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Abstract

Radio frequency radiation in urban areas, ema-
nating from a source lower than the surrounding
buildings, propagates along streets. Urban streets
with tall buildings on both sides are modeled as
hollow slab waveguides made of lossy plates. The
facade of the buildings is taken into account by
introducing roughness onto the wavegquide walls,
which causes mode coupling in the waveguide.
The electrical and geometrical properties of the
waveguide walls induce a steady state distribu-
tion of power among the modes, which is attained
at sufficient distances from the source.

Street junctions with line of sight to the source
cause power to flow from the street contain-
ing the source around a corner and into a side
street. The junction excites a distribution of
power among the waveguide modes in the side
street. As radiation flows along the side street,
power is redistributed and eventually reaches a
steady state. This propagation mechanism causes
a significant decrease in power levels along the
side street.

The predictions of average power levels received
along side streets show satisfactory agreement
with measurements taken in two urban environ-
ments.

1 Introduction

Measurements of received power in an urban en-
vironment show that street corners have a signifi-
cant effect on the propagation of electromagnetic
radiation in the UHF (300 MHz — 3 GHz) band.
When measuring received power levels in urban
paths, a strong decrease is evident when turning
from a street with line of sight to the transmit-
ter into a side street with no line of sight. This
behavior of measured power levels has been mod-

eled empirically: Erceg et al. [9] based their ap-
proach on optical ray theory and Barbiroli et al.
[2] match mathematical forms to the measured
shape of received power along the side street.
Many authors mention an explanation based on
the mode theory for wave propagation [3, 8, 15],
and in this paper we develop this approach more
rigorously.

Our model is based on the geometry of inter-
secting streets with very tall buildings on both
sides.
street (the ‘main’ street) and couples into the
other (‘side’) street. Each street is modeled as a
waveguide made of infinitely large parallel plates
with air in the middle. The waveguide is made of
uniform lossy material where the electrical prop-
erties are representative of building materials.
We consider the effect of the rough (non smooth)
geometry of the walls by following the theory of
Marcuse [23].

The model is presented in detail in section 2
and the theoretical predictions are compared to
actual measurements in section 3.

We assume that power flows along one

2 The Model

A waveguide model with smooth walls is dis-
cussed in section 2.1 as a basis to the theory.
This model is extended by considering rough
(non-smooth) walls in section 2.2, the theory is
based on optical fiber literature, in particular the
publications of Marcuse [23]. The model of a
street corner is presented in section 2.3.

2.1 A Smooth Multi-Moded Waveg-

uide

The simple model we present here consists of a
slab waveguide, which represents a street with
very tall buildings on both sides. The walls of the
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Figure 1: A smooth slab waveguide

waveguide are made of a smooth lossy dielectric
material (figure 1). The waveguide is empty, so
between the walls we assume the electrical prop-
erties of free space. With this simple model, we
ignore the effects of the ground and any objects
within the waveguide (such as people, cars and
trees); these complications will be addressed at
a later stage of our research. In this section we
discuss a waveguide with smooth homogeneous
walls, as a basis for the presentation of the more
complicated waveguide with rough walls in the
next section. The waveguide can be defined in
terms of the relative complex dielectric constant
of the walls e:

es(x,2) = { L

e |z|>a

z| <a

(1)

where €,(z, z) stands for the relative dielectric
constant of the smooth waveguide. The permi-
tivity is fixed at the vacuum permeability po =
4 x 1077 H/m for the walls and interior of the
waveguide.

Hollow dielectric waveguides gained interest in
the 1970s, when they were considered for laser
structures [12, 21, 1, 7, 13, 26, 25]. The wave-
guide laser requires the use of a multi-moded
structure. We are interested in multi moded
waveguides because the normal width of streets
is many times the wavelength in the UHF band.
We follow the waveguide analysis presented by
Adam and Kneubihl [1] in the discussion of the

smooth lossy hollow waveguide. We consider
a slab waveguide of width 2a with propagation
along the z direction. There is no variation in
the y direction so 8% = 0. The lossy dielectric
walls of the waveguide have the relative complex
dielectric constant
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where ¢, is the permitivity of the walls, ¢ is their
conductivity; w is the angular frequency, the
time dependence is e/“! and ¢y = 8.85 x 1012 %
is the vacuum dielectric constant. We present a
few other definitions: k = 27” is the free space
wave number, where A is the free space wave-
length. [ and k, = wu/a represent the z and
x components of the k vector for propagation
inside the waveguide, where u is the normal-
ized k vector in the z direction. In the walls
of the waveguide, the propagation constant is
ko = (eugw2)1/2 and its z component is k, = ¢/a
where ¢ is normalized. 7, = \/‘GT—S is the vacuum
impedance, and H is an arbitrary amplitude.

The electric field for the TE modes inside the
waveguide |z| <= a is given in [1]:

kK cos(kyx) jwt—jBz

with similar expressions for the magnetic field
of the TM modes. The upper function applies
to the symmetric modes and the lower to the
antisymmetric modes.

Using the boundary conditions, the charac-
teristic equation can be formulated in terms of
u, the propagation constant in the waveguide
and R, which represents the properties of the
waveguide. An exact solution of the character-
istic equations is very difficult. Burke [4] gives
a graphical solution for the TE case but we fol-
low [1] and discuss an approximate solution. We
assume that the imaginary parts of € and u are
small compared to their real parts. In order to
test the assumption on e we calculate a typical
value using the electrical properties of brick: rel-
ative electrical permitivity ¢, = 4.44 and con-
ductivity ¢ = 0.01 S/m [14]. We consider radi-
ation at 1 GHz and get € = 4.44 — 50.18, so the
imaginary part is significantly smaller than the
real part and the assumption on € holds. The
assumption on u relies on observing the solution



obtained elsewhere (for example, in a graphical
method).

Under these approximations on u and €, the
characteristic values of the real part of u are [1]
for the TE modes:

n
!

u =7(l—-n)=
(1 =n)5

Odd values of n correspond to the symmetrical

modes and even values of n correspond to anti-

symmetrical modes. The imaginary part of u is

small in all cases, as assumed.

The propagation constant in the z direction is
determined from g2 = k% — (%)2 By separating
real and imaginary parts and neglecting terms of
second degree we obtain the approximations for

B=F+ip" (1]

(27r>2 <u'>2
A a
The imaginary part for the TE modes is given

by:

A2 n\?
(AR =12, ...
¥ = e (5) o2

The number of significant modes N (for a sin-
gle polarization) can be approximated by N =~
27‘1. When both TE and TM modes are consid-
ered, the number of significant modes is 2V.

1/2

B = (4)

2.1.1 The Power Carried by the Modes

Next, we calculate the power carried by the dif-
ferent modes, in order to normalize them at a
later stage. The Poynting vector is given by
1
S = ireal (E x H") (6)
and the power (per unit length in the y direction)
is calculated by

a
P = S.dz

J—a

(7)

where we disregard the power propagating in-
side the walls of the waveguide. We assume
here the convention that the mode amplitudes
H, are normalized so that all the modes carry
the same amount of power. We also assume
that the modal amplitudes #,, are real and pos-
itive. When we consider later modes with dif-
ferent power levels or with complex amplitudes,

we use a multiplicative coefficient for each mode.
The power carried by each TE mode is given by

_ kp,a?
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(8)
where the last equation in (8) is due to our
assumption of equal power carried by all the
modes. The power carried by the TM modes
can be expressed with a similar formula.

2.1.2 The Orthogonality of the Modes

We refer to two modes as orthogonal if the power
carried by their combined fields when they prop-
agate in the waveguide can be expressed as the
sum of the powers carried by each mode sepa-
rately. If Py is the total power measured in a
waveguide and {Pn};\r:1 are the powers carried
by N propagating modes, then these modes are
orthogonal if

N
Pr=> P, (9)
n=1
A condition on mode orthogonality can be ex-
pressed in terms of the electric fields of the
modes. Two modes are orthogonal if

a
Ly = E, - Endr=0

J—a

(10)
where - represents the vector dot product. We
now establish the orthogonality of the modes in
the smooth waveguide. It is important because
these modes are used in section 2.2 as a basis for
the representation of other waveforms. Clearly,
any TE mode is orthogonal to any TM mode as
their respective electric fields are geometrically
orthogonal.

The modes of the hollow slab are approxi-
mately orthogonal, under the assumptions

n

U <<
n << 1

This can be verified by inserting the field expres-
sions (3) in (10).
2.2 A Rough Waveguide

In order to model realistic surfaces of buildings
we must take into account the fact that they are
not perfectly smooth. In this section we consider
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Figure 2: A rough slab waveguide
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slab waveguides made of uniform material, but
the geometry of the walls is no longer perfectly
smooth, as shown in figure 2.

The analysis of multi-moded waveguides and
the coupling between the propagating modes
started with a series of papers by Marcuse [16,
17, 18, 22, 19, 20] and was extended by oth-
ers [6, 11, 5, 10, 29]. We follow the approach
taken by Marcuse [16] to analyze the mode cou-
pling caused by the roughness of the waveguide
walls. We follow a perturbation analysis of the
waveguide, which uses the modes of the smooth
waveguide as a basis; the analysis relies on the
assumption of small perturbations of the wall ge-
ometry.

We maintain the two dimensional model,
where there is no variation in the y direction.
The wall boundary near x = a is given by the
function z = f(z) and the boundary near x = —a
is given by z = h(z). We characterize the wall
perturbations statistically, using their correla-
tion functions, where we assume that the per-
turbation on both walls are independent of each
other and wide sense stationary, i.e., the statis-
tical propertied do not change along the street.
for any point zg along the waveguide:

5 (13)

([f(20) = a] [f (20 + 2) — a]) = oe

where o, is the rms deviation of the wall from
perfect straightness and D is the correlation
length. We assume the same statistics for h(z),
which defines the deviations of the wall near

2 = —a. The Gaussian correlation assumption
may not be accurate, but it captures two im-
portant features of every correlation function,
namely a correlation length and a variance.

We now examine the deviation of the com-
plex dielectric constant of the waveguide from
the smooth waveguide. Near the boundary x = a
this deviation is given by

er(2,2) — es(x,2) = Ae(x, 2) =
( 0 z<a a < f(z)
P < () f(2)<a
1—¢ a<z<f(z) a<f(z)
—(1—¢€) flz)<z<a f(z)<a
. {m>f(2) f2) >
{ T >a a> f(z)

where €,(z,z) stands for the relative dielectric
constant of the rough waveguide and €,(z, z) is
defined in (1).
expressed in a similar manner, in terms of h(z).

The fields in the waveguide are the solutions
of the wave equation:

9B, O°E,
0z? + 022

The modes of the smooth waveguide are the so-
lutions of
0*E, 0°E,

0z? ;o 022

We express the fields in the perturbed waveg-
uide in terms of the modal fields of the smooth

The deviation near r = —a is

+ (es(z, 2) + Ae(x,2)) eok?Ey, = 0

+ es(z, 2)egk’*Ey = 0 (14)

waveguide:

(15)

N
= Z Cn(2)Eyn

n=1
where C),(z) are complex modal coefficients. The
summation in (15) is taken over all the sym-
metric and antisymmetric TE modes. When we
insert this expansion in equation (2.2), we get

an equation in terms of the modal coefficients

Cn(2):

0?C,
> (2)

o3 Eyn+2z
n

+Ae(x, 2)egk? ZC" z

W),

7Bn
Eyn=0 (16)

We multiply this equation by the expression of
the field of a specific mode, E,,,, and integrate



from © = —a to z = a. The orthogonality of the
modes of the smooth waveguide is very useful at
this stage, because it removes most of the terms
in the integral, and we are left with a differential
equation for the coefficient of the m™ mode:
0?Cyp aCy,
94
Where F,(z) is given by:
a
Ae(z, 2) Z Cn(z)EynE;mdm

J—a n

Fr(z) = —ek?

(18)
We now calculate the coupling between the 15
mode and all the other modes.
later extended and we derive the coupling coef-
ficient between any two modes. The 15! mode is
not particularly different from the other modes.
We choose to use it for the calculation of the
coupling coefficient for the ease of notation.

In order to calculate the coupling coefficients
between the 15 mode and the other modes, we
assume that the 15" mode is excited at z = 0 and
calculate the amplitudes of the other modes at a

This result is

point z.
1 m=1

0 m>1 (19)

att) =
We assume that coupling is low, which means
that either the point z is close enough to zero or
that coupling is so small that second order cou-
pling is negligible. We consider only the coupling
of power from the 1% mode into other modes,
and disregard coupling among the higher order
modes. We also neglect the coupling from any
mode into the 15 mode.

We solve equation (17):

Cn(z) = Ay + Bpe?ibm? (20)
1

T /0 [eayﬂm<z—<) - 1} Frn(C)dC

The coupling coefficient (20) contains forward
traveling (toward +z) and backward traveling

waves:
Cpm =CH 4+ L) (21)
where the forward traveling part is
D) = An = g [ FuldC (22
2.7/6m 0

Using the low coupling assumption (explained
below (19)), we disregard the backward travel-
ing waves and use the approximation Cy,(z) =

W (2).
tions (19),
given by

After applying the initial condi-
the coupling coefficients are then

Con(2) = — 27ﬂm/F Od¢ m>1  (23)

Using the low coupling assumption we calcu-
late F,,,(z) from (18):

Bk’
B 2wpg P —)
x [(f(2) — a) Ex(a, 2) By (a, 2)
= (h(2) + a) Er(=a, 2) By, (—a, 2)]
(24)

where P is the power carried by each mode. The
difference in the power levels of the modes are
expressed with the modal coefficients C,.

For the TE modes, we use the field expressions
from (3):

By(a, 2) B} (a,

z) = Ei(—a, z)E;;l(fa,,z)

kd)?
uljul,
Xe](ﬂl ﬂm)z
where
T (v) = cos(v) modd, TE symmetric
i) = sin(v) m even, TE antisymmetric
(26)
Rearranging F,,(z) we get
k? By T (u)) T (u
Fm(z) ~ ( 71) p 1(“1) (“Im)
a B Vbm
x [f(#z) —a = h(z) - d]
x el (B1=0m)z (27)
Now we calculate the integral in (22):

z k2Bmz Ty (u)) Ty (ul,
A
J0 ’ \//671 m

X (b = Ym) (28)
where
b = 1/ ) — a)e I Pr—Bm)Cqe (29)
ZJo
1
Y = —/ )+ a)e IBT-Bm) e (30)
Z.Jo

(25)



¢m and 1, are the Fourier coefficients of the
functions f(z) — a and h(z) + a calculated at
the spatial frequency ;1 — B,,, the difference of
frequencies between the two coupled modes Ey
and F,,. The coupling between the two modes is
related to a particular Fourier component of the
geometry of the walls, which corresponds to the
spatial frequency difference between the modes.
This is a well known result of electromagnetic
scattering theory [28, 24].

We calculate the modal coefficients by us-
ing (28) in (23):

k22 T (uh) T (1)

C — _ _ 1 N £ _ *
m > 1 (31)
2.2.1 The Coupled Power Equations

The coupling coefficients of the modes contain
amplitude and phase information, but the quan-
tity that interests us most is the power carried
by the different modes. The coupling coefficients
C,, contain too much information for our needs.
We are interested in the power exchange among
the modes, which is best expressed in terms of
power equations. We now proceed to derive the
coupled power equations of the modes of the
rough waveguide, following Marcuse [18]. The
derivation is based on the above calculation of
the complex coupling coefficients of the waveg-
uide modes.

The coupling coefficients of the modes affect
the mode amplitudes through the wave equation

A N
04w _ > mnAn (32)
z n=1

0

where A, represent the complex mode ampli-
tudes (phasor) and ¢, is the coupling coeffi-
cient from the n'® mode to the m*™. ¢, repre-
sents the propagation constants of the n'" mode,
SO Cpp = —jPBn. We represent the harmonic z
dependence of the modes explicitly:
An(z,2) = Co(2)By(z)e 1% (33)
where By, (z) contains the z dependence of the

n'" mode. The coupled equations in terms of

the new notation are:

807“3 (z) = év: Cy B (z)edPm—bn)2
Oz m\Z) = — CmnbnbODp\T)E
n#m

(34)
In order to calculate the coupling coefficients
Cmn, We solve (34), with the initial conditions
defined in (19): at z = 0 only the 1°' mode is ex-
cited. Using a first order perturbation solution
we get:

1 m=1

cmlzej(ﬁm’ﬂl)z m > 1 (35)

Cn(z) = {

A comparison of (35) with (31) gives the coupling

coefficient from the 15* mode to the m'™:

k2 T (uy) T (u)

Yoja JB VP
X [f(z) —a— h(z) — a

Cml — *(6*
(36)

We extend this result and assume that the cou-
pling from the n'" mode to the m™ is described
by:

k? Tn(ul ) Tm(u;n)

n

. = —(€—1)7—
‘ 5 VA VA,

<[f(z) —a—h(z)—a]  (37)
The coupling coefficients are reciprocal, i.e.
Cmn = —Crm (38)

The reciprocity can be shown by considering the
preservation of power of the coupling process.
For details see Marcuse [18].

A further extension of the calculation of the
coupling coefficients applies the result to the
TM modes. We present a new indexing method
which is used in the remainder of the paper. The
TE modes are numbered 1,..., N and the TM
modes are numbered N+1,...,2N. When using
the propagation constants u, and 3, for n > N,
we apply the appropriate formulas with n — N.

The waveguide model we presented in this sec-
tion does not introduce coupling between TE and
TM modes. However, a realistic model which
allows for variations in the y direction does in-
troduce such coupling. We include TE-TM cou-
pling in our model and assume that the coupling



coefficients are given by (37) with:

cos(v) {
sin(v) {

1<n<N, nodd,
TE symmetric
1<n <N, neven,
TE antisymmetric
N+1<n<2N

Tn(v) sin(v) (n — N) even,
TM symmetric
N+1<n<2N
cos(v) (n — N) odd,

\ TM antisymmetric

The coupled wave equations (32) are trans-
lated into a system of coupled power equations
using Marcuse’s theory [18]. The average power

th (|4a?) =
<\Cn|2>, where the brackets (-) indicate an en-
semble average over many waveguides with (sta-
tistically) similar wall perturbations. An impor-
tant assumption in the development of this the-
ory is that the coupling coefficients are of the
form

carried by the n'" mode is P, =

Cmn = Kmny(2) (39)

where y(z) has the following correlation proper-
ties:

2
()
(Y(2)v(z = 20)) =05 \77
The coupled power equations are [18]:

dP,,
dz

(40)

= —aum—i-\/Ea,QyDv
2N BETENE
S0 Ko (52 (B —50)]
n=1

X (P, — Pu) (41)

where «,, are arbitrary modal loss factors. These
factors do not emerge from the theory; they are
introduced in order to account for physical ef-
fects. In the case of the street waveguide we use
the coupling coefficients calculated in (37), and
realize that

k? T (up,) T (u
Ko = —(6 = 1)—— "(“,") ’"(“,m)
2ja /By, VB
and vy(z) = f(z) — h(z) — 2a. Using (13) we
calculate the correlation of v(z):
V20,
D, = D

(42)

(43)
(44)

O'fy ==

A natural choice for the loss factors «,, is the
modal loss factors g/, calculated in (5). When
we compare the theoretical predictions of our
model to actual measurements (section 3) we dis-
cover that realistic power loss factors are higher
than those warranted by the simplified waveg-
uide model.

The coupled power equations (41) can be ex-
pressed as a simple matrix equation, where the
unknown is a vector containing the power level
of each mode:

P
: (45)
Py
and the coupled power equation takes the form:
oP

— =TP
0z

(46)

I'is an 2N x 2N matrix which holds all the power
coupling coefficients. The mn'" location holds

2
Tyun = /7202 D| Ky |2e [T Bm B0 (47)

and the diagonal elements hold the sum of the
coupling coefficients and the loss of each mode

Coim = —Qm — /202D
N o 9
S Kol 5O 2L (ag)
n=1
n#m

2.2.2 Solution of the Coupled Power
Equations

The coupled power equation (46) is easily solved
in terms of the eigenvalues and eigenvectors of
the coupling matrix I"'. When we used realistic
street parameters in simulations, all the power in
steady state tended to concentrate in the lower
order TE mode.

We also looked at the dynamic behavior of
the power measured at small distances from a
We model the source as a distribution
of power among the waveguide modes, and then
solve (46) numerically. The results we present in
section 3 are the total power along the waveguide
predicted using this method.

source.



2.3 A Street Corner Model

This section describes the model of street cor-
ners, where power flows along one street (the
‘main’ street) into another (‘side’) street. We are
interested in the behavior of power levels along
the side street. We present here an intuitive ex-
planation of the mode coupling mechanism. For
a more thorough analysis see [3]. In order to
look at this coupling mechanism in some detail,
we consider the plane wave decomposition of the
modes.

Each mode can be decomposed into a pair of
plane waves propagating at equally oblique an-
gles with the z direction. The lower order modes
are decomposed into plane waves that propa-
gate in an almost parallel direction to the z axis.
High order modes travel in directions increas-
ingly oblique to the z axis. When considering a
perpendicular street corner, the low order modes
in the main street couple into high order modes
in the side street and vice versa.

We assume steady state distribution of power
of the modes in the main street, where most of
the power is contained in the low order modes.
As a consequence, the power coupled into the
side street is mostly contained in the high order
modes. The power leaking into the side street is
re-distributed among the modes as it propagates
along the street.

The expected effect in the side street is a sig-
nificant decrease of power level as the receiver
moves away from the junction. At a certain
distance, where the modal distribution of power
reaches its steady state, the rate of decrease of
power loss along the street resumes its steady
state rate.

3 Comparison to Measure-

ments

We compare our theoretical predictions of the
rate of power loss along a side street with ac-
tual measurements. The measurements we show
in this section were obtained from two sources:
Measurements in the 900 MHz band taken by
Dr. E. Damosso and Dr. L. Stola of CSELT,
Italy in Turin, Italy in 1992 and measurements
at 910 MHz taken by Dr. J. H. Whitteker in Ot-

Figure 3: ’High Order’ initial power distribution
for the TE and TM modes, for the case of 120
modes. The vertical axis is linear, in relative
units.

tawa, Ontario, Canada in 1986 [30]'. The mea-
surements we show were taken in side streets,
with a mobile receiver moving away from a junc-
tion of the side street and another street that
contained a transmitter.
were filtered over 2 m sections along the street;
the Turin measurements were averaged over sam-
ples taken at 5 cm intervals and the Ottawa mea-
surements were median filtered over non-uniform

The measurements

sampling distances, in the range of 1-2 m.

We used the approximate widths of the streets
in the calculations, but other parameters were
adjusted to give the best match between mea-
surement and theory. It is difficult to measure
these parameters since they represent a simpli-
However, we used
values that appear to be within realistic ranges.
The geometric perturbation variance was set be-
tween 20 cm and 1 m and the geometric correla-
tion length was between 10 40 m, which corre-
sponds to the dimensions of external features of
buildings.

The distribution of power among the modes
at the side street very close to the junction pro-
vides an initial condition for our simulation. We
used the following initial conditions in the simu-
lations, as indicated in table 1.

fied model of a true street.

e The 'High Order’ (H.O.) initial power dis-
tribution has no power in the lower half of
the modes and linearly increasing power at
the higher half, as seen in figure 3.

e The 'Uniform’ (U.) initial power distribu-
tion assigns a constant power level to all the

'See Acknowledgment
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Figure 4: Measurements taken in Via Baracca,
Turin, Italy, moving north away from Via Cop-
pino (that contained the transmitter). See sim-
ulation parameters is table 1.

propagating modes

Initial power distributions that assign power
to the high order modes are reasonable when
considering the coupling of power from the main
street, where steady state distribution was at-
tained (which concentrated power in the low or-
der modes), into the side street (see section 2.3).

We multiplied the loss factors 5" (from (5)) by
factors varying between 2 to and 3, to account
for the losses in the streets. The multiplication
factors are indicated in table 1. This increase
of loss was needed to fit the calculations to the
measurements. In one case (figure 6) we also
multiplied the coupling coefficients (¢, m # n)
by 2.

Figures 4-8 show comparisons between the
theory and measurements.
are shown with a broken line and the theoretical
prediction with a smooth line. The parameter
values used in the simulations are summarized
in table 1. In some of the figures (for example,
figure 5) an increase in the measured power level
is evident near the rightmost part of the graph,
at large distances from the intersection. This
behavior is caused by the proximity of a second
street corner that couples power into the street in
the backward (-z) direction. This effect was not
taken into account in the theoretical calculation.

The measurements

Power Along Via Baracca, moving north away from Via Coppino.
40

T T T T T
D=10 m, 6?=0.2 m?, A=0.333 m, d=8 m, N._=96, N =97, ¢_=0.05 S/m, ¢_=4.44
TE ™ w W

Initial power distribution: high order

Loss a x2, Coupling h x1
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Figure 5: Measurements taken in Via Baracca,
Turin, Italy, moving south away from Via Cop-
pino (that contained the transmitter). See sim-
ulation parameters is table 1.

Power Along Bank St., moving south away from Queen St..
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Initial power distribution: uniform
20 Loss d x3; Coupling h x2

P(dB)

I I I I I I
50 100 150 200 250 300 350 400 450
Distance from Street Junction (m)

Figure 6: Measurements taken in Bank St., Ot-
tawa, Canada, moving south away from Queen
St. (that contained the transmitter). See simu-
lation parameters is table 1.



Power Along Bank St., moving south away from Slater St..
30

. T T . .
D=10 m, 0?=1 m?, A=0.33 m, d=10 m, N. _=121, N_ =122, ¢ _=0.05 S/m, ¢_=3
TE ™ w ™

Initial power distribution: uniform

20 Loss d x2; Coupling'h x1

a Figure
Number 4 5 6 7 8
Frequency

(MHz) 900 | 900 | 910 | 910 | 910

Correlation

. Length
D ) 20 10 40 10 10

Perturb.

Variance

—40 I I I I I
0

2
50 100 150 200 250 300 O_w (m2 ) 0 . 2 0 . 2 0 . 2 1 1

Distance from Street Junction (m)

Street
Figure 7: Measurements taken in Bank St., Ot- Width
tawa, Canada, moving south away from Slate St. 2a (m) 16 16 20 20 20
(that contained the transmitter). See simulation Number
parameters is table 1. of Modes

(TE
and TM) 192 192 242 | 242 242

Wall

Conduct.
O (s/m) 0.01 | 0.05 | 0.05 | 0.05 | 0.045

Wall

Permitivity
Power Along Elgin St., moving north away from Laurier St..

P!

50 €r

T T T T T T
D=10m, 0?=1 m? A=0.33 m; d=10 m, N_=121, N. =122, G _=0.045 S/m, & =3
TE ™ w. ™w

40 - - - - Initial power- distribution:-high-order - (relative) 4 . 44 4 . 44 3 3 3

Loss a x2, Coupling h x1

Initial
Power

Distrib. HO HO U U HO

Loss

Multip.

Factor 2 2 3 2 2

Coupling

Multip.

Factor ]. 1 2 ]. ].

e T me A me  ms ms @ Table 1: Simulation parameters. The initial
Di f i . . . . .
ance fom Steetincton () power distribution is one of "High Order’ (H.O.)

Figure 8: Measurements taken in Elgin St., Ot- or "Uniform (U.).

tawa, Canada, moving north away from Laurier
St. (that contained the transmitter). See simu-
lation parameters is table 1.



4 Conclusion

We presented a new approach to propagation
predictions in the UHF band in urban environ-
ments. Streets are modeled as hollow waveguides
bound by very large lossy plates on both sides.
We included the effects of the roughness of the
external walls of the buildings by introducing
mode coupling.

Using a perturbation model for the mode
coupling induced by the walls, the coupled
power equations were developed, which relate
the power levels of the modes as they propagate
away from a source.

The theory was used to predict the decrease
of the power recorded by a mobile receiver as it
moves away from a junction with line of sight to
a transmitter into a street with no such line of
sight. Comparisons of the theoretical predictions
and actual measurements show good agreement.
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