
A Waveguide Model for UHF Propagation in StreetsDana Porrat and Donald C. Coxdporrat�wireless.stanford.edu, dox�nova.stanford.eduStanford University, Stanford, CA 94305-9515, USAAbstratRadio frequeny radiation in urban areas, ema-nating from a soure lower than the surroundingbuildings, propagates along streets. Urban streetswith tall buildings on both sides are modeled ashollow slab waveguides made of lossy plates. Thefaade of the buildings is taken into aount byintroduing roughness onto the waveguide walls,whih auses mode oupling in the waveguide.The eletrial and geometrial properties of thewaveguide walls indue a steady state distribu-tion of power among the modes, whih is attainedat suÆient distanes from the soure.Street juntions with line of sight to the soureause power to ow from the street ontain-ing the soure around a orner and into a sidestreet. The juntion exites a distribution ofpower among the waveguide modes in the sidestreet. As radiation ows along the side street,power is redistributed and eventually reahes asteady state. This propagation mehanism ausesa signi�ant derease in power levels along theside street.The preditions of average power levels reeivedalong side streets show satisfatory agreementwith measurements taken in two urban environ-ments.1 IntrodutionMeasurements of reeived power in an urban en-vironment show that street orners have a signi�-ant e�et on the propagation of eletromagnetiradiation in the UHF (300 MHz { 3 GHz) band.When measuring reeived power levels in urbanpaths, a strong derease is evident when turningfrom a street with line of sight to the transmit-ter into a side street with no line of sight. Thisbehavior of measured power levels has been mod-

eled empirially: Ereg et al. [9℄ based their ap-proah on optial ray theory and Barbiroli et al.[2℄ math mathematial forms to the measuredshape of reeived power along the side street.Many authors mention an explanation based onthe mode theory for wave propagation [3, 8, 15℄,and in this paper we develop this approah morerigorously.Our model is based on the geometry of inter-seting streets with very tall buildings on bothsides. We assume that power ows along onestreet (the `main' street) and ouples into theother (`side') street. Eah street is modeled as awaveguide made of in�nitely large parallel plateswith air in the middle. The waveguide is made ofuniform lossy material where the eletrial prop-erties are representative of building materials.We onsider the e�et of the rough (non smooth)geometry of the walls by following the theory ofMaruse [23℄.The model is presented in detail in setion 2and the theoretial preditions are ompared toatual measurements in setion 3.2 The ModelA waveguide model with smooth walls is dis-ussed in setion 2.1 as a basis to the theory.This model is extended by onsidering rough(non-smooth) walls in setion 2.2, the theory isbased on optial �ber literature, in partiular thepubliations of Maruse [23℄. The model of astreet orner is presented in setion 2.3.2.1 A Smooth Multi-Moded Waveg-uideThe simple model we present here onsists of aslab waveguide, whih represents a street withvery tall buildings on both sides. The walls of the



x=a

ε

x

z

ε ε

x=-a

0

Figure 1: A smooth slab waveguidewaveguide are made of a smooth lossy dieletrimaterial (�gure 1). The waveguide is empty, sobetween the walls we assume the eletrial prop-erties of free spae. With this simple model, weignore the e�ets of the ground and any objetswithin the waveguide (suh as people, ars andtrees); these ompliations will be addressed ata later stage of our researh. In this setion wedisuss a waveguide with smooth homogeneouswalls, as a basis for the presentation of the moreompliated waveguide with rough walls in thenext setion. The waveguide an be de�ned interms of the relative omplex dieletri onstantof the walls �:�s(x; z) = ( 1 jxj � a� jxj > a (1)where �s(x; z) stands for the relative dieletrionstant of the smooth waveguide. The permi-tivity is �xed at the vauum permeability �0 =4� � 10�7 H=m for the walls and interior of thewaveguide.Hollow dieletri waveguides gained interest inthe 1970s, when they were onsidered for laserstrutures [12, 21, 1, 7, 13, 26, 25℄. The wave-guide laser requires the use of a multi-modedstruture. We are interested in multi{modedwaveguides beause the normal width of streetsis many times the wavelength in the UHF band.We follow the waveguide analysis presented byAdam and Kneub�uhl [1℄ in the disussion of the

smooth lossy hollow waveguide. We onsidera slab waveguide of width 2a with propagationalong the z diretion. There is no variation inthe y diretion so ��y = 0. The lossy dieletriwalls of the waveguide have the relative omplexdieletri onstant� = �0 + j�00 = �r � j �!�0 (2)where �r is the permitivity of the walls, � is theirondutivity; ! is the angular frequeny, thetime dependene is ej!t and �0 = 8:85�10�12 Fmis the vauum dieletri onstant. We present afew other de�nitions: k = 2�� is the free spaewave number, where � is the free spae wave-length. � and kx = u=a represent the z andx omponents of the k vetor for propagationinside the waveguide, where u is the normal-ized k vetor in the x diretion. In the wallsof the waveguide, the propagation onstant isk2 = ���0w2�1=2 and its x omponent is ka = q=awhere q is normalized. Z0 = q�0�0 is the vauumimpedane, and H is an arbitrary amplitude.The eletri �eld for the TE modes inside thewaveguide jxj <= a is given in [1℄:Ey = j kkxZ0H( os(kxx)sin (kxx) ) ej!t�j�z (3)with similar expressions for the magneti �eldof the TM modes. The upper funtion appliesto the symmetri modes and the lower to theantisymmetri modes.Using the boundary onditions, the hara-teristi equation an be formulated in terms ofu, the propagation onstant in the waveguideand R, whih represents the properties of thewaveguide. An exat solution of the harater-isti equations is very diÆult. Burke [4℄ givesa graphial solution for the TE ase but we fol-low [1℄ and disuss an approximate solution. Weassume that the imaginary parts of � and u aresmall ompared to their real parts. In order totest the assumption on � we alulate a typialvalue using the eletrial properties of brik: rel-ative eletrial permitivity �r = 4:44 and on-dutivity � = 0:01 S/m [14℄. We onsider radi-ation at 1 GHz and get � = 4:44 � j0:18, so theimaginary part is signi�antly smaller than thereal part and the assumption on � holds. Theassumption on u relies on observing the solution



obtained elsewhere (for example, in a graphialmethod).Under these approximations on u and �, theharateristi values of the real part of u are [1℄for the TE modes:u0 = �(1� �)n2Odd values of n orrespond to the symmetrialmodes and even values of n orrespond to anti-symmetrial modes. The imaginary part of u issmall in all ases, as assumed.The propagation onstant in the z diretion isdetermined from �2 = k2 � �ua�2. By separatingreal and imaginary parts and negleting terms ofseond degree we obtain the approximations for� = �0 + j�00 [1℄:�0 = "�2�� �2 � �u0a �2#1=2 (4)The imaginary part for the TE modes is givenby:�00 = �24a3(�0 � 1)1=2 �n2�2 n = 1; 2; : : : (5)The number of signi�ant modes N (for a sin-gle polarization) an be approximated by N �2a� . When both TE and TM modes are onsid-ered, the number of signi�ant modes is 2N .2.1.1 The Power Carried by the ModesNext, we alulate the power arried by the dif-ferent modes, in order to normalize them at alater stage. The Poynting vetor is given byS = 12real (E�H�) (6)and the power (per unit length in the y diretion)is alulated by P = Z a�a Szdx (7)where we disregard the power propagating in-side the walls of the waveguide. We assumehere the onvention that the mode amplitudesHn are normalized so that all the modes arrythe same amount of power. We also assumethat the modal amplitudes Hn are real and pos-itive. When we onsider later modes with dif-ferent power levels or with omplex amplitudes,

we use a multipliative oeÆient for eah mode.The power arried by eah TE mode is given byP = k�0ma32u02m Z0H2m = ka3Z02 p�0mHmu0m p�0nHnu0n (8)where the last equation in (8) is due to ourassumption of equal power arried by all themodes. The power arried by the TM modesan be expressed with a similar formula.2.1.2 The Orthogonality of the ModesWe refer to two modes as orthogonal if the powerarried by their ombined �elds when they prop-agate in the waveguide an be expressed as thesum of the powers arried by eah mode sepa-rately. If PT is the total power measured in awaveguide and fPngNn=1 are the powers arriedby N propagating modes, then these modes areorthogonal if PT = NXn=1Pn (9)A ondition on mode orthogonality an be ex-pressed in terms of the eletri �elds of themodes. Two modes are orthogonal ifInm = Z a�aEn �Emdx = 0 (10)where � represents the vetor dot produt. Wenow establish the orthogonality of the modes inthe smooth waveguide. It is important beausethese modes are used in setion 2.2 as a basis forthe representation of other waveforms. Clearly,any TE mode is orthogonal to any TM mode astheir respetive eletri �elds are geometriallyorthogonal.The modes of the hollow slab are approxi-mately orthogonal, under the assumptionsu00 << u0 (11)� << 1 (12)This an be veri�ed by inserting the �eld expres-sions (3) in (10).2.2 A Rough WaveguideIn order to model realisti surfaes of buildingswe must take into aount the fat that they arenot perfetly smooth. In this setion we onsider



x=ax=-a

σ

D

εε

z

x

ε0

w

Figure 2: A rough slab waveguideslab waveguides made of uniform material, butthe geometry of the walls is no longer perfetlysmooth, as shown in �gure 2.The analysis of multi-moded waveguides andthe oupling between the propagating modesstarted with a series of papers by Maruse [16,17, 18, 22, 19, 20℄ and was extended by oth-ers [6, 11, 5, 10, 29℄. We follow the approahtaken by Maruse [16℄ to analyze the mode ou-pling aused by the roughness of the waveguidewalls. We follow a perturbation analysis of thewaveguide, whih uses the modes of the smoothwaveguide as a basis; the analysis relies on theassumption of small perturbations of the wall ge-ometry.We maintain the two dimensional model,where there is no variation in the y diretion.The wall boundary near x = a is given by thefuntion x = f(z) and the boundary near x = �ais given by x = h(z). We haraterize the wallperturbations statistially, using their orrela-tion funtions, where we assume that the per-turbation on both walls are independent of eahother and wide sense stationary, i.e., the statis-tial propertied do not hange along the street.for any point z0 along the waveguide:h[f(z0)� a℄ [f(z0 + z)� a℄i = �2we� jzjD (13)where �w is the rms deviation of the wall fromperfet straightness and D is the orrelationlength. We assume the same statistis for h(z),whih de�nes the deviations of the wall near

x = �a. The Gaussian orrelation assumptionmay not be aurate, but it aptures two im-portant features of every orrelation funtion,namely a orrelation length and a variane.We now examine the deviation of the om-plex dieletri onstant of the waveguide fromthe smooth waveguide. Near the boundary x = athis deviation is given by�r(x; z) � �s(x; z) = ��(x; z) =8>>>>>>>><>>>>>>>>: 0 ( x < a a < f(z)x < f(z) f(z) < a1� � a < x < f(z) a < f(z)�(1� �) f(z) < x < a f(z) < a0 ( x > f(z) f(z) > ax > a a > f(z)where �r(x; z) stands for the relative dieletrionstant of the rough waveguide and �s(x; z) isde�ned in (1). The deviation near x = �a isexpressed in a similar manner, in terms of h(z).The �elds in the waveguide are the solutionsof the wave equation:�2Ey�x2 + �2Ey�z2 + (�s(x; z) + ��(x; z)) �0k2Ey = 0The modes of the smooth waveguide are the so-lutions of�2Ey�x2 + �2Ey�z2 + �s(x; z)�0k2Ey = 0 (14)We express the �elds in the perturbed waveg-uide in terms of the modal �elds of the smoothwaveguide: Ey = NXn=1Cn(z)Eyn (15)where Cn(z) are omplex modal oeÆients. Thesummation in (15) is taken over all the sym-metri and antisymmetri TE modes. When weinsert this expansion in equation (2.2), we getan equation in terms of the modal oeÆientsCn(z):Xn �2Cn(z)�z2 Eyn + 2Xn (�j�n)�Cn(z)�z Eyn+��(x; z)�0k2Xn Cn(z)Eyn = 0 (16)We multiply this equation by the expression ofthe �eld of a spei� mode, Eym, and integrate



from x = �a to x = a. The orthogonality of themodes of the smooth waveguide is very useful atthis stage, beause it removes most of the termsin the integral, and we are left with a di�erentialequation for the oeÆient of the mth mode:�2Cm�z2 � 2j�m �Cm�z = Fm(z) (17)Where Fm(z) is given by:Fm(z) = ��0k2 Z a�a��(x; z)Xn Cn(z)EynE�ymdx(18)We now alulate the oupling between the 1stmode and all the other modes. This result islater extended and we derive the oupling oef-�ient between any two modes. The 1st mode isnot partiularly di�erent from the other modes.We hoose to use it for the alulation of theoupling oeÆient for the ease of notation.In order to alulate the oupling oeÆientsbetween the 1st mode and the other modes, weassume that the 1st mode is exited at z = 0 andalulate the amplitudes of the other modes at apoint z. Cm(0) = ( 1 m = 10 m > 1 (19)We assume that oupling is low, whih meansthat either the point z is lose enough to zero orthat oupling is so small that seond order ou-pling is negligible. We onsider only the ouplingof power from the 1st mode into other modes,and disregard oupling among the higher ordermodes. We also neglet the oupling from anymode into the 1st mode.We solve equation (17):Cm(z) = Am +Bme2j�mz (20)+ 12j�m Z z0 he2j�m(z��) � 1iFm(�)d�The oupling oeÆient (20) ontains forwardtraveling (toward +z) and bakward travelingwaves: Cm = C(+)m + C(�)m (21)where the forward traveling part isC(+)m (z) = Am � 12j�m Z z0 Fm(�)d� (22)Using the low oupling assumption (explainedbelow (19)), we disregard the bakward travel-ing waves and use the approximation Cm(z) �

C(+)m (z). After applying the initial ondi-tions (19), the oupling oeÆients are thengiven byCm(z) = � 12j�m Z z0 Fm(�)d� m > 1 (23)Using the low oupling assumption we alu-late Fm(z) from (18):Fm(z) � � �mk22!�0P (1� �)� [(f(z)� a)E1(a; z)E�m(a; z)� (h(z) + a)E1(�a; z)E�m(�a; z)℄(24)where P is the power arried by eah mode. Thedi�erene in the power levels of the modes areexpressed with the modal oeÆients Cn.For the TE modes, we use the �eld expressionsfrom (3):E1(a; z)E�m(a; z) = E1(�a; z)E�m(�a; z)� (kd)2u01u0mZ20H1HmT1(u01)Tm(u0m)�ej(�1��m)z (25)whereTn(v) = ( os(v) n odd; TE symmetrisin(v) n even; TE antisymmetri(26)Rearranging Fm(z) we getFm(z) � (�� 1)k2�ma T1(u01)q�01 Tm(u0m)p�0m� [f(z)� a� h(z) � a℄�ej(�1��m)z (27)Now we alulate the integral in (22):Z z0 Fm(�)d� � (�� 1)k2�mza T1(u01)q�01 Tm(u0m)p�0m� (��m �  �m) (28)where�m = 1z Z z0 (f(�)� a)e�j(�1��m)�d� (29) m = 1z Z z0 (h(�) + a)e�j(�1��m)�d� (30)



�m and  m are the Fourier oeÆients of thefuntions f(z) � a and h(z) + a alulated atthe spatial frequeny �1 � �m, the di�erene offrequenies between the two oupled modes E1and Em. The oupling between the two modes isrelated to a partiular Fourier omponent of thegeometry of the walls, whih orresponds to thespatial frequeny di�erene between the modes.This is a well known result of eletromagnetisattering theory [28, 24℄.We alulate the modal oeÆients by us-ing (28) in (23):Cm = �(�� 1)k2z2ja T1(u01)q�01 Tm(u0m)p�0m (��m �  �m)m > 1 (31)2.2.1 The Coupled Power EquationsThe oupling oeÆients of the modes ontainamplitude and phase information, but the quan-tity that interests us most is the power arriedby the di�erent modes. The oupling oeÆientsCn ontain too muh information for our needs.We are interested in the power exhange amongthe modes, whih is best expressed in terms ofpower equations. We now proeed to derive theoupled power equations of the modes of therough waveguide, following Maruse [18℄. Thederivation is based on the above alulation ofthe omplex oupling oeÆients of the waveg-uide modes.The oupling oeÆients of the modes a�etthe mode amplitudes through the wave equation�Am�z = NXn=1 mnAn (32)where An represent the omplex mode ampli-tudes (phasor) and mn is the oupling oeÆ-ient from the nth mode to the mth. nn repre-sents the propagation onstants of the nth mode,so nn = �j�n. We represent the harmoni zdependene of the modes expliitly:An(x; z) = Cn(z)Bn(x)e�j�nz (33)where Bn(x) ontains the x dependene of thenth mode. The oupled equations in terms of

the new notation are:�Cm�z Bm(x) = NXn = 1n 6= m mnCnBn(x)ej(�m��n)z(34)In order to alulate the oupling oeÆientsmn, we solve (34), with the initial onditionsde�ned in (19): at z = 0 only the 1st mode is ex-ited. Using a �rst order perturbation solutionwe get:Cm(z) � ( 1 m = 1m1zej(�m��1)z m > 1 (35)A omparison of (35) with (31) gives the ouplingoeÆient from the 1st mode to the mth:m1 = �(�� 1) k22ja T1(u01)q�01 Tm(u0m)p�0m� [f(z)� a� h(z) � a℄ (36)We extend this result and assume that the ou-pling from the nth mode to the mth is desribedby: mn = �(�� 1) k22ja Tn(u0n)p�0n Tm(u0m)p�0m� [f(z)� a� h(z) � a℄ (37)The oupling oeÆients are reiproal, i.e.mn = ��nm (38)The reiproity an be shown by onsidering thepreservation of power of the oupling proess.For details see Maruse [18℄.A further extension of the alulation of theoupling oeÆients applies the result to theTM modes. We present a new indexing methodwhih is used in the remainder of the paper. TheTE modes are numbered 1; : : : ; N and the TMmodes are numbered N+1; : : : ; 2N . When usingthe propagation onstants un and �n for n > N ,we apply the appropriate formulas with n�N .The waveguide model we presented in this se-tion does not introdue oupling between TE andTM modes. However, a realisti model whihallows for variations in the y diretion does in-trodue suh oupling. We inlude TE{TM ou-pling in our model and assume that the oupling



oeÆients are given by (37) with:
Tn(v) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
os(v) ( 1 � n � N; n odd;TE symmetrisin(v) ( 1 � n � N; n even;TE antisymmetrisin(v) 8><>: N + 1 � n � 2N(n�N) even;TM symmetrios(v) 8><>: N + 1 � n � 2N(n�N) odd;TM antisymmetriThe oupled wave equations (32) are trans-lated into a system of oupled power equationsusing Maruse's theory [18℄. The average powerarried by the nth mode is Pn = DjAnj2E =DjCnj2E, where the brakets h�i indiate an en-semble average over many waveguides with (sta-tistially) similar wall perturbations. An impor-tant assumption in the development of this the-ory is that the oupling oeÆients are of theform mn = Kmn(z) (39)where (z) has the following orrelation proper-ties: h(z)(z � z0)i = �2e�� jz0jD �2 (40)The oupled power equations are [18℄:dPmdz = ��mPm +p��2D� 2NXn=1 jKmnj2 e�hD2 (�m��n)i2� (Pn � Pm) (41)where �m are arbitrary modal loss fators. Thesefators do not emerge from the theory; they areintrodued in order to aount for physial ef-fets. In the ase of the street waveguide we usethe oupling oeÆients alulated in (37), andrealize thatKmn = �(�� 1) k22ja Tn(u0n)p�0n Tm(u0m)p�0m (42)and (z) = f(z) � h(z) � 2a. Using (13) wealulate the orrelation of (z):� = p2�w (43)D = D (44)

A natural hoie for the loss fators �m is themodal loss fators �00m alulated in (5). Whenwe ompare the theoretial preditions of ourmodel to atual measurements (setion 3) we dis-over that realisti power loss fators are higherthan those warranted by the simpli�ed waveg-uide model.The oupled power equations (41) an be ex-pressed as a simple matrix equation, where theunknown is a vetor ontaining the power levelof eah mode: P = 0B� P1...P2N 1CA (45)and the oupled power equation takes the form:�P�z = �P (46)� is an 2N�2N matrix whih holds all the poweroupling oeÆients. The mnth loation holds�mn = p�2�2wDjKmnj2e�[D2 (�m��n)℄2 (47)and the diagonal elements hold the sum of theoupling oeÆients and the loss of eah mode�mm = ��m �p�2�2wDNXn = 1n 6= m jKmnj2e�[D2 (�m��n)℄2 (48)2.2.2 Solution of the Coupled PowerEquationsThe oupled power equation (46) is easily solvedin terms of the eigenvalues and eigenvetors ofthe oupling matrix �. When we used realististreet parameters in simulations, all the power insteady state tended to onentrate in the lowerorder TE mode.We also looked at the dynami behavior ofthe power measured at small distanes from asoure. We model the soure as a distributionof power among the waveguide modes, and thensolve (46) numerially. The results we present insetion 3 are the total power along the waveguidepredited using this method.



2.3 A Street Corner ModelThis setion desribes the model of street or-ners, where power ows along one street (the`main' street) into another (`side') street. We areinterested in the behavior of power levels alongthe side street. We present here an intuitive ex-planation of the mode oupling mehanism. Fora more thorough analysis see [3℄. In order tolook at this oupling mehanism in some detail,we onsider the plane wave deomposition of themodes.Eah mode an be deomposed into a pair ofplane waves propagating at equally oblique an-gles with the z diretion. The lower order modesare deomposed into plane waves that propa-gate in an almost parallel diretion to the z axis.High order modes travel in diretions inreas-ingly oblique to the z axis. When onsidering aperpendiular street orner, the low order modesin the main street ouple into high order modesin the side street and vie versa.We assume steady state distribution of powerof the modes in the main street, where most ofthe power is ontained in the low order modes.As a onsequene, the power oupled into theside street is mostly ontained in the high ordermodes. The power leaking into the side street isre-distributed among the modes as it propagatesalong the street.The expeted e�et in the side street is a sig-ni�ant derease of power level as the reeivermoves away from the juntion. At a ertaindistane, where the modal distribution of powerreahes its steady state, the rate of derease ofpower loss along the street resumes its steadystate rate.3 Comparison to Measure-mentsWe ompare our theoretial preditions of therate of power loss along a side street with a-tual measurements. The measurements we showin this setion were obtained from two soures:Measurements in the 900 MHz band taken byDr. E. Damosso and Dr. L. Stola of CSELT,Italy in Turin, Italy in 1992 and measurementsat 910 MHz taken by Dr. J. H. Whitteker in Ot-
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Figure 3: 'High Order' initial power distributionfor the TE and TM modes, for the ase of 120modes. The vertial axis is linear, in relativeunits.tawa, Ontario, Canada in 1986 [30℄1. The mea-surements we show were taken in side streets,with a mobile reeiver moving away from a jun-tion of the side street and another street thatontained a transmitter. The measurementswere �ltered over 2 m setions along the street;the Turin measurements were averaged over sam-ples taken at 5 m intervals and the Ottawa mea-surements were median �ltered over non-uniformsampling distanes, in the range of 1{2 m.We used the approximate widths of the streetsin the alulations, but other parameters wereadjusted to give the best math between mea-surement and theory. It is diÆult to measurethese parameters sine they represent a simpli-�ed model of a true street. However, we usedvalues that appear to be within realisti ranges.The geometri perturbation variane was set be-tween 20 m and 1 m and the geometri orrela-tion length was between 10{40 m, whih orre-sponds to the dimensions of external features ofbuildings.The distribution of power among the modesat the side street very lose to the juntion pro-vides an initial ondition for our simulation. Weused the following initial onditions in the simu-lations, as indiated in table 1.� The 'High Order' (H.O.) initial power dis-tribution has no power in the lower half ofthe modes and linearly inreasing power atthe higher half, as seen in �gure 3.� The 'Uniform' (U.) initial power distribu-tion assigns a onstant power level to all the1See Aknowledgment
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Figure 4: Measurements taken in Via Baraa,Turin, Italy, moving north away from Via Cop-pino (that ontained the transmitter). See sim-ulation parameters is table 1.propagating modesInitial power distributions that assign powerto the high order modes are reasonable whenonsidering the oupling of power from the mainstreet, where steady state distribution was at-tained (whih onentrated power in the low or-der modes), into the side street (see setion 2.3).We multiplied the loss fators �00 (from (5)) byfators varying between 2 to and 3, to aountfor the losses in the streets. The multipliationfators are indiated in table 1. This inreaseof loss was needed to �t the alulations to themeasurements. In one ase (�gure 6) we alsomultiplied the oupling oeÆients (mn, m 6= n)by 2.Figures 4{8 show omparisons between thetheory and measurements. The measurementsare shown with a broken line and the theoretialpredition with a smooth line. The parametervalues used in the simulations are summarizedin table 1. In some of the �gures (for example,�gure 5) an inrease in the measured power levelis evident near the rightmost part of the graph,at large distanes from the intersetion. Thisbehavior is aused by the proximity of a seondstreet orner that ouples power into the street inthe bakward (-z) diretion. This e�et was nottaken into aount in the theoretial alulation.
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Figure 5: Measurements taken in Via Baraa,Turin, Italy, moving south away from Via Cop-pino (that ontained the transmitter). See sim-ulation parameters is table 1.
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Figure 6: Measurements taken in Bank St., Ot-tawa, Canada, moving south away from QueenSt. (that ontained the transmitter). See simu-lation parameters is table 1.
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Figure 7: Measurements taken in Bank St., Ot-tawa, Canada, moving south away from Slate St.(that ontained the transmitter). See simulationparameters is table 1.
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Figure 8: Measurements taken in Elgin St., Ot-tawa, Canada, moving north away from LaurierSt. (that ontained the transmitter). See simu-lation parameters is table 1.

FigureNumber 4 5 6 7 8Frequeny(MHz) 900 900 910 910 910CorrelationLengthD (m) 20 10 40 10 10Perturb.Variane�2w (m2) 0.2 0.2 0.2 1 1StreetWidth2a (m) 16 16 20 20 20Numberof Modes(TEand TM) 192 192 242 242 242WallCondut.� (S/m) 0.01 0.05 0.05 0.05 0.045WallPermitivity�r(relative) 4.44 4.44 3 3 3InitialPowerDistrib. H.O. H.O. U. U. H.O.LossMultip.Fator 2 2 3 2 2CouplingMultip.Fator 1 1 2 1 1Table 1: Simulation parameters. The initialpower distribution is one of 'High Order' (H.O.)or 'Uniform' (U.).
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