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1 Introduction

The static output feedback control problem received considerable attention in the control lit-
erature; see for instance the survey papers of Mäkilä and Toivonen (1987) and Syrmos et al.
(1997) and the references therein. Although the fundamental question of existence of stabilizing
output feedback controllers is still open, a tremendous effort has been invested towards devel-
oping computational approaches to solve this problem if a solution exists. One of the popular
design approaches of static output feedback controllers is the solution of a linear-quadratic (LQ)
optimization problem analogously to the case of full state feedback.

There are basically two computational approaches, both iterative, for the solution of the op-
timal LQ output feedback problem. The first approach, pioneered for continuous-time systems
by Levine and Athans (1970), attempts to solve the nonlinear matrix equations expressing the
necessary conditions for the optimality; see (Mäkilä and Toivonen; 1987) for a survey of com-
putational methods. This approach has been extended to periodic systems with constant static
output feedback by Broussard and Halyo (1984). It is commonly accepted that the algorithms
for this approach are generally inferior, with respect to their convergence properties, to those
for the second approach, where nonlinear programming descent methods are used to perform
the minimization of the quadratic cost function. To solve the unconstrained minimization prob-
lem, both general purpose methods, as the popular conjugate gradient or BFGS quasi-Newton
methods, as well as specialized gradient methods, as the enhanced descent Anderson-Moore
method (Mäkilä and Toivonen; 1987), have been employed. All these methods rely on proven
convergence results which, under standard assumptions, guarantee the convergence to a local
minimum of the performance index. The availability of efficient software implementations of
several unconstrained minimization algorithms, moved the focus in solving optimal LQ output
feedback problems from finding convergent minimization algorithms to the derivation of efficient
numerical evaluation schemes of the cost functionals and gradients for various problems, as for
instance, the computational solution proposed by Hyslop et al. (1992) to solve periodic output
feedback control problems employing multiple input sampling.

In the last few years there has been a constantly increasing interest for the development of
numerical algorithms for the analysis and design of linear periodic discrete-time control systems
(Bittanti et al.; 1988; Hench and Laub; 1994; Sreedhar and Van Dooren; 1993; Aeyels and
Willems; 1995). In this paper we discuss the numerical solution of the optimal LQ periodic
output feedback control problem by using a gradient search based optimization approach. An
extension involving the simultaneous optimization and stabilization of periodic multimodels is
also considered. For the evaluation of cost functions and their gradients explicit expressions
are derived which involve the numerical solution of a pair of discrete-time periodic Lyapunov
equations. Efficient numerically reliable algorithms based on periodic Schur decomposition are
used for the solution of these equations (Varga; 1997). A satellite positioning example illustrates
the effectiveness of the proposed approach to solve a practical periodic output feedback problem.

Notations and notational conventions. For a periodic square time-varying matrix Ak of
integer period K we denote ΦA(j, i) = Aj−1Aj−2 · · ·Ai for j > i and ΦA(i, i) := I. The matrix
ΦA(τ +K, τ) is called the monodromy matrix at time τ and its eigenvalues, independent of τ , are
called the characteristic multipliers. For a periodic matrix Xk of period K we use alternatively
the script notation X which associates the block-diagonal matrix X = diag (X0, X1, . . . , XK−1)
to the cyclic sequence of matrices Xk, k = 0, . . . , K−1. This notation is consistent with the
standard matrix operations with block-diagonal matrices. We denote with σX the K-cyclic shift
σX = diag (X1, . . . , XK−1, X0) applied to the cyclic sequence Xk, k = 0, . . . , K−1.
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2 Optimal LQ Periodic Output Feedback

Consider the linear discrete-time periodic system of the form

xk+1 = Akxk + Bkuk

yk = Ckxk
(1)

where the matrices Ak ∈ Rn×n, Bk ∈ Rn×m, and Ck ∈ Rp×n are periodic with period K ≥ 1.
Such models arise usually from the discretization of linear continuous-time periodic models which
are the primary mathematical descriptions encountered in most practical applications. Let J be
a quadratic performance index of the form

J = E

{ ∞∑

k=0

[ xT
k Qkxk + uT

k Rkuk ]

}
(2)

where Qk ≥ 0 and Rk > 0, for k = 0, . . . , K−1 are symmetric periodic matrices of period K.
The expected values are used in the performance index (2) to take into account the dependence
of J of the initial conditions. We shall assume that x0 is a random variable with zero mean and
known covariance X0 = E{x0x

T
0 }.

In this section we address the problem to determine the optimal LQ periodic output-feedback
control law

u∗k = Fkyk (3)

which minimizes the performance index (2), while stabilizing the closed-loop system. Conditions
for the existence and global uniqueness of the solution to the above problem are not known
even for the non-periodic case (Syrmos et al.; 1997). A straightforward necessary condition
for the existence of a minimizing periodic gain matrix is the periodic output stabilizability of
the system (1); that is, there exists a stabilizing periodic output feedback matrix Fk such
that ρ

(
ΦA(K, 0)

)
< 1, where Ak = Ak + BkFkCk and ρ(·) is the spectral radius of a square

matrix. Note however, that there may be more than one local minimum, so that generally the
minimization of J , by using for example nonlinear programming techniques, may not lead to the
global minimum. In what follows we assume that a stabilizing periodic output feedback matrix
for the system (1) exists.

For the solution of the optimal LQ periodic output feedback problem in general no closed form
solutions can be found even for standard state space systems. Thus iterative search methods
must be used to compute the optimizing periodic output feedback matrix. Provided we use
general purpose unconstrained nonlinear programming methods based on gradient techniques,
it is necessary to evaluate for a given stabilizing periodic output feedback Fk the corresponding
values of the cost functional (2) and of its gradient with respect to Fk. The expressions of
function and gradient can be computed on the basis of the following result.

Proposition 1. Let Fk be a stabilizing periodic output feedback gain and let denote A = A +
BFC, Q = Q + CTFTRFC, and G = diag (0, 0, . . . , X0). Then the expressions for the function
(2) and its gradient are:

J(F) = tr (σPG)
∇FJ(F) = 2(RFC + BT σPA)SCT

where P and S satisfy the discrete periodic Lyapunov equations (DPLEs):

P = AT
σPA+Q, (4)

σS = ASAT + G. (5)
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Proof. See Appendix.
The above formulas can be also employed to derive the expressions of the function and its

gradient in the case of a constant output feedback.

Corollary 1. Let F be a constant stabilizing output feedback matrix and let denote Ak = Ak +
BkFCk and Qk = Qk +CT

k F T RkFCk. Then the expressions for the function (2) and its gradient
are:

J(F ) = tr (P0X0)
∇F J(F ) = 2

∑K−1
j=0(RjFCj + BT

j Pj+1Aj)SjC
T
j

where P and S satisfy the DPLEs (4) and (5), respectively.

Having explicit analytical expressions for the function and its gradient, it is easy to em-
ploy any gradient based technique to minimize J , provided an initial stabilizing output feedback
gain is available. Because of the potentially high dimension of the minimization problem, uncon-
strained descent methods like the limited memory BFGS method (Liu and Nocedal; 1989) used in
conjunction with an inexact line search procedure with guaranteed decrease (Moré and Thuente;
1994) are especially well suited. These methods are implemented within the MINPACK-2 project
(the successor of MINPACK-1; see Moré; 1980), offering a convenient reverse communication
interface which allows an easy implementation of function and gradient computations. These
codes are very flexible, allowing to avoid the generation of destabilizing feedback matrices during
the iteration steps.

To use gradient search methods, an important subproblem in solving an optimal output
feedback control problem is the initialization of the search process in the case of an unsta-
ble system. An initial stabilizing output feedback gain can be computed in several ways (see
Mäkilä and Toivonen; 1987). Probably the simplest and most convenient approach is to use
the minimization procedure itself to find a stabilizing feedback. This can be done by solving
a sequence of modified problems, which finally leads to a stabilizing gain matrix if one exists.
We can solve the optimal output feedback problem repeatedly for modified systems with the
pair (A0, B0) replaced by scaled pairs of the form (αjA0, αjB0). To determine the optimal
solution F

(j)
k corresponding to a modified problem, the positive scaling αj is chosen such that

αjρ
(
ΦA+BF (j−1)C(K, 0)

)
< 1. To start the iterations, we choose α1 such that F

(0)
k = 0 is a trivial

initialization. Because the sequence of positive numbers {αj} is strictly increasing, a stabilizing
output gain eventually results when αj ≥ 1 for a certain j. This technique can even be used to
achieve a prescribed stability degree for the closed-loop system. To improve the efficiency of the
preliminary stabilization, it is recommendable to perform the necessary optimizations by using
larger tolerances in the stopping criterion of the minimizer. Only the final step in determining
the optimal output feedback needs to be performed using the desired tolerance (set by the user).

It is interesting to note that the gradient approach allows to cope easily with structured
feedback gain matrices. How structure enters in computations has been shown by Toivonen and
Mäkilä (1985) in the context of optimal decentralized control. By assuming that some elements
of Fk are fixed (for instance set to zero), we can solve the output feedback optimization problem
by using straightforward mapping mechanisms to extract the active set of components of Fk

and of the gradient ∇Fk
J(Fk) before passing them to the minimization routine. Notice that

although the parameter search is performed on a reduced set of elements of F , the expressions
of function and gradient are still valid.

The instantaneous (or memoryless) periodic output feedback approach using the optimal out-
put feedback controller (3) can be employed to solve various particular periodic control problems
arising from multirate sampled-data control problems. Several multirate control schemes, as the
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multiple input sampling (Chammas and Leondes; 1978; Hyslop et al.; 1992), multirate input
sampling (Araki and Hagiwara; 1988) or the multirate output sampling (Hagiwara and Araki;
1988) can be easily turned into memoryless periodic output feedback problems and solved by
the proposed approach.

3 Robust LQ Periodic Output Feedback Control

We can formulate, similarly to the case of standard systems (Mäkilä and Toivonen; 1987), the
problem of finding a fixed periodic feedback gain to obtain satisfactory performance over a set of
operating points. Let N periodic systems be defined by the periodic matrix triples (Ai

k, B
i
k, C

i
k),

i = 1, . . . , N . These N systems can be seen as a multimodel describing the same physical
system in different operating conditions and/or configurations (describing for instance various
sensor/actuator failure situations). Let J i, i = 1, . . . , N be the quadratic performance indices
of the form (2) defined by the set of periodic weighting matrix pairs (Qi

k, R
i
k), i = 1, . . . , N . We

assume that the initial state covariances Xi
0, i = 1, . . . , N , are known.

The simultaneous optimization and stabilization of the N periodic systems with a unique
periodic output feedback Fk can be formulated as a large order decentralized periodic output
feedback control problem, with the system state, input and output vectors formed by stacking
the corresponding vectors of the N systems and with a decentralized output feedback matrix
of a block-diagonal form having all diagonal blocks equal to Fk. To perform the simultaneous
optimization of the N systems we can use for instance an aggregated performance index of the
form

JR =
N∑

i=1

wiJi (6)

where wi > 0, i = 1, . . . , N are appropriate weights satisfying
∑N

i=1 wi = 1.
To minimize the performance index (6) by using gradient based search methods, we need

expressions to efficiently evaluate the performance index and its gradient. By using the script
notation, the following result generalizes Proposition 1 for the case of multimodels.

Proposition 2. Let Fk be a periodic output feedback gain which simultaneously stabilizes all
N periodic systems. Let denote Ai = Ai + BiFCi, Qi = Qi + Ci TFTRiFCi, and Gi =
diag (0, 0, . . . , Xi

0). Then the expressions for the function (6) and its gradient are:

J(F) =
∑N

i=1 witr (σP iGi)
∇FJ(F) = 2

∑N
i=1 wi(RiFCi + Bi T σP iAi)SiCi T

where P i and Si, for i = 1, . . . , N , satisfy the DPLEs:

P i = Ai
T
σP iAi +Qi, (7)

and
σSi = AiSiAi

T
+ Gi, (8)

respectively.

The increased stabilization potential of the periodic output feedback applied to multimodels
has been shown by Kabamba (1987). Thus, a very promising application of the optimal periodic
output feedback approach is to use a single periodic time-varying output feedback controller
to simultaneously stabilize several time-invariant systems. Note that the proposed memoryless
output feedback approach can be used to solve also multimodel control problems employing
multiple input sampling schemes as those proposed in (Kabamba; 1987).

5



4 Numerical evaluation of function and gradient

Each evaluation of the performance index (2) and its gradient involves (see Proposition 1) the
solution of a pair of DPLEs: a reverse time discrete periodic Lyapunov equation of the form

P = AT σPA+Q (9)

and a dual forward time discrete periodic Lyapunov equation of the form

σS = ASAT + G, (10)

where all characteristic values of the monodromy matrix ΦA(K, 0) lie in the unit circle of the
complex plane. This ensures the existence of a unique solution of both equations. Note that
for standard systems these are two discrete Lyapunov equations which can be solved efficiently
with a computational cost which is marginally greater than the cost of solving a single Lyapunov
equation. The preservation of this feature is even more stringent for the periodic case, because
of the much higher computational effort involved in solving a single periodic Lyapunov equation.
Fortunately, this goal can be achieved with the recently proposed numerically stable algorithms
to solve DPLEs (Varga; 1997).

The algorithms proposed in (Varga; 1997) resemble the method of Bartels and Stewart (1972)
and rely on an initial reduction of the Lyapunov equation to a simpler form by using the periodic
Schur decomposition (PSD) of a matrix product (Bojanczyk et al.; 1992; Hench and Laub; 1994).
According to Bojanczyk et al. (1992), given the matrices Ak, k = 0, 1, . . . ,K−1, there exist
orthogonal matrices Zk, k = 0, 1, . . . , K−1 such that ÃK−1 = ZT

0 AK−1ZK−1 is in a real Schur
form and the matrices Ãk = ZT

k+1AkZk for k = 0, . . . , K−2 are upper triangular. It follows
that the product ÃK−1 · · · Ã0 is in a real Schur form, but the PSD can be determined without
explicitly forming this product. The transformation to compute the PSD can be expressed using
the script notation as Ã = σZTAZ. By using this transformation we can simplify the solution
of the two DPLEs as shown in the procedure given below:

1. Compute the orthogonal Z to reduce ΦA(K, 0) to the PSD.

2. Compute Ã = σZTAZ, Q̃ = ZTQZ and G̃ = σZTGσZ.

3. Solve the reduced DPLEs P̃ = ÃT σP̃Ã+ W̃ and σS̃ = ÃS̃ÃT + G̃.

4. Compute P = ZP̃ZT and S = ZS̃ZT .

Note that only one computation of the PSD is necessary to solve both DPLEs. The reduced
DPLEs are solved by using special forward and backward substitution algorithms; for details
see (Varga; 1997). The number of floating-point operations (flops) necessary to solve the pair of
DPLEs is roughly NPSD + 7Kn3 , where NPSD ≈ 25Kn3 is the number of flops to determine
the PSD.

5 Example

Consider the optimal periodic output feedback control of a spacecraft pointing and attitude
system as described by Pittelkau (1993). The continuous-time linearized state space model of
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the spacecraft system is described by the matrices

A =




0 0 0.05318064 0
0 0 0 0.05318064

−0.001352134 0 0 −0.07099273
0 −0.0007557182 0.03781555 0


 ,

B(t) =




0
0

0.1389735 · 10−6 sin(ω0t)
−0.3701336 · 10−7 cos(ω0t)


 , C =

[
1 0 0 0
0 1 0 0

]
,

where ω0 = 0.00103448 rad/s is the orbital frequency. Notice that A is a constant matrix
with all its eigenvalues on the imaginary axis. The matrix B(t) is however a time-dependent
periodic matrix with the period 2π/ω0. The components of the state vector are the roll and
yaw angles and their derivatives, the control input is the pitch magnetic moment produced by
magnetic torquer bars, and the measured outputs are the roll and yaw angles. The control effect
is generated by the interaction between a magnetic actuator and the Earth’s magnetic field. The
control problem is to determine a stabilizing output feedback control law which ensures a stable
operation of the spacecraft on the orbit.

A continuous-time approach to solve the control problem is rather involved because of inher-
ent mathematical and computational difficulties. However a discrete-time approach allows a rel-
atively easy solution of the problem by using the computational method developed in this paper.
Let K denote the number of sampling periods to generate control effects in a complete orbit and
let T be the corresponding sampling period T = 2π/(ω0K). The matrices of the discrete-time
periodic system can be computed explicitly as Ak = exp(AT ), Bk =

∫ (k+1)T
kT e[A(k+1)T−τ ]B(τ)dτ .

To investigate the performance of the output feedback control for different values of K, we gen-
erated discrete-time models for K = 10, 20, 40 and 120. For reference purposes we give the
matrices of the discretized periodic model which results for K = 120 and T = 50.61468 sec:

Ak =




0.9506860 0.0429866 0.4827320 −2.5564383
−0.0409684 0.9721628 1.3617328 0.5081454
−0.0122736 0.0363280 −0.8671394 −0.6014295
−0.0346225 −0.0072209 0.3203622 −0.8456626


 ,

Bk = 10−5 ·




0.2220925
−0.1300536

0.1877217
−0.0271167


 cos(ω0kT ) + 10−5 ·




0.5035620
0.4241087
0.1218290
0.3583826


 sin(ω0kT ).

For different values of K we computed the stabilizing periodic output feedback Fk which
minimizes the performance index (2), where Qk = diag (2, 1, 0, 0) and Rk = 10−11. In the
following table, for each value of K we included the achieved spectral radius of the closed-loop
monodromy matrix and the corresponding value of the performance index.

K 10 20 40 120
ρ(ΦA+BFC(K, 0)) 0.967 0.944 0.163 0.00036

J(F) 593.2 577.8 62.4 59.65

It can be seen that for K = 120, the dynamical performance of the closed-loop system, expressed
in terms of the spectral radius of the monodromy matrix, is completely satisfactory. The practical
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implementation of the control algorithm requires the storage of only 120 2×1 gain matrix values.
In comparison, by using the continuous-time approach of Pittelkau (1993), 1000 sample values
for a 4 by 1 state-feedback controller gain matrix are stored and linear interpolation is used to
compute the gain values between samples. Additionally, a constant state estimator was used to
estimate the state vector. Thus for all practical purposes the periodic output feedback approach
is a completely satisfactory alternative to existing spacecraft attitude control techniques.

The optimization problem for K = 120 is of dimension 240 and has been solved using
the limited memory BFGS algorithm. In the following table we give some results illustrating
the performances of the optimization algorithm for different relative tolerances RELTOL used in
the termination criteria. The figures for the number of iterations NIT , the number of func-
tion/gradient evaluations NF/G, and the CPU times (in seconds) correspond to starting the
iterations from a previously computed stabilizing periodic feedback F0 at which J(F0) = 38527.
The computations have been done on a 100 Mhz HP-9000/715 workstation running under HP-
UX 10.2.

RELTOL 10−2 10−3 10−4 10−5 10−6 10−7

NIT 33 50 100 178 328 966
NF/G 44 66 121 213 377 1088
J(F) 90.9 68.5 63.2 61.6 60.7 59.9
CPU time 16 23 42 74 130 377

The CPU time for a function/gradient evaluation amounts to a mean value of about 0.35 seconds.

6 Conclusion

A numerical approach to solve the optimal periodic output feedback control problem has been
developed. Formulas for explicit evaluation of the function and its gradient have been derived.
Each function/gradient evaluation involves the solution of two DPLEs which can be solved by
recently developed numerically reliable computational algorithms. A set of LAPACK based
Fortran routines have been implemented to compute the PSD and to solve four types of periodic
Lyapunov equations. A satellite attitude control problem has been solved to illustrate the
proposed computational approach.
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Appendix.

In the proof of Proposition 1 we employ some standard formulas for gradients (Pieters;
1995). These formulas are summarized in the following two lemmas. Lemma 2 is based on the
derivation method employed by Berger (1976).

Lemma 1. Let J1(F ) = tr (XFY ), J2(F ) = tr (XF T Y ) and J3(F ) = tr (XF T Y FZ) be scalar
functions of the matrix variable F , where X, Y and Z are matrices which do not depend on F .
Then

∇F J1(F ) =
∂

∂F
tr (XFY ) = XT Y T

∇F J2(F ) =
∂

∂F
tr (XF T Y ) = Y X

∇F J3(F ) =
∂

∂F
tr (XF T Y FZ) = Y FZX + Y T FXT ZT .

Lemma 2. Let J(F ) = tr (PX) be a scalar function of the matrix variable F , where the sym-
metric matrix X does not depend on F and P = P (F ) satisfies the discrete Lyapunov equation

P = Y (F )T PY (F ) + Z(F ),

where Y (F ) and Z(F ) are matrix functions of F and Z(F ) is a symmetric matrix. Then

∂J

∂fij
=

∂

∂fij
tr (PX) = 2tr

(
∂Y (F )T

∂fij
PY (F )S

)
+ tr

(
∂Z(F )
∂fij

S

)
,

where S satisfies the discrete Lyapunov equation

S = Y (F )SY (F )T + X.

By using the above two lemmas we obtain the following result employed in the proof of Propo-
sition 1.

Lemma 3. Let J(F ) = tr (PX) be a scalar function of the matrix variable F , where the sym-
metric matrix X does not depend on F and P = P (F ) satisfies the discrete Lyapunov equation

P = (A + BFC)T HT PH(A + BFC) + Q + CT F T RFC + (A + BFC)T W (A + BFC),

where A, B, C, H, Q, R and W do not depend on F , and Q, R and W are symmetric matrices.
Then

∇F J(F ) =
∂

∂F
tr (PX) = 2[RFC + BT (HT PH + W )(A + BFC)]SCT ,

where S satisfies the discrete Lyapunov equation

S = H(A + BFC)S(A + BFC)T HT + X.

Proof of Proposition 1. Let Fk be a stabilizing periodic output feedback gain matrix. We
deduce the expressions for the function and its gradient with respect to an arbitrary Fi. Let us
replace uk = FkCkxk in the performance index (2) to get

J = E

{ ∞∑

k=0

[ xT
k Qkxk ]

}
, (11)
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where Qk = Qk + CT
k F T

k RkFkCk and xk satisfies the difference equation

xk+1 = Akxk, (12)

where Ak = Ak + BkFkCk. It follows immediately that xi = ΦA(i, 0)x0 and thus

J = E

{ ∞∑

k=0

[ xT
0 ΦT

A
(k, 0)QkΦA(k, 0)x0 ]

}
(13)

We define

Pi =
∞∑

k=i

ΦT
A
(k, i)QkΦA(k, i).

If X0 = E{x0x
T
0 }, then the performance index J can be evaluated as

J = tr (P0X0).

It is easy to see that P0 = PK and that Pi satisfies the DPLE (4). Further it is easy to show
that each Pi satisfies a discrete Lyapunov equation of the form

Pi = ΦT
A
(i + K, i)PiΦA(i + K, i) +

K−1∑

j=0

ΦT
A
(i + j, i)Qi+jΦA(i + j, i). (14)

To compute the gradient of J with respect to Fi, we rewrite J as

J = E





i−1∑

j=0

[ xT
j Qjxj ]



 + tr (PiXi), (15)

where Xi = E{xix
T
i } satisfies

Xi = ΦA(i, 0)X0ΦT
A
(i, 0).

Notice that the first term in the expression of J in (15) does not depend on Fi. It follows
immediately that

∂J

∂Fi
=

∂

∂Fi
tr (PiXi). (16)

By defining Hi = ΦA(i + K, i + 1) and Wi =
∑K−1

j=1 ΦT
A
(i + j, i + 1)Qi+jΦA(i + j, i + 1), we can

rewrite the Lyapunov equation (14) in the form

Pi = A
T
i HT

i PiHiAi + Qi + A
T
i WiAi. (17)

We can now apply Lemma 3 to get from (16) and (17)

∂J

∂Fi
=

∂

∂Fi
tr (PiXi) = 2(RiFiCi + BT

i (HT
i PiHi + Wi)Ai)SiC

T
i , (18)

where Si satisfies the discrete Lyapunov equation

Si = ΦA(i + K, i)SiΦT
A
(i + K, i) + Xi.

By using (4) we substitute first Pi = A
T
i Pi+1Ai +Qi in the expression of the gradient (18). After

straightforward matrix manipulations we further make the substitutions AiHi = Hi+1Ai+1 and
Wi + HT

i QiHi = Qi+1 + A
T
i+1Wi+1Ai+1 to obtain with the help of (17)

∂J

∂Fi
= 2(RiFiCi + BT

i Pi+1Ai)SiC
T
i . (19)

It can be verified that the symmetric matrices Si, i = 0, . . . , K−1, satisfy the DPLE (5).
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