manager, referred to here as the file descriptor. The File Service
maintains the table of opened files and maps the file descriptors to a file record
containing all the attributes of the file including the vnodeID. By so doing, it
would become easier to trace if a file has been opened by querying the open file
table using the vnodeID of the file.

The File Service implements a list of commands which are managed by the
Command Manager and executed by agents. When the Command Manager re-
ceives a command through the command line interface, it puts the commands in a
queue. The idle agents then remove the commands from the queue and fetch the
appropriate service instance from the database for execution. These are the File
Service commands which will then be executed by the agents at the Command
Manager and a Macro-Request will be generated and broadcasted to all the Node
Managers.

When they arrive at the nodes, they will be processed by the Node Manager
agents and each node sends a Macro-Reply to the Command Manager. The
Macro-Replies received from the nodes will be evaluated by the File Service.
After evaluation of these replies, it can decide to terminate the request or to

62

7.8. PARTITIONING OF FILES

proceed with it, depending on whether the file exists or not. If a file does not
exist, open, copy, delete, transfer and replicate requests will be terminated. But
if the file exists, the create request will be terminated.

During the evaluation procedure, the Command Manager stores relevant in-
formation relating to the users which issued the request, the host machine from
where the command was issued, and the file handle to the command. The Com-
mand Manager then forwards the replies to the users after the command has been
completely processed. After each close command has been issued and completed,
the file entries in the open file table relating to the previous command will be
deleted.

7.7.3 Node Manager

The Node Manager is responsible for coordinating all the services locally. The
services at the nodes are stateless. That means the request must contain all the
information needed, for them to be executed by the agents. During the execution
of a command, Macro Requests are sent out to other Dragon Slayer services
like the Directory Service and the Resource Manager.

The Macro-Request received from the Command Manager are executed at
the nodes by agents. These agents invoke an instance of the file system service
after receiving a request directed to the file service. The file service module at
the node consist of a collection of system calls and routines used to process the
request. When execution of the request is completed, a Macro-Reply will be sent
to the Command Manager with the results of the execution. When the client
request data, the data will be sent to the Command Manager which forwards it
to the client.

7.8 Partitioning of files

7.8.1 Composition and decomposition of a file

Decomposition of a file is the process of breaking up a file into parts. Composition
of a file is the process of putting together the different parts of a file to become
one file. This section will explain how a file is decomposed and composed.

7.8.2 Motivation

Why should a file be decomposed into parts in the first place? What advan-
tage does the user get from this process? What advantages does it bring to the
performance of the system?

To answer the first question, it should be clear that a file can only be decom-
posed into parts when the user wishes to partition it. Some users might like to

63

CHAPTER 7. CONCEPT AND DESIGN

work on smaller units of data rather than on a large file. At times this might
occur in order to assist team work, so that each team member can have access
to the different parts. Assuming, for example, a user has a file called history.txt
and decides to partition the file into three parts, see figure on page 13. Due to
the fact that accessing smaller files is faster than accessing larger files, working
with parts can improve the performance of the system. File partitioning also
promotes concurrent work on the different parts of the file thereby making the
system more attractive to the users.

Storage device characteristics that impact file systems design are access times,
transfer rates, addressability, cost, capacity and availability. Due to this changes
with the concept of parts from Dragon Slayer II to Dragon Slayer III,
a part can be split-ted later by the system into a varying number of fragments
depending on the storage needs at each node.

Some of these changes have come about because Dragon Slayer III intends
to make good use of the new storage technologies like LVM and SAN already
mentioned in chapter 4.

7.8.3 Boundary definition

16 500 51618 5081280 4

Introduction.txt Body.txt

Introduction.txt is stored on blocknr. 0 -12. Body.txt is stored on blocknr. 508-518

Nodes are found at different physical sites.

User partitioned the file History.txt

Part1
Introduction.txt

Part2

Body.txt

Node
B

Node
A

User at Node A

History.txt is the parent file

Part 1 Part 2

System InterfaceSystem Interface

Store part1 and part 2

at node A. at node B.

Figure 7.2: The example shows how the system stores parts of a file at different
nodes

We know that each node fragments it’s files according to it’s storage needs.

64

7.8. PARTITIONING OF FILES

Therefore a strategy should be developed for dynamically decomposing parts. It
is obvious that in most systems, disk space is allocated in block sizes defined by
the file system. Depending on the size of the block, a small file might occupy one
or two blocks, and a large file might occupy from five to ten blocks or even more.

That means we don’t need to know the content of the file, since we are not
using characters, rows or spaces to decompose the file. We are only interested in
the exact size of the data that will fit in a block. Decomposing a file dynamically
makes it very flexible for each node to maximize it’s storage facilities.

If history.txt is about to be stored on a disk and there is not enough space
to take all the three parts. Take for example figure 7.2, assume that ”introduc-
tion.txt” and ”body.txt” will be stored at node A and B, because node A did not
have enough space to hold both parts. Stored along side each part, will be the
attributes of the file and information on the location of the other parts.

By decomposing a file dynamically, we start by storing the file on the free
blocks until when there is no space left on that particular disk, then we continue
on another disk until the whole part has been stored.

Additional information about the parts of the file will also be stored in the
vnode. This information will consist of: The disk partition storing the part, block
information, information about how many parts are present and where they are
located. Having these information in the vnode makes it easier when composing
the parts.

7.8.4 Composition of parts

When a locate request has been issued, the Directory Service returns the vnodeID
of the parts and the vnode which indicates the nodes hosting that part. The
information found in the vnode will be retrieved by the Directory Service and
forwarded to the File Service to be stored locally during the time the request is
being processed. When the request has been completed, the information will be
deleted.

When composing the parts of a file, the File Service gets the relevant infor-
mation about the file from the vnode. This information consist of the file name,
file size, part names, part numbers and pointers to the blocks storing the file.
Knowing the sizes of the parts and their storage locations, a system call will be
made to read the first part into the users address space, read the second part
again and append it to the first part which was already read.

In the case where the parts are stored on different nodes, like in figure 7.2,
the first part will be read to a buffer, the data from the second part will also be
read and appended to the first part already in the buffer. When the data from
the remaining parts has been copied to the buffer, the buffer will be returned to
the client. The parts which have already been composed will be deleted and the
numbering of the parts will be readjusted.

65

CHAPTER 7. CONCEPT AND DESIGN

7.9 Manipulating with parts of a file

Manipulating parts of a file is quiet different from accessing a single file. Parts
of a file can be stored at different nodes which makes it difficult to access all of
them at once. This section will describe the methods used when working with a
partitioned file.

7.9.1 Reading data from the various parts of a file

When a file is being open for reading, the users have to submit as parameters,
0 for a normal file and 1 for a file that is partitioned. If it is a partitioned file,
then they also need to give the parts’ names or the parts’ numbers which they
intend to access. From the information submitted by the user, the File Service
calls up the Directory Service to locate the parts as earlier described above. If
the Directory Service returns the vnodeID of the parts, the vnode structure will
be queried to get more information on the pointers to the data blocks. From the
vnode table, one can access the disk blocks containing the data content of the
file.

Reading data from one part of a file is just the same as reading from a non
partitioned file. But reading from part 1 and part 2 at the same time is quite
different. Since part 1 can be stored on node A and part 2 could be stored on
node B like in figure 7.2. In this case, we will need to process it as two separate
read request. The first request will access the data from part 1, return it to the
users address space and the second request will access the remaining bytes to be
read from part 2. The first request to be issued will be: read(introduction.txt,
0-12) and the second request will be: read(body.txt, 508-518)

If a user requests to read part two and part three of his file, with the entry in
the vnode one could tell on which disk blocks the files are stored. Once the block
numbers and the pointers to the parts have been retrieved, the file service will
locate the starting position as described above, and then call on the I/O function
to transfer the data from part 1 and put it in the user’s buffer. The procedure is
always the same, first of all the File service will call the lseek() function to locate
the position in the parts and then the I/O function will be called to transfer the
data blocks to the users buffer. This process continues until all the requested
number of bytes have been read.

Direct I/O transfers data directly to and from a user-space buffer, rather than
making intermediate copies to or from the buffer cache within the kernel.

7.9.2 Writing data to the various parts of a file

When a file is being open for writing, the users have to submit as parameters, 0
for a normal file and 1 for a file that is partitioned. If it is a partitioned file, then
they also need to give the name of the part or the number of the part which they

66

7.10. MANIPULATING WITH A FRAGMENTED FILE

want to access. From the information submitted by the user, the File Service
calls up the Directory Service to locate the parts as earlier described.

From the information retrieved from the Directory Service, we know on which
blocks the parts and their fragments have been stored. The parts to be modified
are read into the users buffer. Many I/O system calls will be needed during the
write operation, depending on the rate of data transfer, and the block sizes.

When writing to a part, the whole part must first be read into the users’
address space, just like when writing to a non partitioned file. The data is then
written to the file and a system call is made to the I/O function to flush the file
back to the disk. After writing to a file, if it grows in size and can no longer fit
in the old space, the system will relocate it to another disk partition.

7.9.3 Deleting data from a partitioned file

Deleting a file has directly visible effect: The file name disappears from the
directory listings as stated in [Ven00]. When a file is about to be deleted, the
users have to submit as parameters, 0 for a normal file and 1 for a file that
is partitioned. If it is a partitioned file, then they also need to give the parts’
names or the parts’ numbers which they want to get ride of. From the information
submitted by the user, the File Service calls up the Directory Service to locate
the parts. The same procedure takes place as described above.

When deleting, two different scenarios can take place. Deleting a part of a
file is similar to deleting a non partitioned file. In the first scenario a single part
will be deleted. Take the example illustrated in the figure on page 13 and assume
that the user intends to delete part 2 of his file ”body.txt”. If this part is not
fragmented, it will be deleted just as a normal file but the numbering of the parts
needs to be readjusted after the delete operation has been completed successfully.

In the second scenario, the user may intend to delete all the parts. In this
case, the parts will first be composed as described above before they are deleted.

7.10 Manipulating with a fragmented file

At a particular node, a File Service has to deal with three types of file. The
normal file, a partitioned file and a fragmented file. A file or a part can be
fragmented at a node. To read or write from a fragmented file stored on different
disk partitions needs another strategy as that used when accessing the parts of
a file. This section will describe the methods used when reading, writing and
deleting fragments of a file.

67

CHAPTER 7. CONCEPT AND DESIGN

7.10.1 Reading from a fragmented file

As we earlier said, fragmentation of a file takes place locally at a particular node.
Lets take for example that a file is about to be stored on the disk partition hda1
and there is not enough space, a fragment of this file will be stored here and
the other fragment will be stored on another disk partition hda2. The header of
this file will have an entry in it indicating that the file has been fragmented and
location of the fragments will also be registered in this header file.

Information about fragmented files, will be stored locally at each node. Table
7.2 contains the information to be stored at the nodes.

Type of Attribute Attribute Contents
FragmentNum Number of fragments
FragmentSize Size of the fragments
DiskName Name of Disk storing the fragments
Diskpartitions Which partitions are storing the fragments
StartBlock The start Block number
BlockSize The size of the Block

Table 7.2: Information on Fragments

Figure 7.3 shows an example of a fragmented file. The file introduction.txt has
been split-ted into two fragments. The first fragment is stored on disk partition
hda1 and the second fragment is stored on disk partition hda2.

To read this file, a single request will be issued with the total number of bytes
to be read from the file e.g. read(introduction.txt, 25 bytes). The start block
number will be retrieved from the fragmentation information stored at the nodes
and forwarded to the file system. The number of bytes will be read until the end
of the block on hda1. Then it will skip to the start block number of hda2 storing
the second fragment to continue reading the remaining number of bytes left.

Actually, what happens here is that the read request will be issued including
the total number of bytes to be read and an offset. Reading starts with the first
fragment until all the data has been read from hda1 and then with the lseek() 1

function the right position will be determined in the second fragment on hda2.
The number of bytes left will be read and returned to the user.

7.10.2 Writing data to a fragmented file

The UNIX operating system defines all files to be simply a stream of bytes [SG94].
Each byte is individually addressable by its offset from the beginning of the file
or from the end. The file system automatically packs and unpacks bytes into
physical disk blocks as necessary (e.g. 512 bytes per block).

1For repositioning within a file

68

7.10. MANIPULATING WITH A FRAGMENTED FILE

Disk partition hda2

0 12 24 36 0 12 24 36

Disk partition hda1

Part1

Introduction.txt

Node

A

Other data objects
Fragments of Introduction.txt

The first fragment is stored on disk partition hda1 from block number 24 to 36.

The second fragment is stored on disk partition hda2 from block number 12 to 36.

Figure 7.3: This is an example of a fragmented file

When writing to a fragmented file, the blocks storing the fragments are read
into the users buffer one after another. The data will be accessed block after
block from the offset position till the end of data on each block and transferred
to the users address space. Figure 7.3 shows the fragments of the file. When
writing to a fragmented file, all the fragments of the file must be read into the
users’ address space. Data will then be written and after it has been completed,
the file will be flushed to the disk. It might happen that the file no longer fits
in the old space and that there is storage on another disk partition to store the
whole file. Then it will be preferable to store the file at the other disk partition
with more storage, thereby avoiding fragmentation.

A write operation appends to the end of the file and advances to the end of
the newly written material. A direct-access file allows arbitrary blocks to be read
or written. There are no restrictions on the order of reading or writing for a
direct-accessed file.

The basic file system needs only to issue generic commands to the appropriate
device driver to read and write physical blocks on the disk.

7.10.3 Deleting the fragments of a file

Let’s assume the case where the user wants to delete part 3 ” conclusion.txt”
which has been fragmented due to lack of storage and is stored non contigu-

69

CHAPTER 7. CONCEPT AND DESIGN

ously on different disk partitions. From the information retrieved from the vnode
structure, we know where the fragments are stored. The first fragment is deleted,
through the pointer we access the second fragment and delete it. The fragments
are numbered consecutively, after the pointer to the next fragment has been
passed to the File service, it gets the number of that fragment and passes it to
the delete function. The blocks on which the fragments were stored will become
free.

70

Chapter 8

The File Service Module
Implementation

This chapter will give a general description of the implementation procedures.
Section 8.1 will give an overview of the implementation tools. In section 8.2,
discussions will be on the File Service module and part of the basic architecture
of Dragon Slayer. Section 8.3 concentrates on the client interface while section
8.4 explains the file system commands. The parser used by the commands will
be dealt with in section 8.5 and in section 8.6 discussions will be on the open file
table. In section 8.7, we will present the request and replies used in Dragon

Slayer for communication. The file system interface will be discussed in section
8.8 while section 8.9 concentrates on creating files and fragments. Section 8.10
deals with file replication and file transfer. The last section will present the test
module.

8.1 Tools used for the implementation

Object oriented analysis and object oriented design was used. Rational [Rat96]
rose c++ was used as the modeling tool for object oriented analysis and object
oriented design. C++ was used as the programming language. The implementa-
tion took place on the Linux and solaris operating system.

The Unified Modeling Language (UML) is now the standard modeling lan-
guage for object-oriented development. UML [Bur97] essentially defines a number
of diagrams that you can draw to describe a system, and what these diagrams
mean. UML is a language for specifying, constructing, visualizing,and document-
ing the artifacts of a software-intensive system.

In the beginning of the project design, use–case diagrams are needed because
they describe the external view of the system and its interactions with the outside
world. From use–case diagrams we move over to class diagrams. Class diagram,
is a central modeling technique that runs through nearly all object oriented meth-

71

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

ods. This diagrams describe the types of objects in the system and various kinds
of static relationships which exist between them. State transition diagrams are
needed after the class diagram for describing the behavior of a single object. The
basic idea was to define a machine that has a number of states. The machine
receives events from the outside world, and each event can cause the machine
to change it’s state. Activity diagrams on the other hand are very useful since
they support parallel processes and can help one get away from unnecessary se-
quences. Interaction diagrams have been used in my design because they are very
important in making the message structure very explicit. They describe how a
group of objects collaborate in some behavior–typically a single use–case.

Wind River’s SNiFF+ [Tak99] tool is a source code analysis environment for
software developers and teams who work with large amounts of application code.
These tool enables development teams to organize and manage code at maxi-
mum efficiency. Concurrent Version System (CVS) is a public domain Version
and Configuration Management System. It is based on Revision Control System
(RCS) repository files, therefore migrating from RCS to CVS and back is sim-
ple. Within the SNiFF+ environment, the most useful features are that CVS
allows parallel development without the need for branches and it allows access to
repositories not seen in the file system.

Rational Rose was used in this project for modeling and to generate the code.
By integrating the modeling and development environments using the Unified
Modeling Language (UML), Rational Rose enables all team members working
on a particular project to develop individually, communicate collaboratively and
deliver better software.

8.2 The File Service Modules

In the previous chapters we discussed the requirements and specification of the
File Service. We also discussed the role played by the File Service in the Dragon

Slayer file system.

The File Service module has been divided into four parts. There is a client
module which acts as an interface to the Dragon Slayer system. The class
ClientAgent in figure 8.1 represents the client module. The command modules
consist of all the commands that a user can forward to the system. This mod-
ule is resident at the command manager, represented in figure 8.1 by the class
FileCommands . The request and reply module consist of requests/replies cor-
responding to the commands. The requests are generated by the Command
Manager agents and the replies are generated by the Node Manager agents. Re-
quests and replies are used by the Command Manager and the Node Manager for
communication. The figure on page 14 illustrates the users commands getting to
the Command Manager. The Command Manager generates Macro-Request from
these commands. When the Macro-Request arrives the node, they are process by

72

8.2. THE FILE SERVICE MODULES

the Node Manager agents. The Node Manager agents send Macro-Replies back
to the Command Manager.

The class diagram in figure 8.1 shows part of the basic architecture of the
Dragon Slayer system. The class ClientAgent has been used to model the
client program. In this class, nine methods have been implemented to be used
by the users programs. Through these methods, the user has the possibility of
accessing files stored on disk through the Dragon Slayer system.

The class DS3CmdLine forwards the client’s command to the Command Man-
ager. This class acts as an intermediary between the client and the command
manager. The third level on the diagram illustrates some classes at the Com-
mand Manager. There is the class DS3CommandManager which is responsible for
the initialization of all the threads and objects as well as managing the command
list, which is used to map command strings to objects derived from the class
DS3Commands. The class DS3CommandMgrAgent is responsible for the process-
ing of all the tasks at the Command Manager level. The file system commands
I’ve implemented have been derived from the class DS3Command and are repre-
sented in figure 8.1 by the class FileCommands. Apart from the class FileCom-
mands, the rest of the classes at the Command Manager level belong to the basic
architecture of Dragon Slayer.

This class MacroMessage defines the basic functionality which every commu-
nication class in Dragon Slayer must possess. All messages send between
components in the Dragon Slayer system must be derived from this class.
As you can see from the diagram, the class MacroMessage is the base class to
MacroRequest and MacroReply because these two classes have to be transported
over the network. The classes MacroRequest and MacroReply are neither resident
at the Command Manager nor at the Node Manager. They are used by the
Command Manager and the Node Manager for communication purposes. See
figure on page 14. The Command Manager agent generates Macro-Request from
these commands. These Macro-Request arrives the Node Manager where the fi-
nal processing takes place. The Node Manager sends the Macro-Replies back to
the Command Manager

The class FileRequests which has been derived from the base class MacroRe-
quest represents the request module of the file system, which corresponds to the
commands in the class FileCommands.

The class FileReplies which has been derived from the base class MacroReply
represents the reply module of the file system, which corresponds to the requests
in the class FileRequests.

The next level belongs to the Node Manager. The class NodeManager is re-
sponsible for the coordination and management of all transactions taking place
locally at the nodes. When the Node Manager receives a request, the request
agents represented here by the class RequestAgent gets the request from a queue
for processing. The agents obtain objects of the services from the class Cen-
tralRegistration needed to process a request. The classes shown in the diagram

73

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

ClientAgent

iterations : UW...
destin : DS3Addr

(from Client)

DS3Command

waitOnReqReply : bool = f...
waitOnReqSend : bool = fa...
cancled : bool = false
registered : bool = false

(from BaseArchitecture)

DS3CmdLine

cmd : string
para : char * = NULL
paraLen : UDWORD ...

(from BaseArchitecture)

#cmdLine

MacroMessage

messageID : tMessageID ...
replyPort : UWORD = 0
isBCTMessage : bool =
fa...messageText : string
myRequestID : RequestID

(from ds3base)

FilesystemServiceInterface
(from FilesystemService)

FilesystemServiceImp
(from FilesystemService)

DS3CommandManager

DS3CommandManager()
~DS3CommandManag...
bootCommandManager()
resetVariables()
initialize()
addNewCommand()
getCommandObject()

(from CommandManager)

FileRequests FileReplies

FileCommandsDS3CmdMgrAgent

cmdMgr : DS3CommandManager * = ...

DS3CmdMgrAgent()
mainloop()
setCommandManager()

(from CommandManager)

MacroReply

MacroReply()
MacroReply()
~MacroReply()
name()
clone()
operator =()
operator ==()
inputBody()
outputBody()
assignMy()

(from ServiceBase)

MacroRequest

contenceKey : string ...
(from ServiceBase)

CentralRegistration

getServiceImp()
deregisterService()
registerService()
CentralRegistration()
~CentralRegistrati...
freeServiceImp()

(from ServiceBase)

NodeManager

runLevel : int
requestPort : UWORD
requestProtocol : UW...
numOfAgents : UWORD

(from NodeManager)

1

+centralReg
istration

1

RequestAgent

pool :
RequestPo...
RequestAgent()
cleanupHandler()
createAgent()
handleRequest()
run()
~RequestAgent()
RequestAgent()
clone()
setPool()

(from NodeManager)

1

#registrar

1

1
#currentReply

1#currentRequest

1

#sampleAgent

1

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 21:46:05 Mittwoch, 10. Oktober 2001 Class Diagram: docu / allparts Page 1

Figure 8.1: Class diagram illustrating the communication between the different
modules

74

8.3. CLIENT PROGRAM

8.1 at the Node Manager level also belong to the basic architecture of Dragon

Slayer.

The file system service module resides at the Node Manager level and consists
of the class FilesystemService and the class FilesystemServiceImp. The final pro-
cessing of the client’s command takes place at the file system implementation.
The File Service interface hides the real implementation of the File Service so
that any changes undertaken at the implementation will not affect the processes
which call these methods. In the coming sections, each of the modules presented
here, will be dealt with in detailed..

8.3 Client Program

The commands issued by the client program are forwarded to the Command
Manager through the class DS3CmdLine. This class offers methods with which
one can set a command line. The class DS3Command is the base class of all
commands in Dragon Slayer. That means, all the commands in Dragon

Slayer inherit methods and attributes from the class DS3Command.

The class FSTableManager is the base class of all the commands offered by the
file system service. This class inherits from the base class DS3Command. This
class also depends on three other classes. The class MultipleAnswersContainer
which is responsible for collecting all the replies sent from the node managers. It
stores the replies in a vector waiting for the commands to collect. The second
class StopCondition defines policies which can be used to inform the class Multi-
pleAnswersContainer to abort waiting for a reply. These policy could depend on
some time-out limits or on some other parameters.

The class SCFileReplyLocate inherits from the class StopCondition and it is
used by the file system commands to know when to stop waiting for replies.
The stop condition used at the moment depends on the majority voting rule
and a time–out. It states that, if the number of replies received with a positive
response are more than 50% of the active nodes in the system at that particular
time, then one of the stop condition has been fulfilled. On the other hand, if
this stop condition is not fulfilled and there is a time-out, then the second stop
condition has been fulfilled. The time-out is used to ensure that the agents do
not wait infinitely for the replies.

The client program uses threads to send the command line to the Command
Manager. The listing in 8.1 is a fragment of the client’s code using the example
of the open command for creating a task, sending the task and waiting for the
reply from the command manager.

Line 5 to 10 shows the initialization of the variables and the creation of the
task.

75

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

ClientAgent

iterations : UWORD
destin : DS3Addr

run(: void) : void *
ClientAgent()
open(pathName : char *, myFlag : int) : int
read(filedes : int, buff : void *, numbytes : size_t) : ssize_t
write(filedes : int, buff : void *, numbytes : size_t) : ssize_t
creat(pathName : char *, mode : mode_t) : int
close(filedes : int) : int
transfer(target : char *, source : char *, pathName : char *, port : int) : int
remove(pathName : char *, targetHost : char *, fileType : int) : int
copy(sourcePath : char *, targetPath : char *) : int
replicate(target : char *, source : char *, pathName : char *, port : int) : int

(from Client)

DS3Command

waitOnReqReply : bool = false
waitOnReqSend : bool = false
cancled : bool = false
registered : bool = false

(from BaseArchitecture)

DS3CmdLine

cmd : string
para : char * = NULL
paraLen : UDWORD = 0

(from BaseArchitecture)

#cmdLine

SCFileReplyLocate

numOfReplies : DWORD
nodesPresent : DWORD

abortWaiting()
SCFileReplyLocate()
~SCFileReplyLocate()

(from FilesystemRequests)

TObject

MultipleAnswersContainer

container : vector<TObject *>
cmd : DS3Command *

MultipleAnswersContainer()
~MultipleAnswersContainer()
waitForMultipleReply()
getContainer()
getReply()

(from BaseArchitecture)

StopCondition

timeOut : UDWORD = 0
lastTime : timeval

StopCondition()
abortWaiting()
getTimeOutInMS()
setInitialTimeOutInMS()

(from BaseArchitecture)

-stopCond

FSTableManager

$ openTableObject : OpenFileTable
clientInfo : DsFile*
attributes : TableObject*
hostInfo : HostInfo*
fileRec : FileRecord*
newTab : OpenFileTable*
$ fdArray : bool[MAXOPENFILES]
$ fsMutex : ReadWriteLock

(from FilesystemCommands)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 17:16:24 Samstag, 29. September 2001 Class Diagram: docu / overView Page 1Figure 8.2: The client module

76

8.3. CLIENT PROGRAM

Line 15 to 20 The task is casted to the class DS3CmdLine, the parameters are
set by using the method setPara() and the task is sent out by calling the
sendObject() method.

Line 25 to 30 The threads are now waiting for the reply.

Line 30 to 40 The reply has arrived and is being evaluated.

Listing 8.1: client code�
int ClientAgent : : open (char ∗pathName , int myFlag)
{

RequestID bRID ;
5 OpenReply ∗ openReply ;

r ep ly = NULL;
char openCmdStr [5 1 2] ;
int fd = −1;
s t r i n g openCmdToken = "OpenCommand" ;

10

s p r i n t f (openCmdStr , "open(%s, %d)" , pathName , myFlag) ;
task = new DS3CmdLine ;

i f (task) {
15

char r eq idbu f [2 0 0] ;
task−>sendTo (d e s t i n) ;
((DS3CmdLine ∗) task)−>setCmd (openCmdToken) ;
((DS3CmdLine ∗) task)−>setPara (openCmdStr , s t r l e n (openCmdStr)) ;

20

i f (sendReq−>sendObject (task , true)) {
DBUG PRINT("ERROR" , ("Sending out request failed.")) ;
} else {

DBUG PRINT("INFO" , ("Request sent out successfully.")) ;
25 bRID = (((MacroMessage ∗) task)−>getRequestID ()) ;

waitOnReqReply = true ;
r ep ly = (MacroReply ∗) recvReply−>waitForObject(&bRID , 5 0 0 0 0) ;
waitOnReqReply = fa l se ;

30

i f (! r ep ly) {
bRID .PRINT () ;
DBUG PRINT("ERROR" , ("Error while receiving reply")) ;
} else {

35 bRID = (((MacroMessage ∗) r ep ly)−>getRequestID ()) ;

openReply = (OpenReply ∗) r ep ly ;
fd = openReply−>g e t F i l e D e s c r i p t o r () ;
delete openReply ;

40 }
}

77

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

delete task ;
}

45 return fd ;�
8.4 The File System Commands

DS3Command

waitOnReqReply : bool =...
waitOnReqSend : bool = ...
cancled : bool = false
registered : bool = false

(from BaseArchitecture)

FSTableManager

$ openTableObject : OpenFileTable
clientInfo : DsFile*
attributes : TableObject*
hostInfo : HostInfo*
fileRec : FileRecord*
newTab : OpenFileTable*
$ fdArray : bool[MAXOPENFILES]
$ fsMutex : ReadWriteLock

initScript() : bool
FSTableManager() : FSTableManager
FSTableManager(that : const FSTableManager&)
~FSTableManager()
cloneCommand() : FSTableManager *
execute() : NetObject *
getCmd() : const char *
addReceivableObjectsToTheList(list : ReceiveLis...
createNewRecord() : FileRecord*
getNewFileDescriptor() : DWORD
deleteRecord(fileDescriptor : DWORD) : bool

(from FilesystemCommands)

CloseCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

CopyCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

CreateCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

DeleteCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)
OpenCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

ReadCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

ReplicateCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands) TransferCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

WriteCommand

parseInput(cmdLine : DS3CmdLine*...

(from FilesystemCommands)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 21:18:10 Mittwoch, 10. Oktober 2001 Class Diagram: docu / Fscommand Page 1
Figure 8.3: The class diagram shows the file system commands

As already mentioned above, the file system commands are nested at the
Command Manager level. The class diagram in figure 8.3 illustrates the relation-

78

8.4. THE FILE SYSTEM COMMANDS

ship between the various commands implemented in this work. The commands
illustrated in the diagram do correspond to the methods listed in the class client-
Agent presented in figure 8.2. The diagram shows the inheritance of the different
classes present. As mentioned earlier, the class FSTableManager is the base class
of all the file system commands. This class FSTableManager on the other hand is
derived from the class DS3Command.

Most of the methods and attributes of the file system command classes have
been hidden because they all contain the same methods inherited from the base
class FSTableManager. The method parseInput shown on figure 8.3 is used by
all commands to parse a command line and set the values of the parameters. All
the commands which have been derived from this base class have to implement
the following methods:

cloneCommand() This function clones the command object by calling the copy
constructor of the object.

execute() This function implements the actual steps necessary for creating a
request and receiving the reply in the command. It is invoked by the agent.

getCmd() The method returns a constant pointer to the command string

addReceivableObjectsToList() Returns a list of macro replies which are ex-
pected to be received by the command.

Listing 8.2: Open file code�
NetObject ∗ OpenCommand : : execute ()
{

OpenReply ∗ openFi leReply = NULL;
5 parseInput (cmdLine) ;

i f (! executeLocateReq ()) {
OpenReply ∗ openFi leReply = new OpenReply ;
openFi leReply−>s e tResu l tF lag (fa l se) ;

10 openFi leReply−>setRequestID (openID) ;
return (NetObject ∗) openFi leReply ;

}

RequestID reqID ;
15 UDWORD timeOut ;

SCFileReplyLocate ∗ stopCond = new SCFileReplyLocate ;
OpenRequest ∗ aRequest = new OpenRequest ;

aRequest−>setPathName (pathName) ;
20 aRequest−>s e tF l ag s (f l a g s) ;

aRequest−>generateNewID () ;

reqID = aRequest−>getRequestID () ;

79

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

makeReservation (reqID) ;
25

i f (f l a g s == 1){
//When opening f o r wr i t e send a broadcast

DS3Addr bcstAddr ((long)INADDR BROADCAST, PF NM RQ PORT−>getDWord ()) ;
30 aRequest−>sendTo (bcstAddr) ;

sendObject (aRequest , true) ;

// Wait f o r 5 0 sec f o r a r ep ly

35 stopCond−>setInit ia lTimeOutInMS (5 0 0 0) ;
stopCond−>setNodesPresent (getCurrentNumOfNodes ()) ;
Mult ipleAnswersContainer <OpenReply> ∗ answerContainer ;

answerContainer=new Mult ipleAnswersContainer<OpenReply>(this , stopCond) ;
40 answerContainer−>waitForMult ip leReply (reqID) ;

openFi leReply = answerContainer−>getReply () ;
while (openFi leReply)
{

i f (evaluateOpenReply (openFi leReply))
45 break ;

openFi leReply = answerContainer−>getReply () ;

}

50 delete answerContainer ;

} else {
//When opening f o r read send the r eque s t to the l o c a l node

55 aRequest−>sendTo (newTargetAddr) ;
sendObject (aRequest , true) ;

// Wait f o r 5 0 sec f o r a r ep ly

60 stopCond−>setInit ia lTimeOutInMS (5 0 0 0) ;
stopCond−>setNodesPresent (getCurrentNumOfNodes ()) ;
timeOut = stopCond−>getTimeOutInMS () ;
i f (timeOut) {

openFi leReply = dynamic cast<OpenReply ∗>
65 (recvObject (&reqID , timeOut)) ;

i f (openFi leReply){
evaluateOpenReply (openFi leReply) ;
openFi leReply−>setRequestID (openID) ;
}

70 }

}

i f (! openFi leReply) { //no answer r e c e i v e d

80

8.4. THE FILE SYSTEM COMMANDS

75 OpenReply ∗ openFi leReply = new OpenReply ;
openFi leReply−>setRequestID (openID) ;

}

cance lRese rva t i on (reqID) ;
80 DBUG LEAVE;

return (NetObject ∗) openFi leReply ;
}�

The listing in 8.2 documents the procedures taking place in the method
execute which has to be implemented by all commands. I’ve used the open
command to illustrate these procedures because all the commands follow the
same schema.

Line 5 to 10 The method parseInput is called in order to evaluate the com-
mand line and set the values of the parameters. This method is documented
in the listing 8.3. After the values of the parameters have been set, the
method executeLocateReq is called up to initiate the lookup request. If
this method returns a false, the execution will be terminated because the
file does not exist.

Line 15 to 20 If the file exists, a request is created from the class OpenRequest.
When the parameters of the request are set, a new ID is generated for this
request and the request ID sent by the client is retrieved. The method
makeReservation() is called to reserve a place for this request.

Line 25 to 30 The value of the flag is examined, if the flag is set to write only,
a multi-cast will be sent to all the nodes with replicas by calling the method
sendObject().

Line 35 to 45 The object stopCond created from the class SCFileReplyLocate is
used in combination with the container class MultipleAnswersContainer to
wait for the series of open replies. The class MultipleAnswersContainer stops
waiting for the replies if one of the stop conditions discussed in section 8.3
is fulfilled.

Line 52 to 55 If the flag is set to read only, the request will be sent by uni-cast
to the local node, if it stores a replica of the file or else another node storing
a replica will be chosen.

Line 60 to 70 In the case of read only where a request was sent to a single node,
the class MultipleAnswersContainer is not needed because we know exactly
that we are waiting for a single reply. If the reply did not arrive, a new
object from the class OpenReply is created and sent back to the client, just
to avoid sending a NULL pointer.

81

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

Line 75 to 80 The reservation made for the request ID is canceled by calling
the method cancelReservation(). The open reply is then returned to the
client.

FSTableManager also offers extra methods which can be accessed by all the
derived commands if desired. These methods are:

createNewRecord() This method returns a new record of a file which has just
been opened.

getNewFileDescriptor() This method is responsible for managing and con-
trolling file descriptors.

deleteRecord() This method removes the record of a file which has been closed
from the open file table map and sets free the file descriptor.

8.5 Command line parsing

The client program sends a command to the Command Manager for example an
open command. The class DS3cmdLine gets the command line from the client
and forwards it to the Command Manager. At the Command Manager, the
instance of the open command is invoked and this command line is forwarded
to the open command. The open command parses the command line with the
method parseInput(DS3cmdLine *cmdLine). The Listing 8.3 documents the
method parseInput.

Line 10 to 20 A set of token delimiters are pre defined in order to use when
parsing the string. The method Strtok() takes as parameter a string and
the pre–defined token delimiters. This method strtok() parses a string
into tokens. Each call to strtok returns a pointer to the next token, or
NULL when no more tokens are found.

Line 25 to 30 After parsing the strings the values of the respective attributes
are set.

Listing 8.3: Command line parsing code�
void OpenCommand : : parse Input (DS3CmdLine∗ cmdLine)
{

5 char myPara [i] ;
int cmdLength = 0 ;

cmdLength = cmdLine−>getPara (myPara , i) ;
myPara [cmdLength] = 0 ;

82

8.6. THE OPEN FILE TABLE COMPONENTS

10 const int MAX TOKEN = 10;
char ∗ token de l im = "(), \t" ;
char ∗ token array [MAX TOKEN] ;
int index = 0 ;

15 token array [index] = s t r t o k (myPara , token de l im) ;
while (token array [index] ! = NULL && index < MAX TOKEN){

index++;
token array [index] = s t r t o k (NULL, token de l im) ;

}
20

p r i n t f ("Tokens: %d\n" , index) ;

for (int i = 0 ; i < index ; i++)
p r i n t f ("Token %d: %s\n" , i , t oken ar ray [i]) ;

25

f i l e O p e r a t i o n = token array [0] ;
pathName = token array [1] ;
f l a g s = a t o i (token array [2]) ;�

8.6 The Open File Table components

When a file is opened in the Unix system, a file descriptor is returned to the
calling process and it is also registered in the open file table. As earlier discussed
in section 7.7.2, the Command Manager on each node stores information on all
the open files in the open file table. The file descriptor returned by the system
will be used for subsequent input and output operation on that particular file
like read, write and close. The class diagram in figure 8.4 shows a couple of class
diagrams which have been used to model the open file table.

The class OpenFileTable contains methods to be used when manipulating the
open file table map represented by the class tOpenFileMap. The class TableObject
contains the attributes of a file. The class DsFile contains the information about
the process ID and the user who is currently logged in, at the client machine.
The class HostInfo contains the system information and the class FileRecord acts
as a collecting point to all the other three classes, that’s why it has the same
attributes as the three classes.

The file records collected at the class FileRecord will be inserted into the open
file table with the corresponding file descriptor of each file. The file descriptor is
the key used by the map and the value is the file record.

The three important methods used with the open file table map are described
below. The open file table map is implemented as static, so that it will reside
in memory. The open file table can only be manipulated by a single process at
a time. That is why semaphores have been implemented. In order to query the
map a read lock must be accessed and in order to modify the map a write lock
must be granted.

83

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

TableObject

fileDescriptor : DWORD
objectName : string
vnodeID : VnodeID
replicationGrade : int
versionNr : int
nodesHavingCopies : int
groupID : GroupID
roleID : RoleID
ownerID : SubjectID
pathName : string
partName : string
partNumber : UDWORD
totalParts : UDWORD
totalCopies : UDWORD

getFromVnode() : TableObject*
TableObject() : TableObject
TableObject(that : const TableObj...
~TableObject()

(from FilesystemCommands)

FileRecord

objectName : string
replicationGrade : int
versionNr : int
nodesHavingCopies :...
groupID : GroupID
roleID : RoleID
ownerID : SubjectID
pathName : string
partName : string
partNumber : UDW...
totalCopies : UDW...
processID : int
hostname : string
fileHandle : int
accessMode : int
$ count : DWORD
subjectID : SubjectID
totalParts : UDWORD
nodeID : DS3Addr
accessToken : bool
lockToken : bool
localHostname : string
vnodeID : VnodeID
offset : UDWORD
senderAdd : DS3Addr
tmpOffset : UDWORD

FileRecord()
FileRecord()
~FileRecord()
getInfo()
FileRecord()

(from FilesystemCommands)

DsFile

processID : int
hostname : string
fileHandle : int
accessMode : int
$ count : DWORD
subjectID :
SubjectID
getSystemInfo()
DsFile()
DsFile()
~DsFile()

(from FilesystemCommands)

HostInfo

nodeID : DS3Addr
accessToken : bool
lockToken : bool
localHostname :
string
getHostInfo()
HostInfo()
HostInfo()
~HostInfo()

(from FilesystemCommands)

VNode
(from ds3base)

OpenFileTable

fileDescriptor : DWORD

insertObject(fileDescriptor : DWORD, record : FileRecord...
queryTable(fileDescriptor : DWORD) : bool
removeObject(fileDescriptor : DWORD) : bool
OpenFileTable() : OpenFileTable
OpenFileTable(that : const OpenFileTable&)
~OpenFileTable()
getRecord(fileDescriptor : DWORD) : FileRecord *

(from FilesystemCommands)

tOpenFileMap
(from FilesystemCommands)

#$mapEntries

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 17:35:20 Samstag, 29. September 2001 Class Diagram: docu / FileRecords Page 1

Figure 8.4: Class Diagram for the Open file table components

84

8.7. THE FILE SYSTEM REQUESTS

queryTable(fileDescriptor) The method queryTable gets a file descriptor
as parameter and searches in the map for a similar key. A true is returned
if the file descriptor already exist or else a false is returned.

insertObject(fileDescriptor, fileRecord) When the open command gets
the open reply with the file descriptor, it calls the method insertObject

from the class OpenFileTable. The method insertObject calls the method
queryTable to find out if there is already a file descriptor in the open file
table with the same number. If it does not exist, the new file descriptor
will be inserted in the table. But if it already exists, the process will be
terminated.

removeObject(fileDescriptor) After a close command has been issued, the
file descriptor and it’s file records will be removed from the open file table
by calling the method removeObject.

8.7 The File System Requests

MacroRequest

contenceKey : string = ""

MacroRequest() : MacroRequest
MacroRequest(that : const MacroRequest&)
~MacroRequest()
name() : const char*
clone() : Object*
operator =(right : const MacroRequest&) : MacroR...
operator ==(right : const MacroRequest&) : bool
inputBody(is : IOBaseWrapper&) : bool
outputBody(os : IOBaseWrapper&) : bool
initScript(localRegistrar : CentralRegistration*) : bool
executeScript() : MacroReply*
finishScript(localRegistrar : CentralRegistration*) : ...
assignMy(right : const MacroRequest&) : void

(from ServiceBase)

CloseRequest

fsSrv : FilesystemServiceInter...
(from FilesystemRequests)

CopyRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)

CreateRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)

DeleteRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)

MyLocateRequest

dsSrv : DirectoryServiceInter...
(from FilesystemRequests)

OpenRequest

fsSrv : FilesystemServiceInter...
(from FilesystemRequests)

ReadRequest

fsSrv : FilesystemServiceInter...
(from FilesystemRequests)

ReplicateRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)

TransferRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)
WriteRequest

fsSrv : FilesystemServiceInter...
dsSrv : DirectoryServiceInterf...

(from FilesystemRequests)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 21:22:34 Mittwoch, 10. Oktober 2001 Class Diagram: docu / FsRequest Page 1

Figure 8.5: Class diagram for the Request

Figure 8.5 illustrates the request classes derived from the base class MacroRe-
quest. In each request, the services called during the execution of the request have

85

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

been shown. The base class MacroRequest inherits from the class MacroMessage
already presented in the class diagram of figure 8.1. Classes that are derived from
this class can be transported using the different Dragon Slayer communica-
tion structures. The requests presented in the diagram match the commands in
figure 8.3. These request are generated by their counterparts Commands at the
Command Manager level.

For example, the OpenCommand generates an OpenRequest. After a request
has been generated at the Command Manager level, it is sent to the Node Man-
agers for processing. The requests inherit and overwrite all the methods from
the base class MacroRequest. These methods are the same in each of the request
classes presented in the diagram. There are a couple of very important methods
present in each of the request like:

initScript() This method is used to demand the service instances from the cen-
tralRegistration which is referenced in the execution of the request.

executeScript() This method contains all the service calls issued by the request
which are necessary for the processing of the users command. The replies
are generated in this method and then returned to the Command Manager.

operator=() The assignment operated is overridden by all the request.

operator==() This operator tests the messages to see if they are the same.

clone() This method returns an exact copy of the object.

name() This method returns the name of the request.

inputBody() This method reads all the objects’ data from a stream.

outputBody() This method on the other hand writes all the objects’ data to a
stream.

finischScript() When this method is called, all instances of the service imple-
mented which were requested in the method initScript are returned to
the centralRegistration.

The File System Replies

After the requests have been processed at the nodes, replies are sent to the
commands at the Command Manager which issued the request. Figure 8.6 il-
lustrates the reply classes derived from the base class MacroReply. The replies
presented in the diagram matches the requests in figure 8.5 and are generated
by their counterpart request. The base class MacroReply also inherits from the
class MacroMessage already presented in the class diagram of figure 8.1. The re-
ply classes illustrated on the diagram inherits some methods and variables from

86

8.8. THE FILE SYSTEM SERVICE INTERFACE

MacroReply

MacroReply()
MacroReply(that : const MacroReply&)
~MacroReply()
name() : const char*
clone() : Object*
operator =(right : const MacroReply&) : MacroRep...
operator ==(right : const MacroReply&) : bool
inputBody(is : IOBaseWrapper&) : bool
outputBody(os : IOBaseWrapper&) : bool
assignMy(right : const MacroReply&) : void

(from ServiceBase)

CloseReply
(from FilesystemRequests)

CopyReply
(from FilesystemRequests)

CreateReply
(from FilesystemRequests)

DeleteReply
(from FilesystemRequests)

FileLocateReply
(from FilesystemRequests)

OpenReply
(from FilesystemRequests)

ReadReply
(from FilesystemRequests)

ReplicateReply
(from FilesystemRequests)

TransferReply
(from FilesystemRequests)

WriteReply
(from FilesystemRequests)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 17:47:44 Samstag, 29. September 2001 Class Diagram: docu / FsReplies Page 1

Figure 8.6: Class diagram showing the replies

the base class MacroReply. These methods are exactly the same methods im-
plemented by the request in section 8.7 excluding the methods initScript(),
executeScript() and finishScript().

8.8 The File System Service Interface

When the file system commands issue various requests, these requests get to
the Node Managers, which then invoke the required methods at the Filesystem-
Interface. The service modules have been split-ted into two classes, the class
FilesystemInterface and FilesystemServiceImp.

Figure 8.7 shows the base class of all the Dragon Slayer services DS3Service-
Interface and DS3ServiceImp. The class diagram FilesystemServiceInterface is de-
rived from the base class DS3ServiceInterface. A constructor is needed in the in-
terface class which calls the constructor of the class DS3ServiceInterface in order
to set the correct service identification number. The class FilesystemServiceImp
has been derived from the FilesystemServiceInterface and from the base class
DS3ServiceImp. As mentioned earlier, the file system service is situated at the
Node Manager level.

The methods used by the request must be declared abstract in the class Filesys-
temInterface. These methods are overridden by the class FilesystemServiceImp.
This design has been used so as to minimize the degree of interaction between

87

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

FilesystemServiceImp

errorNum : int

clone(newInstanzID : UWORD) : FilesystemServiceImp*
FilesystemServiceImp(repImp : const FilesystemServiceImp&, newInstanzID : UWORD) : FilesystemSe...
readObject(pathName : string, targetBuffer : void*, offset : DWORD, sizeOfData : DS3SIZE_T) : DS3S...
replicateObject(objectName : string, path : string) : int
writeObject(pathName : string, targetBuffer : void*, offset : DWORD, sizeOfData : DS3SIZE_T) : DS3...
createObject(pathName : string, accessMode : DWORD) : int
deleteObject(pathName : string) : int
copyObject(pathName : string, newPathName : string) : int
closeObject(fileDescriptor : DWORD) : int
openObject(pathName : string, flags : DWORD) : DWORD
transferObject(target : string, source : string, pathName : string, portNum : UWORD) : int
FilesystemServiceImp() : FilesystemServiceImp
~FilesystemServiceImp()
commit(pathName : string, newPathName : string) : int

(from FilesystemService)

FilesystemServiceInterface

errorNum : int

readObject(pathName : string, targetBuffer : void*, offset : DWORD, sizeOfData : DS3SIZE_T) ...
replicateObject(objectName : string, path : string) : int
writeObject(pathName : string, targetBuffer : void*, offset : DWORD, sizeOfData : DS3SIZE_T)...
createObject(pathName : string, accessMode : DWORD) : int
deleteObject(pathName : string) : int
copyObject(pathName : string, newPathName : string) : int
closeObject(fileDescriptor : DWORD) : int
transferObject(target : string, source : string, pathName : string, portNum : UWORD) : int
openObject(pathName : string, flags : DWORD) : DWORD
FilesystemServiceInterface(myServiceID : eServiceID) : FilesystemServiceInterface
FilesystemServiceInterface(that : const FilesystemServiceInterface&) : FilesystemServiceInterface
FilesystemServiceInterface() : FilesystemServiceInterface
commit(pathName : string, newPathName : string) : int

(from FilesystemService)

DS3ServiceInterface

DS3ServiceInterface()
getServiceID()
DS3ServiceInterface()
DS3ServiceInterface()

(from ServiceBase)

DS3ServiceImp

instanzID : UW...

clone()
logEvent()
DS3ServiceImp()
DS3ServiceImp()
resetImp()
~DS3ServiceImp()

(from ServiceBase)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 17:44:28 Samstag, 29. September 2001 Class Diagram: docu / FsImp Page 1

Figure 8.7: The class diagram illustrates the file system service Interface

88

8.9. CREATING FILES AND FRAGMENTS

the services and the Command Manager. The method executeScript found in
all the requests which are created by the Command Manager does the actual
calls to the services, by accessing the methods in the class FilesystemInterface.
The Command Manager does not have any idea about the actual implementa-
tion of the services. Any changes undertaken at the service implementation will
not affect the functioning of the Command Manager.

The real processing of the methods called by the requests take place at the
FilesystemServiceImp. From earlier discussions, it was mentioned that the Node
Managers are stateless, therefore it is necessary for all the request arriving at the
node to contain all the information and parameters needed for processing.

8.9 Creating files and fragments

FragmentInfo

numOfFragment : DWORD
sizeOfFragment : UDWORD
diskName : string
startBlockNo : UDWORD
numOfBlocks : UDWORD
blockSize : UDWORD
totalNumOfFragment : D...

getElemFromVector() : void

(from ServiceBase)

tFragmentInfoVector
(from ServiceBase)

T
Allocator

vector
(from Standard Template Library)

CreateRequest

subjectID : SubjectID
objectName : string
partName : string
fileDescriptor : DWORD
pathName : string
vnodeID : VnodeID
partNumber : DWORD
accessMode : DWORD
resultFlag : bool
errorNum : int
hostAddr : DS3Addr

~CreateRequest()
CreateRequest() : CreateRequest
CreateRequest(that : const CreateRequest&)
name() : const char*
outputBody(os : IOBaseWrapper&) : bool
inputBody(is : IOBaseWrapper&) : bool
clone() : Object*
executeScript() : MacroReply*
initScript(localRegistrar : CentralRegistration*) : bool
assignMy(right : const CreateRequest&) : void
finishScript(localRegister : CentralRegistration*) : bool
operator =(right : const CreateRequest&) : CreateReque...
operator ==(right : const CreateRequest&) : bool

(from FilesystemRequests)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 15:35:50 Donnerstag, 27. September 2001 Class Diagram: docu / fragInfo Page 1

Figure 8.8: Class diagram illustrates the create method

Figure 8.8 shows the class FragmentInfo and tFragmentInfoVector which are
used to create new fragments and to store information on fragmentated files.

89

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

The vector tFragmentVector is used to store the information of fragmented file at
the local nodes. Also present on this diagram is the class CreateRequest which
depends on the class FragmentInfo. When a file is being created, information
about the file is gathered and forwarded to the Directory Service. If a file needs
to be fragmented, the create request stores the information in the tFragmentVector
after fragmentation has taken place and forwards it to the Directory Service.

Client API : ClientAg... CM : CreateCommand createRequest : Creat...Node Manager : Nod... File Serviceı˝Interface :... Directory Serviceı˝Int... Ressourceı˝ManagerLocateı˝Request

Client API :
ClientAgent

CM :
CreateCommand

createRequest :
CreateRequest

Node Manager :
NodeManager

File Service
Interface : Filesys...

Directory Service
Interface : Direct...

Ressource
Manager

Locate
Request

parseInput(DS3CmdLine*)

create(pathName, mode)

initScript(CentralRegistration*)

executeScript()

lookupFile(string, VNode*&)

initScript(CentralRegistration *)

executeScript()

createObject(string, DWORD)

execute()

lock(pathname)

sendReply()
sendReply()

finishScript(CentralRegistration*)

generateNewVnodeID(UWORD)

Figure 8.9: Sequence diagram for the create method

The sequence diagram in figure 8.9 illustrates the various methods called when
a client program issues a create command. The client sends a command to the
Command Manager, to create a file by calling the method create(pathname,

mode, targetNode). When the Command Manager receives the command line
from the client, it forwards it to the create command. The command line is
parsed by calling the method parseInput described in the listing 8.3 in order
to set the values of the parameters. After the parameters have been set, a
lookup request is prepared and sent out via broadcast by calling the method
lookupFile(pathname, vnode).

When this request arrives the node the Node Manager invokes an instance of
the directory service to process it. If the file exists the Directory Service returns
the vnode of the file, which contains all information about the file. If the file does
not exist, an empty vnode is returned.

The Command Manager waits for the replies coming from the nodes after the
stop condition has been set as discussed in section 8.3. When the majority of

90

8.10. FILE REPLICATION AND RELOCATION

the replies have arrived, these replies are evaluated in order to find out which of
the nodes store a copy of the file, or if the file exists at all. If the file exists, the
Command Manager sends a message to the client and stops the transaction.

If the file does not exist, a request is sent to the Resource Manager at the
target node by calling the method lock(pathname) to grant a write lock. If the
write lock is granted, a create request is sent to the target node. It is important
for the client to explicitly give the name of the node on which the file will be
created.

When the create request arrives the node, the Node Manager agent invokes
an instance of the File Service. The file is created by calling the method create-

Object(partname, mode). If the file has been created successfully, the method
createFile(pathname, vnodeID, fragmentVector) is called to notify Direc-
tory Service that a new file has been created at that node.

If everything is successful, a result flag is sent to the Command Manager with
a create reply which is forwarded to the client.

8.10 File replication and relocation

The class diagram in figure 8.10 illustrates the classes used for modeling file repli-
cation and file relocation. The structure of the module used for file replication is
similar to that used for file relocation, that’s why I’ve modeled the two operations
in the same class diagram. The replication module uses an agent implemented
in the class ReplicateRequest and a thread implemented in the class FileRepli-
cateThread. This class FileReplicateThread is derived from the base class Thread.
This class also depends on the communication class IODS3Socket to communicate
with the agent at the target node.

The relocation module also uses an agent implemented in the class Transfer-
Request and a thread implementation in the class FileServiceThread. This class
FileServiceThread is also derived from the base class Thread. This class also de-
pends on the communication class IODS3Socket to communicate with the agent
resident at the target node.

Figure 8.11 shows the collaboration diagram for the transfer process.

Listing 8.4: Transfer code�
MacroReply ∗ TransferRequest : : e x e cu t eSc r i p t ()
{

TransferReply ∗ r ep ly = new TransferReply ;
5 int bytesRece ived = 0 ;

int retReadVal = 0 ;
int retWriteVal = 0 ;
bool retConnect , r e t L i s t e n ;

10 struct {

91

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

FileReplicateThread

target : string
source : string
portNum : DWORD
fileServiceImp : FilesystemServiceInterface *
tep : IODS3Socket *
myRegistrar : CentralRegistration *
transmitProtocol : DWORD
pathName : string

run() : void *
FileReplicateThread() : FileReplicateThread
~FileReplicateThread()
cleanupHandler() : void
initHandle(localRegistrar : CentralRegistration *) ...

(from FilesystemRequests)

FileServiceThread

target : string
source : string
portNum : DWORD
fileServiceImp : FilesystemServiceInterface *
tep : IODS3Socket *
myRegistrar : CentralRegistration *
transmitProtocol : DWORD
pathName : string

run() : void *
FileServiceThread() : FileServiceThread
~FileServiceThread()
cleanupHandler() : void
initHandle(localRegistrar : CentralRegistration *) ...

(from FilesystemRequests)

TransferRequest

subjectID : SubjectID
objectName : string
partName : string
pathName : string
vnodeID : VnodeID
partNumber : UDWORD
accessMode : UDWORD
source : string
target : string
portNum : UWORD
fsSrv : FilesystemServiceInterface *
dsSrv : DirectoryServiceInterface *
myLocalRegistrar : CentralRegistratio...
tep : IODS3Socket *
transmitProtocol : DWORD

(from FilesystemRequests)

ReplicateRequest

subjectID : SubjectID
objectName : string
partName : string
pathName : string
vnodeID : VnodeID
partNumber : UDWORD
accessMode : UDWORD
source : string
target : string
portNum : UWORD
fsSrv : FilesystemServiceInterface *
dsSrv : DirectoryServiceInterface *
myLocalRegistrar : CentralRegistratio...
tep : IODS3Socket *
transmitProtocol : DWORD

(from FilesystemRequests)

Thread

tid : pthread_t
attr : pthread_attr_t

(from ThreadSyncronisation)IODS3Socket

IODS3Socket()
IODS3Socket()
connect()
connect()
connect()
~IODS3Socket()
bind()
bind()
listen()
write()
read()
sync()
close()
gcount()
getSocket()
getSender()
setErrorMsg()
read_stream()
read_dgram()
clone()
operator =()
name()
cleadBad()
getProtocol()

(from IOSubSystem)

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 15:36:17 Donnerstag, 27. September 2001 Class Diagram: docu / fileReplicate Page 1

Figure 8.10: Class diagram for replication and relocation92

8.10. FILE REPLICATION AND RELOCATION

TransferRequest

TransferCommand

ThreadAgent

threadTerminates()

6: establishConnectionWithThisPort()

10: finishWithTransmission()

2: startThread()

3: returnPort()

1: setPort()
4: ReplyWithPortSet()

5: sendPortToAgent()11: sendReply()

7: ReadyForData()

8: DataTransmission X-times
9:

File: Z:\Hoard-PWE\Hoard\DS3-General\design\DS3-general.mdl 21:04:47 Mittwoch, 10. Oktober 2001 Collaboration Diagram: docu / ReplicateCol Page
1

Figure 8.11: Collaboration diagram for relocating a file

int l ength ;
int o f f s e t ;
bool fragment ;
char b u f f e r [1 0 0 0] ;

15 } t rans f e rData ;

int t rans ferToken = 100 ;

i f (getPortNum () == 0) {
20 // Sender thread

Fi l eSe rv i ceThread ∗ senderThread = new Fi l eServ i ceThread ;
// Sender thread s t a r t e n
senderThread−>se tTarget (t a r g e t) ;
senderThread−>s e tSource (source) ;

25 senderThread−>setPathName (pathName) ;
senderThread−>vnodeID = vnodeID ;
portNum = senderThread−>i n i tHand l e (myLocalRegistrar) ;
senderThread−>s t a r t () ;

}
30 else {

// Rece iver agent

tep = new IODS3Socket (SOCK STREAM) ;
retConnect = tep−>connect (source , portNum) ;

35

93

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

f s S rv−>c reateObjec t (pathName , 0 6 4 4) ;

tep−>wr i t e ((unsigned char ∗)& trans ferToken , s izeof (t rans fe rToken)) ;
tep−>sync () ;

40 while (true) {
tep−>read ((unsigned char ∗) & trans f e rData ,

s izeof (t rans f e rData) ,−1 ,−1) ;
f s S rv−>wri teObject (pathName , t rans f e rData . b u f f e r ,

t rans f e rData . o f f s e t , t rans f e rData . l ength) ;
45 i f (t rans f e rData . fragment)

break ;
}

tep−>wr i t e ((unsigned char∗)& trans ferToken , s izeof (t rans fe rToken)) ;
50 tep−>sync () ;

tep−>c l o s e () ;

}

55 r ep ly−>setPortNum (portNum) ;
DBUG RETURN(rep ly) ;

}�
The listing in 8.4 documents the procedures involved when transferring a file from
one node to another. The client sends a command to the Command Manager,
to transfer a file. The Command Manager receives the command line from the
client and forwards it to the transfer command. The command line is parsed as
described in section 8.5. After the parameters have been set, a lookup request is
prepared and sent out via broadcast. This request arrives the node and the Node
Manager invokes an instance of the Directory Service.

The Command Manager waits for the replies coming from the nodes. When
the stop condition has been fulfilled, these replies are evaluated in order to find
out, which of the nodes stores a copy of the file, or if the file exists at all. By
evaluating the replies, the Command Manager knows if the target node already
has a copy of the file or not. If the file does not exist, the Command Manager
sends a message to the client and stops the transaction.

Line 15 to 30 When the transfer request arrives the node, the Node Manager
invokes an instance of the File Service. A sender thread is created at the
node and a random port number is chosen by the thread to be forwarded to
the Command Manager with the transfer reply. The thread is then started.
When the Command Manager gets the port number from the reply, it is
used to send a second transfer request to the target node.

Line 30 to 35 The second transfer request arrives the node and an agent is
created at the target node. The agent gets the port number from the
request which was chosen by the source node as the future communication

94

8.10. FILE REPLICATION AND RELOCATION

port for the transaction. The agent then calls the method connect in order
to build up the TCP connection with the sender thread.

Line 35 to 50 The target nodes sends a message to the sender thread at the
source node, indicating that it is ready to receive data. When the source
node receives this message, transmission of data from source node to target
node will proceed. The agent calls the service implementation to create the
file at the target node. The data received by the agent from the sender
will be written in the empty file just created. After the receiving agent has
receives the last set of data, it sends a reply to the Command Manager with
the result flag set to success or failure.

Listing 8.5: Transfer thread code�
int Fi l eServ i ceThread : : in i tHand l e (Cen t ra lReg i s t r a t i on ∗ l o c a l R e g i s t r a r)
{

bool retVal ;
5 tep = new IODS3Socket (SOCK STREAM) ;

retVal = tep−>bind (INADDR ANY, 0) ;
portNum = ntohs (tep−>getPort ()) ;

10 DS3Serv i c e In t e r f a c e ∗ fsImp , ∗ dsImp ;
myRegistrar = l o c a l R e g i s t r a r ;
fsImp = myRegistrar−>getServ iceImp (DS3 Fi l eSe rv i c e) ;
i f (fsImp) {

f i l e S e r v i c e I m p = dynamic cast<F i l e s y s t e m S e r v i c e I n t e r f a c e ∗>(fsImp) ;
15 }

//For the d i r e c t o r y s e r v i c e
d i r R e g i s t r a r = l o c a l R e g i s t r a r ;
dsImp = d i r R e g i s t r a r−>getServ iceImp (DS3 DirectoryServ ice) ;

20

i f (dsImp){
dsSrv = dynamic cast<D i r e c t o r y S e r v i c e I n t e r f a c e ∗>(dsImp) ;
}

return portNum ;
25 }

void ∗ Fi l eServ i ceThread : : run ()
{

30 struct {
int l ength ;
int o f f s e t ;
bool fragment ;
char b u f f e r [1 0 0 0] ;

35 } t rans f e rData ;

95

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

int t rans ferToken = 100 ;
int BUF SIZE = 100 ;
char dataBuf [BUF SIZE] ;

40 char buf [BUF SIZE] ;
int bytesRead , bytesWritten ;
int bytesRece ived ;

t rans f e rData . o f f s e t = 0 ;
45 t rans f e rData . fragment = 0 ;

tep−>l i s t e n (5 , 0 , 0) ;
tep−>read ((unsigned char ∗) & trans ferToken ,

s izeof (t rans fe rToken) , −1 , −1) ;

50 while (true) {
t rans f e rData . l ength = f i l e S e r v i c e I m p−>readObject (pathName ,

t rans f e rData . b u f f e r , t rans f e rData . o f f s e t , 1 0 0 0) ;

i f (t rans f e rData . l ength < 1000)
55 t rans f e rData . fragment = true ;

tep−>wr i t e ((unsigned char ∗) & trans f e rData ,
s izeof (t rans f e rData)) ;

60 i f (t rans f e rData . fragment)
break ;

t rans f e rData . o f f s e t += trans f e rData . l ength ;
}

65

tep−>sync () ;
tep−>read ((unsigned char ∗) & trans ferToken ,

s izeof (t rans fe rToken) , −1 , −1) ;
tep−>c l o s e () ;

70 f i l e S e r v i c e I m p−>de l e t eObje c t (pathName) ;

// Inform the d i r e c t o r y s e r v i c e
tErrorNo r e s u l t = 0 ;
VnodeID ∗ delVnodeID ;

75 delVnodeID = &vnodeID ;

r e s u l t = dsSrv−>d e l e t e F i l e (delVnodeID) ;

myRegistrar−>f r e eSe rv i c e Imp (f i l e S e r v i c e I m p) ;
80 d i r R e g i s t r a r−>f r e eSe rv i c e Imp (dsSrv) ;
}�

The listing in 8.5 documents the sender thread.

Line 5 to 25 The method initHandle gets a random port number to be re-
turned to the transfer request and then it initializes the file system service
implementation and the Directory Service implementation.

96

8.11. TESTING THE MODULES

Line 26 to 50 The real processing takes place in the method run. The sender
list calls the method listen to eavesdrop on that port number. As soon as
data is on the stream, it uses the read to read the data from the stream.

Line 51 to 65 After the sender thread has received the token sent by the agent
at the target node, it calls the service implementation to read the data from
the file that has to be relocated into a buffer. The method write is called
to read the content of the buffer and write it to the stream.

Line 70 to 75 When the sender thread is finished sending all the data, it deletes
the file at the source node and the thread terminates. The file service
notifies the Directory Service at the target node that a file has been created,
and the Directory Service at the source node will be notified that the file
has been deleted at that node.

The implementation of the replicate command differs from that of the trans-
fer command described above only in one point. After the sender thread
has finished with the transmission of the data, the file will not be deleted
at the source node.

8.11 Testing the modules

8.11.1 Testing the communication classes

All the communication classes which have been derived from the base class
MacroMessage must undergo the NetObject test. The class NetObject is the base
class to the MacroMessage. The NetObject class provides an interface for trans-
mitting objects over an TCP/IP network. When a class passes the NetObject
test, the class can be transported over the network.

The listing below documents the NetObject test. In this listing, the class
WriteRequest is to be tested. During the NetObject test, three objects are created
from the class which is to be tested. Object A and B must have the same
content while Object C differs from both of them. All the variables of the class
WriteRequest have to be tested. First of all, the “set” methods are used to assign
values to the variables. As you can see from the listing, the values of object A
and B are always the same.

Listing 8.6: NetObject Test�
WriteRequest ∗ objA , ∗ objB , ∗ objC ;

objA= new WriteRequest ;
objB= new WriteRequest ;
objC= new WriteRequest ;

5

objA−>setPathName ("me") ;
objB−>setPathName ("me") ;

97

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

objC−>setPathName ("you") ;

10 objA−>setObjectName ("test") ;
objB−>setObjectName ("test") ;
objC−>setObjectName ("test2") ;

objA−>setPathName ("me") ;
15 objB−>setPathName ("me") ;

objC−>setPathName ("you") ;

objA−>s e t F i l e D e s c r i p t o r (2) ;
objB−>s e t F i l e D e s c r i p t o r (2) ;

20 objC−>s e t F i l e D e s c r i p t o r (5) ;

objA−>setPartName ("we") ;
objB−>setPartName ("we") ;
objC−>setPartName ("me") ;

25

objA−>setBytesToBeWritten (5 0) ;
objB−>setBytesToBeWritten (5 0) ;
objC−>setBytesToBeWritten (6 0) ;

30 objA−>setBytesWritten (5 0) ;
objB−>setBytesWritten (5 0) ;
objC−>setBytesWritten (6 0) ;

NetObjTest<WriteRequest> ∗wri teTest ;
35 wri teTest = new NetObjTest<WriteRequest>

("WriteOutput" , objA , objB , objC) ;
wr i teTest−>TEST() ;�

When these variables have been assigned values, the NetObject test is started. If
any of the methods encounters an error the test is terminated. The test consists
of the following:

TEST name This method is used for testing the name of a class, if it has been
written correctly.

TEST clone This method is used to test if the name of the class can be cloned
successfully.

TEST operator= This method is used to test the assignment of the values to
the variables.

TEST operator== This method is used to compare if the contents of object
A and B are equal. If A is equal to B and A is not equal C, the test will
be successful otherwise it is a failure.

TEST outputBody This method tests each variable to see if it can be written
to the transportation medium.

98

8.11. TESTING THE MODULES

TEST inputBody This method tests each variable to see if it can be read from
the transportation medium.

For the NetObject test to be successful, each of the tests described here must be
successful. Any class that has not completed this test cannot be transported over
the network.

8.11.2 Working with log files

In order to debug a program effectively, you need to generate debugging informa-
tion when you compile it. This debugging information is stored in the object file;
it describes the data type of each variable or function and the correspondence
between source line numbers and addresses in the executable code.

To eradicate bugs from the program, a debugger has been used. All the
methods implemented did includ the debug file, which is primarily useful for
debugging purposes. When the program is running, the print function defined in
each file, prints a summary to a log file. The log files created are used to trace the
bugs in the Command Manager agents and in the Node Manager agents. This is
an example of a debug output. From the log file, one can see the names of the
classes and the methods being executed.

Listing 8.7: Log file used for debugging�
class NetObject ∗ BaseMgrSendEntry : : getItem ()
INFO : Got a DS3CmdLine ob j e c t from the queue
class NetObject ∗ BaseMgrSendEntry : : getItem ()
bool BaseMgrSenderThread : : mainloop (NetObject ∗)

5 bool IODS3Socket : : connect (unsigned long adre s s e , int port)
DS3Socket& IODS3Socket : : wr i t e (unsigned char ∗ buf , unsigned int l en)
INFO : Writing 1 bytes
INFO : In Buf f e r 1 bytes�
The purpose of a debugger is to allow one to see what is going on ”inside”

another program while it executes–or what another program was doing at the
moment it crashed.

8.11.3 Interactive test

In order to test the file service modules described above, I used a single Command
Manager agent, three Node Managers and one client. A Command Manager, a
Node Manager and a client were started on the node “Kriemhild”. At two other
nodes “Hagen” and “Siegfried” only the Node Managers were started.

The client sends the commands to the Command Manager, which forwards
the request to the Node Managers at the nodes. Depending on the type of request
sent by the client, the Command Manager might send a broadcast or a unicast
to a particular node.

99

CHAPTER 8. THE FILE SERVICE MODULE IMPLEMENTATION

When testing with three nodes and employing the majority voting approach,
if a broadcast is sent out by the Command Manager, as soon as it receives two
replies, it can continue with the transaction. All the file operations implemented
by the File Service have been tested and they are functioning properly.

100

Chapter 9

Conclusions and future work

This thesis presented the design and implementation of a distributed file service
for the Dragon Slayer system. Emphasis was laid on the decentralized nature
of the services in Dragon Slayer, because all nodes have identical services and
these services must communicate with other services resident at other nodes. In
such systems, one should be careful that communication overhead between the
services should not degrade the performance of the system.

File operations have also been implemented, for the client application pro-
grams to use for accessing and manipulating data stored in the system. In order
to avoid conflicts among processes, locks must be used to implement mutual ex-
clusion when data is being accessed for modification. The lock mechanism for
Dragon Slayer has not yet been realized.

I have also revisited other topics around the file systems like storage technolo-
gies, version number management and file replication. The replication process
is very important to distributed and decentralized file systems. From the ex-
periments carried out in [YV01] on availability as a function of the number of
replicas, quantifies the intuition that additional replicas will not always improve
service availability and can in fact reduce it. Thus, one must carefully balance
the marginal availability benefit of additional replicas against the cost of main-
taining consistency for a given fault load and consistency level. It is also clear
that increasing the number of replicas will also increase read availability since a
large number of clients will be able to access the data. The file service module
has been implemented and tested.

9.1 Quality of Service

The planned allocation and scheduling of resources to meet the needs of multime-
dia and other applications is referred to as quality of service management [CD01].
The Quality of Service that the File Service intends to offer applications is based
on storage management and the bandwidth management. Each application has

101

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

its own requirements which it needs to perform a task well. Some applications
may demand that the data transfer be processed on a high bandwidth and other
applications might prefer to reside on disk arrays. Since disk arrays provide
higher availability than single disks, some applications might perform well on
such facilities or some might prefer the solid-state storage devices (SSD), which
electrically store data in battery powered DRAM memories. These devices have
significantly lower latencies and higher transfer rates than disks and disk arrays.

The quality of service addressed here is only applicable to data storage, input
and output. The underlying storage facilities and the I/O interfaces are of great
importance to us. Traditionally, interfaces fall into two categories: channels and
networks. Current trends merge channels and network into single interfaces, for
example fiber channel. Channel interfaces such as SCSI predictably transfer data
with low-latency and high-bandwidth performance. Network interfaces on the
other hand are more flexible, have high connectivity, connect long distances and
operate in unpredictable environments.

For optimal performance of the file system, all the storage devices lying un-
derneath the file system should be equally loaded. This enables the file system to
derive maximum benefits of parallelizing the data access from the devices. This
issue will be dealt with in the thesis of [Her02], work is in progress. The devices
can have different data rates and storage capacities. For example, assume that
there are two disks in the pool, one having a bandwidth of 2MB/s and capacity
of 2GB and the other having a bandwidth of 4MB/s and 10GB capacity, i.e., the
file system can support a maximum of 6MB/s data rate.

The File Service will have to maintain a resource table that contains informa-
tion about the physical characteristics of the storage devices, the I/O interface
and the bandwidth. The values and the range of permissible variation of the
Quality of Service parameters will be stated explicitly.

In order to negotiate a Quality of Service between an application and the un-
derlying system, the application must specify its Quality of Service requirements
to the File Service. This is done by the transmission of a set of parameters.

The File Service evaluates the feasibility of meeting the requirements against
the resource table, to find out which resources are available and which resources
are currently committed before it gives a positive or negative response. If it is
negative, the application may repeat the request after decreasing its demands.

If the response is positive, the resources will be reserved for the application
and it will be given a time limit. The application is then free to run and when it
terminates, it releases the resources.

Quality of Service management is needed in order to guarantee that applica-
tions obtain the necessary quantity of resources at the required time, even when
other applications are competing for the resources [CD01].

The Quality of Service does not create more storage but manages what is
available so that it can be used more effectively to meet the requirements of
applications.

102

9.2. PARTS AND FRAGMENTS

9.2 Parts and fragments

To add more features to file partitioning, the resource manager could be designed
with the possibility of locking only a region of a file. In that case, the lock
operation will return a lock context, which must be used during subsequent read
and write operations to the region. Lock operations indicate the caller’s intention
to access a portion of a region.

An example of a system that has implemented this is Khazana presented in
[CRS98]. Khazana has been designed as a middle-ware layer for arbitrary dis-
tributed applications. The concurrency protocol used here ultimately decides the
concurrency control policy based on the stated intentions to provide the required
consistency semantics. A region’s attributes in Khazana currently include: the
desired consistency level, consistency protocol, access control information and a
minimum number of replicas.

The consistency contract should specify the properties that the resource man-
ager protocol must fulfill e.g. atomicity. A consistency protocol implements a
consistency contract.

Working with parts and fragments can only be fully implemented if most of
the services to be offered in Dragon Slayer have already been implemented.

9.3 Integrating VFS, the File System and LVM

In chapter 3 , we described the Virtual File system (VFS) and in chapter 4 the
Logical Volume Manager. Every file in the system has a vnode. For most files,
the vnode also contains the inode for the file. The inode contains the owner of
the file, the size of the file, the device the file is located on, pointers to the actual
data blocks where the file is located on disk, and so on. The directory service
stores to each file the vnode number of that file.

A project Group was already scheduled to continue with work in this area
[WLS01]. In most systems, all files have inodes. These inodes could be extended
to include an entry which indicates if a file has been partitioned and if that is
the case, the number of parts present and the names of the various parts should
also be included. The names of each part should be accompanied by their unique
IDs. The list of pointers to the data blocks of the parts should also be stored
with them.

The VFS is an object -oriented interface which defines virtual VFS and vn-
ode operations. Each installed file system provides the kernel with functions
associated with VFS and VFS-vnode operations. Vnode operations manipulate
individual files. A VFS-vnode is the VFS virtual equivalent of an inode.

VFS creates and passes VFS-vnodes to the file system vnode operations. VFS-
vnode operations include opening, closing, creating, removing, reading, writing
and renaming files. To open a file for example, VFS passes the file path name to

103

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Dragon Slayer File System

Node
B

Node
A

User at Node A

History.txt is the parent file

System Interface System Interface

User partitioned the file History.txt

Part1
Introduction.txt

Part2

Body.txt

Store part1 and part 2

Disk Disk Disk Disk Disk

Logical Volume Manager (LVM)Device Drivers -

Virtual File Switch (VFS)

Figure 9.1: The integration of the LVM, the VFS and the File System

the vnode operation, vop lookup. Vop lookup maps to a file system specific
lookup function. This function searches the name-space for each qualifier in the
path name. This lookup routine then finds the file and returns the file vnode
to the caller. Read and write system calls invoke vop read and vop write
operations. Vop read and Vop write call vop bmap routines which translates
file byte offsets to block numbers.

Since Logical Volume Manager (LVM) makes storage management much more
flexible by allowing storage to be reallocated easily at any time, storing and
accessing of the parts will automatically be done by LVM.

When storing parts, the users requests are received by the VFS interface which
then calls the Dragon Slayer III routines to perform the task. Since VFS has
direct contact to the disk drivers, it will then forward the data to be stored to
the LVM. The LVM then decides on which volumes it deem necessary to store
the file.

When retrieving the parts of a file, the part names or the part numbers to
be read or modified are passed over to the VFS with the request. Since VFS is
in direct contact with the underlying disk drivers, it will then take full control
of this process, by forwarding the request to the LVM to retrieve the parts. By
combining these two technologies, it could improve the efficiency of the system
when working with parts. The system will never grow short of storage because
with LVM, more logical volumes can be added as the system grow larger.

104

9.4. FILE VERSION MANAGEMENT

9.4 File version management

A primitive file version was implemented here in order to use in detecting and
reconciling out-of-date replicas. There are a couple of good version management
programs which could be used in Dragon Slayer like CVS. On the other
hand, an application program could be designed and implemented to satisfy the
architecture and design of the Dragon Slayer system.

9.5 Replication

Replication of data is an elaborate topic which needs to be taken care of by a
dedicated service. Normally, a replication service should consist of a consistency
manager which detects and resolves conflicts among concurrent accesses to the
replicated object. It should also provide a mechanism to propagate updates to
the replicas. Maintaining of replicas in Dragon Slayer will be dealt with more
elaborately in future works.

Considering the functions of other services in Dragon Slayer and due to
the systems architecture, I have restricted my work to the maintenance of data
consistency among replicas before a read or a write request is processed. This
has been achieved by implementing version consistency control.

A project group was already envisaged to deal with the problem of data
consistency in the Dragon Slayer system as presented in [WLS01]. The aim
of the project was to realize an efficient write operation on inconsistent data
spread across several sites. Deltas update techniques were supposed to be used
when updating data between sites.

The resource manager which is in charge of the allocation of resources in the
Dragon Slayer system has not yet been implemented, so it is not possible
for the file service to implement data consistency in the system without knowing
which scheduling algorithm the resource manager will use.

Given the well-known tradeoffs between strong and optimistic consistency
models, trends are moving towards a continuous consistency model for improving
data availability as stated in [YV01]. The replication service of Dragon Slayer

could be redesigned to allow applications to dynamically set their consistency
level, degree of replication, and placement of replicas based on changing network
and service characteristics to achieve a target level of data availability.

105

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

106

Bibliography

[Aga99] Manish M. Agarwal. System calls for automated online file system
maintenance tools. Master’s thesis, University of Minnesota, 1999.

[Aiv00] Tigran Aivazian. Linux kernel internals - virtual filesystem (vfs).
http://www.moses.uklinux.net/patches/lki.html, 2000.

[ARSW92] Farhad Abar, Gary Roedigers, Joseph Stith2, and Matt
Wicks. Afs,andrew file system; fermilab final eval-
uation report and implementation recommendations.
http://hepnrc.hep.net/hepnrc/reports/frame afs-eval.html,
1992.

[AW99] Thomas Anderson and Randolph Wang. xfs: A wide area mass
storage file system. University of California, 1999.

[BB99] Michael Beck and Harald Beohme. Linux Kernel-programmierung.
Addison Wesely, 1999.

[Ben00] Gnther Bengel. Verteilte Systeme. Vieweg Verlag, 2000.

[Bro99] Neil Brown. The linux virtual file-system layer.
http://cgi.cse.unsw.edu.au/neilb/oss/linux-commentary/vfs.html,
1999.

[Bur97] Rainer Burkhardt. UML – Unified Modeling Language, Objektorien-
tierte Modellierung fr die Praxis. Addison–Wesley–Longman, 1997.

[CD94] George F. Coulouris and Jean Dollimor. Distributed Systems, Con-
cepts and Design. Addison-Wesley Publishing Company, 1994.

[CD01] George F. Coulouris and Jean Dollimor. Distributed Systems, Con-
cepts and Design. Addison-Wesley Publishing Company, 2001.

[CRS98] John Carter, Anand Ranganathan, and Sai Susarla. Khaz-
ana* an infrastructure for building distributed services.
http://www.cs.utah.edu/khazana, 1998.

107

BIBLIOGRAPHY

[DKOT91] Fred Douglis, M. Frans Kaashoek, John Outerhout, and Tanen-
baum. A comparison of two distributed systems: Amoeba and sprite.
http://www.scs.carleton.ca/ csgs/resources/amoeba papers.html,
1991.

[FR95] Bernd Finger and Michael Richter. Das dragon-slayer-2 system:
Konzept und erstellung eines prototyps feur ein verteiltes datei-
system. Master’s thesis, University of Dortmund, 1995.

[Fre99] Christian Frey. Entwurf und Implementierung einer verteilten Ex-
perimentierumgebung fr Resource-Scheduling Algorithmen. Master’s
thesis, Informatik III, Universitt Dortmund, Mrz 1999.

[Gos94] Andrej Goscinski. Distributed Operating Systems. Addison-Wesley
Publishing Company, 1994.

[GRR99] Richard Guy, Peter Reiher, and David Ratner. Rumor: Mo-
bile data access throungh optimistic peer-to-peer replication.
http://citeseer.nj.nec.com/guy98rumor.html, 1999.

[Hei98] J. S. Heidemann. Perspectives on optimistically replicated, peer-to-
peer filing. http://citeseer.nj.nec.com/102426.html, 1998.

[Her02] Thomas Herber. Entwurf und erstellung eines schreib- bzw. leseop-
timierten file systems formates fr verteilte anwendung. Master’s
thesis, University of Dortmund, 2002.

[HHB96] Abdelsalam A. Helal, Abdelsalam A. Heddaya, and Bharat B. Bhar-
gara. Replication Techniques in Distributed Systems. Kluwer Aca-
demic Publishers, 1996.

[Kee98] Matthew T. O Keefe. Shared file systems and fibre channel.
http://citeseer.nj.nec.com/184183.html, 1998.

[Lis99] Barbara Liskov. Replication in the harp file system.
http://citeseer.nj.nec.com/likov91replication.html, 1999.

[Lor00] Stephen Lord. Porting xfs to linux. http://linux–
xfs.sgi.com/projects/xfs/papers/ols2000/olsXfs.htm, 2000.

[Mau99] Heinz Mauelshagen. Beginners guide to lvm.
http://linux.msede.com/lvm/howto/en/BeginnersGuideToLVM,
1999.

[Pag90] Thomas W. Page. Replication in ficus distributed file systems.
http://citeseer.nj.nec.com/jr91architecture.html, 1990.

108

BIBLIOGRAPHY

[Pre99] Kenneth W. Preslan. Implementing journaling in a linux shared disk
file system. http://citeseer.nj.nec.com/330434.html, 1999.

[Rat96] Rational Software Coporation. Rational Rose – Using Rational Rose
4.0, November 1996.

[Ren99] Harry Renshall. A new unix hierarchical stor-
age management service – the hsm command.
http://consult.cern.ch/cnls/236/unix storage.html, 1999.

[RSK96] Thomas M. Ruwart, Steven R. Soltis, and Mathew T. O Keeffe. The
global file sysytem. http://citeseer.nj.nec.com/25335.html, 1996.

[Rub97] Alessandro Rubini. The virtual file system in linux.
http://gnu.systemy.it/docs/vfs/, 1997.

[SDH99] Adam Sweeney, Doug Doucette, and Wei Hu. Scalability in the
xfs file system. http://linux-xfs.sgi.com/projects/xfs/papers/xfs-
usenix/index.html, 1999.

[SG94] Abraham Silberschatz and Peter B. Galvi. Operating System Con-
cept. Addison-Wesley Publishing Company, 1994.

[Sie98] Jens-Oliver P. Siepmann. Entwurf und implementierung der kom-
munikation des dragon slayer iii-systems. Master’s thesis, University
of Dortmund, 1998.

[Sol96] Steven R. Soltis. The design and implementation of a distributed file
system based on shared network storage. http://www.sistina.com,
1996.

[SS94] Keith Smith and Margo Seltzer. File layout and file system perfor-
mance. http://citeseer.nj.nec.com/smith94file.html, 1994.

[Sun95] Sun. Nfs white paper preserving file integrity.
http://www.sun.com/software/white-Papers/wp-Nfs, 1995.

[Sun96] Sun. Nfs white paper preserving file integrity.
http://www.sun.com/software/white-Papers/wp-Nfs, 1996.

[Tak99] TakeFive Software Inc., Austria. Sniff+, User’s Guide, 1999. Release
3.2.

[Tei99] David C. Teigland. The pool driver: A volume driver for sans.
http:/www.sistina.com, 1999.

[TM99] David Teigland and Heinz Mauelshagen. Volume managers in linux.
http:/www.sistina.com, 1999.

109

BIBLIOGRAPHY

[Ven00] Wietse Venema. File recovery techniques. http:/3w.ddj.com/, 2000.

[VRsTK90] Robbert Van Renesse, Andrew s. Tanenbaum,
and M. Frans Kaashoek. The amoeba dis-
tributed operating system - a status report.
http://www.scs.carleton.ca/ csgs/resources/amoeba papers.html,
1990.

[VRVST88] Robbert Van Renesse, Hans Van Staveren, and Andrew S.
Tanenbaum. The performance of the amoeba operating system.
http://www.scs.carleton.ca/ csgs/resources/amoeba papers.html,
1988.

[WKBC89] Horst F. Wedde, Bodgan Korel, W. G. Brown, and S. Chen. Trans-
parent Distributed Object Management under Completely Decen-
tralized Control. In Proc. of the 9th International IEEE Conference
on Distributed Computing Systems, pages 335–342, Newport Beach,
June 1989. IEEE Computer Society Press.

[WKC+94] Horst F. Wedde, Bogdan Korel, Shengdong Chen, Douglas C.
Daniels, Srinivasan Nagaraj, and Babu Santhanam. Transparent
Access to Large Files That Are Stored across Sites. In Readings
in Distributed Computing Systems Theory. IEEE Computer Society
Press, 1994.

[WL98] Horst F. Wedde and Mario Lischka. New dimensions in distributed
journalism through dragon slayer iii. IEEE, 1998.

[WLS01] Horst Wedde, Mario Lischka, and Oliver Siepmann. Effiziente Schei-
boperationen auf verteilte Filekopien für multimediale Anwendun-
gen. Intern Projektgruppenantrag, Lehrstuhl Informatik 3, 2001.

[YV01] Haifeng Yu and Armin Vahdat. The costs and limits of availability
for replicated services. http://issg.cs.duke.edu/pubs.html, 2001.

[Zas99] Dr. A. Zaslavsky. Distributed file systems.
Http://broncho.ct.monash.edu.au/ azaslavs, 1999.

[Zay91] Edward R. Zayas. Afs-3 programmer’s reference, architectural
overview. http://consult.cern.ch/service/afs/, 1991.

[Zyn99] Marc Zyngier. Md - multiple devices driver for linux.
http://www.penguin.cz/ mhi/fs/Filesystems-HOWTO, 1999.

110

	Introduction
	Motivation
	Overview
	Problems to be solved
	Organization of this work

	An overview of the Dragon Slayer III system
	The Dragon Slayer III architecture
	Partitioning of files
	Motivation
	Overview
	Previous concepts on parts and fragments

	Command Manager
	Node Manager
	Services
	Client Interface

	An overview of other File Systems
	The Sun Network File System (NFS)
	The Amoeba File system
	The Andrew File System (AFS)
	The Virtual File Switch Interface

	Related works on storage management
	The Network Storage Pool in the Global File System
	Resource Groups
	Device Locks
	Memory Hierarchy

	The Volume Manager in the Extended File System (XFS)
	Storage Scalability
	Allocation Groups
	Performance Scalability

	Logical Volume Manager (LVM)

	Related works on the Replication of files
	Replication Design Alternatives
	Conservative vs. optimistic update
	Client-server vs. peer-to-peer
	Immediate propagation vs. periodic reconciliation
	A continuous consistency model

	Update Protocols
	Primary copy
	Voting or simple majority
	Quorum based voting or weighted voting

	Replication strategies in other file systems
	Replication in the Ficus Distributed File Systems
	Replication in the Harp File System

	Related works on file version management
	Related works on file version management
	File version control in the Global File System
	File version control in the Amoeba File Service
	The shadow pages

	Mutual Exclusion and Concurrent accesses

	Concept and Design
	Designing the File Service
	Stateless service
	Data modification in Dragon Slayer
	Version consistency mechanism
	File replication
	Replication On Demand algorithm
	Algorithm for reconciling the replicas of a file
	Replication control

	Crash recovery
	Components of the Dragon Slayer system
	Client Interface
	Command Manager
	Node Manager

	Partitioning of files
	Composition and decomposition of a file
	Motivation
	Boundary definition
	Composition of parts

	Manipulating with parts of a file
	Reading data from the various parts of a file
	Writing data to the various parts of a file
	Deleting data from a partitioned file

	Manipulating with a fragmented file
	Reading from a fragmented file
	Writing data to a fragmented file
	Deleting the fragments of a file

	The File Service Module Implementation
	Tools used for the implementation
	The File Service Modules
	Client Program
	The File System Commands
	Command line parsing
	The Open File Table components
	The File System Requests
	The File System Service Interface
	Creating files and fragments
	File replication and relocation
	Testing the modules
	Testing the communication classes
	Working with log files
	Interactive test

	Conclusions and future work
	Quality of Service
	Parts and fragments
	Integrating VFS, the File System and LVM
	File version management
	Replication

