
On the Weakest Failure Detetor forNon-Bloking Atomi Commit �Rahid Guerraoui Petr KouznetsovDistributed Programming LaboratorySwiss Federal Institute of Tehnology in LausanneAbstratThis paper ontributes to the analysis of the Non-Bloking AtomiCommit (NBAC) problem in an asynhronous model with failure dete-tors. In partiular, we address the question of the weakest failure dete-tor to solve NBAC in this model. We de�ne the set A of timeless failuredetetors whih exludes failure detetors that provide information aboutglobal time but inludes most known meaningful failure detetors suh as3S, 3P and P [2℄. We show that, within A, the weakest failure detetorfor NBAC is ?P + 3S. As a orollary of our results, we state out therelationship between NBAC and another famous agreement problem indistributed omputing { Consensus.1 IntrodutionProblem. To ensure the atomiity of a distributed transation, the proessesmust agree on a ommon outome: ommit or abort. Every proess that doesnot rash during the exeution of the algorithm (i.e., a orret proess), shouldeventually deide on an outome without waiting for rashed proesses to re-over.More preisely, the Non-Bloking Atomi Commit (NBAC)problem [8℄ on-sists for a set of proesses to reah a ommon deision, ommit or abort, a-ording to some initial votes of the proesses, yes or no, suh that the followingproperties are satis�ed: (1) Agreement: no two proesses deide di�erently; (2)Termination: every orret proess eventually deides; (3) A-Validity: abort isthe only possible deision if some proess votes no; and (4) C-Validity: ommitis the only possible deision if all proesses are orret and vote yes. For brevity,we denote yes and ommit by 1, no and abort by 0.In this paper, we disuss the solvability of the problem in a rash-stopasynhronous message-passing model of distributed omputing. Informally, themodel is one in whih proesses exhange messages through reliable ommu-niation hannels, proesses an fail by rashing, and there are no bounds onmessage transmission time and relative proessor speeds.Bakground. It is well-known that many fundamental agreement problemsin distributed omputing, in partiular, the well-known Consensus problem,�This work is partially supported by the Swiss National Siene Foundation (projet num-ber 510-207). 1

annot be℄ solved deterministially in an asynhronous system that is subjetto even a single rash failure [3℄. In Consensus, the proesses need to deideon one out of two values, 0 or 1, based on proposed values, 0 or 1, so that, inaddition to the Agreement and Termination properties of NBAC, the followingValidity property holds: A value deided must be a value proposed.To irumvent the impossibility of Consensus, Chandra and Toueg [2℄ intro-dued the notion of failure detetor. Informally, a failure detetor is a distributedorale that gives (possibly inorret) hints about the rashes of proesses. Eahproess has aess to a loal failure detetor module that monitors other pro-esses in the system. In [1℄, it is shown that a rather weak failure detetor3S is suÆient to solve Consensus in an asynhronous system with a majorityof orret proesses, and that any failure detetor that solves Consensus anemulate 3S: hene 3S is the weakest failure detetor to solve the problem. Inother words, 3S enapsulates the exat information about failures needed tosolve Consensus in a system with a majority of orret proesses. Informally,3S guarantees that, in any exeution, the proesses eventually elet a singleorret proess.Like Consensus, NBAC does not admit a deterministi solution in an asyn-hronous system even in the fae of a single failure. In this paper we fous onthe question of the weakest failure detetor to solve NBAC.Conjeture: ?P +3S. Guerraoui introdued in [6℄ the anonymously perfetfailure detetor ?P and showed that ?P is neessary to solve NBAC. Eahmodule of ?P at a given proess outputs either the empty set or the identi�er ofthe proess. When the failure detetor module of ?P at a proess pi outputs pi,we say that pi detets a rash. ?P satis�es the following properties: AnonymousCompleteness: If some proess rashes, then there is a time after whih everyorret proess permanently detets a rash, and Anonymous Auray: Norash is deteted unless some proess rashes.In other words, ?P orretly detets that some proess has rashed, but doesnot tell whih proess has atually rashed. Clearly, if at most one proess anrash, then ?P is equivalent to the perfet failure detetor P . An algorithmthat transforms Consensus into NBAC using ?P is presented in [6℄. Sine 3Sis suÆient to solve Consensus in a system with a majority of orret proesses,?P +3S is suÆient to solve NBAC in this environment. It is also shown in [6℄that ?P +3S is stritly weaker than the Perfet failure detetor P .The onjeture we want to prove is that ?P + 3S is the weakest failuredetetor to solve NBAC (with a majority of orret proesses). To show this,we need to prove that any algorithm that solves NBAC an be used to emulate3S.Assumptions. If we onsider the overall universe of failure detetors de�nedin [2℄, 3S is not neessary to solve NBAC (i.e., our onjeture is not true).Indeed, Guerraoui introdued in [6℄ a stillborn failure detetor, denoted by B,that solves NBAC and annot be transformed into ?P+3S [6℄. More preisely,B ensures that every initial rash is immediately deteted by every proess pi,so that pi an safely deide abort without synhronizing with others proesses.More generally, a failure detetor that tells the time when a failure ourredan solve NBAC without employing Consensus. Consider a failure detetor B[�℄,2

suh that at eah proess pi, B[�℄ outputs a singleton ? until some time ti. Attime ti, if some proess is rashed at time �, the failure detetor module outputspi. Otherwise, after ti, B[�℄ behaves like P (the perfet failure detetor). It anbe easily shown that B[�℄ is not transformable into3S, although it solves NBACas follows: eah proess pi deides abort whenever its failure detetor moduleoutputs pi instead of ?, otherwise pi runs the 3PC algorithm [8℄. However,B[�℄ reports the exat time when a failure ourred, whih an be providedonly through the global time soure. It is interesting to know what happens ifwe rule out time-based failure detetors like B[�℄: among the remaining failuredetetors, is ?P +3S indeed the weakest to solve NBAC?The weakest in A. This paper shows that the answer is \yes", i.e., ouronjeture is true under the assumption that failure detetors are timeless.We de�ne a new lass A of timeless failure detetors (restriting the originaluniverse of failure detetors of [2℄) that exludes time-based failure detetors likeB[�℄, but inludes all known failure detetors like P , 3S and ?P . Informally, atimeless failure detetor module is not able to provide information about whenexatly (in the sense of the global time) failures have ourred.We show that in A, 3S is neessary to solve NBAC. That is, any failuredetetor of A that solves NBAC an emulate 3S. To show this, we extendthe tehnique used in [1℄ to prove that 3S is neessary to solve Consensus [1℄.This extension is not trivial. Given that no information about time an be pro-vided by a timeless failure detetor, for any exeution senario, we onstrut animaginary run that helps eventually dedue valuable information about orretproesses in the system and emulate 3S.?P + 3S is shown to be the weakest failure detetor in A to solve NBACwith a majority of orret proesses. As a orollary of our result, we show thatin a system equipped with timeless failure detetors, NBAC is stritly harderthan Consensus. Roughly speaking, in the lass A of timeless failure detetors,the di�erene between the problems is exatly aptured by ?P .Roadmap. Setion 2 gives an intuition of our main result. Setion 3 de�nesour system model. Setion 4 presents the lass A of timeless failure detetors.Setion 5 gives a brief reminder of the tehnique of [1℄ and disusses its ap-pliability to the NBAC problem. Setion 6 proves formally that, within A ,3S is neessary to solve NBAC. Setion 7 presents the main result of the paperthat ?P + 3S is the weakest failure detetor to solve the problem. Setion 8onludes the paper by disussing some related work.2 Intuition: two beer or not two beerAssume that three guys (Andy, Bob and Clive) want to reah a deision whetherto go or not to go to a bar and they an go only if none of them is bankrupt (theyare olletivists). Assume also that they have no wathes, eah of them mightreet over every step arbitrarily long, and that they ommuniate through areliable but arbitrarily slow e-mail servie (asynhronous model). In taking theirdeisions, they obey the following rules:(1) If someone does not have enough money, nobody deides to go.3

(2) If nobody is bankrupt or ill, everybody deides to go.(3) No two of them deide di�erently.Assume that any of them an get ill. In this ase, a nurse (failure detetor)taking are of him, alls his friends to tell them that he annot go. The nursehas bad memory with respet to names, she an only say that someone is ill.Intuitively, this orresponds to the use of failure detetor ?P . Assume thateverybody has enough money to go out and onsider the following ases:1. Suppose that the nurse possesses a gift of orale: she an reliably identifywhether someone is ill from the very beginning (intuitively, this orre-sponds to the use of the stillborn failure detetor B of [6℄). Assume thatevery guy, before doing anything, queries the nurse and waits for her re-sponse. If the response is \one of you is initially ill", the guy independentlydeides to skip going out tonight. Otherwise, they ommuniate with eahother in order to learn everybody's intention.However, suh a gifted nurse might be diÆult to �nd. Usually, peopleare not that wise. In the pratial sense, it would be more meaningful toonsider the following ase:2. The nurse is very busy, so the others an be informed about their friend'sillness arbitrarily late. Assume that Clive is ill, and the nurse deides toall his friends. It might happen that Andy reeived a all from the nurse,while Bob is still in ignorane and he thinks that everybody is able to goout.The problem is that in order to reah a ommon deision they need tosynhronize their knowledge, but they never an do it without ommuni-ation. A possible algorithm for any of them, say Bob, an be somethinglike this:(1) Bob waits until he reeives the wishes of the others or a all from thenurse that somebody is ill;(2) If everybody wants to go (no all from the nurse is reeived), Bobtries to agree with the others proposing to go. Otherwise, Bob triesto agree with the others proposing not to go.As we know from [1℄, to solve agreement in an asynhronous system, weneed an external soure that eventually informs every healthy guy thatsome partiular one is urrently in health (a failure detetor that is on-vertible to 3S). This one will deide for all.This simple example onveys the intuition that ?P +3S is neessary and suf-�ient to solve NBAC in a system equipped with timeless failure detetors.However, some not timeless (time-based) failure detetors allow to make dowithout agreement and, thus, without ?P +3S.3 ModelWe onsider in this paper a rash-prone asynhronous message passing modelaugmented with the failure detetor abstration. We reall here what in the4

model is needed to state and prove our results. More details on the model anbe found in [2℄.System. We assume the existene of a global lok to simplify the presenta-tion. The proesses do not have diret aess to the lok (timing assumptionsare aptured within failure detetors). We take the range T of the lok outputvalues to be the set of natural numbers and the integer 0, (f0g[N). The systemonsists of a set of n proesses � = fp1; ::; png(n > 1). Every pair of proesses isonneted by a reliable ommuniation hannel. The systems is asynhronous :there is no time bound on message delay, lok drift, or the time neessary toexeute a step [3℄.Failures and failure patterns. Proesses are subjet to rash failures. Afailure pattern F is a funtion from the global time range T to 2�, whereF (t) denotes the set of proesses that have rashed by time t. One a proessrashes, it does not reover, i.e., 8t < t0 : F (t) � F (t0). We de�ne orret(F) =� � [t2T F (t) to be the set of orret proesses. A proess pi =2 F (t) is saidto be up at time t. A proess pi 2 F (t) is said to be rashed (or inorret)at time t. We do not onsider Byzantine failures: a proess either orretlyexeutes the algorithm assigned to it, or rashes and stops exeuting any ationforever. An environment E is a set of failure patterns. By default, we onsideran environment of the form Ef that inludes all failure patterns in whih upto f proesses an fail. We assume that there is at least one orret proess:0 � f < n. We denote by F0 the failure-free failure pattern (orret(F0) = �).Failure detetors. A failure detetor history H with range R is a funtionfrom ��T to R. H(pi; t) is the output of the failure detetor module of proesspi at time t. A failure detetor D is a funtion that maps eah failure patternF to a set of failure detetor histories D(F) with range RD.Every proess pi has a failure detetor module Di that pi queries to obtaininformation about the failures in the system. Typially, this information in-ludes the set of proesses that a proess urrently suspets to have rashed.1Among the failure detetors de�ned in [1, 2℄, we onsider the following one:Perfet (P): the output of every Pi is a set of suspeted proesses satisfyingstrong ompleteness (i.e., every inorret proess is eventually suspetedby every orret proess) and strong auray (i.e., no proess is suspetedbefore it rashes);Eventually strong (3S): the output of every3Si is a set of suspeted proessessatisfying strong ompleteness and eventual weak auray (i.e., there is atime after whih one orret proess is never suspeted).Eventual leader (
): the output of eah failure detetor module
i is a singleproess pj , that pi urrently trusts, i.e., that pi onsiders to be orret(R
 = �). For every failure pattern, there is a time after whih allorret proesses always trust the same orret proess. Obviously,
1In [1℄, failure detetors an output values from an arbitrary range. In determining theweakest failure detetor for NBAC, we also do not make any assumption a priori on the rangeof a failure detetor. 5

provides at least as muh information as 3S: if every proess pi alwayssuspets �� f
ig, the properties of 3S are guaranteed [1℄.We onsider also the anonymously perfet failure detetor ?P [6℄, suh that eahmodule of ?P at a given proess outputs either 0 or 1 (R?P = f0; 1g). Whenthe failure detetor module of ?P at a proess pi outputs 1, we say that pidetets a rash. ?P satis�es the following properties: anonymous ompleteness(i.e., if some proess rashes, then there is a time after whih every orretproess permanently detets a rash), and anonymous auray (i.e., no rashis deteted unless some proess rashes).For any failure pattern F , P(F), 3S(F),
(F) and ?P(F) denote the setsof all histories satisfying the orresponding properties. Realling the notionof failure detetor lasses introdued in [2℄, every failure detetor above de-notes here the weakest element in the lasses of failure detetors satisfying theorresponding properties.Algorithms. We model the set of asynhronous ommuniation hannels as amessage bu�er whih ontains messages not yet reeived by their destinations.An algorithm A is a olletion of n (possibly in�nite state) deterministi au-tomata, one for eah of the proesses. A(pi) denotes the automaton runningon proess pi. In eah step of A, proess pi performs atomially the followingthree ations: (reeive phase) pi hooses non-deterministially a single messageaddressed to pi from the message bu�er, or a null message, denoted �; (failuredetetor query phase) pi queries and reeives a value from its failure detetormodule; (loal state update phase) pi hanges its state; and (send phase) sendsa message to all proesses aording to the automaton A(pi), based on its stateat the beginning of the step, the message reeived in the reeive ation, and thevalue obtained by pi from its failure detetor module.2Con�gurations, shedules and runs. A on�guration de�nes the urrentstate of eah proess in the system and the set of messages urrently in themessage bu�er. Initially, the message bu�er is empty. A step (pi;m; d; A) of analgorithm A is uniquely determined by the identity of the proess pi that takesthe step, the message m reeived by pi during the step (m might be the nullmessage �), and the failure detetor value d seen by pi during the step. We saythat a step e = (pi;m; d; A) is appliable to the urrent on�guration if and onlyif m = � or m is a message from the urrent message bu�er destined to pi. e(C)denotes the unique on�guration that results when e is applied to C. A sheduleS of algorithm A is a (�nite or in�nite) sequene of steps of A. S? denotes theempty shedule. We say that a shedule S is appliable to a on�guration Cif and only if (a) S = S?, or (b) S[1℄ is appliable to C, S[2℄ is appliable toS[1℄(C), et. For a �nite shedule S appliable to C, S(C) denotes the uniqueon�guration that results from applying S to C.A partial run of algorithm A in an environment E using a failure detetor Dis a tuple R = hF;HD; I; S; T i, where F 2 E is a failure pattern, HD 2 D(F) isa failure detetor history, I is an initial on�guration of A, S is a �nite sheduleof A, and T � T is a �nite list of inreasing time values, suh that jSj = jT j, S2Our result also applies to weaker models where a step an atomially omprise at mostone phase and where a proess an atomially send at most one message to a single proessper step. 6

is appliable to I , and for all t � jSj, if S[t℄ is of the form (pi;m; d; A) then: (1)pi has not rashed by time T [t℄, i.e., pi =2 F (T [t℄) and (2) d is the value of thefailure detetor module of pi at time T [t℄, i.e., d = HD(pi; T [t℄).A run of algorithm A in an environment E using a failure detetor D is atuple R = hF;HD; I; S; T i, where S is an in�nite shedule of A and T � T is anin�nite list of inreasing time values indiating when eah step of S ourred.In addition to satisfying the properties (1) and (2) of a partial run, run R shouldguarantee that (3) every orret proess in F takes an in�nite number of stepsin S and eventually reeives every message sent to it (this onveys the reliabilityof the ommuniation hannels).Weakest failure detetor. A problem (e.g., NBAC or Consensus) is a set ofruns (usually de�ned by a set of properties that these runs should satisfy). Wesay that a failure detetor D solves a problem M in an environment E if thereis an algorithm A, suh that all the runs of A in E using D are in M (i.e., theysatisfy the properties of M).Let D and D0 be any two failure detetors and E be any environment. Ifthere is an algorithm TD0!D that emulates D with D0 in E (TD0!D is alleda redution algorithm), we say that D is weaker than D0 in E , or D �E D0.If D �E D0 but D0 ÆE D we say that D is stritly weaker than D0 in E , orD �E D0.3 Note that TD0!D does not need to emulate all histories of D; it isrequired that all the failure detetor histories it emulates be histories of D.We say that a failure detetor D is the weakest failure detetor to solve aproblem M in an environment E if two onditions are satis�ed: (1) SuÆieny:D solves M in E , and (2) Neessity: if a failure detetor D0 solves M in E thenD �E D0.We say that problem M is harder than problem M 0 in environment E , ifany failure detetor D solving M in E solves also M 0 in E . Respetively, M isstritly harder than M 0 in E , if M is harder than M 0 in E and there exists afailure detetor D0 that solves M 0 (in E) but not M .4 Timeless failure detetorsThis setion introdues a new lass A of timeless failure detetors. Intuitively, atimeless failure detetor module is not able to provide information about whenexatly (in the sense of the global time) failures have ourred.We denote by F0 the failure-free failure pattern: 8t 2 T ; F0(t) = ;. For anyF 2 Ef and Æ 2 T , we introdue the failure pattern FÆ , suh that, for all t 2 T :FÆ(t) = � ; if t < ÆF (t� Æ) if t � ÆThus, for a failure that ours at time t in F , the orresponding failure in FÆours at t + Æ, and no failure ours before time Æ in FÆ . Note that 8Æ 2 T :orret(F) = orret(FÆ). That is, a proess is orret in F if and only if it isorret in FÆ . Thus, for any f , if F 2 Ef , then FÆ 2 Ef .3Later we omit E in �E and �E when there is no ambiguity on the environment E.7

Formally, the lass A onsists of all (timeless) failure detetors D, suh that:9H0 2 D(F0); 8Æ 2 T8F 2 Ef ; 8H 2 D(F);9HÆ 2 D(FÆ) : 8pi 2 �; 8t 2 T ;HÆ(pi; t) = � H0(pi; t) if t < ÆH(pi; t� Æ) if t � Æ (1)It follows from (1) that, for any failure detetor D 2 A and Æ 2 T , if a failureourred at time t0 and is reported by a module of D at time t1, then a failurethat ourred at t0+ Æ ould be reported in the same way at t1+ Æ: the proessdoes not know when exatly the failure ourred. This aptures our idea thatfailure detetors of lass A provide no information about the time when failuresour.From now on, we restrit our sope from the original universe of failuredetetors [2℄ to A. Note that P , 3S,
 and ?P are timeless. With ?P , forinstane, a proess an detet the very fat that some proess has rashed, butthere is no way to aquire the atual time at whih the failure ourred.Examples of histories output by a failure detetor D from A are depitedin Figure 1. The system onsists of two proesses p1 and p2. At any time, Dioutputs a set of proesses suspeted by pi (i = 1; 2). Assume that (a) p2 rashesat time t1 and p1 detets the failure at time t2. Then, by the de�nition of A, if(b) p2 rashes at time t1+d, then there exists a history of D in whih p1 detetsthe failure at time t2 + d.
p

p

1

2

[p][] 2

tt t
1 2

(a)

p

p

1

2

[p][] 2

t
t + d t + d1 2

(b)

Figure 1: Examples of timeless failure detetor histories.Consider the failure detetor B[�℄ mentioned in the introdution: eah mod-ule of B[�℄ outputs ? or a subset of the proesses in � (RB[�℄ = ? [2�).Formally, B[�℄ is de�ned as follows:8F 2 Ef ;8H 2 B[�℄(F);9HP 2 P(F);8pi 2 �; 9ti 2 T ;8t 2 T :H(pi; t) =8<: ? if t < tipi if t � ti ^ F (�) 6= ;HP (pi; t) if t � ti ^ F (�) = ;(The Stillborn failure detetor B is a partiular ase of B[�℄ with � = 0 andti = 0;8pi 2 �.) Clearly, B[�℄ does not belong to A. Indeed, onsider a failurepattern F in whih only one proess is rashed at time �. Take a orrespondinghistory H 2 B[�℄(F). For every proess pi, there is a time ti, suh that, forany t � ti, H(pi; t) = pi. Now onsider a failure pattern FÆ in whih no proessis rashed at time � (the ondition holds for all Æ > �). Sine failure detetor8

module of pi behaves now like Pi (i.e., the perfet failure detetor), its ownidentity pi is never output. Thus, B[�℄ =2 A.5 Proof tehniqueBefore proving that, in A,
 is neessary to solve NBAC, we briey reall herethe tehnique used in [1℄ to prove that
 is neessary to solve Consensus andwe disuss the appliablity of this tehnique to NBAC.The weakest failure detetor to solve Consensus. Let E be any environ-ment, D be any failure detetor that solves Consensus in E , and ConsD be anyConsensus algorithm that uses D. The algorithm TD!
 that transforms D into
 in E works as follows.Fix an arbitrary run of TD!
 using D, with failure pattern F 2 E and failuredetetor history HD 2 D(F). All proesses periodially query their failuredetetor D and exhange information about the values of HD that they see inthis run. Using this information, the proesses onstrut a direted ayli graph(DAG) that represents a \sampling" of failure detetor values in HD and ausalrelationships between the values. By periodially sending its urrent version ofthe DAG to all proesses, and inorporating all the DAGs that it reeives into itsown DAG, every orret proess onstruts ever inreasing �nite approximationsof the same in�nite limit DAG G.The DAG G an be used to simulate runs of ConsD with failure pattern Fand failure detetor history HD. These runs ould have happened if proesseswere running ConsD instead of TD!
. If we simulate all possible runs of ConsDapplied to the DAG G with all possible initial on�gurations I , we obtain asimulation forest : a tree for eah initial on�guration.Thus, the in�nite DAG G indues an in�nite simulation forest � of runs ofConsD with failure pattern F and failure detetor history HD 2 D(F). Fromthe properties of the Consensus problem, it follows that � omprises shedulesorresponding to the runs of Consensus in whih every orret proess deides0 and runs in whih every orret proess deides 1. This allows to design adeterministi algorithm that identi�es a proess p� that is orret in F , namelya proess whose step de�nes whih deision is going to be taken by the rest oforret proesses in the desending shedules.Although the simulation forest � is in�nite and annot be omputed by anyproess, there exists a �nite subforest of � that gives suÆient information toidentify p�. Thus, there is a time after whih, every orret proess runningTD!
 obtains a referene p�. In other words, TD!
 emulates
.NBAC: a hard nut. As we disussed in the introdution,
 is not neessaryto solve NBAC [6℄. Thus, the tehnique of [1℄ annot be diretly applied. Forinstane, if a module of the stillborn failure detetor B outputs ?, then thereis an initial failure in the system and NBAC is trivially solved by deiding 0 atevery orret proess. There is no way to identify orret proesses and, thus,no algorithm TB!
 is possible.However, even if we exlude failure detetors like B[�℄ by onsidering timelessfailure detetors only (i.e., fousing on lass A), we are still not able to applythe tehnique of [1℄. Indeed, let D be any failure detetor that solves NBAC in9

an environment E . Consider a run of an NBAC algorithm using D in a failurepattern F , suh that F (0) 6= ; (some proess is initially rashed). Clearly, noproess an deide 1 (no matter whih failure detetor history HD is output byD). The only deision a orret proess an take is 0 (otherwise, the A-Validityproperty of NBAC would be violated, sine some p 2 F (0) ould have voted 0).In this ase, the orresponding simulation forest � does not bring any valuableinformation about failures to identify a orret proess (no matter whih failuredetetor history HD is output by D).Fortunately, thanks to the very nature of timeless failure detetors, we anmodify the original DAGG in order to feth a valuable information about orretproesses of F . The details are presented in Setion 6.6 Neessary onditionThis setion shows the neessity of
 to solve NBAC using failure detetors inlass A. To this end, we present a redution algorithm TD!
 transforming anyfailure detetor D 2 A that solves NBAC into
. A orollary of our result isthat 3S (whih is weaker than
) is neessary to solve NBAC (using A), andhene ?P +3S is the weakest failure detetor within A to solve NBAC.Nie runs and nie DAGs. Let D be any failure detetor in A and NBACDbe any NBAC algorithm using D. From now on, we denote by e = (p;m; d) astep of proess p exeuting NBACD.Let F0 be the failure-free pattern and H0 be the history from D(F0), suhthat the ondition (1) in Setion 4 for D holds with H0. Let I be any initialon�guration in whih all proesses vote 1. Due to the properties of NBAC,there exists a partial run R0 = hF0; H0; I; S0; T0i of NBACD omprising a �nitenumber of steps in whih every proess deides 1.Taking the nie run R0 as a basis, we an now onstrut a nie DAG (di-reted ayli graph) G0 indued by the failure-free pattern F0. For any stepe = (pi;m; d) in S0, we reate a vertex [pi; d; k℄ of G0, where k � 1 is thenumber of steps of pi in S0 preeding e. For any steps e1 = (pi;m; d) ande2 = (pj ;m0; d0) in S0, suh that e1 preedes e2 in S0, we reate a orrespond-ing edge in [pi; d; k℄ ! [pj ; d0; k0℄ in G0. This means that pj queried its failuredetetor for the k0-th time after pi queried its failure detetor for the k-th time.Construting a DAG. Let F be any failure pattern from Ef and H 2 D(F)and assume that the same nie DAG G0 is initially available to all proesses.Consider a run R of TD!
. Proesses periodially query their failure detetorD and exhange information about the values of H 2 D(F) that they see in theurrent run. Using this information, every proess pi onstruts an imaginaryDAG Gi, in whih the real samples of H are assumed to be seen after all thevalues of H0 presented in G0. That is, every time a proess pi sees a failuredetetor value d, (1) a new vertex [pi; d; k℄ is added to Gi, suh that k = k0+kR,where k0 is the number of steps of pi in S0 and kR is the number of times piqueried its failure detetor module so far, and (2) a new edge from every vertexof Gi to [pi; d; k℄ is added. As a result, every orret proess p maintains anever growing graph Gi(t), suh that Gi(t) !t!1 G for some in�nite DAG G.Note that G ontains a sampling of the failure detetor history H orresponding10

to the real failure pattern F (H 2 D(F)) as well as of some imaginary historyH0 2 D(F0), where F0 is the failure-free pattern.Let ~F be any failure pattern and ~H be any history in D(~F). Let ~G be anin�nite direted ayli graph (DAG) de�ned by the set of verties V (~G) and aset of direted edges E(~G) of the form v ! v0, where v 2 V (~G) and v0 2 V (~G),with the following properties:(1) The verties of ~G are of the form [pi; d; k℄ where pi 2 �, d 2 RD andk 2 N. There is a mapping f : V (~G) ! T that assoiates a time witheah vertex of ~G, suh that:(a) For any v = [pi; d; k℄ 2 V (~G), pi =2 F (f(v)) and d = ~H(pi; f(v)).(b) For any edge v ! v0 2 E(~G), f(v) < f(v0).(2) If [pi; d; k℄ 2 V (~G),[pi; d0; k0℄ 2 V (~G) and k < k0 then [pr; d; k℄! [ps; d0; k0℄ 2E(~G).(3) ~G is transitively losed.(4) Let U � V (~G) be a �nite set of verties and pi be any orret proessin F . There is d 2 RD and k 2 N, suh that for every vertex v 2 V ,v ! [pi; d; k℄ is an edge of ~G.Then we say that DAG ~G is a sampling DAG of history ~H .It an be easily seen that GnG0, a DAG that inludes \real" verties andedges only, is a sampling DAG of H . The following lemma preisely apturesthe relationship between the real failure pattern F and the in�nite DAG G:Lemma 1 There exists Æ 2 T and a failure detetor history HÆ 2 D(FÆ) suhthat G is a sampling DAG of HÆ.Proof: Assume that the last step of S0 happened at time t0 2 T . Take anyÆ 2 T , suh that Æ > t0. Let H0 bt the history from D(F0), suh that theondition (1) in Setion 4 for D holds with H0. Construt HÆ as follows:8t 2 T ; p 2 �;HÆ(p; t) = � H0(p; t) if t < ÆH(p; t� Æ) if t � Æ (2)Reall that D 2 A. By the de�nition of A, HÆ 2 D(FÆ). Now we show that G isa sampling DAG of HÆ, i.e., that the properties 1-5 above are satis�ed. Indeed:1. De�ne f : V (G)! T as follows. Take v 2 V (G). If v 2 V (G0) representsa step S0[k℄, then f(v) = T0[k℄. If v is a vertex of GnG0, suh thatv = [pi; d; k℄ and d = H(pi; t), for some t 2 T , then f(v) = T0[k℄.(a) For any v = [pi; d; k℄ 2 V (G), pi =2 FÆ(f(v)) and d =~~H(pi; f(v)).(b) Take an edge v ! v0 of G, where v = [pi; d; k℄ and v0 = [pj ; d0; k0℄,suh that d = HÆ(pi; f(v)) and d0 = HÆ(pj ; f(v0)). Four ases arepossible:i. f(v) < Æ; f(v0) < Æ: both verties belong to G0. Moreover, theverties orrespond to some steps e and e0 of S0, and e preedese. Due to the de�nition of G0, f(v) < f(v0).11

ii. f(v) � Æ; f(v0) � Æ: both verties belong to GnG0, that isd = H(pi; f(v) � Æ) and d0 = H(pj ; f(v0) � Æ). Sine GnG0 is asampling DAG of H , f(v) < f(v0).iii. f(v) < Æ; f(v0) � Æ: learly, f(v) < f(v0);iv. f(v) � Æ; f(v0) < Æ: [pi; d; k℄ 2 G and [pj ; d0; k0℄ 2 G0. Butby the onstrution of G, every vertex of G is seen after everyvertex of G0, that is [pj ; d0; k0℄ ! [pi; d; k℄: a ontradition withthe initial assumption.Thus, f(v) < f(v0).2. Let v = [pi; d; k℄ and v0 = [pi; d0; k0℄ be any verties of G and k < k0. Fourases are possible:(a) v 2 G0; v0 2 G0: by the de�nition of G0, v ! v0 is an edge of G0,and thus of G0 [G;(b) v 2 GnG0; v0 2 GnG0: by the de�nition of a sampling DAG, v ! v0is an edge of GnG0, and thus of G;() v 2 G0; v0 2 GnG0: by the onstrution rule of G, v ! v0 is an edgeof G;(d) v 2 GnG0; v0 2 G0: ontradits the onstrution rule of G (k mustbe greater than k0).Thus, v ! v0 is an edge of G.3. By the onstrution rule of G and the fat that both G0 and GnG0 aretransitively losed, the resulting DAG G is transitively losed.4. From the fats that G0 is �nite, that, for any v 2 V (G) and v0 2 V (GnG0),v ! v0 is an edge of G, and that GnG0 is a sampling DAG of H , it followsthat, for any �nite subset V of verties of G and any orret proess pi,there is d 2 RD and k 2 N, suh that for every vertex v 2 V , v ! [pi; d; k℄is an edge of G.Thus, for some Æ 2 T , there a failure detetor history HÆ 2 D(FÆ), suh that Gis a sampling DAG of HÆ . 2Thus, G represents a sample of a failure detetor history HÆ that ould havebeen seen if the failure pattern was FÆ. Note that even if a proess p is initiallyrashed in F , G ontains the samples of its failure detetor module output.However, the number of verties of the form [p; �; �℄ 2 G is �nite, thus, p annotbe onsidered to be orret in FÆ . In other words, a rashed proess in F annotappear to be orret in FÆ .Tags and deision gadgets. Lemma 1 allows us to use G to simulate someof the runs of NBACD in the failure pattern FÆ . Take an initial on�gurationI of NBACD in whih every proess votes 1. The set of simulated shedulesof NBACD that are ompatible with some path of G and are appliable to Ian be organized as a tree �: paths in this tree represent simulated shedulesof NBACD with initial on�guration I . The fat that G0 � G guarantees thatthere exists a shedule in � in whih every proess deides 1.12

Following [1℄, we assign a set of tags (abort or ommit) to eah vertex ofthe simulation tree � indued by G. Vertex S of tree � gets tag k if and onlyif it has a desendant S0 (possibly S = S0) suh that some orret proess hasdeided k in S0(I). A vertex of � is monovalent if it has only one tag, andbivalent if it has both tags (following the terminology of [3℄).Still following [1℄, we also introdue the notion of deision gadgets and de-iding proesses and show that any deiding proess in � is orret. Informally,a deision gadget is a vertex S of � having exatly two monovalent leaves: one0-valent and one 1-valent. In turn, a deiding proess of S is a proess whosestep de�nes the deision taken by a desendant of S. The following lemma givesa ondition of the existene of at least one deision gadget in �Lemma 2 If orret(F) 6= � (F is not failure-free), then � has a deisiongadget.Proof: Let p =2 orret(F). There exists a �nite shedule E in � ontainingonly steps of orret proesses suh that all orret proesses have deided in inE(I) (Lemma 10 of [1℄). Sine E ontains no step of proess p, no informationis available about its initial vote, and the deision value must be 0 (otherwisethe A-Validity property is violated). From the way the simulation tree is on-struted, it follows that � ontains a shedule in whih 1 is deided. Thus theinitial on�guration of � is bivalent. By Lemma 18 of [1℄, � has at least onedeision gadget (and hene a deiding proess). 2Redution algorithm. The redution algorithm TD!
 presented in Figure2 works as follows. Every proess pi periodially updates and tags a simulationtree �i indued by Gi with the initial on�guration I in whih all proesses voteyes. If there exists a deision gadget in �i, then TD!
 outputs the deidingproess of the smallest deision gadget of �i (sine the set of verties of �i isountable, we an easily impose a rule to de�ne the smallest deision gadgetin it), otherwise TD!
 outputs p1. Note that for any orret proess pi, G =limt!1Gi(t) and thus � = limt!1�i(t).Theorem 3 There exists a proess p� 2 orret(F), suh that, for every orretproess pi, there is a time after whih TD!
 outputs p� at pi, forever.Proof: Consider Æ 2 T and failure pattern FÆ , suh that G is a sampling DAGfor some HÆ 2 D(FÆ). Note that orret(F) = orret(FÆ). Two ases arepossible:(1) F , and thus FÆ are failure-free. Then all verties in � are monovalent andthe redution algorithm forever outputs p1 2 orret(F).(2) F , and thus FÆ are not failure-free. By Lemma 2, � has a deiding proess.Let p� be the deiding proess of the smallest deision gadget. Sine evergrowing simulation trees �i(t) of all orret proesses pi tend to �, thereexists t0 suh that 8t > t0;8p 2 orret(F), the deiding proess of thesmallest deision gadget is p�. Thus, 8t > t0 all orret proesses pi haveoutputi = p�. By Lemma 21 of [1℄, the deiding proess is orret in F .13

1: Gi G02: k 03: while true do4: pi reeives m5: d output of D6: k k + 17: if m is of the form (pj ;Gj ; pi) then8: Gi Gi [Gj9: add [pi; d; k℄ to Gi and edges from all other verties of Gi to [pi; d; k℄10: �i simulation tree indued by Gi and I11: if �i has no deision gadgets then12: outputi p113: else14: outputi deiding proess of the smallest deision gadget of �i15: pi sends (p;Gi; q) to all q 2 �Figure 2: Redution algorithm TD!
 for proess pi.Thus TD!
 eventually outputs the identity of the same orret proess, at everyorret proess. 2Theorem 4 For any environment Ef , if a failure detetor D 2 A an be usedto solve NBAC in Ef , then D �Ef
.7 The weakest failure detetor in Ato solve NBACConsider failure detetor ?P +3S (R?P+3S = R?P �R
), suh that, for anyfailure pattern F and for any (H?P ; H
) 2?P +3S(F), we have H?P 2?P(F)and H
 2
(F).From the fats that ?P is neessary to solve NBAC in any environment [6℄,
 is weaker than
 [1℄, and Theorem 4, the following result holds:Theorem 5 For any environment Ef , if a failure detetor D 2 A solves NBACin Ef , then D �Ef ?P +
.From the theorem above and [6℄, we have:Corollary 6 ?P +3S is the weakest timeless failure detetor to solve NBACin any environment Ef with f < dn2 e.Corollary 7 For any environment Ef with 0 < f < dn2 e in a system augmentedwith timeless failure detetors, NBAC is stritly harder than Consensus.Proof: Sine
 is timeless and it is the weakest to solve Consensus (in Ef) in thewhole universe of failure detetors [2℄, it is also the weakest failure detetor tosolve Consensus in A. In turn, ?P +
 is the weakest from A to solve NBAC inE . Clearly,
 �Ef ?P +
. However,
 annot be transformed into ?P +
 (?Pdoes not make mistakes while
 is allowed to do so [6℄). Hene,
 �Ef ?P +
.14

Thus, in Ef , any algorithm that solves NBAC using A an be transformedinto an algorithm that solves Consensus, while the onverse transformation isnot possible. In other words, NBAC is stritly harder than Consensus in Ef witha majority of orret proesses in a system augmented with timeless failure de-tetors. 28 Conluding remarksSabel and Marzullo showed in [7℄ that P is the weakest failure detetor to solvethe Leader Eletion problem within a spei� lass of failure detetors. Theyfous on failure detetors that output sets of suspeted proesses and satisfythe following symmetry property: if a proess detets a failure erroneously,then any proess an detet a failure erroneously an arbitrary number of times.The requirement is rather strong: for instane, it exludes all failure detetorsthat make a �nite number of mistakes. The approah is somewhat similar toours. We also de�ned a subset A of the overall universe of failure detetors [2℄in whih ?P +
 � P is shown to be the weakest to solve our NBAC problem.The lass of symmetri failure detetors of [7℄ and our lass A of timeless failuredetetors are however inomparable.Fromentin, Raynal and Tronel stated in [4℄ that P is the weakest failuredetetor to solve NBAC. Guerraoui [6℄ pointed out that [4℄ assumes NBAC tobe solved among any subset of the proesses in the system and showed that P isnot the weakest failure detetor to solve NBAC without that assumption. Inthis paper, we make a step further showing that a failure detetor ?P +
 � Pis the weakest to solve NBAC in a wide lass A of timeless failure detetors(provided an environment with a majority of orret proesses). Thus, in thisenvironment, NBAC is stritly harder than Consensus (whih is not true ingeneral [5, 6℄). The question of the weakest failure detetor to solve NBACwithout assuming a majority of orret proesses is open for future researh.Referenes[1℄ T. D. Chandra, V. Hadzilaos, and S. Toueg. The weakest failure detetorfor solving onsensus. Journal of the ACM (JACM), 43(4):685{722, July1996.[2℄ T. D. Chandra and S. Toueg. Unreliable failure detetors for reliable dis-tributed systems. Journal of the ACM (JACM), 43(2):225{267, Marh 1996.[3℄ M. J. Fisher, N. A. Lynh, and M. S. Paterson. Impossibility of distributedonsensus with one faulty proess. Journal of the ACM (JACM), 32(3):374{382, April 1985.[4℄ E. Fromentin, M. Raynal, and F. Tronel. On lasses of problems in asyn-hronous distributed systems with proess rashes. In Proeedings of theIEEE International Conferene on Distributed Systems (ICDCS), pages 470{477, 1999. 15

[5℄ R. Guerraoui. On the hardness of failure-sensitive agreement problems. In-formation Proessing Letters, 79(2):99{104, June 2001.[6℄ R. Guerraoui. Non-bloking atomi ommit in asynhronous distributedsystems with failure detetors. Distributed Computing, 15:17{25, January2002.[7℄ L. S. Sabel and K. Marzullo. Eletion vs. onsensus in asynhronous systems.Tehnial report, Cornell University, Ithaa, NY, TR95-1488, 1995.[8℄ D. Skeen. NonBloking ommit protools. In Proeedings of the ACM SIG-MOD International Conferene on Management of Data, pages 133{142.ACM Press, May 1981.

16

