
On the Weakest Failure Dete
tor forNon-Blo
king Atomi
 Commit �Ra
hid Guerraoui Petr KouznetsovDistributed Programming LaboratorySwiss Federal Institute of Te
hnology in LausanneAbstra
tThis paper
ontributes to the analysis of the Non-Blo
king Atomi
Commit (NBAC) problem in an asyn
hronous model with failure dete
-tors. In parti
ular, we address the question of the weakest failure dete
-tor to solve NBAC in this model. We de�ne the set A of timeless failuredete
tors whi
h ex
ludes failure dete
tors that provide information aboutglobal time but in
ludes most known meaningful failure dete
tors su
h as3S, 3P and P [2℄. We show that, within A, the weakest failure dete
torfor NBAC is ?P + 3S. As a
orollary of our results, we state out therelationship between NBAC and another famous agreement problem indistributed
omputing { Consensus.1 Introdu
tionProblem. To ensure the atomi
ity of a distributed transa
tion, the pro
essesmust agree on a
ommon out
ome:
ommit or abort. Every pro
ess that doesnot
rash during the exe
ution of the algorithm (i.e., a
orre
t pro
ess), shouldeventually de
ide on an out
ome without waiting for
rashed pro
esses to re-
over.More pre
isely, the Non-Blo
king Atomi
 Commit (NBAC)problem [8℄
on-sists for a set of pro
esses to rea
h a
ommon de
ision,
ommit or abort, a
-
ording to some initial votes of the pro
esses, yes or no, su
h that the followingproperties are satis�ed: (1) Agreement: no two pro
esses de
ide di�erently; (2)Termination: every
orre
t pro
ess eventually de
ides; (3) A-Validity: abort isthe only possible de
ision if some pro
ess votes no; and (4) C-Validity:
ommitis the only possible de
ision if all pro
esses are
orre
t and vote yes. For brevity,we denote yes and
ommit by 1, no and abort by 0.In this paper, we dis
uss the solvability of the problem in a
rash-stopasyn
hronous message-passing model of distributed
omputing. Informally, themodel is one in whi
h pro
esses ex
hange messages through reliable
ommu-ni
ation
hannels, pro
esses
an fail by
rashing, and there are no bounds onmessage transmission time and relative pro
essor speeds.Ba
kground. It is well-known that many fundamental agreement problemsin distributed
omputing, in parti
ular, the well-known Consensus problem,�This work is partially supported by the Swiss National S
ien
e Foundation (proje
t num-ber 510-207). 1

annot be℄ solved deterministi
ally in an asyn
hronous system that is subje
tto even a single
rash failure [3℄. In Consensus, the pro
esses need to de
ideon one out of two values, 0 or 1, based on proposed values, 0 or 1, so that, inaddition to the Agreement and Termination properties of NBAC, the followingValidity property holds: A value de
ided must be a value proposed.To
ir
umvent the impossibility of Consensus, Chandra and Toueg [2℄ intro-du
ed the notion of failure dete
tor. Informally, a failure dete
tor is a distributedora
le that gives (possibly in
orre
t) hints about the
rashes of pro
esses. Ea
hpro
ess has a

ess to a lo
al failure dete
tor module that monitors other pro-
esses in the system. In [1℄, it is shown that a rather weak failure dete
tor3S is suÆ
ient to solve Consensus in an asyn
hronous system with a majorityof
orre
t pro
esses, and that any failure dete
tor that solves Consensus
anemulate 3S: hen
e 3S is the weakest failure dete
tor to solve the problem. Inother words, 3S en
apsulates the exa
t information about failures needed tosolve Consensus in a system with a majority of
orre
t pro
esses. Informally,3S guarantees that, in any exe
ution, the pro
esses eventually ele
t a single
orre
t pro
ess.Like Consensus, NBAC does not admit a deterministi
 solution in an asyn-
hronous system even in the fa
e of a single failure. In this paper we fo
us onthe question of the weakest failure dete
tor to solve NBAC.Conje
ture: ?P +3S. Guerraoui introdu
ed in [6℄ the anonymously perfe
tfailure dete
tor ?P and showed that ?P is ne
essary to solve NBAC. Ea
hmodule of ?P at a given pro
ess outputs either the empty set or the identi�er ofthe pro
ess. When the failure dete
tor module of ?P at a pro
ess pi outputs pi,we say that pi dete
ts a
rash. ?P satis�es the following properties: AnonymousCompleteness: If some pro
ess
rashes, then there is a time after whi
h every
orre
t pro
ess permanently dete
ts a
rash, and Anonymous A

ura
y: No
rash is dete
ted unless some pro
ess
rashes.In other words, ?P
orre
tly dete
ts that some pro
ess has
rashed, but doesnot tell whi
h pro
ess has a
tually
rashed. Clearly, if at most one pro
ess
an
rash, then ?P is equivalent to the perfe
t failure dete
tor P . An algorithmthat transforms Consensus into NBAC using ?P is presented in [6℄. Sin
e 3Sis suÆ
ient to solve Consensus in a system with a majority of
orre
t pro
esses,?P +3S is suÆ
ient to solve NBAC in this environment. It is also shown in [6℄that ?P +3S is stri
tly weaker than the Perfe
t failure dete
tor P .The
onje
ture we want to prove is that ?P + 3S is the weakest failuredete
tor to solve NBAC (with a majority of
orre
t pro
esses). To show this,we need to prove that any algorithm that solves NBAC
an be used to emulate3S.Assumptions. If we
onsider the overall universe of failure dete
tors de�nedin [2℄, 3S is not ne
essary to solve NBAC (i.e., our
onje
ture is not true).Indeed, Guerraoui introdu
ed in [6℄ a stillborn failure dete
tor, denoted by B,that solves NBAC and
annot be transformed into ?P+3S [6℄. More pre
isely,B ensures that every initial
rash is immediately dete
ted by every pro
ess pi,so that pi
an safely de
ide abort without syn
hronizing with others pro
esses.More generally, a failure dete
tor that tells the time when a failure o

urred
an solve NBAC without employing Consensus. Consider a failure dete
tor B[�℄,2

su
h that at ea
h pro
ess pi, B[�℄ outputs a singleton ? until some time ti. Attime ti, if some pro
ess is
rashed at time �, the failure dete
tor module outputspi. Otherwise, after ti, B[�℄ behaves like P (the perfe
t failure dete
tor). It
anbe easily shown that B[�℄ is not transformable into3S, although it solves NBACas follows: ea
h pro
ess pi de
ides abort whenever its failure dete
tor moduleoutputs pi instead of ?, otherwise pi runs the 3PC algorithm [8℄. However,B[�℄ reports the exa
t time when a failure o

urred, whi
h
an be providedonly through the global time sour
e. It is interesting to know what happens ifwe rule out time-based failure dete
tors like B[�℄: among the remaining failuredete
tors, is ?P +3S indeed the weakest to solve NBAC?The weakest in A. This paper shows that the answer is \yes", i.e., our
onje
ture is true under the assumption that failure dete
tors are timeless.We de�ne a new
lass A of timeless failure dete
tors (restri
ting the originaluniverse of failure dete
tors of [2℄) that ex
ludes time-based failure dete
tors likeB[�℄, but in
ludes all known failure dete
tors like P , 3S and ?P . Informally, atimeless failure dete
tor module is not able to provide information about whenexa
tly (in the sense of the global time) failures have o

urred.We show that in A, 3S is ne
essary to solve NBAC. That is, any failuredete
tor of A that solves NBAC
an emulate 3S. To show this, we extendthe te
hnique used in [1℄ to prove that 3S is ne
essary to solve Consensus [1℄.This extension is not trivial. Given that no information about time
an be pro-vided by a timeless failure dete
tor, for any exe
ution s
enario, we
onstru
t animaginary run that helps eventually dedu
e valuable information about
orre
tpro
esses in the system and emulate 3S.?P + 3S is shown to be the weakest failure dete
tor in A to solve NBACwith a majority of
orre
t pro
esses. As a
orollary of our result, we show thatin a system equipped with timeless failure dete
tors, NBAC is stri
tly harderthan Consensus. Roughly speaking, in the
lass A of timeless failure dete
tors,the di�eren
e between the problems is exa
tly
aptured by ?P .Roadmap. Se
tion 2 gives an intuition of our main result. Se
tion 3 de�nesour system model. Se
tion 4 presents the
lass A of timeless failure dete
tors.Se
tion 5 gives a brief reminder of the te
hnique of [1℄ and dis
usses its ap-pli
ability to the NBAC problem. Se
tion 6 proves formally that, within A ,3S is ne
essary to solve NBAC. Se
tion 7 presents the main result of the paperthat ?P + 3S is the weakest failure dete
tor to solve the problem. Se
tion 8
on
ludes the paper by dis
ussing some related work.2 Intuition: two beer or not two beerAssume that three guys (Andy, Bob and Clive) want to rea
h a de
ision whetherto go or not to go to a bar and they
an go only if none of them is bankrupt (theyare
olle
tivists). Assume also that they have no wat
hes, ea
h of them mightre
e
t over every step arbitrarily long, and that they
ommuni
ate through areliable but arbitrarily slow e-mail servi
e (asyn
hronous model). In taking theirde
isions, they obey the following rules:(1) If someone does not have enough money, nobody de
ides to go.3

(2) If nobody is bankrupt or ill, everybody de
ides to go.(3) No two of them de
ide di�erently.Assume that any of them
an get ill. In this
ase, a nurse (failure dete
tor)taking
are of him,
alls his friends to tell them that he
annot go. The nursehas bad memory with respe
t to names, she
an only say that someone is ill.Intuitively, this
orresponds to the use of failure dete
tor ?P . Assume thateverybody has enough money to go out and
onsider the following
ases:1. Suppose that the nurse possesses a gift of ora
le: she
an reliably identifywhether someone is ill from the very beginning (intuitively, this
orre-sponds to the use of the stillborn failure dete
tor B of [6℄). Assume thatevery guy, before doing anything, queries the nurse and waits for her re-sponse. If the response is \one of you is initially ill", the guy independentlyde
ides to skip going out tonight. Otherwise, they
ommuni
ate with ea
hother in order to learn everybody's intention.However, su
h a gifted nurse might be diÆ
ult to �nd. Usually, peopleare not that wise. In the pra
ti
al sense, it would be more meaningful to
onsider the following
ase:2. The nurse is very busy, so the others
an be informed about their friend'sillness arbitrarily late. Assume that Clive is ill, and the nurse de
ides to
all his friends. It might happen that Andy re
eived a
all from the nurse,while Bob is still in ignoran
e and he thinks that everybody is able to goout.The problem is that in order to rea
h a
ommon de
ision they need tosyn
hronize their knowledge, but they never
an do it without
ommuni-
ation. A possible algorithm for any of them, say Bob,
an be somethinglike this:(1) Bob waits until he re
eives the wishes of the others or a
all from thenurse that somebody is ill;(2) If everybody wants to go (no
all from the nurse is re
eived), Bobtries to agree with the others proposing to go. Otherwise, Bob triesto agree with the others proposing not to go.As we know from [1℄, to solve agreement in an asyn
hronous system, weneed an external sour
e that eventually informs every healthy guy thatsome parti
ular one is
urrently in health (a failure dete
tor that is
on-vertible to 3S). This one will de
ide for all.This simple example
onveys the intuition that ?P +3S is ne
essary and suf-�
ient to solve NBAC in a system equipped with timeless failure dete
tors.However, some not timeless (time-based) failure dete
tors allow to make dowithout agreement and, thus, without ?P +3S.3 ModelWe
onsider in this paper a
rash-prone asyn
hronous message passing modelaugmented with the failure dete
tor abstra
tion. We re
all here what in the4

model is needed to state and prove our results. More details on the model
anbe found in [2℄.System. We assume the existen
e of a global
lo
k to simplify the presenta-tion. The pro
esses do not have dire
t a

ess to the
lo
k (timing assumptionsare
aptured within failure dete
tors). We take the range T of the
lo
k outputvalues to be the set of natural numbers and the integer 0, (f0g[N). The system
onsists of a set of n pro
esses � = fp1; ::; png(n > 1). Every pair of pro
esses is
onne
ted by a reliable
ommuni
ation
hannel. The systems is asyn
hronous :there is no time bound on message delay,
lo
k drift, or the time ne
essary toexe
ute a step [3℄.Failures and failure patterns. Pro
esses are subje
t to
rash failures. Afailure pattern F is a fun
tion from the global time range T to 2�, whereF (t) denotes the set of pro
esses that have
rashed by time t. On
e a pro
ess
rashes, it does not re
over, i.e., 8t < t0 : F (t) � F (t0). We de�ne
orre
t(F) =� � [t2T F (t) to be the set of
orre
t pro
esses. A pro
ess pi =2 F (t) is saidto be up at time t. A pro
ess pi 2 F (t) is said to be
rashed (or in
orre
t)at time t. We do not
onsider Byzantine failures: a pro
ess either
orre
tlyexe
utes the algorithm assigned to it, or
rashes and stops exe
uting any a
tionforever. An environment E is a set of failure patterns. By default, we
onsideran environment of the form Ef that in
ludes all failure patterns in whi
h upto f pro
esses
an fail. We assume that there is at least one
orre
t pro
ess:0 � f < n. We denote by F0 the failure-free failure pattern (
orre
t(F0) = �).Failure dete
tors. A failure dete
tor history H with range R is a fun
tionfrom ��T to R. H(pi; t) is the output of the failure dete
tor module of pro
esspi at time t. A failure dete
tor D is a fun
tion that maps ea
h failure patternF to a set of failure dete
tor histories D(F) with range RD.Every pro
ess pi has a failure dete
tor module Di that pi queries to obtaininformation about the failures in the system. Typi
ally, this information in-
ludes the set of pro
esses that a pro
ess
urrently suspe
ts to have
rashed.1Among the failure dete
tors de�ned in [1, 2℄, we
onsider the following one:Perfe
t (P): the output of every Pi is a set of suspe
ted pro
esses satisfyingstrong
ompleteness (i.e., every in
orre
t pro
ess is eventually suspe
tedby every
orre
t pro
ess) and strong a

ura
y (i.e., no pro
ess is suspe
tedbefore it
rashes);Eventually strong (3S): the output of every3Si is a set of suspe
ted pro
essessatisfying strong
ompleteness and eventual weak a

ura
y (i.e., there is atime after whi
h one
orre
t pro
ess is never suspe
ted).Eventual leader (
): the output of ea
h failure dete
tor module
i is a singlepro
ess pj , that pi
urrently trusts, i.e., that pi
onsiders to be
orre
t(R
 = �). For every failure pattern, there is a time after whi
h all
orre
t pro
esses always trust the same
orre
t pro
ess. Obviously,
1In [1℄, failure dete
tors
an output values from an arbitrary range. In determining theweakest failure dete
tor for NBAC, we also do not make any assumption a priori on the rangeof a failure dete
tor. 5

provides at least as mu
h information as 3S: if every pro
ess pi alwayssuspe
ts �� f
ig, the properties of 3S are guaranteed [1℄.We
onsider also the anonymously perfe
t failure dete
tor ?P [6℄, su
h that ea
hmodule of ?P at a given pro
ess outputs either 0 or 1 (R?P = f0; 1g). Whenthe failure dete
tor module of ?P at a pro
ess pi outputs 1, we say that pidete
ts a
rash. ?P satis�es the following properties: anonymous
ompleteness(i.e., if some pro
ess
rashes, then there is a time after whi
h every
orre
tpro
ess permanently dete
ts a
rash), and anonymous a

ura
y (i.e., no
rashis dete
ted unless some pro
ess
rashes).For any failure pattern F , P(F), 3S(F),
(F) and ?P(F) denote the setsof all histories satisfying the
orresponding properties. Re
alling the notionof failure dete
tor
lasses introdu
ed in [2℄, every failure dete
tor above de-notes here the weakest element in the
lasses of failure dete
tors satisfying the
orresponding properties.Algorithms. We model the set of asyn
hronous
ommuni
ation
hannels as amessage bu�er whi
h
ontains messages not yet re
eived by their destinations.An algorithm A is a
olle
tion of n (possibly in�nite state) deterministi
 au-tomata, one for ea
h of the pro
esses. A(pi) denotes the automaton runningon pro
ess pi. In ea
h step of A, pro
ess pi performs atomi
ally the followingthree a
tions: (re
eive phase) pi
hooses non-deterministi
ally a single messageaddressed to pi from the message bu�er, or a null message, denoted �; (failuredete
tor query phase) pi queries and re
eives a value from its failure dete
tormodule; (lo
al state update phase) pi
hanges its state; and (send phase) sendsa message to all pro
esses a

ording to the automaton A(pi), based on its stateat the beginning of the step, the message re
eived in the re
eive a
tion, and thevalue obtained by pi from its failure dete
tor module.2Con�gurations, s
hedules and runs. A
on�guration de�nes the
urrentstate of ea
h pro
ess in the system and the set of messages
urrently in themessage bu�er. Initially, the message bu�er is empty. A step (pi;m; d; A) of analgorithm A is uniquely determined by the identity of the pro
ess pi that takesthe step, the message m re
eived by pi during the step (m might be the nullmessage �), and the failure dete
tor value d seen by pi during the step. We saythat a step e = (pi;m; d; A) is appli
able to the
urrent
on�guration if and onlyif m = � or m is a message from the
urrent message bu�er destined to pi. e(C)denotes the unique
on�guration that results when e is applied to C. A s
heduleS of algorithm A is a (�nite or in�nite) sequen
e of steps of A. S? denotes theempty s
hedule. We say that a s
hedule S is appli
able to a
on�guration Cif and only if (a) S = S?, or (b) S[1℄ is appli
able to C, S[2℄ is appli
able toS[1℄(C), et
. For a �nite s
hedule S appli
able to C, S(C) denotes the unique
on�guration that results from applying S to C.A partial run of algorithm A in an environment E using a failure dete
tor Dis a tuple R = hF;HD; I; S; T i, where F 2 E is a failure pattern, HD 2 D(F) isa failure dete
tor history, I is an initial
on�guration of A, S is a �nite s
heduleof A, and T � T is a �nite list of in
reasing time values, su
h that jSj = jT j, S2Our result also applies to weaker models where a step
an atomi
ally
omprise at mostone phase and where a pro
ess
an atomi
ally send at most one message to a single pro
essper step. 6

is appli
able to I , and for all t � jSj, if S[t℄ is of the form (pi;m; d; A) then: (1)pi has not
rashed by time T [t℄, i.e., pi =2 F (T [t℄) and (2) d is the value of thefailure dete
tor module of pi at time T [t℄, i.e., d = HD(pi; T [t℄).A run of algorithm A in an environment E using a failure dete
tor D is atuple R = hF;HD; I; S; T i, where S is an in�nite s
hedule of A and T � T is anin�nite list of in
reasing time values indi
ating when ea
h step of S o

urred.In addition to satisfying the properties (1) and (2) of a partial run, run R shouldguarantee that (3) every
orre
t pro
ess in F takes an in�nite number of stepsin S and eventually re
eives every message sent to it (this
onveys the reliabilityof the
ommuni
ation
hannels).Weakest failure dete
tor. A problem (e.g., NBAC or Consensus) is a set ofruns (usually de�ned by a set of properties that these runs should satisfy). Wesay that a failure dete
tor D solves a problem M in an environment E if thereis an algorithm A, su
h that all the runs of A in E using D are in M (i.e., theysatisfy the properties of M).Let D and D0 be any two failure dete
tors and E be any environment. Ifthere is an algorithm TD0!D that emulates D with D0 in E (TD0!D is
alleda redu
tion algorithm), we say that D is weaker than D0 in E , or D �E D0.If D �E D0 but D0 ÆE D we say that D is stri
tly weaker than D0 in E , orD �E D0.3 Note that TD0!D does not need to emulate all histories of D; it isrequired that all the failure dete
tor histories it emulates be histories of D.We say that a failure dete
tor D is the weakest failure dete
tor to solve aproblem M in an environment E if two
onditions are satis�ed: (1) SuÆ
ien
y:D solves M in E , and (2) Ne
essity: if a failure dete
tor D0 solves M in E thenD �E D0.We say that problem M is harder than problem M 0 in environment E , ifany failure dete
tor D solving M in E solves also M 0 in E . Respe
tively, M isstri
tly harder than M 0 in E , if M is harder than M 0 in E and there exists afailure dete
tor D0 that solves M 0 (in E) but not M .4 Timeless failure dete
torsThis se
tion introdu
es a new
lass A of timeless failure dete
tors. Intuitively, atimeless failure dete
tor module is not able to provide information about whenexa
tly (in the sense of the global time) failures have o

urred.We denote by F0 the failure-free failure pattern: 8t 2 T ; F0(t) = ;. For anyF 2 Ef and Æ 2 T , we introdu
e the failure pattern FÆ , su
h that, for all t 2 T :FÆ(t) = � ; if t < ÆF (t� Æ) if t � ÆThus, for a failure that o

urs at time t in F , the
orresponding failure in FÆo

urs at t + Æ, and no failure o

urs before time Æ in FÆ . Note that 8Æ 2 T :
orre
t(F) =
orre
t(FÆ). That is, a pro
ess is
orre
t in F if and only if it is
orre
t in FÆ . Thus, for any f , if F 2 Ef , then FÆ 2 Ef .3Later we omit E in �E and �E when there is no ambiguity on the environment E.7

Formally, the
lass A
onsists of all (timeless) failure dete
tors D, su
h that:9H0 2 D(F0); 8Æ 2 T8F 2 Ef ; 8H 2 D(F);9HÆ 2 D(FÆ) : 8pi 2 �; 8t 2 T ;HÆ(pi; t) = � H0(pi; t) if t < ÆH(pi; t� Æ) if t � Æ (1)It follows from (1) that, for any failure dete
tor D 2 A and Æ 2 T , if a failureo

urred at time t0 and is reported by a module of D at time t1, then a failurethat o

urred at t0+ Æ
ould be reported in the same way at t1+ Æ: the pro
essdoes not know when exa
tly the failure o

urred. This
aptures our idea thatfailure dete
tors of
lass A provide no information about the time when failureso

ur.From now on, we restri
t our s
ope from the original universe of failuredete
tors [2℄ to A. Note that P , 3S,
 and ?P are timeless. With ?P , forinstan
e, a pro
ess
an dete
t the very fa
t that some pro
ess has
rashed, butthere is no way to a
quire the a
tual time at whi
h the failure o

urred.Examples of histories output by a failure dete
tor D from A are depi
tedin Figure 1. The system
onsists of two pro
esses p1 and p2. At any time, Dioutputs a set of pro
esses suspe
ted by pi (i = 1; 2). Assume that (a) p2
rashesat time t1 and p1 dete
ts the failure at time t2. Then, by the de�nition of A, if(b) p2
rashes at time t1+d, then there exists a history of D in whi
h p1 dete
tsthe failure at time t2 + d.
p

p

1

2

[p]
[]
 2

t
t
 t

1
 2

(a)

p

p

1

2

[p]
[]
 2

t

t + d
 t + d
1
 2

(b)

Figure 1: Examples of timeless failure dete
tor histories.Consider the failure dete
tor B[�℄ mentioned in the introdu
tion: ea
h mod-ule of B[�℄ outputs ? or a subset of the pro
esses in � (RB[�℄ = ? [2�).Formally, B[�℄ is de�ned as follows:8F 2 Ef ;8H 2 B[�℄(F);9HP 2 P(F);8pi 2 �; 9ti 2 T ;8t 2 T :H(pi; t) =8<: ? if t < tipi if t � ti ^ F (�) 6= ;HP (pi; t) if t � ti ^ F (�) = ;(The Stillborn failure dete
tor B is a parti
ular
ase of B[�℄ with � = 0 andti = 0;8pi 2 �.) Clearly, B[�℄ does not belong to A. Indeed,
onsider a failurepattern F in whi
h only one pro
ess is
rashed at time �. Take a
orrespondinghistory H 2 B[�℄(F). For every pro
ess pi, there is a time ti, su
h that, forany t � ti, H(pi; t) = pi. Now
onsider a failure pattern FÆ in whi
h no pro
essis
rashed at time � (the
ondition holds for all Æ > �). Sin
e failure dete
tor8

module of pi behaves now like Pi (i.e., the perfe
t failure dete
tor), its ownidentity pi is never output. Thus, B[�℄ =2 A.5 Proof te
hniqueBefore proving that, in A,
 is ne
essary to solve NBAC, we brie
y re
all herethe te
hnique used in [1℄ to prove that
 is ne
essary to solve Consensus andwe dis
uss the appli
ablity of this te
hnique to NBAC.The weakest failure dete
tor to solve Consensus. Let E be any environ-ment, D be any failure dete
tor that solves Consensus in E , and ConsD be anyConsensus algorithm that uses D. The algorithm TD!
 that transforms D into
 in E works as follows.Fix an arbitrary run of TD!
 using D, with failure pattern F 2 E and failuredete
tor history HD 2 D(F). All pro
esses periodi
ally query their failuredete
tor D and ex
hange information about the values of HD that they see inthis run. Using this information, the pro
esses
onstru
t a dire
ted a
y
li
 graph(DAG) that represents a \sampling" of failure dete
tor values in HD and
ausalrelationships between the values. By periodi
ally sending its
urrent version ofthe DAG to all pro
esses, and in
orporating all the DAGs that it re
eives into itsown DAG, every
orre
t pro
ess
onstru
ts ever in
reasing �nite approximationsof the same in�nite limit DAG G.The DAG G
an be used to simulate runs of ConsD with failure pattern Fand failure dete
tor history HD. These runs
ould have happened if pro
esseswere running ConsD instead of TD!
. If we simulate all possible runs of ConsDapplied to the DAG G with all possible initial
on�gurations I , we obtain asimulation forest : a tree for ea
h initial
on�guration.Thus, the in�nite DAG G indu
es an in�nite simulation forest � of runs ofConsD with failure pattern F and failure dete
tor history HD 2 D(F). Fromthe properties of the Consensus problem, it follows that �
omprises s
hedules
orresponding to the runs of Consensus in whi
h every
orre
t pro
ess de
ides0 and runs in whi
h every
orre
t pro
ess de
ides 1. This allows to design adeterministi
 algorithm that identi�es a pro
ess p� that is
orre
t in F , namelya pro
ess whose step de�nes whi
h de
ision is going to be taken by the rest of
orre
t pro
esses in the des
ending s
hedules.Although the simulation forest � is in�nite and
annot be
omputed by anypro
ess, there exists a �nite subforest of � that gives suÆ
ient information toidentify p�. Thus, there is a time after whi
h, every
orre
t pro
ess runningTD!
 obtains a referen
e p�. In other words, TD!
 emulates
.NBAC: a hard nut. As we dis
ussed in the introdu
tion,
 is not ne
essaryto solve NBAC [6℄. Thus, the te
hnique of [1℄
annot be dire
tly applied. Forinstan
e, if a module of the stillborn failure dete
tor B outputs ?, then thereis an initial failure in the system and NBAC is trivially solved by de
iding 0 atevery
orre
t pro
ess. There is no way to identify
orre
t pro
esses and, thus,no algorithm TB!
 is possible.However, even if we ex
lude failure dete
tors like B[�℄ by
onsidering timelessfailure dete
tors only (i.e., fo
using on
lass A), we are still not able to applythe te
hnique of [1℄. Indeed, let D be any failure dete
tor that solves NBAC in9

an environment E . Consider a run of an NBAC algorithm using D in a failurepattern F , su
h that F (0) 6= ; (some pro
ess is initially
rashed). Clearly, nopro
ess
an de
ide 1 (no matter whi
h failure dete
tor history HD is output byD). The only de
ision a
orre
t pro
ess
an take is 0 (otherwise, the A-Validityproperty of NBAC would be violated, sin
e some p 2 F (0)
ould have voted 0).In this
ase, the
orresponding simulation forest � does not bring any valuableinformation about failures to identify a
orre
t pro
ess (no matter whi
h failuredete
tor history HD is output by D).Fortunately, thanks to the very nature of timeless failure dete
tors, we
anmodify the original DAGG in order to fet
h a valuable information about
orre
tpro
esses of F . The details are presented in Se
tion 6.6 Ne
essary
onditionThis se
tion shows the ne
essity of
 to solve NBAC using failure dete
tors in
lass A. To this end, we present a redu
tion algorithm TD!
 transforming anyfailure dete
tor D 2 A that solves NBAC into
. A
orollary of our result isthat 3S (whi
h is weaker than
) is ne
essary to solve NBAC (using A), andhen
e ?P +3S is the weakest failure dete
tor within A to solve NBAC.Ni
e runs and ni
e DAGs. Let D be any failure dete
tor in A and NBACDbe any NBAC algorithm using D. From now on, we denote by e = (p;m; d) astep of pro
ess p exe
uting NBACD.Let F0 be the failure-free pattern and H0 be the history from D(F0), su
hthat the
ondition (1) in Se
tion 4 for D holds with H0. Let I be any initial
on�guration in whi
h all pro
esses vote 1. Due to the properties of NBAC,there exists a partial run R0 = hF0; H0; I; S0; T0i of NBACD
omprising a �nitenumber of steps in whi
h every pro
ess de
ides 1.Taking the ni
e run R0 as a basis, we
an now
onstru
t a ni
e DAG (di-re
ted a
y
li
 graph) G0 indu
ed by the failure-free pattern F0. For any stepe = (pi;m; d) in S0, we
reate a vertex [pi; d; k℄ of G0, where k � 1 is thenumber of steps of pi in S0 pre
eding e. For any steps e1 = (pi;m; d) ande2 = (pj ;m0; d0) in S0, su
h that e1 pre
edes e2 in S0, we
reate a
orrespond-ing edge in [pi; d; k℄ ! [pj ; d0; k0℄ in G0. This means that pj queried its failuredete
tor for the k0-th time after pi queried its failure dete
tor for the k-th time.Constru
ting a DAG. Let F be any failure pattern from Ef and H 2 D(F)and assume that the same ni
e DAG G0 is initially available to all pro
esses.Consider a run R of TD!
. Pro
esses periodi
ally query their failure dete
torD and ex
hange information about the values of H 2 D(F) that they see in the
urrent run. Using this information, every pro
ess pi
onstru
ts an imaginaryDAG Gi, in whi
h the real samples of H are assumed to be seen after all thevalues of H0 presented in G0. That is, every time a pro
ess pi sees a failuredete
tor value d, (1) a new vertex [pi; d; k℄ is added to Gi, su
h that k = k0+kR,where k0 is the number of steps of pi in S0 and kR is the number of times piqueried its failure dete
tor module so far, and (2) a new edge from every vertexof Gi to [pi; d; k℄ is added. As a result, every
orre
t pro
ess p maintains anever growing graph Gi(t), su
h that Gi(t) !t!1 G for some in�nite DAG G.Note that G
ontains a sampling of the failure dete
tor history H
orresponding10

to the real failure pattern F (H 2 D(F)) as well as of some imaginary historyH0 2 D(F0), where F0 is the failure-free pattern.Let ~F be any failure pattern and ~H be any history in D(~F). Let ~G be anin�nite dire
ted a
y
li
 graph (DAG) de�ned by the set of verti
es V (~G) and aset of dire
ted edges E(~G) of the form v ! v0, where v 2 V (~G) and v0 2 V (~G),with the following properties:(1) The verti
es of ~G are of the form [pi; d; k℄ where pi 2 �, d 2 RD andk 2 N. There is a mapping f : V (~G) ! T that asso
iates a time withea
h vertex of ~G, su
h that:(a) For any v = [pi; d; k℄ 2 V (~G), pi =2 F (f(v)) and d = ~H(pi; f(v)).(b) For any edge v ! v0 2 E(~G), f(v) < f(v0).(2) If [pi; d; k℄ 2 V (~G),[pi; d0; k0℄ 2 V (~G) and k < k0 then [pr; d; k℄! [ps; d0; k0℄ 2E(~G).(3) ~G is transitively
losed.(4) Let U � V (~G) be a �nite set of verti
es and pi be any
orre
t pro
essin F . There is d 2 RD and k 2 N, su
h that for every vertex v 2 V ,v ! [pi; d; k℄ is an edge of ~G.Then we say that DAG ~G is a sampling DAG of history ~H .It
an be easily seen that GnG0, a DAG that in
ludes \real" verti
es andedges only, is a sampling DAG of H . The following lemma pre
isely
apturesthe relationship between the real failure pattern F and the in�nite DAG G:Lemma 1 There exists Æ 2 T and a failure dete
tor history HÆ 2 D(FÆ) su
hthat G is a sampling DAG of HÆ.Proof: Assume that the last step of S0 happened at time t0 2 T . Take anyÆ 2 T , su
h that Æ > t0. Let H0 bt the history from D(F0), su
h that the
ondition (1) in Se
tion 4 for D holds with H0. Constru
t HÆ as follows:8t 2 T ; p 2 �;HÆ(p; t) = � H0(p; t) if t < ÆH(p; t� Æ) if t � Æ (2)Re
all that D 2 A. By the de�nition of A, HÆ 2 D(FÆ). Now we show that G isa sampling DAG of HÆ, i.e., that the properties 1-5 above are satis�ed. Indeed:1. De�ne f : V (G)! T as follows. Take v 2 V (G). If v 2 V (G0) representsa step S0[k℄, then f(v) = T0[k℄. If v is a vertex of GnG0, su
h thatv = [pi; d; k℄ and d = H(pi; t), for some t 2 T , then f(v) = T0[k℄.(a) For any v = [pi; d; k℄ 2 V (G), pi =2 FÆ(f(v)) and d =~~H(pi; f(v)).(b) Take an edge v ! v0 of G, where v = [pi; d; k℄ and v0 = [pj ; d0; k0℄,su
h that d = HÆ(pi; f(v)) and d0 = HÆ(pj ; f(v0)). Four
ases arepossible:i. f(v) < Æ; f(v0) < Æ: both verti
es belong to G0. Moreover, theverti
es
orrespond to some steps e and e0 of S0, and e pre
edese. Due to the de�nition of G0, f(v) < f(v0).11

ii. f(v) � Æ; f(v0) � Æ: both verti
es belong to GnG0, that isd = H(pi; f(v) � Æ) and d0 = H(pj ; f(v0) � Æ). Sin
e GnG0 is asampling DAG of H , f(v) < f(v0).iii. f(v) < Æ; f(v0) � Æ:
learly, f(v) < f(v0);iv. f(v) � Æ; f(v0) < Æ: [pi; d; k℄ 2 G and [pj ; d0; k0℄ 2 G0. Butby the
onstru
tion of G, every vertex of G is seen after everyvertex of G0, that is [pj ; d0; k0℄ ! [pi; d; k℄: a
ontradi
tion withthe initial assumption.Thus, f(v) < f(v0).2. Let v = [pi; d; k℄ and v0 = [pi; d0; k0℄ be any verti
es of G and k < k0. Four
ases are possible:(a) v 2 G0; v0 2 G0: by the de�nition of G0, v ! v0 is an edge of G0,and thus of G0 [G;(b) v 2 GnG0; v0 2 GnG0: by the de�nition of a sampling DAG, v ! v0is an edge of GnG0, and thus of G;(
) v 2 G0; v0 2 GnG0: by the
onstru
tion rule of G, v ! v0 is an edgeof G;(d) v 2 GnG0; v0 2 G0:
ontradi
ts the
onstru
tion rule of G (k mustbe greater than k0).Thus, v ! v0 is an edge of G.3. By the
onstru
tion rule of G and the fa
t that both G0 and GnG0 aretransitively
losed, the resulting DAG G is transitively
losed.4. From the fa
ts that G0 is �nite, that, for any v 2 V (G) and v0 2 V (GnG0),v ! v0 is an edge of G, and that GnG0 is a sampling DAG of H , it followsthat, for any �nite subset V of verti
es of G and any
orre
t pro
ess pi,there is d 2 RD and k 2 N, su
h that for every vertex v 2 V , v ! [pi; d; k℄is an edge of G.Thus, for some Æ 2 T , there a failure dete
tor history HÆ 2 D(FÆ), su
h that Gis a sampling DAG of HÆ . 2Thus, G represents a sample of a failure dete
tor history HÆ that
ould havebeen seen if the failure pattern was FÆ. Note that even if a pro
ess p is initially
rashed in F , G
ontains the samples of its failure dete
tor module output.However, the number of verti
es of the form [p; �; �℄ 2 G is �nite, thus, p
annotbe
onsidered to be
orre
t in FÆ . In other words, a
rashed pro
ess in F
annotappear to be
orre
t in FÆ .Tags and de
ision gadgets. Lemma 1 allows us to use G to simulate someof the runs of NBACD in the failure pattern FÆ . Take an initial
on�gurationI of NBACD in whi
h every pro
ess votes 1. The set of simulated s
hedulesof NBACD that are
ompatible with some path of G and are appli
able to I
an be organized as a tree �: paths in this tree represent simulated s
hedulesof NBACD with initial
on�guration I . The fa
t that G0 � G guarantees thatthere exists a s
hedule in � in whi
h every pro
ess de
ides 1.12

Following [1℄, we assign a set of tags (abort or
ommit) to ea
h vertex ofthe simulation tree � indu
ed by G. Vertex S of tree � gets tag k if and onlyif it has a des
endant S0 (possibly S = S0) su
h that some
orre
t pro
ess hasde
ided k in S0(I). A vertex of � is monovalent if it has only one tag, andbivalent if it has both tags (following the terminology of [3℄).Still following [1℄, we also introdu
e the notion of de
ision gadgets and de-
iding pro
esses and show that any de
iding pro
ess in � is
orre
t. Informally,a de
ision gadget is a vertex S of � having exa
tly two monovalent leaves: one0-valent and one 1-valent. In turn, a de
iding pro
ess of S is a pro
ess whosestep de�nes the de
ision taken by a des
endant of S. The following lemma givesa
ondition of the existen
e of at least one de
ision gadget in �Lemma 2 If
orre
t(F) 6= � (F is not failure-free), then � has a de
isiongadget.Proof: Let p =2
orre
t(F). There exists a �nite s
hedule E in �
ontainingonly steps of
orre
t pro
esses su
h that all
orre
t pro
esses have de
ided in inE(I) (Lemma 10 of [1℄). Sin
e E
ontains no step of pro
ess p, no informationis available about its initial vote, and the de
ision value must be 0 (otherwisethe A-Validity property is violated). From the way the simulation tree is
on-stru
ted, it follows that �
ontains a s
hedule in whi
h 1 is de
ided. Thus theinitial
on�guration of � is bivalent. By Lemma 18 of [1℄, � has at least onede
ision gadget (and hen
e a de
iding pro
ess). 2Redu
tion algorithm. The redu
tion algorithm TD!
 presented in Figure2 works as follows. Every pro
ess pi periodi
ally updates and tags a simulationtree �i indu
ed by Gi with the initial
on�guration I in whi
h all pro
esses voteyes. If there exists a de
ision gadget in �i, then TD!
 outputs the de
idingpro
ess of the smallest de
ision gadget of �i (sin
e the set of verti
es of �i is
ountable, we
an easily impose a rule to de�ne the smallest de
ision gadgetin it), otherwise TD!
 outputs p1. Note that for any
orre
t pro
ess pi, G =limt!1Gi(t) and thus � = limt!1�i(t).Theorem 3 There exists a pro
ess p� 2
orre
t(F), su
h that, for every
orre
tpro
ess pi, there is a time after whi
h TD!
 outputs p� at pi, forever.Proof: Consider Æ 2 T and failure pattern FÆ , su
h that G is a sampling DAGfor some HÆ 2 D(FÆ). Note that
orre
t(F) =
orre
t(FÆ). Two
ases arepossible:(1) F , and thus FÆ are failure-free. Then all verti
es in � are monovalent andthe redu
tion algorithm forever outputs p1 2
orre
t(F).(2) F , and thus FÆ are not failure-free. By Lemma 2, � has a de
iding pro
ess.Let p� be the de
iding pro
ess of the smallest de
ision gadget. Sin
e evergrowing simulation trees �i(t) of all
orre
t pro
esses pi tend to �, thereexists t0 su
h that 8t > t0;8p 2
orre
t(F), the de
iding pro
ess of thesmallest de
ision gadget is p�. Thus, 8t > t0 all
orre
t pro
esses pi haveoutputi = p�. By Lemma 21 of [1℄, the de
iding pro
ess is
orre
t in F .13

1: Gi G02: k 03: while true do4: pi re
eives m5: d output of D6: k k + 17: if m is of the form (pj ;Gj ; pi) then8: Gi Gi [Gj9: add [pi; d; k℄ to Gi and edges from all other verti
es of Gi to [pi; d; k℄10: �i simulation tree indu
ed by Gi and I11: if �i has no de
ision gadgets then12: outputi p113: else14: outputi de
iding pro
ess of the smallest de
ision gadget of �i15: pi sends (p;Gi; q) to all q 2 �Figure 2: Redu
tion algorithm TD!
 for pro
ess pi.Thus TD!
 eventually outputs the identity of the same
orre
t pro
ess, at every
orre
t pro
ess. 2Theorem 4 For any environment Ef , if a failure dete
tor D 2 A
an be usedto solve NBAC in Ef , then D �Ef
.7 The weakest failure dete
tor in Ato solve NBACConsider failure dete
tor ?P +3S (R?P+3S = R?P �R
), su
h that, for anyfailure pattern F and for any (H?P ; H
) 2?P +3S(F), we have H?P 2?P(F)and H
 2
(F).From the fa
ts that ?P is ne
essary to solve NBAC in any environment [6℄,
 is weaker than
 [1℄, and Theorem 4, the following result holds:Theorem 5 For any environment Ef , if a failure dete
tor D 2 A solves NBACin Ef , then D �Ef ?P +
.From the theorem above and [6℄, we have:Corollary 6 ?P +3S is the weakest timeless failure dete
tor to solve NBACin any environment Ef with f < dn2 e.Corollary 7 For any environment Ef with 0 < f < dn2 e in a system augmentedwith timeless failure dete
tors, NBAC is stri
tly harder than Consensus.Proof: Sin
e
 is timeless and it is the weakest to solve Consensus (in Ef) in thewhole universe of failure dete
tors [2℄, it is also the weakest failure dete
tor tosolve Consensus in A. In turn, ?P +
 is the weakest from A to solve NBAC inE . Clearly,
 �Ef ?P +
. However,

annot be transformed into ?P +
 (?Pdoes not make mistakes while
 is allowed to do so [6℄). Hen
e,
 �Ef ?P +
.14

Thus, in Ef , any algorithm that solves NBAC using A
an be transformedinto an algorithm that solves Consensus, while the
onverse transformation isnot possible. In other words, NBAC is stri
tly harder than Consensus in Ef witha majority of
orre
t pro
esses in a system augmented with timeless failure de-te
tors. 28 Con
luding remarksSabel and Marzullo showed in [7℄ that P is the weakest failure dete
tor to solvethe Leader Ele
tion problem within a spe
i�

lass of failure dete
tors. Theyfo
us on failure dete
tors that output sets of suspe
ted pro
esses and satisfythe following symmetry property: if a pro
ess dete
ts a failure erroneously,then any pro
ess
an dete
t a failure erroneously an arbitrary number of times.The requirement is rather strong: for instan
e, it ex
ludes all failure dete
torsthat make a �nite number of mistakes. The approa
h is somewhat similar toours. We also de�ned a subset A of the overall universe of failure dete
tors [2℄in whi
h ?P +
 � P is shown to be the weakest to solve our NBAC problem.The
lass of symmetri
 failure dete
tors of [7℄ and our
lass A of timeless failuredete
tors are however in
omparable.Fromentin, Raynal and Tronel stated in [4℄ that P is the weakest failuredete
tor to solve NBAC. Guerraoui [6℄ pointed out that [4℄ assumes NBAC tobe solved among any subset of the pro
esses in the system and showed that P isnot the weakest failure dete
tor to solve NBAC without that assumption. Inthis paper, we make a step further showing that a failure dete
tor ?P +
 � Pis the weakest to solve NBAC in a wide
lass A of timeless failure dete
tors(provided an environment with a majority of
orre
t pro
esses). Thus, in thisenvironment, NBAC is stri
tly harder than Consensus (whi
h is not true ingeneral [5, 6℄). The question of the weakest failure dete
tor to solve NBACwithout assuming a majority of
orre
t pro
esses is open for future resear
h.Referen
es[1℄ T. D. Chandra, V. Hadzila
os, and S. Toueg. The weakest failure dete
torfor solving
onsensus. Journal of the ACM (JACM), 43(4):685{722, July1996.[2℄ T. D. Chandra and S. Toueg. Unreliable failure dete
tors for reliable dis-tributed systems. Journal of the ACM (JACM), 43(2):225{267, Mar
h 1996.[3℄ M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson. Impossibility of distributed
onsensus with one faulty pro
ess. Journal of the ACM (JACM), 32(3):374{382, April 1985.[4℄ E. Fromentin, M. Raynal, and F. Tronel. On
lasses of problems in asyn-
hronous distributed systems with pro
ess
rashes. In Pro
eedings of theIEEE International Conferen
e on Distributed Systems (ICDCS), pages 470{477, 1999. 15

[5℄ R. Guerraoui. On the hardness of failure-sensitive agreement problems. In-formation Pro
essing Letters, 79(2):99{104, June 2001.[6℄ R. Guerraoui. Non-blo
king atomi

ommit in asyn
hronous distributedsystems with failure dete
tors. Distributed Computing, 15:17{25, January2002.[7℄ L. S. Sabel and K. Marzullo. Ele
tion vs.
onsensus in asyn
hronous systems.Te
hni
al report, Cornell University, Itha
a, NY, TR95-1488, 1995.[8℄ D. Skeen. NonBlo
king
ommit proto
ols. In Pro
eedings of the ACM SIG-MOD International Conferen
e on Management of Data, pages 133{142.ACM Press, May 1981.

16

