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tRadio frequen
y radiation in urban areas, ema-nating from a sour
e lower than the surroundingbuildings, propagates along streets. Urban streetswith tall buildings on both sides are modeled ashollow slab waveguides made of lossy plates. Thefa
ade of the buildings is taken into a

ount byintrodu
ing roughness onto the waveguide walls,whi
h 
auses mode 
oupling in the waveguide.The ele
tri
al and geometri
al properties of thewaveguide walls indu
e a steady state distribu-tion of power among the modes, whi
h is attainedat suÆ
ient distan
es from the sour
e.Street jun
tions with line of sight to the sour
e
ause power to 
ow from the street 
ontain-ing the sour
e around a 
orner and into a sidestreet. The jun
tion ex
ites a distribution ofpower among the waveguide modes in the sidestreet. As radiation 
ows along the side street,power is redistributed and eventually rea
hes asteady state. This propagation me
hanism 
ausesa signi�
ant de
rease in power levels along theside street.The predi
tions of average power levels re
eivedalong side streets show satisfa
tory agreementwith measurements taken in two urban environ-ments.1 Introdu
tionMeasurements of re
eived power in an urban en-vironment show that street 
orners have a signi�-
ant e�e
t on the propagation of ele
tromagneti
radiation in the UHF (300 MHz { 3 GHz) band.When measuring re
eived power levels in urbanpaths, a strong de
rease is evident when turningfrom a street with line of sight to the transmit-ter into a side street with no line of sight. Thisbehavior of measured power levels has been mod-

eled empiri
ally: Er
eg et al. [9℄ based their ap-proa
h on opti
al ray theory and Barbiroli et al.[2℄ mat
h mathemati
al forms to the measuredshape of re
eived power along the side street.Many authors mention an explanation based onthe mode theory for wave propagation [3, 8, 15℄,and in this paper we develop this approa
h morerigorously.Our model is based on the geometry of inter-se
ting streets with very tall buildings on bothsides. We assume that power 
ows along onestreet (the `main' street) and 
ouples into theother (`side') street. Ea
h street is modeled as awaveguide made of in�nitely large parallel plateswith air in the middle. The waveguide is made ofuniform lossy material where the ele
tri
al prop-erties are representative of building materials.We 
onsider the e�e
t of the rough (non smooth)geometry of the walls by following the theory ofMar
use [23℄.The model is presented in detail in se
tion 2and the theoreti
al predi
tions are 
ompared toa
tual measurements in se
tion 3.2 The ModelA waveguide model with smooth walls is dis-
ussed in se
tion 2.1 as a basis to the theory.This model is extended by 
onsidering rough(non-smooth) walls in se
tion 2.2, the theory isbased on opti
al �ber literature, in parti
ular thepubli
ations of Mar
use [23℄. The model of astreet 
orner is presented in se
tion 2.3.2.1 A Smooth Multi-Moded Waveg-uideThe simple model we present here 
onsists of aslab waveguide, whi
h represents a street withvery tall buildings on both sides. The walls of the
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Figure 1: A smooth slab waveguidewaveguide are made of a smooth lossy diele
tri
material (�gure 1). The waveguide is empty, sobetween the walls we assume the ele
tri
al prop-erties of free spa
e. With this simple model, weignore the e�e
ts of the ground and any obje
tswithin the waveguide (su
h as people, 
ars andtrees); these 
ompli
ations will be addressed ata later stage of our resear
h. In this se
tion wedis
uss a waveguide with smooth homogeneouswalls, as a basis for the presentation of the more
ompli
ated waveguide with rough walls in thenext se
tion. The waveguide 
an be de�ned interms of the relative 
omplex diele
tri
 
onstantof the walls �:�s(x; z) = ( 1 jxj � a� jxj > a (1)where �s(x; z) stands for the relative diele
tri

onstant of the smooth waveguide. The permi-tivity is �xed at the va
uum permeability �0 =4� � 10�7 H=m for the walls and interior of thewaveguide.Hollow diele
tri
 waveguides gained interest inthe 1970s, when they were 
onsidered for laserstru
tures [12, 21, 1, 7, 13, 26, 25℄. The wave-guide laser requires the use of a multi-modedstru
ture. We are interested in multi{modedwaveguides be
ause the normal width of streetsis many times the wavelength in the UHF band.We follow the waveguide analysis presented byAdam and Kneub�uhl [1℄ in the dis
ussion of the

smooth lossy hollow waveguide. We 
onsidera slab waveguide of width 2a with propagationalong the z dire
tion. There is no variation inthe y dire
tion so ��y = 0. The lossy diele
tri
walls of the waveguide have the relative 
omplexdiele
tri
 
onstant� = �0 + j�00 = �r � j �!�0 (2)where �r is the permitivity of the walls, � is their
ondu
tivity; ! is the angular frequen
y, thetime dependen
e is ej!t and �0 = 8:85�10�12 Fmis the va
uum diele
tri
 
onstant. We present afew other de�nitions: k = 2�� is the free spa
ewave number, where � is the free spa
e wave-length. � and kx = u=a represent the z andx 
omponents of the k ve
tor for propagationinside the waveguide, where u is the normal-ized k ve
tor in the x dire
tion. In the wallsof the waveguide, the propagation 
onstant isk2 = ���0w2�1=2 and its x 
omponent is ka = q=awhere q is normalized. Z0 = q�0�0 is the va
uumimpedan
e, and H is an arbitrary amplitude.The ele
tri
 �eld for the TE modes inside thewaveguide jxj <= a is given in [1℄:Ey = j kkxZ0H( 
os(kxx)sin (kxx) ) ej!t�j�z (3)with similar expressions for the magneti
 �eldof the TM modes. The upper fun
tion appliesto the symmetri
 modes and the lower to theantisymmetri
 modes.Using the boundary 
onditions, the 
hara
-teristi
 equation 
an be formulated in terms ofu, the propagation 
onstant in the waveguideand R, whi
h represents the properties of thewaveguide. An exa
t solution of the 
hara
ter-isti
 equations is very diÆ
ult. Burke [4℄ givesa graphi
al solution for the TE 
ase but we fol-low [1℄ and dis
uss an approximate solution. Weassume that the imaginary parts of � and u aresmall 
ompared to their real parts. In order totest the assumption on � we 
al
ulate a typi
alvalue using the ele
tri
al properties of bri
k: rel-ative ele
tri
al permitivity �r = 4:44 and 
on-du
tivity � = 0:01 S/m [14℄. We 
onsider radi-ation at 1 GHz and get � = 4:44 � j0:18, so theimaginary part is signi�
antly smaller than thereal part and the assumption on � holds. Theassumption on u relies on observing the solution



obtained elsewhere (for example, in a graphi
almethod).Under these approximations on u and �, the
hara
teristi
 values of the real part of u are [1℄for the TE modes:u0 = �(1� �)n2Odd values of n 
orrespond to the symmetri
almodes and even values of n 
orrespond to anti-symmetri
al modes. The imaginary part of u issmall in all 
ases, as assumed.The propagation 
onstant in the z dire
tion isdetermined from �2 = k2 � �ua�2. By separatingreal and imaginary parts and negle
ting terms ofse
ond degree we obtain the approximations for� = �0 + j�00 [1℄:�0 = "�2�� �2 � �u0a �2#1=2 (4)The imaginary part for the TE modes is givenby:�00 = �24a3(�0 � 1)1=2 �n2�2 n = 1; 2; : : : (5)The number of signi�
ant modes N (for a sin-gle polarization) 
an be approximated by N �2a� . When both TE and TM modes are 
onsid-ered, the number of signi�
ant modes is 2N .2.1.1 The Power Carried by the ModesNext, we 
al
ulate the power 
arried by the dif-ferent modes, in order to normalize them at alater stage. The Poynting ve
tor is given byS = 12real (E�H�) (6)and the power (per unit length in the y dire
tion)is 
al
ulated by P = Z a�a Szdx (7)where we disregard the power propagating in-side the walls of the waveguide. We assumehere the 
onvention that the mode amplitudesHn are normalized so that all the modes 
arrythe same amount of power. We also assumethat the modal amplitudes Hn are real and pos-itive. When we 
onsider later modes with dif-ferent power levels or with 
omplex amplitudes,

we use a multipli
ative 
oeÆ
ient for ea
h mode.The power 
arried by ea
h TE mode is given byP = k�0ma32u02m Z0H2m = ka3Z02 p�0mHmu0m p�0nHnu0n (8)where the last equation in (8) is due to ourassumption of equal power 
arried by all themodes. The power 
arried by the TM modes
an be expressed with a similar formula.2.1.2 The Orthogonality of the ModesWe refer to two modes as orthogonal if the power
arried by their 
ombined �elds when they prop-agate in the waveguide 
an be expressed as thesum of the powers 
arried by ea
h mode sepa-rately. If PT is the total power measured in awaveguide and fPngNn=1 are the powers 
arriedby N propagating modes, then these modes areorthogonal if PT = NXn=1Pn (9)A 
ondition on mode orthogonality 
an be ex-pressed in terms of the ele
tri
 �elds of themodes. Two modes are orthogonal ifInm = Z a�aEn �Emdx = 0 (10)where � represents the ve
tor dot produ
t. Wenow establish the orthogonality of the modes inthe smooth waveguide. It is important be
ausethese modes are used in se
tion 2.2 as a basis forthe representation of other waveforms. Clearly,any TE mode is orthogonal to any TM mode astheir respe
tive ele
tri
 �elds are geometri
allyorthogonal.The modes of the hollow slab are approxi-mately orthogonal, under the assumptionsu00 << u0 (11)� << 1 (12)This 
an be veri�ed by inserting the �eld expres-sions (3) in (10).2.2 A Rough WaveguideIn order to model realisti
 surfa
es of buildingswe must take into a

ount the fa
t that they arenot perfe
tly smooth. In this se
tion we 
onsider



x=ax=-a

σ

D

εε

z

x

ε0

w

Figure 2: A rough slab waveguideslab waveguides made of uniform material, butthe geometry of the walls is no longer perfe
tlysmooth, as shown in �gure 2.The analysis of multi-moded waveguides andthe 
oupling between the propagating modesstarted with a series of papers by Mar
use [16,17, 18, 22, 19, 20℄ and was extended by oth-ers [6, 11, 5, 10, 29℄. We follow the approa
htaken by Mar
use [16℄ to analyze the mode 
ou-pling 
aused by the roughness of the waveguidewalls. We follow a perturbation analysis of thewaveguide, whi
h uses the modes of the smoothwaveguide as a basis; the analysis relies on theassumption of small perturbations of the wall ge-ometry.We maintain the two dimensional model,where there is no variation in the y dire
tion.The wall boundary near x = a is given by thefun
tion x = f(z) and the boundary near x = �ais given by x = h(z). We 
hara
terize the wallperturbations statisti
ally, using their 
orrela-tion fun
tions, where we assume that the per-turbation on both walls are independent of ea
hother and wide sense stationary, i.e., the statis-ti
al propertied do not 
hange along the street.for any point z0 along the waveguide:h[f(z0)� a℄ [f(z0 + z)� a℄i = �2we� jzjD (13)where �w is the rms deviation of the wall fromperfe
t straightness and D is the 
orrelationlength. We assume the same statisti
s for h(z),whi
h de�nes the deviations of the wall near

x = �a. The Gaussian 
orrelation assumptionmay not be a

urate, but it 
aptures two im-portant features of every 
orrelation fun
tion,namely a 
orrelation length and a varian
e.We now examine the deviation of the 
om-plex diele
tri
 
onstant of the waveguide fromthe smooth waveguide. Near the boundary x = athis deviation is given by�r(x; z) � �s(x; z) = ��(x; z) =8>>>>>>>><>>>>>>>>: 0 ( x < a a < f(z)x < f(z) f(z) < a1� � a < x < f(z) a < f(z)�(1� �) f(z) < x < a f(z) < a0 ( x > f(z) f(z) > ax > a a > f(z)where �r(x; z) stands for the relative diele
tri

onstant of the rough waveguide and �s(x; z) isde�ned in (1). The deviation near x = �a isexpressed in a similar manner, in terms of h(z).The �elds in the waveguide are the solutionsof the wave equation:�2Ey�x2 + �2Ey�z2 + (�s(x; z) + ��(x; z)) �0k2Ey = 0The modes of the smooth waveguide are the so-lutions of�2Ey�x2 + �2Ey�z2 + �s(x; z)�0k2Ey = 0 (14)We express the �elds in the perturbed waveg-uide in terms of the modal �elds of the smoothwaveguide: Ey = NXn=1Cn(z)Eyn (15)where Cn(z) are 
omplex modal 
oeÆ
ients. Thesummation in (15) is taken over all the sym-metri
 and antisymmetri
 TE modes. When weinsert this expansion in equation (2.2), we getan equation in terms of the modal 
oeÆ
ientsCn(z):Xn �2Cn(z)�z2 Eyn + 2Xn (�j�n)�Cn(z)�z Eyn+��(x; z)�0k2Xn Cn(z)Eyn = 0 (16)We multiply this equation by the expression ofthe �eld of a spe
i�
 mode, Eym, and integrate



from x = �a to x = a. The orthogonality of themodes of the smooth waveguide is very useful atthis stage, be
ause it removes most of the termsin the integral, and we are left with a di�erentialequation for the 
oeÆ
ient of the mth mode:�2Cm�z2 � 2j�m �Cm�z = Fm(z) (17)Where Fm(z) is given by:Fm(z) = ��0k2 Z a�a��(x; z)Xn Cn(z)EynE�ymdx(18)We now 
al
ulate the 
oupling between the 1stmode and all the other modes. This result islater extended and we derive the 
oupling 
oef-�
ient between any two modes. The 1st mode isnot parti
ularly di�erent from the other modes.We 
hoose to use it for the 
al
ulation of the
oupling 
oeÆ
ient for the ease of notation.In order to 
al
ulate the 
oupling 
oeÆ
ientsbetween the 1st mode and the other modes, weassume that the 1st mode is ex
ited at z = 0 and
al
ulate the amplitudes of the other modes at apoint z. Cm(0) = ( 1 m = 10 m > 1 (19)We assume that 
oupling is low, whi
h meansthat either the point z is 
lose enough to zero orthat 
oupling is so small that se
ond order 
ou-pling is negligible. We 
onsider only the 
ouplingof power from the 1st mode into other modes,and disregard 
oupling among the higher ordermodes. We also negle
t the 
oupling from anymode into the 1st mode.We solve equation (17):Cm(z) = Am +Bme2j�mz (20)+ 12j�m Z z0 he2j�m(z��) � 1iFm(�)d�The 
oupling 
oeÆ
ient (20) 
ontains forwardtraveling (toward +z) and ba
kward travelingwaves: Cm = C(+)m + C(�)m (21)where the forward traveling part isC(+)m (z) = Am � 12j�m Z z0 Fm(�)d� (22)Using the low 
oupling assumption (explainedbelow (19)), we disregard the ba
kward travel-ing waves and use the approximation Cm(z) �

C(+)m (z). After applying the initial 
ondi-tions (19), the 
oupling 
oeÆ
ients are thengiven byCm(z) = � 12j�m Z z0 Fm(�)d� m > 1 (23)Using the low 
oupling assumption we 
al
u-late Fm(z) from (18):Fm(z) � � �mk22!�0P (1� �)� [(f(z)� a)E1(a; z)E�m(a; z)� (h(z) + a)E1(�a; z)E�m(�a; z)℄(24)where P is the power 
arried by ea
h mode. Thedi�eren
e in the power levels of the modes areexpressed with the modal 
oeÆ
ients Cn.For the TE modes, we use the �eld expressionsfrom (3):E1(a; z)E�m(a; z) = E1(�a; z)E�m(�a; z)� (kd)2u01u0mZ20H1HmT1(u01)Tm(u0m)�ej(�1��m)z (25)whereTn(v) = ( 
os(v) n odd; TE symmetri
sin(v) n even; TE antisymmetri
(26)Rearranging Fm(z) we getFm(z) � (�� 1)k2�ma T1(u01)q�01 Tm(u0m)p�0m� [f(z)� a� h(z) � a℄�ej(�1��m)z (27)Now we 
al
ulate the integral in (22):Z z0 Fm(�)d� � (�� 1)k2�mza T1(u01)q�01 Tm(u0m)p�0m� (��m �  �m) (28)where�m = 1z Z z0 (f(�)� a)e�j(�1��m)�d� (29) m = 1z Z z0 (h(�) + a)e�j(�1��m)�d� (30)



�m and  m are the Fourier 
oeÆ
ients of thefun
tions f(z) � a and h(z) + a 
al
ulated atthe spatial frequen
y �1 � �m, the di�eren
e offrequen
ies between the two 
oupled modes E1and Em. The 
oupling between the two modes isrelated to a parti
ular Fourier 
omponent of thegeometry of the walls, whi
h 
orresponds to thespatial frequen
y di�eren
e between the modes.This is a well known result of ele
tromagneti
s
attering theory [28, 24℄.We 
al
ulate the modal 
oeÆ
ients by us-ing (28) in (23):Cm = �(�� 1)k2z2ja T1(u01)q�01 Tm(u0m)p�0m (��m �  �m)m > 1 (31)2.2.1 The Coupled Power EquationsThe 
oupling 
oeÆ
ients of the modes 
ontainamplitude and phase information, but the quan-tity that interests us most is the power 
arriedby the di�erent modes. The 
oupling 
oeÆ
ientsCn 
ontain too mu
h information for our needs.We are interested in the power ex
hange amongthe modes, whi
h is best expressed in terms ofpower equations. We now pro
eed to derive the
oupled power equations of the modes of therough waveguide, following Mar
use [18℄. Thederivation is based on the above 
al
ulation ofthe 
omplex 
oupling 
oeÆ
ients of the waveg-uide modes.The 
oupling 
oeÆ
ients of the modes a�e
tthe mode amplitudes through the wave equation�Am�z = NXn=1 
mnAn (32)where An represent the 
omplex mode ampli-tudes (phasor) and 
mn is the 
oupling 
oeÆ-
ient from the nth mode to the mth. 
nn repre-sents the propagation 
onstants of the nth mode,so 
nn = �j�n. We represent the harmoni
 zdependen
e of the modes expli
itly:An(x; z) = Cn(z)Bn(x)e�j�nz (33)where Bn(x) 
ontains the x dependen
e of thenth mode. The 
oupled equations in terms of

the new notation are:�Cm�z Bm(x) = NXn = 1n 6= m 
mnCnBn(x)ej(�m��n)z(34)In order to 
al
ulate the 
oupling 
oeÆ
ients
mn, we solve (34), with the initial 
onditionsde�ned in (19): at z = 0 only the 1st mode is ex-
ited. Using a �rst order perturbation solutionwe get:Cm(z) � ( 1 m = 1
m1zej(�m��1)z m > 1 (35)A 
omparison of (35) with (31) gives the 
oupling
oeÆ
ient from the 1st mode to the mth:
m1 = �(�� 1) k22ja T1(u01)q�01 Tm(u0m)p�0m� [f(z)� a� h(z) � a℄ (36)We extend this result and assume that the 
ou-pling from the nth mode to the mth is des
ribedby: 
mn = �(�� 1) k22ja Tn(u0n)p�0n Tm(u0m)p�0m� [f(z)� a� h(z) � a℄ (37)The 
oupling 
oeÆ
ients are re
ipro
al, i.e.
mn = �
�nm (38)The re
ipro
ity 
an be shown by 
onsidering thepreservation of power of the 
oupling pro
ess.For details see Mar
use [18℄.A further extension of the 
al
ulation of the
oupling 
oeÆ
ients applies the result to theTM modes. We present a new indexing methodwhi
h is used in the remainder of the paper. TheTE modes are numbered 1; : : : ; N and the TMmodes are numbered N+1; : : : ; 2N . When usingthe propagation 
onstants un and �n for n > N ,we apply the appropriate formulas with n�N .The waveguide model we presented in this se
-tion does not introdu
e 
oupling between TE andTM modes. However, a realisti
 model whi
hallows for variations in the y dire
tion does in-trodu
e su
h 
oupling. We in
lude TE{TM 
ou-pling in our model and assume that the 
oupling




oeÆ
ients are given by (37) with:
Tn(v) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

os(v) ( 1 � n � N; n odd;TE symmetri
sin(v) ( 1 � n � N; n even;TE antisymmetri
sin(v) 8><>: N + 1 � n � 2N(n�N) even;TM symmetri

os(v) 8><>: N + 1 � n � 2N(n�N) odd;TM antisymmetri
The 
oupled wave equations (32) are trans-lated into a system of 
oupled power equationsusing Mar
use's theory [18℄. The average power
arried by the nth mode is Pn = DjAnj2E =DjCnj2E, where the bra
kets h�i indi
ate an en-semble average over many waveguides with (sta-tisti
ally) similar wall perturbations. An impor-tant assumption in the development of this the-ory is that the 
oupling 
oeÆ
ients are of theform 
mn = Kmn
(z) (39)where 
(z) has the following 
orrelation proper-ties: h
(z)
(z � z0)i = �2
e�� jz0jD
 �2 (40)The 
oupled power equations are [18℄:dPmdz = ��mPm +p��2
D
� 2NXn=1 jKmnj2 e�hD
2 (�m��n)i2� (Pn � Pm) (41)where �m are arbitrary modal loss fa
tors. Thesefa
tors do not emerge from the theory; they areintrodu
ed in order to a

ount for physi
al ef-fe
ts. In the 
ase of the street waveguide we usethe 
oupling 
oeÆ
ients 
al
ulated in (37), andrealize thatKmn = �(�� 1) k22ja Tn(u0n)p�0n Tm(u0m)p�0m (42)and 
(z) = f(z) � h(z) � 2a. Using (13) we
al
ulate the 
orrelation of 
(z):�
 = p2�w (43)D
 = D (44)

A natural 
hoi
e for the loss fa
tors �m is themodal loss fa
tors �00m 
al
ulated in (5). Whenwe 
ompare the theoreti
al predi
tions of ourmodel to a
tual measurements (se
tion 3) we dis-
over that realisti
 power loss fa
tors are higherthan those warranted by the simpli�ed waveg-uide model.The 
oupled power equations (41) 
an be ex-pressed as a simple matrix equation, where theunknown is a ve
tor 
ontaining the power levelof ea
h mode: P = 0B� P1...P2N 1CA (45)and the 
oupled power equation takes the form:�P�z = �P (46)� is an 2N�2N matrix whi
h holds all the power
oupling 
oeÆ
ients. The mnth lo
ation holds�mn = p�2�2wDjKmnj2e�[D2 (�m��n)℄2 (47)and the diagonal elements hold the sum of the
oupling 
oeÆ
ients and the loss of ea
h mode�mm = ��m �p�2�2wDNXn = 1n 6= m jKmnj2e�[D2 (�m��n)℄2 (48)2.2.2 Solution of the Coupled PowerEquationsThe 
oupled power equation (46) is easily solvedin terms of the eigenvalues and eigenve
tors ofthe 
oupling matrix �. When we used realisti
street parameters in simulations, all the power insteady state tended to 
on
entrate in the lowerorder TE mode.We also looked at the dynami
 behavior ofthe power measured at small distan
es from asour
e. We model the sour
e as a distributionof power among the waveguide modes, and thensolve (46) numeri
ally. The results we present inse
tion 3 are the total power along the waveguidepredi
ted using this method.



2.3 A Street Corner ModelThis se
tion des
ribes the model of street 
or-ners, where power 
ows along one street (the`main' street) into another (`side') street. We areinterested in the behavior of power levels alongthe side street. We present here an intuitive ex-planation of the mode 
oupling me
hanism. Fora more thorough analysis see [3℄. In order tolook at this 
oupling me
hanism in some detail,we 
onsider the plane wave de
omposition of themodes.Ea
h mode 
an be de
omposed into a pair ofplane waves propagating at equally oblique an-gles with the z dire
tion. The lower order modesare de
omposed into plane waves that propa-gate in an almost parallel dire
tion to the z axis.High order modes travel in dire
tions in
reas-ingly oblique to the z axis. When 
onsidering aperpendi
ular street 
orner, the low order modesin the main street 
ouple into high order modesin the side street and vi
e versa.We assume steady state distribution of powerof the modes in the main street, where most ofthe power is 
ontained in the low order modes.As a 
onsequen
e, the power 
oupled into theside street is mostly 
ontained in the high ordermodes. The power leaking into the side street isre-distributed among the modes as it propagatesalong the street.The expe
ted e�e
t in the side street is a sig-ni�
ant de
rease of power level as the re
eivermoves away from the jun
tion. At a 
ertaindistan
e, where the modal distribution of powerrea
hes its steady state, the rate of de
rease ofpower loss along the street resumes its steadystate rate.3 Comparison to Measure-mentsWe 
ompare our theoreti
al predi
tions of therate of power loss along a side street with a
-tual measurements. The measurements we showin this se
tion were obtained from two sour
es:Measurements in the 900 MHz band taken byDr. E. Damosso and Dr. L. Stola of CSELT,Italy in Turin, Italy in 1992 and measurementsat 910 MHz taken by Dr. J. H. Whitteker in Ot-
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Figure 3: 'High Order' initial power distributionfor the TE and TM modes, for the 
ase of 120modes. The verti
al axis is linear, in relativeunits.tawa, Ontario, Canada in 1986 [30℄1. The mea-surements we show were taken in side streets,with a mobile re
eiver moving away from a jun
-tion of the side street and another street that
ontained a transmitter. The measurementswere �ltered over 2 m se
tions along the street;the Turin measurements were averaged over sam-ples taken at 5 
m intervals and the Ottawa mea-surements were median �ltered over non-uniformsampling distan
es, in the range of 1{2 m.We used the approximate widths of the streetsin the 
al
ulations, but other parameters wereadjusted to give the best mat
h between mea-surement and theory. It is diÆ
ult to measurethese parameters sin
e they represent a simpli-�ed model of a true street. However, we usedvalues that appear to be within realisti
 ranges.The geometri
 perturbation varian
e was set be-tween 20 
m and 1 m and the geometri
 
orrela-tion length was between 10{40 m, whi
h 
orre-sponds to the dimensions of external features ofbuildings.The distribution of power among the modesat the side street very 
lose to the jun
tion pro-vides an initial 
ondition for our simulation. Weused the following initial 
onditions in the simu-lations, as indi
ated in table 1.� The 'High Order' (H.O.) initial power dis-tribution has no power in the lower half ofthe modes and linearly in
reasing power atthe higher half, as seen in �gure 3.� The 'Uniform' (U.) initial power distribu-tion assigns a 
onstant power level to all the1See A
knowledgment



0 50 100 150 200 250
−20

−10

0

10

20

30

40
Power Along Via Baracca, moving south away from Via Coppino.

Distance from Street Junction (m)

P
(d

B
)

D=20 m, σ2=0.2 m2, λ=0.333 m, d=8 m, N
TE

=96, N
TM

=97, σ
w

=0.01 S/m, ε
rw

=4.44

Initial power distribution: high order

Loss α ×2, Coupling h ×1

Figure 4: Measurements taken in Via Bara

a,Turin, Italy, moving north away from Via Cop-pino (that 
ontained the transmitter). See sim-ulation parameters is table 1.propagating modesInitial power distributions that assign powerto the high order modes are reasonable when
onsidering the 
oupling of power from the mainstreet, where steady state distribution was at-tained (whi
h 
on
entrated power in the low or-der modes), into the side street (see se
tion 2.3).We multiplied the loss fa
tors �00 (from (5)) byfa
tors varying between 2 to and 3, to a

ountfor the losses in the streets. The multipli
ationfa
tors are indi
ated in table 1. This in
reaseof loss was needed to �t the 
al
ulations to themeasurements. In one 
ase (�gure 6) we alsomultiplied the 
oupling 
oeÆ
ients (
mn, m 6= n)by 2.Figures 4{8 show 
omparisons between thetheory and measurements. The measurementsare shown with a broken line and the theoreti
alpredi
tion with a smooth line. The parametervalues used in the simulations are summarizedin table 1. In some of the �gures (for example,�gure 5) an in
rease in the measured power levelis evident near the rightmost part of the graph,at large distan
es from the interse
tion. Thisbehavior is 
aused by the proximity of a se
ondstreet 
orner that 
ouples power into the street inthe ba
kward (-z) dire
tion. This e�e
t was nottaken into a

ount in the theoreti
al 
al
ulation.
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Figure 5: Measurements taken in Via Bara

a,Turin, Italy, moving south away from Via Cop-pino (that 
ontained the transmitter). See sim-ulation parameters is table 1.
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Figure 6: Measurements taken in Bank St., Ot-tawa, Canada, moving south away from QueenSt. (that 
ontained the transmitter). See simu-lation parameters is table 1.
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Figure 7: Measurements taken in Bank St., Ot-tawa, Canada, moving south away from Slate St.(that 
ontained the transmitter). See simulationparameters is table 1.
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Figure 8: Measurements taken in Elgin St., Ot-tawa, Canada, moving north away from LaurierSt. (that 
ontained the transmitter). See simu-lation parameters is table 1.

FigureNumber 4 5 6 7 8Frequen
y(MHz) 900 900 910 910 910CorrelationLengthD (m) 20 10 40 10 10Perturb.Varian
e�2w (m2) 0.2 0.2 0.2 1 1StreetWidth2a (m) 16 16 20 20 20Numberof Modes(TEand TM) 192 192 242 242 242WallCondu
t.� (S/m) 0.01 0.05 0.05 0.05 0.045WallPermitivity�r(relative) 4.44 4.44 3 3 3InitialPowerDistrib. H.O. H.O. U. U. H.O.LossMultip.Fa
tor 2 2 3 2 2CouplingMultip.Fa
tor 1 1 2 1 1Table 1: Simulation parameters. The initialpower distribution is one of 'High Order' (H.O.)or 'Uniform' (U.).



4 Con
lusionWe presented a new approa
h to propagationpredi
tions in the UHF band in urban environ-ments. Streets are modeled as hollow waveguidesbound by very large lossy plates on both sides.We in
luded the e�e
ts of the roughness of theexternal walls of the buildings by introdu
ingmode 
oupling.Using a perturbation model for the mode
oupling indu
ed by the walls, the 
oupledpower equations were developed, whi
h relatethe power levels of the modes as they propagateaway from a sour
e.The theory was used to predi
t the de
reaseof the power re
orded by a mobile re
eiver as itmoves away from a jun
tion with line of sight toa transmitter into a street with no su
h line ofsight. Comparisons of the theoreti
al predi
tionsand a
tual measurements show good agreement.A
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